hugetlb.c 33.2 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12
/*
 * Generic hugetlb support.
 * (C) William Irwin, April 2004
 */
#include <linux/gfp.h>
#include <linux/list.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/mm.h>
#include <linux/sysctl.h>
#include <linux/highmem.h>
#include <linux/nodemask.h>
D
David Gibson 已提交
13
#include <linux/pagemap.h>
14
#include <linux/mempolicy.h>
15
#include <linux/cpuset.h>
16
#include <linux/mutex.h>
17

D
David Gibson 已提交
18 19 20 21
#include <asm/page.h>
#include <asm/pgtable.h>

#include <linux/hugetlb.h>
22
#include "internal.h"
L
Linus Torvalds 已提交
23 24

const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
25
static unsigned long nr_huge_pages, free_huge_pages, resv_huge_pages;
26
static unsigned long surplus_huge_pages;
27
static unsigned long nr_overcommit_huge_pages;
L
Linus Torvalds 已提交
28
unsigned long max_huge_pages;
29
unsigned long sysctl_overcommit_huge_pages;
L
Linus Torvalds 已提交
30 31 32
static struct list_head hugepage_freelists[MAX_NUMNODES];
static unsigned int nr_huge_pages_node[MAX_NUMNODES];
static unsigned int free_huge_pages_node[MAX_NUMNODES];
33
static unsigned int surplus_huge_pages_node[MAX_NUMNODES];
34 35
static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
unsigned long hugepages_treat_as_movable;
36
static int hugetlb_next_nid;
37

38 39 40 41
/*
 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
 */
static DEFINE_SPINLOCK(hugetlb_lock);
42

43 44 45 46 47 48 49
static void clear_huge_page(struct page *page, unsigned long addr)
{
	int i;

	might_sleep();
	for (i = 0; i < (HPAGE_SIZE/PAGE_SIZE); i++) {
		cond_resched();
50
		clear_user_highpage(page + i, addr + i * PAGE_SIZE);
51 52 53 54
	}
}

static void copy_huge_page(struct page *dst, struct page *src,
55
			   unsigned long addr, struct vm_area_struct *vma)
56 57 58 59 60 61
{
	int i;

	might_sleep();
	for (i = 0; i < HPAGE_SIZE/PAGE_SIZE; i++) {
		cond_resched();
62
		copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
63 64 65
	}
}

L
Linus Torvalds 已提交
66 67 68 69 70 71 72 73
static void enqueue_huge_page(struct page *page)
{
	int nid = page_to_nid(page);
	list_add(&page->lru, &hugepage_freelists[nid]);
	free_huge_pages++;
	free_huge_pages_node[nid]++;
}

74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
static struct page *dequeue_huge_page(void)
{
	int nid;
	struct page *page = NULL;

	for (nid = 0; nid < MAX_NUMNODES; ++nid) {
		if (!list_empty(&hugepage_freelists[nid])) {
			page = list_entry(hugepage_freelists[nid].next,
					  struct page, lru);
			list_del(&page->lru);
			free_huge_pages--;
			free_huge_pages_node[nid]--;
			break;
		}
	}
	return page;
}

static struct page *dequeue_huge_page_vma(struct vm_area_struct *vma,
93
				unsigned long address)
L
Linus Torvalds 已提交
94
{
95
	int nid;
L
Linus Torvalds 已提交
96
	struct page *page = NULL;
97
	struct mempolicy *mpol;
98
	nodemask_t *nodemask;
99
	struct zonelist *zonelist = huge_zonelist(vma, address,
100
					htlb_alloc_mask, &mpol, &nodemask);
101 102
	struct zone *zone;
	struct zoneref *z;
L
Linus Torvalds 已提交
103

