hugetlb.c 103.8 KB
Newer Older
L
Linus Torvalds 已提交
1 2
/*
 * Generic hugetlb support.
3
 * (C) Nadia Yvette Chambers, April 2004
L
Linus Torvalds 已提交
4 5 6 7 8
 */
#include <linux/list.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/mm.h>
9
#include <linux/seq_file.h>
L
Linus Torvalds 已提交
10 11
#include <linux/sysctl.h>
#include <linux/highmem.h>
A
Andrea Arcangeli 已提交
12
#include <linux/mmu_notifier.h>
L
Linus Torvalds 已提交
13
#include <linux/nodemask.h>
D
David Gibson 已提交
14
#include <linux/pagemap.h>
15
#include <linux/mempolicy.h>
16
#include <linux/compiler.h>
17
#include <linux/cpuset.h>
18
#include <linux/mutex.h>
19
#include <linux/bootmem.h>
20
#include <linux/sysfs.h>
21
#include <linux/slab.h>
22
#include <linux/rmap.h>
23 24
#include <linux/swap.h>
#include <linux/swapops.h>
25
#include <linux/page-isolation.h>
26
#include <linux/jhash.h>
27

D
David Gibson 已提交
28 29
#include <asm/page.h>
#include <asm/pgtable.h>
30
#include <asm/tlb.h>
D
David Gibson 已提交
31

32
#include <linux/io.h>
D
David Gibson 已提交
33
#include <linux/hugetlb.h>
34
#include <linux/hugetlb_cgroup.h>
35
#include <linux/node.h>
36
#include "internal.h"
L
Linus Torvalds 已提交
37

38
int hugepages_treat_as_movable;
39

40
int hugetlb_max_hstate __read_mostly;
41 42 43
unsigned int default_hstate_idx;
struct hstate hstates[HUGE_MAX_HSTATE];

44 45
__initdata LIST_HEAD(huge_boot_pages);

46 47 48
/* for command line parsing */
static struct hstate * __initdata parsed_hstate;
static unsigned long __initdata default_hstate_max_huge_pages;
49
static unsigned long __initdata default_hstate_size;
50

51
/*
52 53
 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
 * free_huge_pages, and surplus_huge_pages.
54
 */
55
DEFINE_SPINLOCK(hugetlb_lock);
56

57 58 59 60 61 62 63
/*
 * Serializes faults on the same logical page.  This is used to
 * prevent spurious OOMs when the hugepage pool is fully utilized.
 */
static int num_fault_mutexes;
static struct mutex *htlb_fault_mutex_table ____cacheline_aligned_in_smp;

64 65 66
/* Forward declaration */
static int hugetlb_acct_memory(struct hstate *h, long delta);

67 68 69 70 71 72 73
static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
{
	bool free = (spool->count == 0) && (spool->used_hpages == 0);

	spin_unlock(&spool->lock);

	/* If no pages are used, and no other handles to the subpool
74 75 76 77 78 79
	 * remain, give up any reservations mased on minimum size and
	 * free the subpool */
	if (free) {
		if (spool->min_hpages != -1)
			hugetlb_acct_memory(spool->hstate,
						-spool->min_hpages);
80
		kfree(spool);
81
	}
82 83
}

84 85
struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
						long min_hpages)
86 87 88
{
	struct hugepage_subpool *spool;

89
	spool = kzalloc(sizeof(*spool), GFP_KERNEL);
90 91 92 93 94
	if (!spool)
		return NULL;

	spin_lock_init(&spool->lock);
	spool->count = 1;
95 96 97 98 99 100 101 102 103
	spool->max_hpages = max_hpages;
	spool->hstate = h;
	spool->min_hpages = min_hpages;

	if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
		kfree(spool);
		return NULL;
	}
	spool->rsv_hpages = min_hpages;
104 105 106 107 108 109 110 111 112 113 114 115

	return spool;
}

void hugepage_put_subpool(struct hugepage_subpool *spool)
{
	spin_lock(&spool->lock);
	BUG_ON(!spool->count);
	spool->count--;
	unlock_or_release_subpool(spool);
}

116 117 118 119 120 121 122 123 124
/*
 * Subpool accounting for allocating and reserving pages.
 * Return -ENOMEM if there are not enough resources to satisfy the
 * the request.  Otherwise, return the number of pages by which the
 * global pools must be adjusted (upward).  The returned value may
 * only be different than the passed value (delta) in the case where
 * a subpool minimum size must be manitained.
 */
static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
125 126
				      long delta)
{
127
	long ret = delta;
128 129

	if (!spool)
130
		return ret;
131 132

	spin_lock(&spool->lock);
133 134 135 136 137 138 139 140

	if (spool->max_hpages != -1) {		/* maximum size accounting */
		if ((spool->used_hpages + delta) <= spool->max_hpages)
			spool->used_hpages += delta;
		else {
			ret = -ENOMEM;
			goto unlock_ret;
		}
141 142
	}

143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
	if (spool->min_hpages != -1) {		/* minimum size accounting */
		if (delta > spool->rsv_hpages) {
			/*
			 * Asking for more reserves than those already taken on
			 * behalf of subpool.  Return difference.
			 */
			ret = delta - spool->rsv_hpages;
			spool->rsv_hpages = 0;
		} else {
			ret = 0;	/* reserves already accounted for */
			spool->rsv_hpages -= delta;
		}
	}

unlock_ret:
	spin_unlock(&spool->lock);
159 160 161
	return ret;
}

162 163 164 165 166 167 168
/*
 * Subpool accounting for freeing and unreserving pages.
 * Return the number of global page reservations that must be dropped.
 * The return value may only be different than the passed value (delta)
 * in the case where a subpool minimum size must be maintained.
 */
static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
169 170
				       long delta)
{
171 172
	long ret = delta;

173
	if (!spool)
174
		return delta;
175 176

	spin_lock(&spool->lock);
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195

	if (spool->max_hpages != -1)		/* maximum size accounting */
		spool->used_hpages -= delta;

	if (spool->min_hpages != -1) {		/* minimum size accounting */
		if (spool->rsv_hpages + delta <= spool->min_hpages)
			ret = 0;
		else
			ret = spool->rsv_hpages + delta - spool->min_hpages;

		spool->rsv_hpages += delta;
		if (spool->rsv_hpages > spool->min_hpages)
			spool->rsv_hpages = spool->min_hpages;
	}

	/*
	 * If hugetlbfs_put_super couldn't free spool due to an outstanding
	 * quota reference, free it now.
	 */
196
	unlock_or_release_subpool(spool);
197 198

	return ret;
199 200 201 202 203 204 205 206 207
}

static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
{
	return HUGETLBFS_SB(inode->i_sb)->spool;
}

static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
{
A
Al Viro 已提交
208
	return subpool_inode(file_inode(vma->vm_file));
209 210
}

211 212 213
/*
 * Region tracking -- allows tracking of reservations and instantiated pages
 *                    across the pages in a mapping.
214
 *
215 216
 * The region data structures are embedded into a resv_map and
 * protected by a resv_map's lock
217 218 219 220 221 222 223
 */
struct file_region {
	struct list_head link;
	long from;
	long to;
};

224
static long region_add(struct resv_map *resv, long f, long t)
225
{
226
	struct list_head *head = &resv->regions;
227 228
	struct file_region *rg, *nrg, *trg;

229
	spin_lock(&resv->lock);
230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
	/* Locate the region we are either in or before. */
	list_for_each_entry(rg, head, link)
		if (f <= rg->to)
			break;

	/* Round our left edge to the current segment if it encloses us. */
	if (f > rg->from)
		f = rg->from;

	/* Check for and consume any regions we now overlap with. */
	nrg = rg;
	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		if (rg->from > t)
			break;

		/* If this area reaches higher then extend our area to
		 * include it completely.  If this is not the first area
		 * which we intend to reuse, free it. */
		if (rg->to > t)
			t = rg->to;
		if (rg != nrg) {
			list_del(&rg->link);
			kfree(rg);
		}
	}
	nrg->from = f;
	nrg->to = t;
259
	spin_unlock(&resv->lock);
260 261 262
	return 0;
}

263
static long region_chg(struct resv_map *resv, long f, long t)
264
{
265
	struct list_head *head = &resv->regions;
266
	struct file_region *rg, *nrg = NULL;
267 268
	long chg = 0;

269 270
retry:
	spin_lock(&resv->lock);
271 272 273 274 275 276 277 278 279
	/* Locate the region we are before or in. */
	list_for_each_entry(rg, head, link)
		if (f <= rg->to)
			break;

	/* If we are below the current region then a new region is required.
	 * Subtle, allocate a new region at the position but make it zero
	 * size such that we can guarantee to record the reservation. */
	if (&rg->link == head || t < rg->from) {
280 281 282 283 284 285 286 287 288 289 290
		if (!nrg) {
			spin_unlock(&resv->lock);
			nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
			if (!nrg)
				return -ENOMEM;

			nrg->from = f;
			nrg->to   = f;
			INIT_LIST_HEAD(&nrg->link);
			goto retry;
		}
291

292 293 294
		list_add(&nrg->link, rg->link.prev);
		chg = t - f;
		goto out_nrg;
295 296 297 298 299 300 301 302 303 304 305 306
	}

	/* Round our left edge to the current segment if it encloses us. */
	if (f > rg->from)
		f = rg->from;
	chg = t - f;

	/* Check for and consume any regions we now overlap with. */
	list_for_each_entry(rg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		if (rg->from > t)
307
			goto out;
308

L
Lucas De Marchi 已提交
309
		/* We overlap with this area, if it extends further than
310 311 312 313 314 315 316 317
		 * us then we must extend ourselves.  Account for its
		 * existing reservation. */
		if (rg->to > t) {
			chg += rg->to - t;
			t = rg->to;
		}
		chg -= rg->to - rg->from;
	}
318 319 320 321 322 323 324 325

out:
	spin_unlock(&resv->lock);
	/*  We already know we raced and no longer need the new region */
	kfree(nrg);
	return chg;
out_nrg:
	spin_unlock(&resv->lock);
326 327 328
	return chg;
}

329
static long region_truncate(struct resv_map *resv, long end)
330
{
331
	struct list_head *head = &resv->regions;
332 333 334
	struct file_region *rg, *trg;
	long chg = 0;

335
	spin_lock(&resv->lock);
336 337 338 339 340
	/* Locate the region we are either in or before. */
	list_for_each_entry(rg, head, link)
		if (end <= rg->to)
			break;
	if (&rg->link == head)
341
		goto out;
342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357

	/* If we are in the middle of a region then adjust it. */
	if (end > rg->from) {
		chg = rg->to - end;
		rg->to = end;
		rg = list_entry(rg->link.next, typeof(*rg), link);
	}

	/* Drop any remaining regions. */
	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		chg += rg->to - rg->from;
		list_del(&rg->link);
		kfree(rg);
	}
358 359 360

out:
	spin_unlock(&resv->lock);
361 362 363
	return chg;
}

364
static long region_count(struct resv_map *resv, long f, long t)
365
{
366
	struct list_head *head = &resv->regions;
367 368 369
	struct file_region *rg;
	long chg = 0;

370
	spin_lock(&resv->lock);
371 372
	/* Locate each segment we overlap with, and count that overlap. */
	list_for_each_entry(rg, head, link) {
373 374
		long seg_from;
		long seg_to;
375 376 377 378 379 380 381 382 383 384 385

		if (rg->to <= f)
			continue;
		if (rg->from >= t)
			break;

		seg_from = max(rg->from, f);
		seg_to = min(rg->to, t);

		chg += seg_to - seg_from;
	}
386
	spin_unlock(&resv->lock);
387 388 389 390

	return chg;
}

391 392 393 394
/*
 * Convert the address within this vma to the page offset within
 * the mapping, in pagecache page units; huge pages here.
 */
395 396
static pgoff_t vma_hugecache_offset(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address)
397
{
398 399
	return ((address - vma->vm_start) >> huge_page_shift(h)) +
			(vma->vm_pgoff >> huge_page_order(h));
400 401
}

402 403 404 405 406 407
pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
				     unsigned long address)
{
	return vma_hugecache_offset(hstate_vma(vma), vma, address);
}

408 409 410 411 412 413 414 415 416 417 418 419 420
/*
 * Return the size of the pages allocated when backing a VMA. In the majority
 * cases this will be same size as used by the page table entries.
 */
unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
{
	struct hstate *hstate;

	if (!is_vm_hugetlb_page(vma))
		return PAGE_SIZE;

	hstate = hstate_vma(vma);

421
	return 1UL << huge_page_shift(hstate);
422
}
423
EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
424

425 426 427 428 429 430 431 432 433 434 435 436 437
/*
 * Return the page size being used by the MMU to back a VMA. In the majority
 * of cases, the page size used by the kernel matches the MMU size. On
 * architectures where it differs, an architecture-specific version of this
 * function is required.
 */
#ifndef vma_mmu_pagesize
unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
{
	return vma_kernel_pagesize(vma);
}
#endif

438 439 440 441 442 443 444
/*
 * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
 * bits of the reservation map pointer, which are always clear due to
 * alignment.
 */
#define HPAGE_RESV_OWNER    (1UL << 0)
#define HPAGE_RESV_UNMAPPED (1UL << 1)
445
#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
446

447 448 449 450 451 452 453 454 455
/*
 * These helpers are used to track how many pages are reserved for
 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
 * is guaranteed to have their future faults succeed.
 *
 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
 * the reserve counters are updated with the hugetlb_lock held. It is safe
 * to reset the VMA at fork() time as it is not in use yet and there is no
 * chance of the global counters getting corrupted as a result of the values.
456 457 458 459 460 461 462 463 464
 *
 * The private mapping reservation is represented in a subtly different
 * manner to a shared mapping.  A shared mapping has a region map associated
 * with the underlying file, this region map represents the backing file
 * pages which have ever had a reservation assigned which this persists even
 * after the page is instantiated.  A private mapping has a region map
 * associated with the original mmap which is attached to all VMAs which
 * reference it, this region map represents those offsets which have consumed
 * reservation ie. where pages have been instantiated.
465
 */
466 467 468 469 470 471 472 473 474 475 476
static unsigned long get_vma_private_data(struct vm_area_struct *vma)
{
	return (unsigned long)vma->vm_private_data;
}

static void set_vma_private_data(struct vm_area_struct *vma,
							unsigned long value)
{
	vma->vm_private_data = (void *)value;
}

477
struct resv_map *resv_map_alloc(void)
478 479 480 481 482 483
{
	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
	if (!resv_map)
		return NULL;

	kref_init(&resv_map->refs);
484
	spin_lock_init(&resv_map->lock);
485 486 487 488 489
	INIT_LIST_HEAD(&resv_map->regions);

	return resv_map;
}

490
void resv_map_release(struct kref *ref)
491 492 493 494
{
	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);

	/* Clear out any active regions before we release the map. */
495
	region_truncate(resv_map, 0);
496 497 498
	kfree(resv_map);
}

499 500 501 502 503
static inline struct resv_map *inode_resv_map(struct inode *inode)
{
	return inode->i_mapping->private_data;
}

504
static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
505
{
506
	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
507 508 509 510 511 512 513
	if (vma->vm_flags & VM_MAYSHARE) {
		struct address_space *mapping = vma->vm_file->f_mapping;
		struct inode *inode = mapping->host;

		return inode_resv_map(inode);

	} else {
514 515
		return (struct resv_map *)(get_vma_private_data(vma) &
							~HPAGE_RESV_MASK);
516
	}
517 518
}

519
static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
520
{
521 522
	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
523

524 525
	set_vma_private_data(vma, (get_vma_private_data(vma) &
				HPAGE_RESV_MASK) | (unsigned long)map);
526 527 528 529
}

static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
{
530 531
	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
532 533

	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
534 535 536 537
}

static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
{
538
	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
539 540

	return (get_vma_private_data(vma) & flag) != 0;
541 542
}

543
/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
544 545
void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
{
546
	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
547
	if (!(vma->vm_flags & VM_MAYSHARE))
548 549 550 551
		vma->vm_private_data = (void *)0;
}

/* Returns true if the VMA has associated reserve pages */
552
static int vma_has_reserves(struct vm_area_struct *vma, long chg)
553
{
554 555 556 557 558 559 560 561 562 563 564 565 566 567 568
	if (vma->vm_flags & VM_NORESERVE) {
		/*
		 * This address is already reserved by other process(chg == 0),
		 * so, we should decrement reserved count. Without decrementing,
		 * reserve count remains after releasing inode, because this
		 * allocated page will go into page cache and is regarded as
		 * coming from reserved pool in releasing step.  Currently, we
		 * don't have any other solution to deal with this situation
		 * properly, so add work-around here.
		 */
		if (vma->vm_flags & VM_MAYSHARE && chg == 0)
			return 1;
		else
			return 0;
	}
569 570