104 105
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
						MAX_NR_ZONES - 1, nodemask) {
106 107
		nid = zone_to_nid(zone);
		if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask) &&
A
Andrew Morton 已提交
108 109 110 111 112 113
		    !list_empty(&hugepage_freelists[nid])) {
			page = list_entry(hugepage_freelists[nid].next,
					  struct page, lru);
			list_del(&page->lru);
			free_huge_pages--;
			free_huge_pages_node[nid]--;
114 115
			if (vma && vma->vm_flags & VM_MAYSHARE)
				resv_huge_pages--;
K
Ken Chen 已提交
116
			break;
A
Andrew Morton 已提交
117
		}
L
Linus Torvalds 已提交
118
	}
119
	mpol_cond_put(mpol);
L
Linus Torvalds 已提交
120 121 122
	return page;
}

A
Adam Litke 已提交
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
static void update_and_free_page(struct page *page)
{
	int i;
	nr_huge_pages--;
	nr_huge_pages_node[page_to_nid(page)]--;
	for (i = 0; i < (HPAGE_SIZE / PAGE_SIZE); i++) {
		page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced |
				1 << PG_dirty | 1 << PG_active | 1 << PG_reserved |
				1 << PG_private | 1<< PG_writeback);
	}
	set_compound_page_dtor(page, NULL);
	set_page_refcounted(page);
	__free_pages(page, HUGETLB_PAGE_ORDER);
}

138 139
static void free_huge_page(struct page *page)
{
140
	int nid = page_to_nid(page);
141
	struct address_space *mapping;
142

143
	mapping = (struct address_space *) page_private(page);
144
	set_page_private(page, 0);
145
	BUG_ON(page_count(page));
146 147 148
	INIT_LIST_HEAD(&page->lru);

	spin_lock(&hugetlb_lock);
149 150 151 152 153 154 155
	if (surplus_huge_pages_node[nid]) {
		update_and_free_page(page);
		surplus_huge_pages--;
		surplus_huge_pages_node[nid]--;
	} else {
		enqueue_huge_page(page);
	}
156
	spin_unlock(&hugetlb_lock);
157
	if (mapping)
158
		hugetlb_put_quota(mapping, 1);
159 160
}

161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
/*
 * Increment or decrement surplus_huge_pages.  Keep node-specific counters
 * balanced by operating on them in a round-robin fashion.
 * Returns 1 if an adjustment was made.
 */
static int adjust_pool_surplus(int delta)
{
	static int prev_nid;
	int nid = prev_nid;
	int ret = 0;

	VM_BUG_ON(delta != -1 && delta != 1);
	do {
		nid = next_node(nid, node_online_map);
		if (nid == MAX_NUMNODES)
			nid = first_node(node_online_map);

		/* To shrink on this node, there must be a surplus page */
		if (delta < 0 && !surplus_huge_pages_node[nid])
			continue;
		/* Surplus cannot exceed the total number of pages */
		if (delta > 0 && surplus_huge_pages_node[nid] >=
						nr_huge_pages_node[nid])
			continue;

		surplus_huge_pages += delta;
		surplus_huge_pages_node[nid] += delta;
		ret = 1;
		break;
	} while (nid != prev_nid);

	prev_nid = nid;
	return ret;
}

196
static struct page *alloc_fresh_huge_page_node(int nid)
L
Linus Torvalds 已提交
197 198
{
	struct page *page;
199

200 201 202
	page = alloc_pages_node(nid,
		htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|__GFP_NOWARN,
		HUGETLB_PAGE_ORDER);
L
Linus Torvalds 已提交
203
	if (page) {
204
		set_compound_page_dtor(page, free_huge_page);
205
		spin_lock(&hugetlb_lock);
L
Linus Torvalds 已提交
206
		nr_huge_pages++;
207
		nr_huge_pages_node[nid]++;
208
		spin_unlock(&hugetlb_lock);
N
Nick Piggin 已提交
209
		put_page(page); /* free it into the hugepage allocator */
L
Linus Torvalds 已提交
210
	}
211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244

	return page;
}

static int alloc_fresh_huge_page(void)
{
	struct page *page;
	int start_nid;
	int next_nid;
	int ret = 0;

	start_nid = hugetlb_next_nid;

	do {
		page = alloc_fresh_huge_page_node(hugetlb_next_nid);
		if (page)
			ret = 1;
		/*
		 * Use a helper variable to find the next node and then
		 * copy it back to hugetlb_next_nid afterwards:
		 * otherwise there's a window in which a racer might
		 * pass invalid nid MAX_NUMNODES to alloc_pages_node.
		 * But we don't need to use a spin_lock here: it really
		 * doesn't matter if occasionally a racer chooses the
		 * same nid as we do.  Move nid forward in the mask even
		 * if we just successfully allocated a hugepage so that
		 * the next caller gets hugepages on the next node.
		 */
		next_nid = next_node(hugetlb_next_nid, node_online_map);
		if (next_nid == MAX_NUMNODES)
			next_nid = first_node(node_online_map);
		hugetlb_next_nid = next_nid;
	} while (!page && hugetlb_next_nid != start_nid);

245 246 247 248 249
	if (ret)
		count_vm_event(HTLB_BUDDY_PGALLOC);
	else
		count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);

250
	return ret;
L
Linus Torvalds 已提交
251 252
}

253 254 255 256
static struct page *alloc_buddy_huge_page(struct vm_area_struct *vma,
						unsigned long address)
{
	struct page *page;
257
	unsigned int nid;
258

259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
	/*
	 * Assume we will successfully allocate the surplus page to
	 * prevent racing processes from causing the surplus to exceed
	 * overcommit
	 *
	 * This however introduces a different race, where a process B
	 * tries to grow the static hugepage pool while alloc_pages() is
	 * called by process A. B will only examine the per-node
	 * counters in determining if surplus huge pages can be
	 * converted to normal huge pages in adjust_pool_surplus(). A
	 * won't be able to increment the per-node counter, until the
	 * lock is dropped by B, but B doesn't drop hugetlb_lock until
	 * no more huge pages can be converted from surplus to normal
	 * state (and doesn't try to convert again). Thus, we have a
	 * case where a surplus huge page exists, the pool is grown, and
	 * the surplus huge page still exists after, even though it
	 * should just have been converted to a normal huge page. This
	 * does not leak memory, though, as the hugepage will be freed
	 * once it is out of use. It also does not allow the counters to
	 * go out of whack in adjust_pool_surplus() as we don't modify
	 * the node values until we've gotten the hugepage and only the
	 * per-node value is checked there.
	 */
	spin_lock(&hugetlb_lock);
	if (surplus_huge_pages >= nr_overcommit_huge_pages) {
		spin_unlock(&hugetlb_lock);
		return NULL;
	} else {
		nr_huge_pages++;
		surplus_huge_pages++;
	}
	spin_unlock(&hugetlb_lock);

292 293
	page = alloc_pages(htlb_alloc_mask|__GFP_COMP|__GFP_NOWARN,
					HUGETLB_PAGE_ORDER);
294 295

	spin_lock(&hugetlb_lock);
296
	if (page) {
297 298 299 300 301 302
		/*
		 * This page is now managed by the hugetlb allocator and has
		 * no users -- drop the buddy allocator's reference.
		 */
		put_page_testzero(page);
		VM_BUG_ON(page_count(page));
303
		nid = page_to_nid(page);
304
		set_compound_page_dtor(page, free_huge_page);
305 306 307 308 309
		/*
		 * We incremented the global counters already
		 */
		nr_huge_pages_node[nid]++;
		surplus_huge_pages_node[nid]++;
310
		__count_vm_event(HTLB_BUDDY_PGALLOC);
311 312 313
	} else {
		nr_huge_pages--;
		surplus_huge_pages--;
314
		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
315
	}
316
	spin_unlock(&hugetlb_lock);
317 318 319 320

	return page;
}

321 322 323 324 325 326 327 328 329 330 331 332
/*
 * Increase the hugetlb pool such that it can accomodate a reservation
 * of size 'delta'.
 */
static int gather_surplus_pages(int delta)
{
	struct list_head surplus_list;
	struct page *page, *tmp;
	int ret, i;
	int needed, allocated;

	needed = (resv_huge_pages + delta) - free_huge_pages;
333 334
	if (needed <= 0) {
		resv_huge_pages += delta;
335
		return 0;
336
	}
337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373

	allocated = 0;
	INIT_LIST_HEAD(&surplus_list);

	ret = -ENOMEM;
retry:
	spin_unlock(&hugetlb_lock);
	for (i = 0; i < needed; i++) {
		page = alloc_buddy_huge_page(NULL, 0);
		if (!page) {
			/*
			 * We were not able to allocate enough pages to
			 * satisfy the entire reservation so we free what
			 * we've allocated so far.
			 */
			spin_lock(&hugetlb_lock);
			needed = 0;
			goto free;
		}

		list_add(&page->lru, &surplus_list);
	}
	allocated += needed;