	/* Shared mappings always use reserves */
571
	if (vma->vm_flags & VM_MAYSHARE)
572
		return 1;
573 574 575 576 577

	/*
	 * Only the process that called mmap() has reserves for
	 * private mappings.
	 */
578 579
	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
		return 1;
580

581
	return 0;
582 583
}

584
static void enqueue_huge_page(struct hstate *h, struct page *page)
L
Linus Torvalds 已提交
585 586
{
	int nid = page_to_nid(page);
587
	list_move(&page->lru, &h->hugepage_freelists[nid]);
588 589
	h->free_huge_pages++;
	h->free_huge_pages_node[nid]++;
L
Linus Torvalds 已提交
590 591
}

592 593 594 595
static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
{
	struct page *page;

596 597 598 599 600 601 602 603
	list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
		if (!is_migrate_isolate_page(page))
			break;
	/*
	 * if 'non-isolated free hugepage' not found on the list,
	 * the allocation fails.
	 */
	if (&h->hugepage_freelists[nid] == &page->lru)
604
		return NULL;
605
	list_move(&page->lru, &h->hugepage_activelist);
606
	set_page_refcounted(page);
607 608 609 610 611
	h->free_huge_pages--;
	h->free_huge_pages_node[nid]--;
	return page;
}

612 613 614
/* Movability of hugepages depends on migration support. */
static inline gfp_t htlb_alloc_mask(struct hstate *h)
{
615
	if (hugepages_treat_as_movable || hugepage_migration_supported(h))
616 617 618 619 620
		return GFP_HIGHUSER_MOVABLE;
	else
		return GFP_HIGHUSER;
}

621 622
static struct page *dequeue_huge_page_vma(struct hstate *h,
				struct vm_area_struct *vma,
623 624
				unsigned long address, int avoid_reserve,
				long chg)
L
Linus Torvalds 已提交
625
{
626
	struct page *page = NULL;
627
	struct mempolicy *mpol;
628
	nodemask_t *nodemask;
629
	struct zonelist *zonelist;
630 631
	struct zone *zone;
	struct zoneref *z;
632
	unsigned int cpuset_mems_cookie;
L
Linus Torvalds 已提交
633

634 635 636 637 638
	/*
	 * A child process with MAP_PRIVATE mappings created by their parent
	 * have no page reserves. This check ensures that reservations are
	 * not "stolen". The child may still get SIGKILLed
	 */
639
	if (!vma_has_reserves(vma, chg) &&
640
			h->free_huge_pages - h->resv_huge_pages == 0)
641
		goto err;
642

643
	/* If reserves cannot be used, ensure enough pages are in the pool */
644
	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
645
		goto err;
646

647
retry_cpuset:
648
	cpuset_mems_cookie = read_mems_allowed_begin();
649
	zonelist = huge_zonelist(vma, address,
650
					htlb_alloc_mask(h), &mpol, &nodemask);
651

652 653
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
						MAX_NR_ZONES - 1, nodemask) {
654
		if (cpuset_zone_allowed(zone, htlb_alloc_mask(h))) {
655 656
			page = dequeue_huge_page_node(h, zone_to_nid(zone));
			if (page) {
657 658 659 660 661
				if (avoid_reserve)
					break;
				if (!vma_has_reserves(vma, chg))
					break;

662
				SetPagePrivate(page);
663
				h->resv_huge_pages--;
664 665
				break;
			}
A
Andrew Morton 已提交
666
		}
L
Linus Torvalds 已提交
667
	}
668

669
	mpol_cond_put(mpol);
670
	if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
671
		goto retry_cpuset;
L
Linus Torvalds 已提交
672
	return page;
673 674 675

err:
	return NULL;
L
Linus Torvalds 已提交
676 677
}

678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750
/*
 * common helper functions for hstate_next_node_to_{alloc|free}.
 * We may have allocated or freed a huge page based on a different
 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
 * be outside of *nodes_allowed.  Ensure that we use an allowed
 * node for alloc or free.
 */
static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
{
	nid = next_node(nid, *nodes_allowed);
	if (nid == MAX_NUMNODES)
		nid = first_node(*nodes_allowed);
	VM_BUG_ON(nid >= MAX_NUMNODES);

	return nid;
}

static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
{
	if (!node_isset(nid, *nodes_allowed))
		nid = next_node_allowed(nid, nodes_allowed);
	return nid;
}

/*
 * returns the previously saved node ["this node"] from which to
 * allocate a persistent huge page for the pool and advance the
 * next node from which to allocate, handling wrap at end of node
 * mask.
 */
static int hstate_next_node_to_alloc(struct hstate *h,
					nodemask_t *nodes_allowed)
{
	int nid;

	VM_BUG_ON(!nodes_allowed);

	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);

	return nid;
}

/*
 * helper for free_pool_huge_page() - return the previously saved
 * node ["this node"] from which to free a huge page.  Advance the
 * next node id whether or not we find a free huge page to free so
 * that the next attempt to free addresses the next node.
 */
static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
{
	int nid;

	VM_BUG_ON(!nodes_allowed);

	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);

	return nid;
}

#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)		\
	for (nr_nodes = nodes_weight(*mask);				\
		nr_nodes > 0 &&						\
		((node = hstate_next_node_to_alloc(hs, mask)) || 1);	\
		nr_nodes--)

#define for_each_node_mask_to_free(hs, nr_nodes, node, mask)		\
	for (nr_nodes = nodes_weight(*mask);				\
		nr_nodes > 0 &&						\
		((node = hstate_next_node_to_free(hs, mask)) || 1);	\
		nr_nodes--)

751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888
#if defined(CONFIG_CMA) && defined(CONFIG_X86_64)
static void destroy_compound_gigantic_page(struct page *page,
					unsigned long order)
{
	int i;
	int nr_pages = 1 << order;
	struct page *p = page + 1;

	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
		__ClearPageTail(p);
		set_page_refcounted(p);
		p->first_page = NULL;
	}

	set_compound_order(page, 0);
	__ClearPageHead(page);
}

static void free_gigantic_page(struct page *page, unsigned order)
{
	free_contig_range(page_to_pfn(page), 1 << order);
}

static int __alloc_gigantic_page(unsigned long start_pfn,
				unsigned long nr_pages)
{
	unsigned long end_pfn = start_pfn + nr_pages;
	return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
}

static bool pfn_range_valid_gigantic(unsigned long start_pfn,
				unsigned long nr_pages)
{
	unsigned long i, end_pfn = start_pfn + nr_pages;
	struct page *page;

	for (i = start_pfn; i < end_pfn; i++) {
		if (!pfn_valid(i))
			return false;

		page = pfn_to_page(i);

		if (PageReserved(page))
			return false;

		if (page_count(page) > 0)
			return false;

		if (PageHuge(page))
			return false;
	}

	return true;
}

static bool zone_spans_last_pfn(const struct zone *zone,
			unsigned long start_pfn, unsigned long nr_pages)
{
	unsigned long last_pfn = start_pfn + nr_pages - 1;
	return zone_spans_pfn(zone, last_pfn);
}

static struct page *alloc_gigantic_page(int nid, unsigned order)
{
	unsigned long nr_pages = 1 << order;
	unsigned long ret, pfn, flags;
	struct zone *z;

	z = NODE_DATA(nid)->node_zones;
	for (; z - NODE_DATA(nid)->node_zones < MAX_NR_ZONES; z++) {
		spin_lock_irqsave(&z->lock, flags);

		pfn = ALIGN(z->zone_start_pfn, nr_pages);
		while (zone_spans_last_pfn(z, pfn, nr_pages)) {
			if (pfn_range_valid_gigantic(pfn, nr_pages)) {
				/*
				 * We release the zone lock here because
				 * alloc_contig_range() will also lock the zone
				 * at some point. If there's an allocation
				 * spinning on this lock, it may win the race
				 * and cause alloc_contig_range() to fail...
				 */
				spin_unlock_irqrestore(&z->lock, flags);
				ret = __alloc_gigantic_page(pfn, nr_pages);
				if (!ret)
					return pfn_to_page(pfn);
				spin_lock_irqsave(&z->lock, flags);
			}
			pfn += nr_pages;
		}

		spin_unlock_irqrestore(&z->lock, flags);
	}

	return NULL;
}

static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
static void prep_compound_gigantic_page(struct page *page, unsigned long order);

static struct page *alloc_fresh_gigantic_page_node(struct hstate *h, int nid)
{
	struct page *page;

	page = alloc_gigantic_page(nid, huge_page_order(h));
	if (page) {
		prep_compound_gigantic_page(page, huge_page_order(h));
		prep_new_huge_page(h, page, nid);
	}

	return page;
}

static int alloc_fresh_gigantic_page(struct hstate *h,
				nodemask_t *nodes_allowed)
{
	struct page *page = NULL;
	int nr_nodes, node;

	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
		page = alloc_fresh_gigantic_page_node(h, node);
		if (page)
			return 1;
	}

	return 0;
}

static inline bool gigantic_page_supported(void) { return true; }
#else
static inline bool gigantic_page_supported(void) { return false; }
static inline void free_gigantic_page(struct page *page, unsigned order) { }
static inline void destroy_compound_gigantic_page(struct page *page,
						unsigned long order) { }
static inline int alloc_fresh_gigantic_page(struct hstate *h,
					nodemask_t *nodes_allowed) { return 0; }
#endif

889
static void update_and_free_page(struct hstate *h, struct page *page)
A
Adam Litke 已提交
890 891
{
	int i;
892

893 894
	if (hstate_is_gigantic(h) && !gigantic_page_supported())
		return;
895

896 897 898
	h->nr_huge_pages--;
	h->nr_huge_pages_node[page_to_nid(page)]--;
	for (i = 0; i < pages_per_huge_page(h); i++) {
899 900
		page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
				1 << PG_referenced | 1 << PG_dirty |
901 902
				1 << PG_active | 1 << PG_private |
				1 << PG_writeback);
A
Adam Litke 已提交
903
	}
904
	VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
A
Adam Litke 已提交
905 906
	set_compound_page_dtor(page, NULL);
	set_page_refcounted(page);
907 908 909 910 911 912 913
	if (hstate_is_gigantic(h)) {
		destroy_compound_gigantic_page(page, huge_page_order(h));
		free_gigantic_page(page, huge_page_order(h));
	} else {
		arch_release_hugepage(page);
		__free_pages(page, huge_page_order(h));
	}
A
Adam Litke 已提交
914 915
}

916 917 918 919 920 921 922 923 924 925 926
struct hstate *size_to_hstate(unsigned long size)
{
	struct hstate *h;

	for_each_hstate(h) {
		if (huge_page_size(h) == size)
			return h;
	}
	return NULL;
}

927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951
/*
 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
 * to hstate->hugepage_activelist.)
 *
 * This function can be called for tail pages, but never returns true for them.
 */
bool page_huge_active(struct page *page)
{
	VM_BUG_ON_PAGE(!PageHuge(page), page);
	return PageHead(page) && PagePrivate(&page[1]);
}

/* never called for tail page */
static void set_page_huge_active(struct page *page)
{
	VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
	SetPagePrivate(&page[1]);
}

static void clear_page_huge_active(struct page *page)
{
	VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
	ClearPagePrivate(&page[1]);
}

952
void free_huge_page(struct page *page)
953
{
954 955 956 957
	/*
	 * Can't pass hstate in here because it is called from the
	 * compound page destructor.
	 */
958
	struct hstate *h = page_hstate(page);
959
	int nid = page_to_nid(page);
960 961
	struct hugepage_subpool *spool =
		(struct hugepage_subpool *)page_private(page);
962
	bool restore_reserve;
963

964
	set_page_private(page, 0);
965
	page->mapping = NULL;
966
	BUG_ON(page_count(page));
967
	BUG_ON(page_mapcount(page));
968
	restore_reserve = PagePrivate(page);
969
	ClearPagePrivate(page);
970

971 972 973 974 975 976 977 978
	/*
	 * A return code of zero implies that the subpool will be under its
	 * minimum size if the reservation is not restored after page is free.
	 * Therefore, force restore_reserve operation.
	 */
	if (hugepage_subpool_put_pages(spool, 1) == 0)
		restore_reserve = true;

979
	spin_lock(&hugetlb_lock);
980
	clear_page_huge_active(page);
981 982
	hugetlb_cgroup_uncharge_page(hstate_index(h),
				     pages_per_huge_page(h), page);
983 984 985
	if (restore_reserve)
		h->resv_huge_pages++;

986
	if (h->surplus_huge_pages_node[nid]) {
987 988
		/* remove the page from active list */
		list_del(&page->lru);
989 990 991
		update_and_free_page(h, page);
		h->surplus_huge_pages--;
		h->surplus_huge_pages_node[nid]--;
992
	} else {
993
		arch_clear_hugepage_flags(page);
994
		enqueue_huge_page(h, page);
995
	}
996 997 998
	spin_unlock(&hugetlb_lock);
}

999
static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1000
{
1001
	INIT_LIST_HEAD(&page->lru);
1002 1003
	set_compound_page_dtor(page, free_huge_page);
	spin_lock(&hugetlb_lock);
1004
	set_hugetlb_cgroup(page, NULL);
1005 1006
	h->nr_huge_pages++;
	h->nr_huge_pages_node[nid]++;
1007 1008 1009 1010
	spin_unlock(&hugetlb_lock);
	put_page(page); /* free it into the hugepage allocator */
}

1011
static void prep_compound_gigantic_page(struct page *page, unsigned long order)
1012 1013 1014 1015 1016 1017 1018 1019
{
	int i;
	int nr_pages = 1 << order;
	struct page *p = page + 1;

	/* we rely on prep_new_huge_page to set the destructor */
	set_compound_order(page, order);
	__SetPageHead(page);
1020
	__ClearPageReserved(page);
1021
	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034
		/*
		 * For gigantic hugepages allocated through bootmem at
		 * boot, it's safer to be consistent with the not-gigantic
		 * hugepages and clear the PG_reserved bit from all tail pages
		 * too.  Otherwse drivers using get_user_pages() to access tail
		 * pages may get the reference counting wrong if they see
		 * PG_reserved set on a tail page (despite the head page not
		 * having PG_reserved set).  Enforcing this consistency between
		 * head and tail pages allows drivers to optimize away a check
		 * on the head page when they need know if put_page() is needed
		 * after get_user_pages().
		 */
		__ClearPageReserved(p);
1035
		set_page_count(p, 0);
1036
		p->first_page = page;
1037 1038 1039
		/* Make sure p->first_page is always valid for PageTail() */
		smp_wmb();
		__SetPageTail(p);
1040 1041 1042
	}
}

A
Andrew Morton 已提交
1043 1044 1045 1046 1047
/*
 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
 * transparent huge pages.  See the PageTransHuge() documentation for more
 * details.
 */
1048 1049 1050 1051 1052 1053
int PageHuge(struct page *page)
{
	if (!PageCompound(page))
		return 0;

	page = compound_head(page);
1054
	return get_compound_page_dtor(page) == free_huge_page;
1055
}
1056 1057
EXPORT_SYMBOL_GPL(PageHuge);

1058 1059 1060 1061 1062 1063 1064 1065 1066
/*
 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
 * normal or transparent huge pages.
 */
int PageHeadHuge(struct page *page_head)
{
	if (!PageHead(page_head))
		return 0;

1067
	return get_compound_page_dtor(page_head) == free_huge_page;
1068 1069
}

1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086
pgoff_t __basepage_index(struct page *page)
{
	struct page *page_head = compound_head(page);
	pgoff_t index = page_index(page_head);
	unsigned long compound_idx;

	if (!PageHuge(page_head))
		return page_index(page);

	if (compound_order(page_head) >= MAX_ORDER)
		compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
	else
		compound_idx = page - page_head;

	return (index << compound_order(page_head)) + compound_idx;
}

1087
static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
L
Linus Torvalds 已提交
1088 1089
{
	struct page *page;
1090

1091
	page = alloc_pages_exact_node(nid,
1092
		htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
1093
						__GFP_REPEAT|__GFP_NOWARN,
1094
		huge_page_order(h));
L
Linus Torvalds 已提交
1095
	if (page) {
1096
		if (arch_prepare_hugepage(page)) {
1097
			__free_pages(page, huge_page_order(h));
1098
			return NULL;
1099
		}
1100
		prep_new_huge_page(h, page, nid);
L
Linus Torvalds 已提交
1101
	}
1102 1103 1104 1105

	return page;
}

1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127
static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
{
	struct page *page;
	int nr_nodes, node;
	int ret = 0;