	/*
	 * After retaking hugetlb_lock, we need to recalculate 'needed'
	 * because either resv_huge_pages or free_huge_pages may have changed.
	 */
	spin_lock(&hugetlb_lock);
	needed = (resv_huge_pages + delta) - (free_huge_pages + allocated);
	if (needed > 0)
		goto retry;

	/*
	 * The surplus_list now contains _at_least_ the number of extra pages
	 * needed to accomodate the reservation.  Add the appropriate number
	 * of pages to the hugetlb pool and free the extras back to the buddy
374 375 376
	 * allocator.  Commit the entire reservation here to prevent another
	 * process from stealing the pages as they are added to the pool but
	 * before they are reserved.
377 378
	 */
	needed += allocated;
379
	resv_huge_pages += delta;
380 381
	ret = 0;
free:
382
	/* Free the needed pages to the hugetlb pool */
383
	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
384 385
		if ((--needed) < 0)
			break;
386
		list_del(&page->lru);
387 388 389 390 391 392 393 394
		enqueue_huge_page(page);
	}

	/* Free unnecessary surplus pages to the buddy allocator */
	if (!list_empty(&surplus_list)) {
		spin_unlock(&hugetlb_lock);
		list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
			list_del(&page->lru);
395
			/*
396 397 398
			 * The page has a reference count of zero already, so
			 * call free_huge_page directly instead of using
			 * put_page.  This must be done with hugetlb_lock
399 400 401
			 * unlocked which is safe because free_huge_page takes
			 * hugetlb_lock before deciding how to free the page.
			 */
402
			free_huge_page(page);
403
		}
404
		spin_lock(&hugetlb_lock);
405 406 407 408 409 410 411 412 413 414
	}

	return ret;
}

/*
 * When releasing a hugetlb pool reservation, any surplus pages that were
 * allocated to satisfy the reservation must be explicitly freed if they were
 * never used.
 */
A
Adrian Bunk 已提交
415
static void return_unused_surplus_pages(unsigned long unused_resv_pages)
416 417 418 419 420
{
	static int nid = -1;
	struct page *page;
	unsigned long nr_pages;

421 422 423 424 425 426 427 428
	/*
	 * We want to release as many surplus pages as possible, spread
	 * evenly across all nodes. Iterate across all nodes until we
	 * can no longer free unreserved surplus pages. This occurs when
	 * the nodes with surplus pages have no free pages.
	 */
	unsigned long remaining_iterations = num_online_nodes();

429 430 431
	/* Uncommit the reservation */
	resv_huge_pages -= unused_resv_pages;

432 433
	nr_pages = min(unused_resv_pages, surplus_huge_pages);

434
	while (remaining_iterations-- && nr_pages) {
435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451
		nid = next_node(nid, node_online_map);
		if (nid == MAX_NUMNODES)
			nid = first_node(node_online_map);

		if (!surplus_huge_pages_node[nid])
			continue;

		if (!list_empty(&hugepage_freelists[nid])) {
			page = list_entry(hugepage_freelists[nid].next,
					  struct page, lru);
			list_del(&page->lru);
			update_and_free_page(page);
			free_huge_pages--;
			free_huge_pages_node[nid]--;
			surplus_huge_pages--;
			surplus_huge_pages_node[nid]--;
			nr_pages--;
452
			remaining_iterations = num_online_nodes();
453 454 455 456
		}
	}
}

457 458 459

static struct page *alloc_huge_page_shared(struct vm_area_struct *vma,
						unsigned long addr)
L
Linus Torvalds 已提交
460
{
461
	struct page *page;
L
Linus Torvalds 已提交
462 463

	spin_lock(&hugetlb_lock);
464
	page = dequeue_huge_page_vma(vma, addr);
L
Linus Torvalds 已提交
465
	spin_unlock(&hugetlb_lock);
466
	return page ? page : ERR_PTR(-VM_FAULT_OOM);
467
}
468

469 470 471 472
static struct page *alloc_huge_page_private(struct vm_area_struct *vma,
						unsigned long addr)
{
	struct page *page = NULL;
473

474 475 476
	if (hugetlb_get_quota(vma->vm_file->f_mapping, 1))
		return ERR_PTR(-VM_FAULT_SIGBUS);

477 478
	spin_lock(&hugetlb_lock);
	if (free_huge_pages > resv_huge_pages)
479
		page = dequeue_huge_page_vma(vma, addr);
480
	spin_unlock(&hugetlb_lock);
K
Ken Chen 已提交
481
	if (!page) {
482
		page = alloc_buddy_huge_page(vma, addr);
K
Ken Chen 已提交
483 484 485 486 487 488
		if (!page) {
			hugetlb_put_quota(vma->vm_file->f_mapping, 1);
			return ERR_PTR(-VM_FAULT_OOM);
		}
	}
	return page;
489 490 491 492 493 494
}

static struct page *alloc_huge_page(struct vm_area_struct *vma,
				    unsigned long addr)
{
	struct page *page;
495 496
	struct address_space *mapping = vma->vm_file->f_mapping;

497 498 499 500
	if (vma->vm_flags & VM_MAYSHARE)
		page = alloc_huge_page_shared(vma, addr);
	else
		page = alloc_huge_page_private(vma, addr);
501 502

	if (!IS_ERR(page)) {
503
		set_page_refcounted(page);
504
		set_page_private(page, (unsigned long) mapping);
505 506
	}
	return page;
507 508
}

L
Linus Torvalds 已提交
509 510 511 512
static int __init hugetlb_init(void)
{
	unsigned long i;

513 514 515
	if (HPAGE_SHIFT == 0)
		return 0;

L
Linus Torvalds 已提交
516 517 518
	for (i = 0; i < MAX_NUMNODES; ++i)
		INIT_LIST_HEAD(&hugepage_freelists[i]);

519 520
	hugetlb_next_nid = first_node(node_online_map);

L
Linus Torvalds 已提交
521
	for (i = 0; i < max_huge_pages; ++i) {
N
Nick Piggin 已提交
522
		if (!alloc_fresh_huge_page())
L
Linus Torvalds 已提交
523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538
			break;
	}
	max_huge_pages = free_huge_pages = nr_huge_pages = i;
	printk("Total HugeTLB memory allocated, %ld\n", free_huge_pages);
	return 0;
}
module_init(hugetlb_init);

static int __init hugetlb_setup(char *s)
{
	if (sscanf(s, "%lu", &max_huge_pages) <= 0)
		max_huge_pages = 0;
	return 1;
}
__setup("hugepages=", hugetlb_setup);

539 540 541 542 543 544 545 546 547 548 549
static unsigned int cpuset_mems_nr(unsigned int *array)
{
	int node;
	unsigned int nr = 0;

	for_each_node_mask(node, cpuset_current_mems_allowed)
		nr += array[node];

	return nr;
}

L
Linus Torvalds 已提交
550 551 552 553
#ifdef CONFIG_SYSCTL
#ifdef CONFIG_HIGHMEM
static void try_to_free_low(unsigned long count)
{
554 555
	int i;

L
Linus Torvalds 已提交
556 557 558
	for (i = 0; i < MAX_NUMNODES; ++i) {
		struct page *page, *next;
		list_for_each_entry_safe(page, next, &hugepage_freelists[i], lru) {
559 560
			if (count >= nr_huge_pages)
				return;
L
Linus Torvalds 已提交
561 562 563 564 565
			if (PageHighMem(page))
				continue;
			list_del(&page->lru);
			update_and_free_page(page);
			free_huge_pages--;
566
			free_huge_pages_node[page_to_nid(page)]--;
L
Linus Torvalds 已提交
567 568 569 570 571 572 573 574 575
		}
	}
}
#else
static inline void try_to_free_low(unsigned long count)
{
}
#endif