	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
		page = alloc_fresh_huge_page_node(h, node);
		if (page) {
			ret = 1;
			break;
		}
	}

	if (ret)
		count_vm_event(HTLB_BUDDY_PGALLOC);
	else
		count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);

	return ret;
}

1128 1129 1130 1131 1132 1133
/*
 * Free huge page from pool from next node to free.
 * Attempt to keep persistent huge pages more or less
 * balanced over allowed nodes.
 * Called with hugetlb_lock locked.
 */
1134 1135
static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
							 bool acct_surplus)
1136
{
1137
	int nr_nodes, node;
1138 1139
	int ret = 0;

1140
	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1141 1142 1143 1144
		/*
		 * If we're returning unused surplus pages, only examine
		 * nodes with surplus pages.
		 */
1145 1146
		if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
		    !list_empty(&h->hugepage_freelists[node])) {
1147
			struct page *page =
1148
				list_entry(h->hugepage_freelists[node].next,
1149 1150 1151
					  struct page, lru);
			list_del(&page->lru);
			h->free_huge_pages--;
1152
			h->free_huge_pages_node[node]--;
1153 1154
			if (acct_surplus) {
				h->surplus_huge_pages--;
1155
				h->surplus_huge_pages_node[node]--;
1156
			}
1157 1158
			update_and_free_page(h, page);
			ret = 1;
1159
			break;
1160
		}
1161
	}
1162 1163 1164 1165

	return ret;
}

1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194
/*
 * Dissolve a given free hugepage into free buddy pages. This function does
 * nothing for in-use (including surplus) hugepages.
 */
static void dissolve_free_huge_page(struct page *page)
{
	spin_lock(&hugetlb_lock);
	if (PageHuge(page) && !page_count(page)) {
		struct hstate *h = page_hstate(page);
		int nid = page_to_nid(page);
		list_del(&page->lru);
		h->free_huge_pages--;
		h->free_huge_pages_node[nid]--;
		update_and_free_page(h, page);
	}
	spin_unlock(&hugetlb_lock);
}

/*
 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
 * make specified memory blocks removable from the system.
 * Note that start_pfn should aligned with (minimum) hugepage size.
 */
void dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
{
	unsigned int order = 8 * sizeof(void *);
	unsigned long pfn;
	struct hstate *h;

1195 1196 1197
	if (!hugepages_supported())
		return;

1198 1199 1200 1201 1202 1203 1204 1205 1206
	/* Set scan step to minimum hugepage size */
	for_each_hstate(h)
		if (order > huge_page_order(h))
			order = huge_page_order(h);
	VM_BUG_ON(!IS_ALIGNED(start_pfn, 1 << order));
	for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order)
		dissolve_free_huge_page(pfn_to_page(pfn));
}

1207
static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
1208 1209
{
	struct page *page;
1210
	unsigned int r_nid;
1211

1212
	if (hstate_is_gigantic(h))
1213 1214
		return NULL;

1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238
	/*
	 * Assume we will successfully allocate the surplus page to
	 * prevent racing processes from causing the surplus to exceed
	 * overcommit
	 *
	 * This however introduces a different race, where a process B
	 * tries to grow the static hugepage pool while alloc_pages() is
	 * called by process A. B will only examine the per-node
	 * counters in determining if surplus huge pages can be
	 * converted to normal huge pages in adjust_pool_surplus(). A
	 * won't be able to increment the per-node counter, until the
	 * lock is dropped by B, but B doesn't drop hugetlb_lock until
	 * no more huge pages can be converted from surplus to normal
	 * state (and doesn't try to convert again). Thus, we have a
	 * case where a surplus huge page exists, the pool is grown, and
	 * the surplus huge page still exists after, even though it
	 * should just have been converted to a normal huge page. This
	 * does not leak memory, though, as the hugepage will be freed
	 * once it is out of use. It also does not allow the counters to
	 * go out of whack in adjust_pool_surplus() as we don't modify
	 * the node values until we've gotten the hugepage and only the
	 * per-node value is checked there.
	 */
	spin_lock(&hugetlb_lock);
1239
	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1240 1241 1242
		spin_unlock(&hugetlb_lock);
		return NULL;
	} else {
1243 1244
		h->nr_huge_pages++;
		h->surplus_huge_pages++;
1245 1246 1247
	}
	spin_unlock(&hugetlb_lock);

1248
	if (nid == NUMA_NO_NODE)
1249
		page = alloc_pages(htlb_alloc_mask(h)|__GFP_COMP|
1250 1251 1252 1253
				   __GFP_REPEAT|__GFP_NOWARN,
				   huge_page_order(h));
	else
		page = alloc_pages_exact_node(nid,
1254
			htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
1255
			__GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
1256

1257 1258
	if (page && arch_prepare_hugepage(page)) {
		__free_pages(page, huge_page_order(h));
1259
		page = NULL;
1260 1261
	}

1262
	spin_lock(&hugetlb_lock);
1263
	if (page) {
1264
		INIT_LIST_HEAD(&page->lru);
1265
		r_nid = page_to_nid(page);
1266
		set_compound_page_dtor(page, free_huge_page);
1267
		set_hugetlb_cgroup(page, NULL);
1268 1269 1270
		/*
		 * We incremented the global counters already
		 */
1271 1272
		h->nr_huge_pages_node[r_nid]++;
		h->surplus_huge_pages_node[r_nid]++;
1273
		__count_vm_event(HTLB_BUDDY_PGALLOC);
1274
	} else {
1275 1276
		h->nr_huge_pages--;
		h->surplus_huge_pages--;
1277
		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1278
	}
1279
	spin_unlock(&hugetlb_lock);
1280 1281 1282 1283

	return page;
}

1284 1285 1286 1287 1288 1289 1290
/*
 * This allocation function is useful in the context where vma is irrelevant.
 * E.g. soft-offlining uses this function because it only cares physical
 * address of error page.
 */
struct page *alloc_huge_page_node(struct hstate *h, int nid)
{
1291
	struct page *page = NULL;
1292 1293

	spin_lock(&hugetlb_lock);
1294 1295
	if (h->free_huge_pages - h->resv_huge_pages > 0)
		page = dequeue_huge_page_node(h, nid);
1296 1297
	spin_unlock(&hugetlb_lock);

1298
	if (!page)
1299 1300 1301 1302 1303
		page = alloc_buddy_huge_page(h, nid);

	return page;
}

1304
/*
L
Lucas De Marchi 已提交
1305
 * Increase the hugetlb pool such that it can accommodate a reservation
1306 1307
 * of size 'delta'.
 */
1308
static int gather_surplus_pages(struct hstate *h, int delta)
1309 1310 1311 1312 1313
{
	struct list_head surplus_list;
	struct page *page, *tmp;
	int ret, i;
	int needed, allocated;
1314
	bool alloc_ok = true;
1315

1316
	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1317
	if (needed <= 0) {
1318
		h->resv_huge_pages += delta;
1319
		return 0;
1320
	}
1321 1322 1323 1324 1325 1326 1327 1328

	allocated = 0;
	INIT_LIST_HEAD(&surplus_list);

	ret = -ENOMEM;
retry:
	spin_unlock(&hugetlb_lock);
	for (i = 0; i < needed; i++) {
1329
		page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1330 1331 1332 1333
		if (!page) {
			alloc_ok = false;
			break;
		}
1334 1335
		list_add(&page->lru, &surplus_list);
	}
1336
	allocated += i;
1337 1338 1339 1340 1341 1342

	/*
	 * After retaking hugetlb_lock, we need to recalculate 'needed'
	 * because either resv_huge_pages or free_huge_pages may have changed.
	 */
	spin_lock(&hugetlb_lock);
1343 1344
	needed = (h->resv_huge_pages + delta) -
			(h->free_huge_pages + allocated);
1345 1346 1347 1348 1349 1350 1351 1352 1353 1354
	if (needed > 0) {
		if (alloc_ok)
			goto retry;
		/*
		 * We were not able to allocate enough pages to
		 * satisfy the entire reservation so we free what
		 * we've allocated so far.
		 */
		goto free;
	}
1355 1356
	/*
	 * The surplus_list now contains _at_least_ the number of extra pages
L
Lucas De Marchi 已提交
1357
	 * needed to accommodate the reservation.  Add the appropriate number
1358
	 * of pages to the hugetlb pool and free the extras back to the buddy
1359 1360 1361
	 * allocator.  Commit the entire reservation here to prevent another
	 * process from stealing the pages as they are added to the pool but
	 * before they are reserved.
1362 1363
	 */
	needed += allocated;
1364
	h->resv_huge_pages += delta;
1365
	ret = 0;
1366

1367
	/* Free the needed pages to the hugetlb pool */
1368
	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1369 1370
		if ((--needed) < 0)
			break;
1371 1372 1373 1374 1375
		/*
		 * This page is now managed by the hugetlb allocator and has
		 * no users -- drop the buddy allocator's reference.
		 */
		put_page_testzero(page);
1376
		VM_BUG_ON_PAGE(page_count(page), page);
1377
		enqueue_huge_page(h, page);
1378
	}
1379
free:
1380
	spin_unlock(&hugetlb_lock);
1381 1382

	/* Free unnecessary surplus pages to the buddy allocator */
1383 1384
	list_for_each_entry_safe(page, tmp, &surplus_list, lru)
		put_page(page);
1385
	spin_lock(&hugetlb_lock);
1386 1387 1388 1389 1390 1391 1392 1393

	return ret;
}

/*
 * When releasing a hugetlb pool reservation, any surplus pages that were
 * allocated to satisfy the reservation must be explicitly freed if they were
 * never used.
1394
 * Called with hugetlb_lock held.
1395
 */
1396 1397
static void return_unused_surplus_pages(struct hstate *h,
					unsigned long unused_resv_pages)
1398 1399 1400
{
	unsigned long nr_pages;

1401
	/* Uncommit the reservation */
1402
	h->resv_huge_pages -= unused_resv_pages;
1403

1404
	/* Cannot return gigantic pages currently */
1405
	if (hstate_is_gigantic(h))
1406 1407
		return;

1408
	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1409

1410 1411
	/*
	 * We want to release as many surplus pages as possible, spread
1412 1413 1414 1415 1416
	 * evenly across all nodes with memory. Iterate across these nodes
	 * until we can no longer free unreserved surplus pages. This occurs
	 * when the nodes with surplus pages have no free pages.
	 * free_pool_huge_page() will balance the the freed pages across the
	 * on-line nodes with memory and will handle the hstate accounting.
1417 1418
	 */
	while (nr_pages--) {
1419
		if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1420
			break;
1421
		cond_resched_lock(&hugetlb_lock);
1422 1423 1424
	}
}

1425 1426 1427
/*
 * Determine if the huge page at addr within the vma has an associated
 * reservation.  Where it does not we will need to logically increase
1428 1429 1430 1431 1432 1433
 * reservation and actually increase subpool usage before an allocation
 * can occur.  Where any new reservation would be required the
 * reservation change is prepared, but not committed.  Once the page
 * has been allocated from the subpool and instantiated the change should
 * be committed via vma_commit_reservation.  No action is required on
 * failure.
1434
 */
1435
static long vma_needs_reservation(struct hstate *h,
1436
			struct vm_area_struct *vma, unsigned long addr)
1437
{
1438 1439 1440
	struct resv_map *resv;
	pgoff_t idx;
	long chg;
1441

1442 1443
	resv = vma_resv_map(vma);
	if (!resv)
1444
		return 1;
1445

1446 1447
	idx = vma_hugecache_offset(h, vma, addr);
	chg = region_chg(resv, idx, idx + 1);
1448

1449 1450 1451 1452
	if (vma->vm_flags & VM_MAYSHARE)
		return chg;
	else
		return chg < 0 ? chg : 0;
1453
}
1454 1455
static void vma_commit_reservation(struct hstate *h,
			struct vm_area_struct *vma, unsigned long addr)
1456
{
1457 1458
	struct resv_map *resv;
	pgoff_t idx;
1459

1460 1461 1462
	resv = vma_resv_map(vma);
	if (!resv)
		return;
1463

1464 1465
	idx = vma_hugecache_offset(h, vma, addr);
	region_add(resv, idx, idx + 1);
1466 1467
}

1468
static struct page *alloc_huge_page(struct vm_area_struct *vma,
1469
				    unsigned long addr, int avoid_reserve)
L
Linus Torvalds 已提交
1470
{
1471
	struct hugepage_subpool *spool = subpool_vma(vma);
1472
	struct hstate *h = hstate_vma(vma);
1473
	struct page *page;
1474
	long chg;
1475 1476
	int ret, idx;
	struct hugetlb_cgroup *h_cg;
1477

1478
	idx = hstate_index(h);
1479
	/*
1480 1481 1482 1483 1484 1485
	 * Processes that did not create the mapping will have no
	 * reserves and will not have accounted against subpool
	 * limit. Check that the subpool limit can be made before
	 * satisfying the allocation MAP_NORESERVE mappings may also
	 * need pages and subpool limit allocated allocated if no reserve
	 * mapping overlaps.
1486
	 */
1487
	chg = vma_needs_reservation(h, vma, addr);
1488
	if (chg < 0)
1489
		return ERR_PTR(-ENOMEM);
1490
	if (chg || avoid_reserve)
1491
		if (hugepage_subpool_get_pages(spool, 1) < 0)
1492
			return ERR_PTR(-ENOSPC);
L
Linus Torvalds 已提交
1493

1494
	ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
1495 1496 1497
	if (ret)
		goto out_subpool_put;

L
Linus Torvalds 已提交
1498
	spin_lock(&hugetlb_lock);
1499
	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, chg);
1500
	if (!page) {
1501
		spin_unlock(&hugetlb_lock);
1502
		page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1503 1504 1505
		if (!page)
			goto out_uncharge_cgroup;

1506 1507
		spin_lock(&hugetlb_lock);
		list_move(&page->lru, &h->hugepage_activelist);
1508
		/* Fall through */
K
Ken Chen 已提交
1509
	}
1510 1511
	hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
	spin_unlock(&hugetlb_lock);
1512

1513
	set_page_private(page, (unsigned long)spool);
1514

1515
	vma_commit_reservation(h, vma, addr);
1516
	return page;
1517 1518 1519 1520 1521 1522 1523

out_uncharge_cgroup:
	hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
out_subpool_put:
	if (chg || avoid_reserve)
		hugepage_subpool_put_pages(spool, 1);
	return ERR_PTR(-ENOSPC);
1524 1525
}

1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539
/*
 * alloc_huge_page()'s wrapper which simply returns the page if allocation
 * succeeds, otherwise NULL. This function is called from new_vma_page(),
 * where no ERR_VALUE is expected to be returned.
 */
struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
				unsigned long addr, int avoid_reserve)
{
	struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
	if (IS_ERR(page))
		page = NULL;
	return page;
}

1540
int __weak alloc_bootmem_huge_page(struct hstate *h)
1541 1542
{
	struct huge_bootmem_page *m;
1543
	int nr_nodes, node;
1544

1545
	for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
1546 1547
		void *addr;

1548 1549 1550
		addr = memblock_virt_alloc_try_nid_nopanic(
				huge_page_size(h), huge_page_size(h),
				0, BOOTMEM_ALLOC_ACCESSIBLE, node);
1551 1552 1553 1554 1555 1556 1557
		if (addr) {
			/*
			 * Use the beginning of the huge page to store the
			 * huge_bootmem_page struct (until gather_bootmem
			 * puts them into the mem_map).
			 */
			m = addr;
1558
			goto found;
1559 1560 1561 1562 1563
		}
	}
	return 0;

found:
1564
	BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
1565 1566 1567 1568 1569 1570
	/* Put them into a private list first because mem_map is not up yet */
	list_add(&m->list, &huge_boot_pages);
	m->hstate = h;
	return 1;
}

1571
static void __init prep_compound_huge_page(struct page *page, int order)
1572 1573 1574 1575 1576 1577 1578
{
	if (unlikely(order > (MAX_ORDER - 1)))
		prep_compound_gigantic_page(page, order);
	else
		prep_compound_page(page, order);
}

1579 1580 1581 1582 1583 1584 1585
/* Put bootmem huge pages into the standard lists after mem_map is up */
static void __init gather_bootmem_prealloc(void)
{
	struct huge_bootmem_page *m;

	list_for_each_entry(m, &huge_boot_pages, list) {
		struct hstate *h = m->hstate;
1586 1587 1588 1589
		struct page *page;