576
#define persistent_huge_pages (nr_huge_pages - surplus_huge_pages)
L
Linus Torvalds 已提交
577 578
static unsigned long set_max_huge_pages(unsigned long count)
{
579
	unsigned long min_count, ret;
L
Linus Torvalds 已提交
580

581 582 583 584
	/*
	 * Increase the pool size
	 * First take pages out of surplus state.  Then make up the
	 * remaining difference by allocating fresh huge pages.
585 586 587 588 589 590
	 *
	 * We might race with alloc_buddy_huge_page() here and be unable
	 * to convert a surplus huge page to a normal huge page. That is
	 * not critical, though, it just means the overall size of the
	 * pool might be one hugepage larger than it needs to be, but
	 * within all the constraints specified by the sysctls.
591
	 */
L
Linus Torvalds 已提交
592
	spin_lock(&hugetlb_lock);
593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618
	while (surplus_huge_pages && count > persistent_huge_pages) {
		if (!adjust_pool_surplus(-1))
			break;
	}

	while (count > persistent_huge_pages) {
		int ret;
		/*
		 * If this allocation races such that we no longer need the
		 * page, free_huge_page will handle it by freeing the page
		 * and reducing the surplus.
		 */
		spin_unlock(&hugetlb_lock);
		ret = alloc_fresh_huge_page();
		spin_lock(&hugetlb_lock);
		if (!ret)
			goto out;

	}

	/*
	 * Decrease the pool size
	 * First return free pages to the buddy allocator (being careful
	 * to keep enough around to satisfy reservations).  Then place
	 * pages into surplus state as needed so the pool will shrink
	 * to the desired size as pages become free.
619 620 621 622 623 624 625 626
	 *
	 * By placing pages into the surplus state independent of the
	 * overcommit value, we are allowing the surplus pool size to
	 * exceed overcommit. There are few sane options here. Since
	 * alloc_buddy_huge_page() is checking the global counter,
	 * though, we'll note that we're not allowed to exceed surplus
	 * and won't grow the pool anywhere else. Not until one of the
	 * sysctls are changed, or the surplus pages go out of use.
627
	 */
628 629
	min_count = resv_huge_pages + nr_huge_pages - free_huge_pages;
	min_count = max(count, min_count);
630 631
	try_to_free_low(min_count);
	while (min_count < persistent_huge_pages) {
632
		struct page *page = dequeue_huge_page();
L
Linus Torvalds 已提交
633 634 635 636
		if (!page)
			break;
		update_and_free_page(page);
	}
637 638 639 640 641 642
	while (count < persistent_huge_pages) {
		if (!adjust_pool_surplus(1))
			break;
	}
out:
	ret = persistent_huge_pages;
L
Linus Torvalds 已提交
643
	spin_unlock(&hugetlb_lock);
644
	return ret;
L
Linus Torvalds 已提交
645 646 647 648 649 650 651 652 653 654
}

int hugetlb_sysctl_handler(struct ctl_table *table, int write,
			   struct file *file, void __user *buffer,
			   size_t *length, loff_t *ppos)
{
	proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
	max_huge_pages = set_max_huge_pages(max_huge_pages);
	return 0;
}
655 656 657 658 659 660 661 662 663 664 665 666 667

int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
			struct file *file, void __user *buffer,
			size_t *length, loff_t *ppos)
{
	proc_dointvec(table, write, file, buffer, length, ppos);
	if (hugepages_treat_as_movable)
		htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
	else
		htlb_alloc_mask = GFP_HIGHUSER;
	return 0;
}

668 669 670 671 672
int hugetlb_overcommit_handler(struct ctl_table *table, int write,
			struct file *file, void __user *buffer,
			size_t *length, loff_t *ppos)
{
	proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
673 674
	spin_lock(&hugetlb_lock);
	nr_overcommit_huge_pages = sysctl_overcommit_huge_pages;
675 676 677 678
	spin_unlock(&hugetlb_lock);
	return 0;
}