#ifdef CONFIG_HIGHMEM
		page = pfn_to_page(m->phys >> PAGE_SHIFT);
1590 1591
		memblock_free_late(__pa(m),
				   sizeof(struct huge_bootmem_page));
1592 1593 1594
#else
		page = virt_to_page(m);
#endif
1595
		WARN_ON(page_count(page) != 1);
1596
		prep_compound_huge_page(page, h->order);
1597
		WARN_ON(PageReserved(page));
1598
		prep_new_huge_page(h, page, page_to_nid(page));
1599 1600 1601 1602 1603 1604
		/*
		 * If we had gigantic hugepages allocated at boot time, we need
		 * to restore the 'stolen' pages to totalram_pages in order to
		 * fix confusing memory reports from free(1) and another
		 * side-effects, like CommitLimit going negative.
		 */
1605
		if (hstate_is_gigantic(h))
1606
			adjust_managed_page_count(page, 1 << h->order);
1607 1608 1609
	}
}

1610
static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
L
Linus Torvalds 已提交
1611 1612
{
	unsigned long i;
1613

1614
	for (i = 0; i < h->max_huge_pages; ++i) {
1615
		if (hstate_is_gigantic(h)) {
1616 1617
			if (!alloc_bootmem_huge_page(h))
				break;
1618
		} else if (!alloc_fresh_huge_page(h,
1619
					 &node_states[N_MEMORY]))
L
Linus Torvalds 已提交
1620 1621
			break;
	}
1622
	h->max_huge_pages = i;
1623 1624 1625 1626 1627 1628 1629
}

static void __init hugetlb_init_hstates(void)
{
	struct hstate *h;

	for_each_hstate(h) {
1630
		/* oversize hugepages were init'ed in early boot */
1631
		if (!hstate_is_gigantic(h))
1632
			hugetlb_hstate_alloc_pages(h);
1633 1634 1635
	}
}

A
Andi Kleen 已提交
1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646
static char * __init memfmt(char *buf, unsigned long n)
{
	if (n >= (1UL << 30))
		sprintf(buf, "%lu GB", n >> 30);
	else if (n >= (1UL << 20))
		sprintf(buf, "%lu MB", n >> 20);
	else
		sprintf(buf, "%lu KB", n >> 10);
	return buf;
}

1647 1648 1649 1650 1651
static void __init report_hugepages(void)
{
	struct hstate *h;

	for_each_hstate(h) {
A
Andi Kleen 已提交
1652
		char buf[32];
1653
		pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
A
Andi Kleen 已提交
1654 1655
			memfmt(buf, huge_page_size(h)),
			h->free_huge_pages);
1656 1657 1658
	}
}

L
Linus Torvalds 已提交
1659
#ifdef CONFIG_HIGHMEM
1660 1661
static void try_to_free_low(struct hstate *h, unsigned long count,
						nodemask_t *nodes_allowed)
L
Linus Torvalds 已提交
1662
{
1663 1664
	int i;

1665
	if (hstate_is_gigantic(h))
1666 1667
		return;

1668
	for_each_node_mask(i, *nodes_allowed) {
L
Linus Torvalds 已提交
1669
		struct page *page, *next;
1670 1671 1672
		struct list_head *freel = &h->hugepage_freelists[i];
		list_for_each_entry_safe(page, next, freel, lru) {
			if (count >= h->nr_huge_pages)
1673
				return;
L
Linus Torvalds 已提交
1674 1675 1676
			if (PageHighMem(page))
				continue;
			list_del(&page->lru);
1677
			update_and_free_page(h, page);
1678 1679
			h->free_huge_pages--;
			h->free_huge_pages_node[page_to_nid(page)]--;
L
Linus Torvalds 已提交
1680 1681 1682 1683
		}
	}
}
#else
1684 1685
static inline void try_to_free_low(struct hstate *h, unsigned long count,
						nodemask_t *nodes_allowed)
L
Linus Torvalds 已提交
1686 1687 1688 1689
{
}
#endif

1690 1691 1692 1693 1694
/*
 * Increment or decrement surplus_huge_pages.  Keep node-specific counters
 * balanced by operating on them in a round-robin fashion.
 * Returns 1 if an adjustment was made.
 */
1695 1696
static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
				int delta)
1697
{
1698
	int nr_nodes, node;
1699 1700 1701

	VM_BUG_ON(delta != -1 && delta != 1);

1702 1703 1704 1705
	if (delta < 0) {
		for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
			if (h->surplus_huge_pages_node[node])
				goto found;
1706
		}
1707 1708 1709 1710 1711
	} else {
		for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
			if (h->surplus_huge_pages_node[node] <
					h->nr_huge_pages_node[node])
				goto found;
1712
		}
1713 1714
	}
	return 0;
1715

1716 1717 1718 1719
found:
	h->surplus_huge_pages += delta;
	h->surplus_huge_pages_node[node] += delta;
	return 1;
1720 1721
}

1722
#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1723 1724
static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
						nodemask_t *nodes_allowed)
L
Linus Torvalds 已提交
1725
{
1726
	unsigned long min_count, ret;
L
Linus Torvalds 已提交
1727

1728
	if (hstate_is_gigantic(h) && !gigantic_page_supported())
1729 1730
		return h->max_huge_pages;

1731 1732 1733 1734
	/*
	 * Increase the pool size
	 * First take pages out of surplus state.  Then make up the
	 * remaining difference by allocating fresh huge pages.
1735 1736 1737 1738 1739 1740
	 *
	 * We might race with alloc_buddy_huge_page() here and be unable
	 * to convert a surplus huge page to a normal huge page. That is
	 * not critical, though, it just means the overall size of the
	 * pool might be one hugepage larger than it needs to be, but
	 * within all the constraints specified by the sysctls.
1741
	 */
L
Linus Torvalds 已提交
1742
	spin_lock(&hugetlb_lock);
1743
	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1744
		if (!adjust_pool_surplus(h, nodes_allowed, -1))
1745 1746 1747
			break;
	}

1748
	while (count > persistent_huge_pages(h)) {
1749 1750 1751 1752 1753 1754
		/*
		 * If this allocation races such that we no longer need the
		 * page, free_huge_page will handle it by freeing the page
		 * and reducing the surplus.
		 */
		spin_unlock(&hugetlb_lock);
1755 1756 1757 1758
		if (hstate_is_gigantic(h))
			ret = alloc_fresh_gigantic_page(h, nodes_allowed);
		else
			ret = alloc_fresh_huge_page(h, nodes_allowed);
1759 1760 1761 1762
		spin_lock(&hugetlb_lock);
		if (!ret)
			goto out;

1763 1764 1765
		/* Bail for signals. Probably ctrl-c from user */
		if (signal_pending(current))
			goto out;
1766 1767 1768 1769 1770 1771 1772 1773
	}

	/*
	 * Decrease the pool size
	 * First return free pages to the buddy allocator (being careful
	 * to keep enough around to satisfy reservations).  Then place
	 * pages into surplus state as needed so the pool will shrink
	 * to the desired size as pages become free.
1774 1775 1776 1777 1778 1779 1780 1781
	 *
	 * By placing pages into the surplus state independent of the
	 * overcommit value, we are allowing the surplus pool size to
	 * exceed overcommit. There are few sane options here. Since
	 * alloc_buddy_huge_page() is checking the global counter,
	 * though, we'll note that we're not allowed to exceed surplus
	 * and won't grow the pool anywhere else. Not until one of the
	 * sysctls are changed, or the surplus pages go out of use.
1782
	 */
1783
	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1784
	min_count = max(count, min_count);
1785
	try_to_free_low(h, min_count, nodes_allowed);
1786
	while (min_count < persistent_huge_pages(h)) {
1787
		if (!free_pool_huge_page(h, nodes_allowed, 0))
L
Linus Torvalds 已提交
1788
			break;
1789
		cond_resched_lock(&hugetlb_lock);
L
Linus Torvalds 已提交
1790
	}
1791
	while (count < persistent_huge_pages(h)) {
1792
		if (!adjust_pool_surplus(h, nodes_allowed, 1))
1793 1794 1795
			break;
	}
out:
1796
	ret = persistent_huge_pages(h);
L
Linus Torvalds 已提交
1797
	spin_unlock(&hugetlb_lock);
1798
	return ret;
L
Linus Torvalds 已提交
1799 1800
}

1801 1802 1803 1804 1805 1806 1807 1808 1809 1810
#define HSTATE_ATTR_RO(_name) \
	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)

#define HSTATE_ATTR(_name) \
	static struct kobj_attribute _name##_attr = \
		__ATTR(_name, 0644, _name##_show, _name##_store)

static struct kobject *hugepages_kobj;
static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];

1811 1812 1813
static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);

static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
1814 1815
{
	int i;
1816

1817
	for (i = 0; i < HUGE_MAX_HSTATE; i++)
1818 1819 1820
		if (hstate_kobjs[i] == kobj) {
			if (nidp)
				*nidp = NUMA_NO_NODE;
1821
			return &hstates[i];
1822 1823 1824
		}

	return kobj_to_node_hstate(kobj, nidp);
1825 1826
}

1827
static ssize_t nr_hugepages_show_common(struct kobject *kobj,
1828 1829
					struct kobj_attribute *attr, char *buf)
{
1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840
	struct hstate *h;
	unsigned long nr_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		nr_huge_pages = h->nr_huge_pages;
	else
		nr_huge_pages = h->nr_huge_pages_node[nid];

	return sprintf(buf, "%lu\n", nr_huge_pages);
1841
}
1842

1843 1844 1845
static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
					   struct hstate *h, int nid,
					   unsigned long count, size_t len)
1846 1847
{
	int err;
1848
	NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
1849

1850
	if (hstate_is_gigantic(h) && !gigantic_page_supported()) {
1851 1852 1853 1854
		err = -EINVAL;
		goto out;
	}

1855 1856 1857 1858 1859 1860 1861
	if (nid == NUMA_NO_NODE) {
		/*
		 * global hstate attribute
		 */
		if (!(obey_mempolicy &&
				init_nodemask_of_mempolicy(nodes_allowed))) {
			NODEMASK_FREE(nodes_allowed);
1862
			nodes_allowed = &node_states[N_MEMORY];
1863 1864 1865 1866 1867 1868 1869 1870 1871
		}
	} else if (nodes_allowed) {
		/*
		 * per node hstate attribute: adjust count to global,
		 * but restrict alloc/free to the specified node.
		 */
		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
		init_nodemask_of_node(nodes_allowed, nid);
	} else
1872
		nodes_allowed = &node_states[N_MEMORY];
1873

1874
	h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
1875

1876
	if (nodes_allowed != &node_states[N_MEMORY])
1877 1878 1879
		NODEMASK_FREE(nodes_allowed);

	return len;
1880 1881 1882
out:
	NODEMASK_FREE(nodes_allowed);
	return err;
1883 1884
}

1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901
static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
					 struct kobject *kobj, const char *buf,
					 size_t len)
{
	struct hstate *h;
	unsigned long count;
	int nid;
	int err;

	err = kstrtoul(buf, 10, &count);
	if (err)
		return err;

	h = kobj_to_hstate(kobj, &nid);
	return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
}

1902 1903 1904 1905 1906 1907 1908 1909 1910
static ssize_t nr_hugepages_show(struct kobject *kobj,
				       struct kobj_attribute *attr, char *buf)
{
	return nr_hugepages_show_common(kobj, attr, buf);
}

static ssize_t nr_hugepages_store(struct kobject *kobj,
	       struct kobj_attribute *attr, const char *buf, size_t len)
{
1911
	return nr_hugepages_store_common(false, kobj, buf, len);
1912 1913 1914
}
HSTATE_ATTR(nr_hugepages);

1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929
#ifdef CONFIG_NUMA

/*
 * hstate attribute for optionally mempolicy-based constraint on persistent
 * huge page alloc/free.
 */
static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
				       struct kobj_attribute *attr, char *buf)
{
	return nr_hugepages_show_common(kobj, attr, buf);
}

static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
	       struct kobj_attribute *attr, const char *buf, size_t len)
{
1930
	return nr_hugepages_store_common(true, kobj, buf, len);
1931 1932 1933 1934 1935
}
HSTATE_ATTR(nr_hugepages_mempolicy);
#endif


1936 1937 1938
static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
1939
	struct hstate *h = kobj_to_hstate(kobj, NULL);
1940 1941
	return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
}
1942

1943 1944 1945 1946 1947
static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
		struct kobj_attribute *attr, const char *buf, size_t count)
{
	int err;
	unsigned long input;
1948
	struct hstate *h = kobj_to_hstate(kobj, NULL);
1949

1950
	if (hstate_is_gigantic(h))
1951 1952
		return -EINVAL;

1953
	err = kstrtoul(buf, 10, &input);
1954
	if (err)
1955
		return err;
1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967

	spin_lock(&hugetlb_lock);
	h->nr_overcommit_huge_pages = input;
	spin_unlock(&hugetlb_lock);

	return count;
}
HSTATE_ATTR(nr_overcommit_hugepages);

static ssize_t free_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978
	struct hstate *h;
	unsigned long free_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		free_huge_pages = h->free_huge_pages;
	else
		free_huge_pages = h->free_huge_pages_node[nid];

	return sprintf(buf, "%lu\n", free_huge_pages);
1979 1980 1981 1982 1983 1984
}
HSTATE_ATTR_RO(free_hugepages);

static ssize_t resv_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
1985
	struct hstate *h = kobj_to_hstate(kobj, NULL);
1986 1987 1988 1989 1990 1991 1992
	return sprintf(buf, "%lu\n", h->resv_huge_pages);
}
HSTATE_ATTR_RO(resv_hugepages);

static ssize_t surplus_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003
	struct hstate *h;
	unsigned long surplus_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		surplus_huge_pages = h->surplus_huge_pages;
	else
		surplus_huge_pages = h->surplus_huge_pages_node[nid];

	return sprintf(buf, "%lu\n", surplus_huge_pages);
2004 2005 2006 2007 2008 2009 2010 2011 2012
}
HSTATE_ATTR_RO(surplus_hugepages);

static struct attribute *hstate_attrs[] = {
	&nr_hugepages_attr.attr,
	&nr_overcommit_hugepages_attr.attr,
	&free_hugepages_attr.attr,
	&resv_hugepages_attr.attr,
	&surplus_hugepages_attr.attr,
2013 2014 2015
#ifdef CONFIG_NUMA
	&nr_hugepages_mempolicy_attr.attr,
#endif
2016 2017 2018 2019 2020 2021 2022
	NULL,
};

static struct attribute_group hstate_attr_group = {
	.attrs = hstate_attrs,
};

J
Jeff Mahoney 已提交
2023 2024 2025
static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
				    struct kobject **hstate_kobjs,
				    struct attribute_group *hstate_attr_group)
2026 2027
{
	int retval;
2028
	int hi = hstate_index(h);
2029

2030 2031
	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
	if (!hstate_kobjs[hi])
2032 2033
		return -ENOMEM;

2034
	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
2035
	if (retval)
2036
		kobject_put(hstate_kobjs[hi]);
2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050

	return retval;
}

static void __init hugetlb_sysfs_init(void)
{
	struct hstate *h;
	int err;

	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
	if (!hugepages_kobj)
		return;

	for_each_hstate(h) {
2051 2052
		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
					 hstate_kobjs, &hstate_attr_group);
2053
		if (err)
2054
			pr_err("Hugetlb: Unable to add hstate %s", h->name);
2055 2056 2057
	}
}

2058 2059 2060 2061
#ifdef CONFIG_NUMA

/*
 * node_hstate/s - associate per node hstate attributes, via their kobjects,
2062 2063 2064
 * with node devices in node_devices[] using a parallel array.  The array
 * index of a node device or _hstate == node id.
 * This is here to avoid any static dependency of the node device driver, in
2065 2066 2067 2068 2069 2070 2071 2072 2073
 * the base kernel, on the hugetlb module.
 */
struct node_hstate {
	struct kobject		*hugepages_kobj;
	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
};
struct node_hstate node_hstates[MAX_NUMNODES];

/*
2074
 * A subset of global hstate attributes for node devices
2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087
 */
static struct attribute *per_node_hstate_attrs[] = {
	&nr_hugepages_attr.attr,
	&free_hugepages_attr.attr,
	&surplus_hugepages_attr.attr,
	NULL,
};

static struct attribute_group per_node_hstate_attr_group = {
	.attrs = per_node_hstate_attrs,
};

/*
2088
 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110
 * Returns node id via non-NULL nidp.
 */
static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
{
	int nid;

	for (nid = 0; nid < nr_node_ids; nid++) {
		struct node_hstate *nhs = &node_hstates[nid];
		int i;
		for (i = 0; i < HUGE_MAX_HSTATE; i++)
			if (nhs->hstate_kobjs[i] == kobj) {
				if (nidp)
					*nidp = nid;
				return &hstates[i];
			}
	}

	BUG();
	return NULL;
}

/*
2111
 * Unregister hstate attributes from a single node device.
2112 2113
 * No-op if no hstate attributes attached.
 */
2114
static void hugetlb_unregister_node(struct node *node)
2115 2116
{
	struct hstate *h;
2117
	struct node_hstate *nhs = &node_hstates[node->dev.id];
2118 2119

	if (!nhs->hugepages_kobj)
2120
		return;		/* no hstate attributes */
2121

2122 2123 2124 2125 2126
	for_each_hstate(h) {
		int idx = hstate_index(h);
		if (nhs->hstate_kobjs[idx]) {
			kobject_put(nhs->hstate_kobjs[idx]);
			nhs->hstate_kobjs[idx] = NULL;
2127
		}
2128
	}
2129 2130 2131 2132 2133 2134

	kobject_put(nhs->hugepages_kobj);
	nhs->hugepages_kobj = NULL;
}

/*
2135
 * hugetlb module exit:  unregister hstate attributes from node devices
2136 2137 2138 2139 2140 2141 2142
 * that have them.
 */
static void hugetlb_unregister_all_nodes(void)
{
	int nid;

	/*
2143
	 * disable node device registrations.
2144 2145 2146 2147 2148 2149 2150
	 */
	register_hugetlbfs_with_node(NULL, NULL);

	/*
	 * remove hstate attributes from any nodes that have them.
	 */
	for (nid = 0; nid < nr_node_ids; nid++)
2151
		hugetlb_unregister_node(node_devices[nid]);
2152 2153 2154
}

/*
2155
 * Register hstate attributes for a single node device.
2156 2157
 * No-op if attributes already registered.
 */
2158
static void hugetlb_register_node(struct node *node)
2159 2160
{
	struct hstate *h;
2161
	struct node_hstate *nhs = &node_hstates[node->dev.id];
2162 2163 2164 2165 2166 2167
	int err;

	if (nhs->hugepages_kobj)
		return;		/* already allocated */

	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
2168
							&node->dev.kobj);
2169 2170 2171 2172 2173 2174 2175 2176
	if (!nhs->hugepages_kobj)
		return;

	for_each_hstate(h) {
		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
						nhs->hstate_kobjs,
						&per_node_hstate_attr_group);
		if (err) {
2177 2178
			pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
				h->name, node->dev.id);
2179 2180 2181 2182 2183 2184 2185
			hugetlb_unregister_node(node);
			break;
		}
	}
}

/*
2186
 * hugetlb init time:  register hstate attributes for all registered node
2187 2188
 * devices of nodes that have memory.  All on-line nodes should have
 * registered their associated device by this time.
2189
 */
2190
static void __init hugetlb_register_all_nodes(void)
2191 2192 2193
{
	int nid;

2194
	for_each_node_state(nid, N_MEMORY) {
2195
		struct node *node = node_devices[nid];
2196
		if (node->dev.id == nid)
2197 2198 2199 2200
			hugetlb_register_node(node);
	}

	/*
2201
	 * Let the node device driver know we're here so it can
2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222
	 * [un]register hstate attributes on node hotplug.
	 */
	register_hugetlbfs_with_node(hugetlb_register_node,
				     hugetlb_unregister_node);
}
#else	/* !CONFIG_NUMA */

static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
{
	BUG();
	if (nidp)
		*nidp = -1;
	return NULL;
}

static void hugetlb_unregister_all_nodes(void) { }

static void hugetlb_register_all_nodes(void) { }

#endif

2223 2224 2225 2226
static void __exit hugetlb_exit(void)
{
	struct hstate *h;

2227 2228
	hugetlb_unregister_all_nodes();

2229
	for_each_hstate(h) {
2230
		kobject_put(hstate_kobjs[hstate_index(h)]);
2231 2232 2233
	}

	kobject_put(hugepages_kobj);
2234
	kfree(htlb_fault_mutex_table);
2235 2236 2237 2238 2239
}
module_exit(hugetlb_exit);

static int __init hugetlb_init(void)
{
2240 2241
	int i;

2242
	if (!hugepages_supported())
2243
		return 0;
2244

2245 2246 2247 2248
	if (!size_to_hstate(default_hstate_size)) {
		default_hstate_size = HPAGE_SIZE;
		if (!size_to_hstate(default_hstate_size))
			hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
2249
	}
2250
	default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
2251 2252
	if (default_hstate_max_huge_pages)
		default_hstate.max_huge_pages = default_hstate_max_huge_pages;
2253 2254

	hugetlb_init_hstates();
2255
	gather_bootmem_prealloc();
2256 2257 2258
	report_hugepages();

	hugetlb_sysfs_init();
2259
	hugetlb_register_all_nodes();
2260
	hugetlb_cgroup_file_init();
2261

2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272
#ifdef CONFIG_SMP
	num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
#else
	num_fault_mutexes = 1;
#endif
	htlb_fault_mutex_table =
		kmalloc(sizeof(struct mutex) * num_fault_mutexes, GFP_KERNEL);
	BUG_ON(!htlb_fault_mutex_table);

	for (i = 0; i < num_fault_mutexes; i++)
		mutex_init(&htlb_fault_mutex_table[i]);
2273 2274 2275 2276 2277 2278 2279 2280
	return 0;
}
module_init(hugetlb_init);

/* Should be called on processing a hugepagesz=... option */
void __init hugetlb_add_hstate(unsigned order)
{
	struct hstate *h;
2281 2282
	unsigned long i;

2283
	if (size_to_hstate(PAGE_SIZE << order)) {
2284
		pr_warning("hugepagesz= specified twice, ignoring\n");
2285 2286
		return;
	}
2287
	BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
2288
	BUG_ON(order == 0);
2289
	h = &hstates[hugetlb_max_hstate++];
2290 2291
	h->order = order;
	h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
2292 2293 2294 2295
	h->nr_huge_pages = 0;
	h->free_huge_pages = 0;
	for (i = 0; i < MAX_NUMNODES; ++i)
		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2296
	INIT_LIST_HEAD(&h->hugepage_activelist);
2297 2298
	h->next_nid_to_alloc = first_node(node_states[N_MEMORY]);
	h->next_nid_to_free = first_node(node_states[N_MEMORY]);
2299 2300
	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
					huge_page_size(h)/1024);
2301

2302 2303 2304
	parsed_hstate = h;
}

2305
static int __init hugetlb_nrpages_setup(char *s)
2306 2307
{
	unsigned long *mhp;
2308
	static unsigned long *last_mhp;
2309 2310

	/*
2311
	 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2312 2313
	 * so this hugepages= parameter goes to the "default hstate".
	 */
2314
	if (!hugetlb_max_hstate)
2315 2316 2317 2318
		mhp = &default_hstate_max_huge_pages;
	else
		mhp = &parsed_hstate->max_huge_pages;

2319
	if (mhp == last_mhp) {
2320 2321
		pr_warning("hugepages= specified twice without "
			   "interleaving hugepagesz=, ignoring\n");
2322 2323 2324
		return 1;
	}

2325 2326 2327
	if (sscanf(s, "%lu", mhp) <= 0)
		*mhp = 0;

2328 2329 2330 2331 2332
	/*
	 * Global state is always initialized later in hugetlb_init.
	 * But we need to allocate >= MAX_ORDER hstates here early to still
	 * use the bootmem allocator.
	 */
2333
	if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2334 2335 2336 2337
		hugetlb_hstate_alloc_pages(parsed_hstate);

	last_mhp = mhp;

2338 2339
	return 1;
}
2340 2341 2342 2343 2344 2345 2346 2347
__setup("hugepages=", hugetlb_nrpages_setup);

static int __init hugetlb_default_setup(char *s)
{
	default_hstate_size = memparse(s, &s);
	return 1;
}
__setup("default_hugepagesz=", hugetlb_default_setup);
2348

2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360
static unsigned int cpuset_mems_nr(unsigned int *array)
{
	int node;
	unsigned int nr = 0;

	for_each_node_mask(node, cpuset_current_mems_allowed)
		nr += array[node];

	return nr;
}

#ifdef CONFIG_SYSCTL
2361 2362 2363
static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
			 struct ctl_table *table, int write,
			 void __user *buffer, size_t *length, loff_t *ppos)
L
Linus Torvalds 已提交
2364
{
2365
	struct hstate *h = &default_hstate;
2366
	unsigned long tmp = h->max_huge_pages;
2367
	int ret;
2368

2369 2370 2371
	if (!hugepages_supported())
		return -ENOTSUPP;

2372 2373
	table->data = &tmp;
	table->maxlen = sizeof(unsigned long);
2374 2375 2376
	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
	if (ret)
		goto out;
2377

2378 2379 2380
	if (write)
		ret = __nr_hugepages_store_common(obey_mempolicy, h,
						  NUMA_NO_NODE, tmp, *length);
2381 2382
out:
	return ret;
L
Linus Torvalds 已提交
2383
}
2384

2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401
int hugetlb_sysctl_handler(struct ctl_table *table, int write,
			  void __user *buffer, size_t *length, loff_t *ppos)
{

	return hugetlb_sysctl_handler_common(false, table, write,
							buffer, length, ppos);
}

#ifdef CONFIG_NUMA
int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
			  void __user *buffer, size_t *length, loff_t *ppos)
{
	return hugetlb_sysctl_handler_common(true, table, write,
							buffer, length, ppos);
}
#endif /* CONFIG_NUMA */

2402
int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2403
			void __user *buffer,
2404 2405
			size_t *length, loff_t *ppos)
{
2406
	struct hstate *h = &default_hstate;
2407
	unsigned long tmp;
2408
	int ret;
2409

2410 2411 2412
	if (!hugepages_supported())
		return -ENOTSUPP;

2413
	tmp = h->nr_overcommit_huge_pages;
2414

2415
	if (write && hstate_is_gigantic(h))
2416 2417
		return -EINVAL;

2418 2419
	table->data = &tmp;
	table->maxlen = sizeof(unsigned long);
2420 2421 2422
	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
	if (ret)
		goto out;
2423 2424 2425 2426 2427 2428

	if (write) {
		spin_lock(&hugetlb_lock);
		h->nr_overcommit_huge_pages = tmp;
		spin_unlock(&hugetlb_lock);
	}
2429 2430
out:
	return ret;
2431 2432
}

L
Linus Torvalds 已提交
2433 2434
#endif /* CONFIG_SYSCTL */

2435
void hugetlb_report_meminfo(struct seq_file *m)
L
Linus Torvalds 已提交
2436
{
2437
	struct hstate *h = &default_hstate;
2438 2439
	if (!hugepages_supported())
		return;
2440
	seq_printf(m,
2441 2442 2443 2444 2445
			"HugePages_Total:   %5lu\n"
			"HugePages_Free:    %5lu\n"
			"HugePages_Rsvd:    %5lu\n"
			"HugePages_Surp:    %5lu\n"
			"Hugepagesize:   %8lu kB\n",
2446 2447 2448 2449 2450
			h->nr_huge_pages,
			h->free_huge_pages,
			h->resv_huge_pages,
			h->surplus_huge_pages,
			1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
L
Linus Torvalds 已提交
2451 2452 2453 2454
}

int hugetlb_report_node_meminfo(int nid, char *buf)
{
2455
	struct hstate *h = &default_hstate;
2456 2457
	if (!hugepages_supported())
		return 0;
L
Linus Torvalds 已提交
2458 2459
	return sprintf(buf,
		"Node %d HugePages_Total: %5u\n"
2460 2461
		"Node %d HugePages_Free:  %5u\n"
		"Node %d HugePages_Surp:  %5u\n",
2462 2463 2464
		nid, h->nr_huge_pages_node[nid],
		nid, h->free_huge_pages_node[nid],
		nid, h->surplus_huge_pages_node[nid]);
L
Linus Torvalds 已提交
2465 2466
}

2467 2468 2469 2470 2471
void hugetlb_show_meminfo(void)
{
	struct hstate *h;
	int nid;

2472 2473 2474
	if (!hugepages_supported())
		return;

2475 2476 2477 2478 2479 2480 2481 2482 2483 2484
	for_each_node_state(nid, N_MEMORY)
		for_each_hstate(h)
			pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
				nid,
				h->nr_huge_pages_node[nid],
				h->free_huge_pages_node[nid],
				h->surplus_huge_pages_node[nid],
				1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
}

L
Linus Torvalds 已提交
2485 2486 2487
/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
unsigned long hugetlb_total_pages(void)
{
2488 2489 2490 2491 2492 2493
	struct hstate *h;
	unsigned long nr_total_pages = 0;

	for_each_hstate(h)
		nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
	return nr_total_pages;
L
Linus Torvalds 已提交
2494 2495
}

2496
static int hugetlb_acct_memory(struct hstate *h, long delta)
M
Mel Gorman 已提交
2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518
{
	int ret = -ENOMEM;

	spin_lock(&hugetlb_lock);
	/*
	 * When cpuset is configured, it breaks the strict hugetlb page
	 * reservation as the accounting is done on a global variable. Such
	 * reservation is completely rubbish in the presence of cpuset because
	 * the reservation is not checked against page availability for the
	 * current cpuset. Application can still potentially OOM'ed by kernel
	 * with lack of free htlb page in cpuset that the task is in.
	 * Attempt to enforce strict accounting with cpuset is almost
	 * impossible (or too ugly) because cpuset is too fluid that
	 * task or memory node can be dynamically moved between cpusets.
	 *
	 * The change of semantics for shared hugetlb mapping with cpuset is
	 * undesirable. However, in order to preserve some of the semantics,
	 * we fall back to check against current free page availability as
	 * a best attempt and hopefully to minimize the impact of changing
	 * semantics that cpuset has.
	 */
	if (delta > 0) {
2519
		if (gather_surplus_pages(h, delta) < 0)
M
Mel Gorman 已提交
2520 2521
			goto out;

2522 2523
		if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
			return_unused_surplus_pages(h, delta);
M
Mel Gorman 已提交
2524 2525 2526 2527 2528 2529
			goto out;
		}
	}

	ret = 0;
	if (delta < 0)
2530
		return_unused_surplus_pages(h, (unsigned long) -delta);
M
Mel Gorman 已提交
2531 2532 2533 2534 2535 2536

out:
	spin_unlock(&hugetlb_lock);
	return ret;
}

2537 2538
static void hugetlb_vm_op_open(struct vm_area_struct *vma)
{
2539
	struct resv_map *resv = vma_resv_map(vma);
2540 2541 2542 2543 2544

	/*
	 * This new VMA should share its siblings reservation map if present.
	 * The VMA will only ever have a valid reservation map pointer where
	 * it is being copied for another still existing VMA.  As that VMA
L
Lucas De Marchi 已提交
2545
	 * has a reference to the reservation map it cannot disappear until
2546 2547 2548
	 * after this open call completes.  It is therefore safe to take a
	 * new reference here without additional locking.
	 */
2549
	if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
2550
		kref_get(&resv->refs);
2551 2552
}

2553 2554
static void hugetlb_vm_op_close(struct vm_area_struct *vma)
{
2555
	struct hstate *h = hstate_vma(vma);
2556
	struct resv_map *resv = vma_resv_map(vma);
2557
	struct hugepage_subpool *spool = subpool_vma(vma);
2558
	unsigned long reserve, start, end;
2559
	long gbl_reserve;
2560

2561 2562
	if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
		return;
2563

2564 2565
	start = vma_hugecache_offset(h, vma, vma->vm_start);
	end = vma_hugecache_offset(h, vma, vma->vm_end);
2566

2567
	reserve = (end - start) - region_count(resv, start, end);
2568

2569 2570 2571
	kref_put(&resv->refs, resv_map_release);

	if (reserve) {
2572 2573 2574 2575 2576 2577
		/*
		 * Decrement reserve counts.  The global reserve count may be
		 * adjusted if the subpool has a minimum size.
		 */
		gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
		hugetlb_acct_memory(h, -gbl_reserve);
2578
	}
2579 2580
}

L
Linus Torvalds 已提交
2581 2582 2583 2584 2585 2586
/*
 * We cannot handle pagefaults against hugetlb pages at all.  They cause
 * handle_mm_fault() to try to instantiate regular-sized pages in the
 * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
 * this far.
 */
N
Nick Piggin 已提交
2587
static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
L
Linus Torvalds 已提交
2588 2589
{
	BUG();
N
Nick Piggin 已提交
2590
	return 0;
L
Linus Torvalds 已提交
2591 2592
}

2593
const struct vm_operations_struct hugetlb_vm_ops = {
N
Nick Piggin 已提交
2594
	.fault = hugetlb_vm_op_fault,
2595
	.open = hugetlb_vm_op_open,
2596
	.close = hugetlb_vm_op_close,
L
Linus Torvalds 已提交
2597 2598
};

2599 2600
static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
				int writable)
D
David Gibson 已提交
2601 2602 2603
{
	pte_t entry;

2604
	if (writable) {
2605 2606
		entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
					 vma->vm_page_prot)));
D
David Gibson 已提交
2607
	} else {
2608 2609
		entry = huge_pte_wrprotect(mk_huge_pte(page,
					   vma->vm_page_prot));
D
David Gibson 已提交
2610 2611 2612
	}
	entry = pte_mkyoung(entry);
	entry = pte_mkhuge(entry);
2613
	entry = arch_make_huge_pte(entry, vma, page, writable);
D
David Gibson 已提交
2614 2615 2616 2617

	return entry;
}

2618 2619 2620 2621 2622
static void set_huge_ptep_writable(struct vm_area_struct *vma,
				   unsigned long address, pte_t *ptep)
{
	pte_t entry;

2623
	entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
2624
	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
2625
		update_mmu_cache(vma, address, ptep);
2626 2627
}

2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652
static int is_hugetlb_entry_migration(pte_t pte)
{
	swp_entry_t swp;

	if (huge_pte_none(pte) || pte_present(pte))
		return 0;
	swp = pte_to_swp_entry(pte);
	if (non_swap_entry(swp) && is_migration_entry(swp))
		return 1;
	else
		return 0;
}

static int is_hugetlb_entry_hwpoisoned(pte_t pte)
{
	swp_entry_t swp;

	if (huge_pte_none(pte) || pte_present(pte))
		return 0;
	swp = pte_to_swp_entry(pte);
	if (non_swap_entry(swp) && is_hwpoison_entry(swp))
		return 1;
	else
		return 0;
}
2653

D
David Gibson 已提交
2654 2655 2656 2657 2658
int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
			    struct vm_area_struct *vma)
{
	pte_t *src_pte, *dst_pte, entry;
	struct page *ptepage;
2659
	unsigned long addr;
2660
	int cow;
2661 2662
	struct hstate *h = hstate_vma(vma);
	unsigned long sz = huge_page_size(h);
2663 2664 2665
	unsigned long mmun_start;	/* For mmu_notifiers */
	unsigned long mmun_end;		/* For mmu_notifiers */
	int ret = 0;
2666 2667

	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
D
David Gibson 已提交
2668

2669 2670 2671 2672 2673
	mmun_start = vma->vm_start;
	mmun_end = vma->vm_end;
	if (cow)
		mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);

2674
	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
2675
		spinlock_t *src_ptl, *dst_ptl;
H
Hugh Dickins 已提交
2676 2677 2678
		src_pte = huge_pte_offset(src, addr);
		if (!src_pte)
			continue;
2679
		dst_pte = huge_pte_alloc(dst, addr, sz);
2680 2681 2682 2683
		if (!dst_pte) {
			ret = -ENOMEM;
			break;
		}
2684 2685 2686 2687 2688

		/* If the pagetables are shared don't copy or take references */
		if (dst_pte == src_pte)
			continue;

2689 2690 2691
		dst_ptl = huge_pte_lock(h, dst, dst_pte);
		src_ptl = huge_pte_lockptr(h, src, src_pte);
		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709
		entry = huge_ptep_get(src_pte);
		if (huge_pte_none(entry)) { /* skip none entry */
			;
		} else if (unlikely(is_hugetlb_entry_migration(entry) ||
				    is_hugetlb_entry_hwpoisoned(entry))) {
			swp_entry_t swp_entry = pte_to_swp_entry(entry);

			if (is_write_migration_entry(swp_entry) && cow) {
				/*
				 * COW mappings require pages in both
				 * parent and child to be set to read.
				 */
				make_migration_entry_read(&swp_entry);
				entry = swp_entry_to_pte(swp_entry);
				set_huge_pte_at(src, addr, src_pte, entry);
			}
			set_huge_pte_at(dst, addr, dst_pte, entry);
		} else {
2710
			if (cow) {
2711
				huge_ptep_set_wrprotect(src, addr, src_pte);
2712 2713 2714
				mmu_notifier_invalidate_range(src, mmun_start,
								   mmun_end);
			}
2715
			entry = huge_ptep_get(src_pte);
2716 2717
			ptepage = pte_page(entry);
			get_page(ptepage);
2718
			page_dup_rmap(ptepage);
2719 2720
			set_huge_pte_at(dst, addr, dst_pte, entry);
		}
2721 2722
		spin_unlock(src_ptl);
		spin_unlock(dst_ptl);
D
David Gibson 已提交
2723 2724
	}

2725 2726 2727 2728
	if (cow)
		mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);

	return ret;
D
David Gibson 已提交
2729 2730
}

2731 2732 2733
void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
			    unsigned long start, unsigned long end,
			    struct page *ref_page)
D
David Gibson 已提交
2734
{
2735
	int force_flush = 0;
D
David Gibson 已提交
2736 2737
	struct mm_struct *mm = vma->vm_mm;
	unsigned long address;
2738
	pte_t *ptep;
D
David Gibson 已提交
2739
	pte_t pte;
2740
	spinlock_t *ptl;
D
David Gibson 已提交
2741
	struct page *page;
2742 2743
	struct hstate *h = hstate_vma(vma);
	unsigned long sz = huge_page_size(h);
2744 2745
	const unsigned long mmun_start = start;	/* For mmu_notifiers */
	const unsigned long mmun_end   = end;	/* For mmu_notifiers */
2746

D
David Gibson 已提交
2747
	WARN_ON(!is_vm_hugetlb_page(vma));
2748 2749
	BUG_ON(start & ~huge_page_mask(h));
	BUG_ON(end & ~huge_page_mask(h));
D
David Gibson 已提交
2750

2751
	tlb_start_vma(tlb, vma);
2752
	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2753
	address = start;
2754
again:
2755
	for (; address < end; address += sz) {
2756
		ptep = huge_pte_offset(mm, address);
A
Adam Litke 已提交
2757
		if (!ptep)
2758 2759
			continue;

2760
		ptl = huge_pte_lock(h, mm, ptep);
2761
		if (huge_pmd_unshare(mm, &address, ptep))
2762
			goto unlock;
2763

2764 2765
		pte = huge_ptep_get(ptep);
		if (huge_pte_none(pte))
2766
			goto unlock;
2767 2768

		/*
2769 2770
		 * Migrating hugepage or HWPoisoned hugepage is already
		 * unmapped and its refcount is dropped, so just clear pte here.
2771
		 */
2772
		if (unlikely(!pte_present(pte))) {
2773
			huge_pte_clear(mm, address, ptep);
2774
			goto unlock;
2775
		}
2776 2777

		page = pte_page(pte);
2778 2779 2780 2781 2782 2783 2784
		/*
		 * If a reference page is supplied, it is because a specific
		 * page is being unmapped, not a range. Ensure the page we
		 * are about to unmap is the actual page of interest.
		 */
		if (ref_page) {
			if (page != ref_page)
2785
				goto unlock;
2786 2787 2788 2789 2790 2791 2792 2793 2794

			/*
			 * Mark the VMA as having unmapped its page so that
			 * future faults in this VMA will fail rather than
			 * looking like data was lost
			 */
			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
		}

2795
		pte = huge_ptep_get_and_clear(mm, address, ptep);
2796
		tlb_remove_tlb_entry(tlb, ptep, address);
2797
		if (huge_pte_dirty(pte))
2798
			set_page_dirty(page);
2799

2800 2801
		page_remove_rmap(page);
		force_flush = !__tlb_remove_page(tlb, page);
2802
		if (force_flush) {
2803
			address += sz;
2804
			spin_unlock(ptl);
2805
			break;
2806
		}
2807
		/* Bail out after unmapping reference page if supplied */
2808 2809
		if (ref_page) {
			spin_unlock(ptl);
2810
			break;
2811 2812 2813
		}
unlock:
		spin_unlock(ptl);
D
David Gibson 已提交
2814
	}
2815 2816 2817 2818 2819 2820 2821 2822 2823 2824
	/*
	 * mmu_gather ran out of room to batch pages, we break out of
	 * the PTE lock to avoid doing the potential expensive TLB invalidate
	 * and page-free while holding it.
	 */
	if (force_flush) {
		force_flush = 0;
		tlb_flush_mmu(tlb);
		if (address < end && !ref_page)
			goto again;
2825
	}
2826
	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2827
	tlb_end_vma(tlb, vma);
L
Linus Torvalds 已提交
2828
}
D
David Gibson 已提交
2829

2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841
void __unmap_hugepage_range_final(struct mmu_gather *tlb,
			  struct vm_area_struct *vma, unsigned long start,
			  unsigned long end, struct page *ref_page)
{
	__unmap_hugepage_range(tlb, vma, start, end, ref_page);

	/*
	 * Clear this flag so that x86's huge_pmd_share page_table_shareable
	 * test will fail on a vma being torn down, and not grab a page table
	 * on its way out.  We're lucky that the flag has such an appropriate
	 * name, and can in fact be safely cleared here. We could clear it
	 * before the __unmap_hugepage_range above, but all that's necessary
2842
	 * is to clear it before releasing the i_mmap_rwsem. This works
2843
	 * because in the context this is called, the VMA is about to be
2844
	 * destroyed and the i_mmap_rwsem is held.
2845 2846 2847 2848
	 */
	vma->vm_flags &= ~VM_MAYSHARE;
}

2849
void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2850
			  unsigned long end, struct page *ref_page)
2851
{
2852 2853 2854 2855 2856
	struct mm_struct *mm;
	struct mmu_gather tlb;

	mm = vma->vm_mm;

2857
	tlb_gather_mmu(&tlb, mm, start, end);
2858 2859
	__unmap_hugepage_range(&tlb, vma, start, end, ref_page);
	tlb_finish_mmu(&tlb, start, end);
2860 2861
}

2862 2863 2864 2865 2866 2867
/*
 * This is called when the original mapper is failing to COW a MAP_PRIVATE
 * mappping it owns the reserve page for. The intention is to unmap the page
 * from other VMAs and let the children be SIGKILLed if they are faulting the
 * same region.
 */
2868 2869
static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
			      struct page *page, unsigned long address)
2870
{
2871
	struct hstate *h = hstate_vma(vma);
2872 2873 2874 2875 2876 2877 2878 2879
	struct vm_area_struct *iter_vma;
	struct address_space *mapping;
	pgoff_t pgoff;

	/*
	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
	 * from page cache lookup which is in HPAGE_SIZE units.
	 */
2880
	address = address & huge_page_mask(h);
2881 2882
	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
			vma->vm_pgoff;
A
Al Viro 已提交
2883
	mapping = file_inode(vma->vm_file)->i_mapping;
2884

2885 2886 2887 2888 2889
	/*
	 * Take the mapping lock for the duration of the table walk. As
	 * this mapping should be shared between all the VMAs,
	 * __unmap_hugepage_range() is called as the lock is already held
	 */
2890
	i_mmap_lock_write(mapping);
2891
	vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903
		/* Do not unmap the current VMA */
		if (iter_vma == vma)
			continue;

		/*
		 * Unmap the page from other VMAs without their own reserves.
		 * They get marked to be SIGKILLed if they fault in these
		 * areas. This is because a future no-page fault on this VMA
		 * could insert a zeroed page instead of the data existing
		 * from the time of fork. This would look like data corruption
		 */
		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
2904 2905
			unmap_hugepage_range(iter_vma, address,
					     address + huge_page_size(h), page);
2906
	}
2907
	i_mmap_unlock_write(mapping);
2908 2909
}

2910 2911
/*
 * Hugetlb_cow() should be called with page lock of the original hugepage held.
2912 2913 2914
 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
 * cannot race with other handlers or page migration.
 * Keep the pte_same checks anyway to make transition from the mutex easier.
2915
 */
2916
static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
2917
			unsigned long address, pte_t *ptep, pte_t pte,
2918
			struct page *pagecache_page, spinlock_t *ptl)
2919
{
2920
	struct hstate *h = hstate_vma(vma);
2921
	struct page *old_page, *new_page;
2922
	int ret = 0, outside_reserve = 0;
2923 2924
	unsigned long mmun_start;	/* For mmu_notifiers */
	unsigned long mmun_end;		/* For mmu_notifiers */
2925 2926 2927

	old_page = pte_page(pte);

2928
retry_avoidcopy:
2929 2930
	/* If no-one else is actually using this page, avoid the copy
	 * and just make the page writable */
2931 2932
	if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
		page_move_anon_rmap(old_page, vma, address);
2933
		set_huge_ptep_writable(vma, address, ptep);
N
Nick Piggin 已提交
2934
		return 0;
2935 2936
	}

2937 2938 2939 2940 2941 2942 2943 2944 2945
	/*
	 * If the process that created a MAP_PRIVATE mapping is about to
	 * perform a COW due to a shared page count, attempt to satisfy
	 * the allocation without using the existing reserves. The pagecache
	 * page is used to determine if the reserve at this address was
	 * consumed or not. If reserves were used, a partial faulted mapping
	 * at the time of fork() could consume its reserves on COW instead
	 * of the full address range.
	 */
2946
	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
2947 2948 2949
			old_page != pagecache_page)
		outside_reserve = 1;

2950
	page_cache_get(old_page);
2951

2952 2953 2954 2955
	/*
	 * Drop page table lock as buddy allocator may be called. It will
	 * be acquired again before returning to the caller, as expected.
	 */
2956
	spin_unlock(ptl);
2957
	new_page = alloc_huge_page(vma, address, outside_reserve);
2958

2959
	if (IS_ERR(new_page)) {
2960 2961 2962 2963 2964 2965 2966 2967
		/*
		 * If a process owning a MAP_PRIVATE mapping fails to COW,
		 * it is due to references held by a child and an insufficient
		 * huge page pool. To guarantee the original mappers
		 * reliability, unmap the page from child processes. The child
		 * may get SIGKILLed if it later faults.
		 */
		if (outside_reserve) {
2968
			page_cache_release(old_page);
2969
			BUG_ON(huge_pte_none(pte));
2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981
			unmap_ref_private(mm, vma, old_page, address);
			BUG_ON(huge_pte_none(pte));
			spin_lock(ptl);
			ptep = huge_pte_offset(mm, address & huge_page_mask(h));
			if (likely(ptep &&
				   pte_same(huge_ptep_get(ptep), pte)))
				goto retry_avoidcopy;
			/*
			 * race occurs while re-acquiring page table
			 * lock, and our job is done.
			 */
			return 0;
2982 2983
		}

2984 2985 2986
		ret = (PTR_ERR(new_page) == -ENOMEM) ?
			VM_FAULT_OOM : VM_FAULT_SIGBUS;
		goto out_release_old;
2987 2988
	}

2989 2990 2991 2992
	/*
	 * When the original hugepage is shared one, it does not have
	 * anon_vma prepared.
	 */
2993
	if (unlikely(anon_vma_prepare(vma))) {
2994 2995
		ret = VM_FAULT_OOM;
		goto out_release_all;
2996
	}
2997

A
Andrea Arcangeli 已提交
2998 2999
	copy_user_huge_page(new_page, old_page, address, vma,
			    pages_per_huge_page(h));
N
Nick Piggin 已提交
3000
	__SetPageUptodate(new_page);
3001
	set_page_huge_active(new_page);
3002

3003 3004 3005
	mmun_start = address & huge_page_mask(h);
	mmun_end = mmun_start + huge_page_size(h);
	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3006

3007
	/*
3008
	 * Retake the page table lock to check for racing updates
3009 3010
	 * before the page tables are altered
	 */
3011
	spin_lock(ptl);
3012
	ptep = huge_pte_offset(mm, address & huge_page_mask(h));
3013
	if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
3014 3015
		ClearPagePrivate(new_page);

3016
		/* Break COW */
3017
		huge_ptep_clear_flush(vma, address, ptep);
3018
		mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
3019 3020
		set_huge_pte_at(mm, address, ptep,
				make_huge_pte(vma, new_page, 1));
3021
		page_remove_rmap(old_page);
3022
		hugepage_add_new_anon_rmap(new_page, vma, address);
3023 3024 3025
		/* Make the old page be freed below */
		new_page = old_page;
	}
3026
	spin_unlock(ptl);
3027
	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3028
out_release_all:
3029
	page_cache_release(new_page);
3030
out_release_old:
3031
	page_cache_release(old_page);
3032

3033 3034
	spin_lock(ptl); /* Caller expects lock to be held */
	return ret;
3035 3036
}

3037
/* Return the pagecache page at a given address within a VMA */
3038 3039
static struct page *hugetlbfs_pagecache_page(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address)
3040 3041
{
	struct address_space *mapping;
3042
	pgoff_t idx;
3043 3044

	mapping = vma->vm_file->f_mapping;
3045
	idx = vma_hugecache_offset(h, vma, address);
3046 3047 3048 3049

	return find_lock_page(mapping, idx);
}

H
Hugh Dickins 已提交
3050 3051 3052 3053 3054
/*
 * Return whether there is a pagecache page to back given address within VMA.
 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
 */
static bool hugetlbfs_pagecache_present(struct hstate *h,
H
Hugh Dickins 已提交
3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069
			struct vm_area_struct *vma, unsigned long address)
{
	struct address_space *mapping;
	pgoff_t idx;
	struct page *page;

	mapping = vma->vm_file->f_mapping;
	idx = vma_hugecache_offset(h, vma, address);

	page = find_get_page(mapping, idx);
	if (page)
		put_page(page);
	return page != NULL;
}

3070
static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
3071 3072
			   struct address_space *mapping, pgoff_t idx,
			   unsigned long address, pte_t *ptep, unsigned int flags)
3073
{
3074
	struct hstate *h = hstate_vma(vma);
3075
	int ret = VM_FAULT_SIGBUS;
3076
	int anon_rmap = 0;
A
Adam Litke 已提交
3077 3078
	unsigned long size;
	struct page *page;
3079
	pte_t new_pte;
3080
	spinlock_t *ptl;
A
Adam Litke 已提交
3081

3082 3083 3084
	/*
	 * Currently, we are forced to kill the process in the event the
	 * original mapper has unmapped pages from the child due to a failed
L
Lucas De Marchi 已提交
3085
	 * COW. Warn that such a situation has occurred as it may not be obvious
3086 3087
	 */
	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
3088 3089
		pr_warning("PID %d killed due to inadequate hugepage pool\n",
			   current->pid);
3090 3091 3092
		return ret;
	}

A
Adam Litke 已提交
3093 3094 3095 3096
	/*
	 * Use page lock to guard against racing truncation
	 * before we get page_table_lock.
	 */
3097 3098 3099
retry:
	page = find_lock_page(mapping, idx);
	if (!page) {
3100
		size = i_size_read(mapping->host) >> huge_page_shift(h);
3101 3102
		if (idx >= size)
			goto out;
3103
		page = alloc_huge_page(vma, address, 0);
3104
		if (IS_ERR(page)) {
3105 3106 3107 3108 3109
			ret = PTR_ERR(page);
			if (ret == -ENOMEM)
				ret = VM_FAULT_OOM;
			else
				ret = VM_FAULT_SIGBUS;
3110 3111
			goto out;
		}
A
Andrea Arcangeli 已提交
3112
		clear_huge_page(page, address, pages_per_huge_page(h));
N
Nick Piggin 已提交
3113
		__SetPageUptodate(page);
3114
		set_page_huge_active(page);
3115

3116
		if (vma->vm_flags & VM_MAYSHARE) {
3117
			int err;
K
Ken Chen 已提交
3118
			struct inode *inode = mapping->host;
3119 3120 3121 3122 3123 3124 3125 3126

			err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
			if (err) {
				put_page(page);
				if (err == -EEXIST)
					goto retry;
				goto out;
			}
3127
			ClearPagePrivate(page);
K
Ken Chen 已提交
3128 3129

			spin_lock(&inode->i_lock);
3130
			inode->i_blocks += blocks_per_huge_page(h);
K
Ken Chen 已提交
3131
			spin_unlock(&inode->i_lock);
3132
		} else {
3133
			lock_page(page);
3134 3135 3136 3137
			if (unlikely(anon_vma_prepare(vma))) {
				ret = VM_FAULT_OOM;
				goto backout_unlocked;
			}
3138
			anon_rmap = 1;
3139
		}
3140
	} else {
3141 3142 3143 3144 3145 3146
		/*
		 * If memory error occurs between mmap() and fault, some process
		 * don't have hwpoisoned swap entry for errored virtual address.
		 * So we need to block hugepage fault by PG_hwpoison bit check.
		 */
		if (unlikely(PageHWPoison(page))) {
3147
			ret = VM_FAULT_HWPOISON |
3148
				VM_FAULT_SET_HINDEX(hstate_index(h));
3149 3150
			goto backout_unlocked;
		}
3151
	}
3152

3153 3154 3155 3156 3157 3158
	/*
	 * If we are going to COW a private mapping later, we examine the
	 * pending reservations for this page now. This will ensure that
	 * any allocations necessary to record that reservation occur outside
	 * the spinlock.
	 */
3159
	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
3160 3161 3162 3163
		if (vma_needs_reservation(h, vma, address) < 0) {
			ret = VM_FAULT_OOM;
			goto backout_unlocked;
		}
3164

3165 3166
	ptl = huge_pte_lockptr(h, mm, ptep);
	spin_lock(ptl);
3167
	size = i_size_read(mapping->host) >> huge_page_shift(h);
A
Adam Litke 已提交
3168 3169 3170
	if (idx >= size)
		goto backout;

N
Nick Piggin 已提交
3171
	ret = 0;
3172
	if (!huge_pte_none(huge_ptep_get(ptep)))
A
Adam Litke 已提交
3173 3174
		goto backout;

3175 3176
	if (anon_rmap) {
		ClearPagePrivate(page);
3177
		hugepage_add_new_anon_rmap(page, vma, address);
3178
	} else
3179
		page_dup_rmap(page);
3180 3181 3182 3183
	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
				&& (vma->vm_flags & VM_SHARED)));
	set_huge_pte_at(mm, address, ptep, new_pte);

3184
	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3185
		/* Optimization, do the COW without a second fault */
3186
		ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page, ptl);
3187 3188
	}

3189
	spin_unlock(ptl);
A
Adam Litke 已提交
3190 3191
	unlock_page(page);
out:
3192
	return ret;
A
Adam Litke 已提交
3193 3194

backout:
3195
	spin_unlock(ptl);
3196
backout_unlocked:
A
Adam Litke 已提交
3197 3198 3199
	unlock_page(page);
	put_page(page);
	goto out;
3200 3201
}

3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236
#ifdef CONFIG_SMP
static u32 fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
			    struct vm_area_struct *vma,
			    struct address_space *mapping,
			    pgoff_t idx, unsigned long address)
{
	unsigned long key[2];
	u32 hash;

	if (vma->vm_flags & VM_SHARED) {
		key[0] = (unsigned long) mapping;
		key[1] = idx;
	} else {
		key[0] = (unsigned long) mm;
		key[1] = address >> huge_page_shift(h);
	}

	hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);

	return hash & (num_fault_mutexes - 1);
}
#else
/*
 * For uniprocesor systems we always use a single mutex, so just
 * return 0 and avoid the hashing overhead.
 */
static u32 fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
			    struct vm_area_struct *vma,
			    struct address_space *mapping,
			    pgoff_t idx, unsigned long address)
{
	return 0;
}
#endif

3237
int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3238
			unsigned long address, unsigned int flags)
3239
{
3240
	pte_t *ptep, entry;
3241
	spinlock_t *ptl;
3242
	int ret;
3243 3244
	u32 hash;
	pgoff_t idx;
3245
	struct page *page = NULL;
3246
	struct page *pagecache_page = NULL;
3247
	struct hstate *h = hstate_vma(vma);
3248
	struct address_space *mapping;
3249
	int need_wait_lock = 0;
3250

3251 3252
	address &= huge_page_mask(h);

3253 3254 3255
	ptep = huge_pte_offset(mm, address);
	if (ptep) {
		entry = huge_ptep_get(ptep);
N
Naoya Horiguchi 已提交
3256
		if (unlikely(is_hugetlb_entry_migration(entry))) {
3257
			migration_entry_wait_huge(vma, mm, ptep);
N
Naoya Horiguchi 已提交
3258 3259
			return 0;
		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
3260
			return VM_FAULT_HWPOISON_LARGE |
3261
				VM_FAULT_SET_HINDEX(hstate_index(h));
3262 3263
	}

3264
	ptep = huge_pte_alloc(mm, address, huge_page_size(h));
3265 3266 3267
	if (!ptep)
		return VM_FAULT_OOM;

3268 3269 3270
	mapping = vma->vm_file->f_mapping;
	idx = vma_hugecache_offset(h, vma, address);

3271 3272 3273 3274 3275
	/*
	 * Serialize hugepage allocation and instantiation, so that we don't
	 * get spurious allocation failures if two CPUs race to instantiate
	 * the same page in the page cache.
	 */
3276 3277 3278
	hash = fault_mutex_hash(h, mm, vma, mapping, idx, address);
	mutex_lock(&htlb_fault_mutex_table[hash]);

3279 3280
	entry = huge_ptep_get(ptep);
	if (huge_pte_none(entry)) {
3281
		ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
3282
		goto out_mutex;
3283
	}
3284

N
Nick Piggin 已提交
3285
	ret = 0;
3286

3287 3288 3289 3290 3291 3292 3293 3294 3295 3296
	/*
	 * entry could be a migration/hwpoison entry at this point, so this
	 * check prevents the kernel from going below assuming that we have
	 * a active hugepage in pagecache. This goto expects the 2nd page fault,
	 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
	 * handle it.
	 */
	if (!pte_present(entry))
		goto out_mutex;

3297 3298 3299 3300 3301 3302 3303 3304
	/*
	 * If we are going to COW the mapping later, we examine the pending
	 * reservations for this page now. This will ensure that any
	 * allocations necessary to record that reservation occur outside the
	 * spinlock. For private mappings, we also lookup the pagecache
	 * page now as it is used to determine if a reservation has been
	 * consumed.
	 */
3305
	if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
3306 3307
		if (vma_needs_reservation(h, vma, address) < 0) {
			ret = VM_FAULT_OOM;
3308
			goto out_mutex;
3309
		}
3310

3311
		if (!(vma->vm_flags & VM_MAYSHARE))
3312 3313 3314 3315
			pagecache_page = hugetlbfs_pagecache_page(h,
								vma, address);
	}

3316 3317 3318 3319 3320 3321
	ptl = huge_pte_lock(h, mm, ptep);

	/* Check for a racing update before calling hugetlb_cow */
	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
		goto out_ptl;

3322 3323 3324 3325 3326 3327 3328
	/*
	 * hugetlb_cow() requires page locks of pte_page(entry) and
	 * pagecache_page, so here we need take the former one
	 * when page != pagecache_page or !pagecache_page.
	 */
	page = pte_page(entry);
	if (page != pagecache_page)
3329 3330 3331 3332
		if (!trylock_page(page)) {
			need_wait_lock = 1;
			goto out_ptl;
		}
3333

3334
	get_page(page);
3335

3336
	if (flags & FAULT_FLAG_WRITE) {
3337
		if (!huge_pte_write(entry)) {
3338
			ret = hugetlb_cow(mm, vma, address, ptep, entry,
3339
					pagecache_page, ptl);
3340
			goto out_put_page;
3341
		}
3342
		entry = huge_pte_mkdirty(entry);
3343 3344
	}
	entry = pte_mkyoung(entry);
3345 3346
	if (huge_ptep_set_access_flags(vma, address, ptep, entry,
						flags & FAULT_FLAG_WRITE))
3347
		update_mmu_cache(vma, address, ptep);
3348 3349 3350 3351
out_put_page:
	if (page != pagecache_page)
		unlock_page(page);
	put_page(page);
3352 3353
out_ptl:
	spin_unlock(ptl);
3354 3355 3356 3357 3358

	if (pagecache_page) {
		unlock_page(pagecache_page);
		put_page(pagecache_page);
	}
3359
out_mutex:
3360
	mutex_unlock(&htlb_fault_mutex_table[hash]);
3361 3362 3363 3364 3365 3366 3367 3368 3369
	/*
	 * Generally it's safe to hold refcount during waiting page lock. But
	 * here we just wait to defer the next page fault to avoid busy loop and
	 * the page is not used after unlocked before returning from the current
	 * page fault. So we are safe from accessing freed page, even if we wait
	 * here without taking refcount.
	 */
	if (need_wait_lock)
		wait_on_page_locked(page);
3370
	return ret;
3371 3372
}

3373 3374 3375 3376
long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
			 struct page **pages, struct vm_area_struct **vmas,
			 unsigned long *position, unsigned long *nr_pages,
			 long i, unsigned int flags)
D
David Gibson 已提交
3377
{
3378 3379
	unsigned long pfn_offset;
	unsigned long vaddr = *position;
3380
	unsigned long remainder = *nr_pages;
3381
	struct hstate *h = hstate_vma(vma);
D
David Gibson 已提交
3382 3383

	while (vaddr < vma->vm_end && remainder) {
A
Adam Litke 已提交
3384
		pte_t *pte;
3385
		spinlock_t *ptl = NULL;
H
Hugh Dickins 已提交
3386
		int absent;
A
Adam Litke 已提交
3387
		struct page *page;
D
David Gibson 已提交
3388

3389 3390 3391 3392 3393 3394 3395 3396 3397
		/*
		 * If we have a pending SIGKILL, don't keep faulting pages and
		 * potentially allocating memory.
		 */
		if (unlikely(fatal_signal_pending(current))) {
			remainder = 0;
			break;
		}

A
Adam Litke 已提交
3398 3399
		/*
		 * Some archs (sparc64, sh*) have multiple pte_ts to
H
Hugh Dickins 已提交
3400
		 * each hugepage.  We have to make sure we get the
A
Adam Litke 已提交
3401
		 * first, for the page indexing below to work.
3402 3403
		 *
		 * Note that page table lock is not held when pte is null.
A
Adam Litke 已提交
3404
		 */
3405
		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
3406 3407
		if (pte)
			ptl = huge_pte_lock(h, mm, pte);
H
Hugh Dickins 已提交
3408 3409 3410 3411
		absent = !pte || huge_pte_none(huge_ptep_get(pte));

		/*
		 * When coredumping, it suits get_dump_page if we just return
H
Hugh Dickins 已提交
3412 3413 3414 3415
		 * an error where there's an empty slot with no huge pagecache
		 * to back it.  This way, we avoid allocating a hugepage, and
		 * the sparse dumpfile avoids allocating disk blocks, but its
		 * huge holes still show up with zeroes where they need to be.
H
Hugh Dickins 已提交
3416
		 */
H
Hugh Dickins 已提交
3417 3418
		if (absent && (flags & FOLL_DUMP) &&
		    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
3419 3420
			if (pte)
				spin_unlock(ptl);
H
Hugh Dickins 已提交
3421 3422 3423
			remainder = 0;
			break;
		}
D
David Gibson 已提交
3424

3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435
		/*
		 * We need call hugetlb_fault for both hugepages under migration
		 * (in which case hugetlb_fault waits for the migration,) and
		 * hwpoisoned hugepages (in which case we need to prevent the
		 * caller from accessing to them.) In order to do this, we use
		 * here is_swap_pte instead of is_hugetlb_entry_migration and
		 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
		 * both cases, and because we can't follow correct pages
		 * directly from any kind of swap entries.
		 */
		if (absent || is_swap_pte(huge_ptep_get(pte)) ||
3436 3437
		    ((flags & FOLL_WRITE) &&
		      !huge_pte_write(huge_ptep_get(pte)))) {
A
Adam Litke 已提交
3438
			int ret;
D
David Gibson 已提交
3439

3440 3441
			if (pte)
				spin_unlock(ptl);
H
Hugh Dickins 已提交
3442 3443
			ret = hugetlb_fault(mm, vma, vaddr,
				(flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
3444
			if (!(ret & VM_FAULT_ERROR))
A
Adam Litke 已提交
3445
				continue;
D
David Gibson 已提交
3446

A
Adam Litke 已提交
3447 3448 3449 3450
			remainder = 0;
			break;
		}

3451
		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
3452
		page = pte_page(huge_ptep_get(pte));
3453
same_page:
3454
		if (pages) {
H
Hugh Dickins 已提交
3455
			pages[i] = mem_map_offset(page, pfn_offset);
3456
			get_page_foll(pages[i]);
3457
		}
D
David Gibson 已提交
3458 3459 3460 3461 3462

		if (vmas)
			vmas[i] = vma;

		vaddr += PAGE_SIZE;
3463
		++pfn_offset;
D
David Gibson 已提交
3464 3465
		--remainder;
		++i;
3466
		if (vaddr < vma->vm_end && remainder &&
3467
				pfn_offset < pages_per_huge_page(h)) {
3468 3469 3470 3471 3472 3473
			/*
			 * We use pfn_offset to avoid touching the pageframes
			 * of this compound page.
			 */
			goto same_page;
		}
3474
		spin_unlock(ptl);
D
David Gibson 已提交
3475
	}
3476
	*nr_pages = remainder;
D
David Gibson 已提交
3477 3478
	*position = vaddr;

H
Hugh Dickins 已提交
3479
	return i ? i : -EFAULT;
D
David Gibson 已提交
3480
}
3481

3482
unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
3483 3484 3485 3486 3487 3488
		unsigned long address, unsigned long end, pgprot_t newprot)
{
	struct mm_struct *mm = vma->vm_mm;
	unsigned long start = address;
	pte_t *ptep;
	pte_t pte;
3489
	struct hstate *h = hstate_vma(vma);
3490
	unsigned long pages = 0;
3491 3492 3493 3494

	BUG_ON(address >= end);
	flush_cache_range(vma, address, end);

3495
	mmu_notifier_invalidate_range_start(mm, start, end);
3496
	i_mmap_lock_write(vma->vm_file->f_mapping);
3497
	for (; address < end; address += huge_page_size(h)) {
3498
		spinlock_t *ptl;
3499 3500 3501
		ptep = huge_pte_offset(mm, address);
		if (!ptep)
			continue;
3502
		ptl = huge_pte_lock(h, mm, ptep);
3503 3504
		if (huge_pmd_unshare(mm, &address, ptep)) {
			pages++;
3505
			spin_unlock(ptl);
3506
			continue;
3507
		}
3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527
		pte = huge_ptep_get(ptep);
		if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
			spin_unlock(ptl);
			continue;
		}
		if (unlikely(is_hugetlb_entry_migration(pte))) {
			swp_entry_t entry = pte_to_swp_entry(pte);

			if (is_write_migration_entry(entry)) {
				pte_t newpte;

				make_migration_entry_read(&entry);
				newpte = swp_entry_to_pte(entry);
				set_huge_pte_at(mm, address, ptep, newpte);
				pages++;
			}
			spin_unlock(ptl);
			continue;
		}
		if (!huge_pte_none(pte)) {
3528
			pte = huge_ptep_get_and_clear(mm, address, ptep);
3529
			pte = pte_mkhuge(huge_pte_modify(pte, newprot));
3530
			pte = arch_make_huge_pte(pte, vma, NULL, 0);
3531
			set_huge_pte_at(mm, address, ptep, pte);
3532
			pages++;
3533
		}
3534
		spin_unlock(ptl);
3535
	}
3536
	/*
3537
	 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
3538
	 * may have cleared our pud entry and done put_page on the page table:
3539
	 * once we release i_mmap_rwsem, another task can do the final put_page
3540 3541
	 * and that page table be reused and filled with junk.
	 */
3542
	flush_tlb_range(vma, start, end);
3543
	mmu_notifier_invalidate_range(mm, start, end);
3544
	i_mmap_unlock_write(vma->vm_file->f_mapping);
3545
	mmu_notifier_invalidate_range_end(mm, start, end);
3546 3547

	return pages << h->order;
3548 3549
}

3550 3551
int hugetlb_reserve_pages(struct inode *inode,
					long from, long to,
3552
					struct vm_area_struct *vma,
3553
					vm_flags_t vm_flags)
3554
{
3555
	long ret, chg;
3556
	struct hstate *h = hstate_inode(inode);
3557
	struct hugepage_subpool *spool = subpool_inode(inode);
3558
	struct resv_map *resv_map;
3559
	long gbl_reserve;
3560

3561 3562 3563
	/*
	 * Only apply hugepage reservation if asked. At fault time, an
	 * attempt will be made for VM_NORESERVE to allocate a page
3564
	 * without using reserves
3565
	 */
3566
	if (vm_flags & VM_NORESERVE)
3567 3568
		return 0;

3569 3570 3571 3572 3573 3574
	/*
	 * Shared mappings base their reservation on the number of pages that
	 * are already allocated on behalf of the file. Private mappings need
	 * to reserve the full area even if read-only as mprotect() may be
	 * called to make the mapping read-write. Assume !vma is a shm mapping
	 */
3575
	if (!vma || vma->vm_flags & VM_MAYSHARE) {
3576
		resv_map = inode_resv_map(inode);
3577

3578
		chg = region_chg(resv_map, from, to);
3579 3580 3581

	} else {
		resv_map = resv_map_alloc();
3582 3583 3584
		if (!resv_map)
			return -ENOMEM;

3585
		chg = to - from;
3586

3587 3588 3589 3590
		set_vma_resv_map(vma, resv_map);
		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
	}

3591 3592 3593 3594
	if (chg < 0) {
		ret = chg;
		goto out_err;
	}
3595

3596 3597 3598 3599 3600 3601 3602
	/*
	 * There must be enough pages in the subpool for the mapping. If
	 * the subpool has a minimum size, there may be some global
	 * reservations already in place (gbl_reserve).
	 */
	gbl_reserve = hugepage_subpool_get_pages(spool, chg);
	if (gbl_reserve < 0) {
3603 3604 3605
		ret = -ENOSPC;
		goto out_err;
	}
3606 3607

	/*
3608
	 * Check enough hugepages are available for the reservation.
3609
	 * Hand the pages back to the subpool if there are not
3610
	 */
3611
	ret = hugetlb_acct_memory(h, gbl_reserve);
K
Ken Chen 已提交
3612
	if (ret < 0) {
3613 3614
		/* put back original number of pages, chg */
		(void)hugepage_subpool_put_pages(spool, chg);
3615
		goto out_err;
K
Ken Chen 已提交
3616
	}
3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628

	/*
	 * Account for the reservations made. Shared mappings record regions
	 * that have reservations as they are shared by multiple VMAs.
	 * When the last VMA disappears, the region map says how much
	 * the reservation was and the page cache tells how much of
	 * the reservation was consumed. Private mappings are per-VMA and
	 * only the consumed reservations are tracked. When the VMA
	 * disappears, the original reservation is the VMA size and the
	 * consumed reservations are stored in the map. Hence, nothing
	 * else has to be done for private mappings here
	 */
3629
	if (!vma || vma->vm_flags & VM_MAYSHARE)
3630
		region_add(resv_map, from, to);
3631
	return 0;
3632
out_err:
J
Joonsoo Kim 已提交
3633 3634
	if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
		kref_put(&resv_map->refs, resv_map_release);
3635
	return ret;
3636 3637 3638 3639
}

void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
{
3640
	struct hstate *h = hstate_inode(inode);
3641
	struct resv_map *resv_map = inode_resv_map(inode);
3642
	long chg = 0;
3643
	struct hugepage_subpool *spool = subpool_inode(inode);
3644
	long gbl_reserve;
K
Ken Chen 已提交
3645

3646
	if (resv_map)
3647
		chg = region_truncate(resv_map, offset);
K
Ken Chen 已提交
3648
	spin_lock(&inode->i_lock);
3649
	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
K
Ken Chen 已提交
3650 3651
	spin_unlock(&inode->i_lock);

3652 3653 3654 3655 3656 3657
	/*
	 * If the subpool has a minimum size, the number of global
	 * reservations to be released may be adjusted.
	 */
	gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
	hugetlb_acct_memory(h, -gbl_reserve);
3658
}
3659

3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704
#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
static unsigned long page_table_shareable(struct vm_area_struct *svma,
				struct vm_area_struct *vma,
				unsigned long addr, pgoff_t idx)
{
	unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
				svma->vm_start;
	unsigned long sbase = saddr & PUD_MASK;
	unsigned long s_end = sbase + PUD_SIZE;

	/* Allow segments to share if only one is marked locked */
	unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED;
	unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED;

	/*
	 * match the virtual addresses, permission and the alignment of the
	 * page table page.
	 */
	if (pmd_index(addr) != pmd_index(saddr) ||
	    vm_flags != svm_flags ||
	    sbase < svma->vm_start || svma->vm_end < s_end)
		return 0;

	return saddr;
}

static int vma_shareable(struct vm_area_struct *vma, unsigned long addr)
{
	unsigned long base = addr & PUD_MASK;
	unsigned long end = base + PUD_SIZE;

	/*
	 * check on proper vm_flags and page table alignment
	 */
	if (vma->vm_flags & VM_MAYSHARE &&
	    vma->vm_start <= base && end <= vma->vm_end)
		return 1;
	return 0;
}

/*
 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
 * and returns the corresponding pte. While this is not necessary for the
 * !shared pmd case because we can allocate the pmd later as well, it makes the
 * code much cleaner. pmd allocation is essential for the shared case because
3705
 * pud has to be populated inside the same i_mmap_rwsem section - otherwise
3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718
 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
 * bad pmd for sharing.
 */
pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
{
	struct vm_area_struct *vma = find_vma(mm, addr);
	struct address_space *mapping = vma->vm_file->f_mapping;
	pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
			vma->vm_pgoff;
	struct vm_area_struct *svma;
	unsigned long saddr;
	pte_t *spte = NULL;
	pte_t *pte;
3719
	spinlock_t *ptl;
3720 3721 3722 3723

	if (!vma_shareable(vma, addr))
		return (pte_t *)pmd_alloc(mm, pud, addr);

3724
	i_mmap_lock_write(mapping);
3725 3726 3727 3728 3729 3730 3731 3732
	vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
		if (svma == vma)
			continue;

		saddr = page_table_shareable(svma, vma, addr, idx);
		if (saddr) {
			spte = huge_pte_offset(svma->vm_mm, saddr);
			if (spte) {
3733
				mm_inc_nr_pmds(mm);
3734 3735 3736 3737 3738 3739 3740 3741 3742
				get_page(virt_to_page(spte));
				break;
			}
		}
	}

	if (!spte)
		goto out;

3743 3744
	ptl = huge_pte_lockptr(hstate_vma(vma), mm, spte);
	spin_lock(ptl);
3745
	if (pud_none(*pud)) {
3746 3747
		pud_populate(mm, pud,
				(pmd_t *)((unsigned long)spte & PAGE_MASK));
3748
	} else {
3749
		put_page(virt_to_page(spte));
3750 3751
		mm_inc_nr_pmds(mm);
	}
3752
	spin_unlock(ptl);
3753 3754
out:
	pte = (pte_t *)pmd_alloc(mm, pud, addr);
3755
	i_mmap_unlock_write(mapping);
3756 3757 3758 3759 3760 3761 3762 3763 3764 3765
	return pte;
}

/*
 * unmap huge page backed by shared pte.
 *
 * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
 * indicated by page_count > 1, unmap is achieved by clearing pud and
 * decrementing the ref count. If count == 1, the pte page is not shared.
 *
3766
 * called with page table lock held.
3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781
 *
 * returns: 1 successfully unmapped a shared pte page
 *	    0 the underlying pte page is not shared, or it is the last user
 */
int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
{
	pgd_t *pgd = pgd_offset(mm, *addr);
	pud_t *pud = pud_offset(pgd, *addr);

	BUG_ON(page_count(virt_to_page(ptep)) == 0);
	if (page_count(virt_to_page(ptep)) == 1)
		return 0;

	pud_clear(pud);
	put_page(virt_to_page(ptep));
3782
	mm_dec_nr_pmds(mm);
3783 3784 3785
	*addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
	return 1;
}
3786 3787 3788 3789 3790 3791 3792
#define want_pmd_share()	(1)
#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
{
	return NULL;
}
#define want_pmd_share()	(0)
3793 3794
#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */

3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838
#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
pte_t *huge_pte_alloc(struct mm_struct *mm,
			unsigned long addr, unsigned long sz)
{
	pgd_t *pgd;
	pud_t *pud;
	pte_t *pte = NULL;

	pgd = pgd_offset(mm, addr);
	pud = pud_alloc(mm, pgd, addr);
	if (pud) {
		if (sz == PUD_SIZE) {
			pte = (pte_t *)pud;
		} else {
			BUG_ON(sz != PMD_SIZE);
			if (want_pmd_share() && pud_none(*pud))
				pte = huge_pmd_share(mm, addr, pud);
			else
				pte = (pte_t *)pmd_alloc(mm, pud, addr);
		}
	}
	BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte));

	return pte;
}

pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
{
	pgd_t *pgd;
	pud_t *pud;
	pmd_t *pmd = NULL;

	pgd = pgd_offset(mm, addr);
	if (pgd_present(*pgd)) {
		pud = pud_offset(pgd, addr);
		if (pud_present(*pud)) {
			if (pud_huge(*pud))
				return (pte_t *)pud;
			pmd = pmd_offset(pud, addr);
		}
	}
	return (pte_t *) pmd;
}

3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852
#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */

/*
 * These functions are overwritable if your architecture needs its own
 * behavior.
 */
struct page * __weak
follow_huge_addr(struct mm_struct *mm, unsigned long address,
			      int write)
{
	return ERR_PTR(-EINVAL);
}

struct page * __weak
3853
follow_huge_pmd(struct mm_struct *mm, unsigned long address,
3854
		pmd_t *pmd, int flags)
3855
{
3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867
	struct page *page = NULL;
	spinlock_t *ptl;
retry:
	ptl = pmd_lockptr(mm, pmd);
	spin_lock(ptl);
	/*
	 * make sure that the address range covered by this pmd is not
	 * unmapped from other threads.
	 */
	if (!pmd_huge(*pmd))
		goto out;
	if (pmd_present(*pmd)) {
3868
		page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883
		if (flags & FOLL_GET)
			get_page(page);
	} else {
		if (is_hugetlb_entry_migration(huge_ptep_get((pte_t *)pmd))) {
			spin_unlock(ptl);
			__migration_entry_wait(mm, (pte_t *)pmd, ptl);
			goto retry;
		}
		/*
		 * hwpoisoned entry is treated as no_page_table in
		 * follow_page_mask().
		 */
	}
out:
	spin_unlock(ptl);
3884 3885 3886
	return page;
}

3887
struct page * __weak
3888
follow_huge_pud(struct mm_struct *mm, unsigned long address,
3889
		pud_t *pud, int flags)
3890
{
3891 3892
	if (flags & FOLL_GET)
		return NULL;
3893

3894
	return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
3895 3896
}

3897 3898
#ifdef CONFIG_MEMORY_FAILURE

3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912
/* Should be called in hugetlb_lock */
static int is_hugepage_on_freelist(struct page *hpage)
{
	struct page *page;
	struct page *tmp;
	struct hstate *h = page_hstate(hpage);
	int nid = page_to_nid(hpage);

	list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru)
		if (page == hpage)
			return 1;
	return 0;
}

3913 3914 3915 3916
/*
 * This function is called from memory failure code.
 * Assume the caller holds page lock of the head page.
 */
3917
int dequeue_hwpoisoned_huge_page(struct page *hpage)
3918 3919 3920
{
	struct hstate *h = page_hstate(hpage);
	int nid = page_to_nid(hpage);
3921
	int ret = -EBUSY;
3922 3923

	spin_lock(&hugetlb_lock);
3924
	if (is_hugepage_on_freelist(hpage)) {
3925 3926 3927 3928 3929 3930 3931
		/*
		 * Hwpoisoned hugepage isn't linked to activelist or freelist,
		 * but dangling hpage->lru can trigger list-debug warnings
		 * (this happens when we call unpoison_memory() on it),
		 * so let it point to itself with list_del_init().
		 */
		list_del_init(&hpage->lru);
3932
		set_page_refcounted(hpage);
3933 3934 3935 3936
		h->free_huge_pages--;
		h->free_huge_pages_node[nid]--;
		ret = 0;
	}
3937
	spin_unlock(&hugetlb_lock);
3938
	return ret;
3939
}
3940
#endif
3941 3942 3943

bool isolate_huge_page(struct page *page, struct list_head *list)
{
3944 3945
	bool ret = true;

3946
	VM_BUG_ON_PAGE(!PageHead(page), page);
3947
	spin_lock(&hugetlb_lock);
3948 3949 3950 3951 3952
	if (!page_huge_active(page) || !get_page_unless_zero(page)) {
		ret = false;
		goto unlock;
	}
	clear_page_huge_active(page);
3953
	list_move_tail(&page->lru, list);
3954
unlock:
3955
	spin_unlock(&hugetlb_lock);
3956
	return ret;
3957 3958 3959 3960
}

void putback_active_hugepage(struct page *page)
{
3961
	VM_BUG_ON_PAGE(!PageHead(page), page);
3962
	spin_lock(&hugetlb_lock);
3963
	set_page_huge_active(page);
3964 3965 3966 3967
	list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
	spin_unlock(&hugetlb_lock);
	put_page(page);
}
3968 3969 3970

bool is_hugepage_active(struct page *page)
{
3971
	VM_BUG_ON_PAGE(!PageHuge(page), page);
3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989
	/*
	 * This function can be called for a tail page because the caller,
	 * scan_movable_pages, scans through a given pfn-range which typically
	 * covers one memory block. In systems using gigantic hugepage (1GB
	 * for x86_64,) a hugepage is larger than a memory block, and we don't
	 * support migrating such large hugepages for now, so return false
	 * when called for tail pages.
	 */
	if (PageTail(page))
		return false;
	/*
	 * Refcount of a hwpoisoned hugepages is 1, but they are not active,
	 * so we should return false for them.
	 */
	if (unlikely(PageHWPoison(page)))
		return false;
	return page_count(page) > 0;
}