L
Linus Torvalds 已提交
679 680 681 682 683 684 685
#endif /* CONFIG_SYSCTL */

int hugetlb_report_meminfo(char *buf)
{
	return sprintf(buf,
			"HugePages_Total: %5lu\n"
			"HugePages_Free:  %5lu\n"
686
			"HugePages_Rsvd:  %5lu\n"
687
			"HugePages_Surp:  %5lu\n"
L
Linus Torvalds 已提交
688 689 690
			"Hugepagesize:    %5lu kB\n",
			nr_huge_pages,
			free_huge_pages,
691
			resv_huge_pages,
692
			surplus_huge_pages,
L
Linus Torvalds 已提交
693 694 695 696 697 698 699
			HPAGE_SIZE/1024);
}

int hugetlb_report_node_meminfo(int nid, char *buf)
{
	return sprintf(buf,
		"Node %d HugePages_Total: %5u\n"
700 701
		"Node %d HugePages_Free:  %5u\n"
		"Node %d HugePages_Surp:  %5u\n",
L
Linus Torvalds 已提交
702
		nid, nr_huge_pages_node[nid],
703 704
		nid, free_huge_pages_node[nid],
		nid, surplus_huge_pages_node[nid]);
L
Linus Torvalds 已提交
705 706 707 708 709 710 711 712 713 714 715 716 717 718
}

/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
unsigned long hugetlb_total_pages(void)
{
	return nr_huge_pages * (HPAGE_SIZE / PAGE_SIZE);
}

/*
 * We cannot handle pagefaults against hugetlb pages at all.  They cause
 * handle_mm_fault() to try to instantiate regular-sized pages in the
 * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
 * this far.
 */
N
Nick Piggin 已提交
719
static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
L
Linus Torvalds 已提交
720 721
{
	BUG();
N
Nick Piggin 已提交
722
	return 0;
L
Linus Torvalds 已提交
723 724 725
}

struct vm_operations_struct hugetlb_vm_ops = {
N
Nick Piggin 已提交
726
	.fault = hugetlb_vm_op_fault,
L
Linus Torvalds 已提交
727 728
};

729 730
static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
				int writable)
D
David Gibson 已提交
731 732 733
{
	pte_t entry;

734
	if (writable) {
D
David Gibson 已提交
735 736 737 738 739 740 741 742 743 744 745
		entry =
		    pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
	} else {
		entry = pte_wrprotect(mk_pte(page, vma->vm_page_prot));
	}
	entry = pte_mkyoung(entry);
	entry = pte_mkhuge(entry);

	return entry;
}

746 747 748 749 750 751
static void set_huge_ptep_writable(struct vm_area_struct *vma,
				   unsigned long address, pte_t *ptep)
{
	pte_t entry;

	entry = pte_mkwrite(pte_mkdirty(*ptep));
752 753 754
	if (ptep_set_access_flags(vma, address, ptep, entry, 1)) {
		update_mmu_cache(vma, address, entry);
	}
755 756 757
}


D
David Gibson 已提交
758 759 760 761 762
int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
			    struct vm_area_struct *vma)
{
	pte_t *src_pte, *dst_pte, entry;
	struct page *ptepage;
763
	unsigned long addr;
764 765 766
	int cow;

	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
D
David Gibson 已提交
767

768
	for (addr = vma->vm_start; addr < vma->vm_end; addr += HPAGE_SIZE) {
H
Hugh Dickins 已提交
769 770 771
		src_pte = huge_pte_offset(src, addr);
		if (!src_pte)
			continue;
D
David Gibson 已提交
772 773 774
		dst_pte = huge_pte_alloc(dst, addr);
		if (!dst_pte)
			goto nomem;
775 776 777 778 779

		/* If the pagetables are shared don't copy or take references */
		if (dst_pte == src_pte)
			continue;

H
Hugh Dickins 已提交
780
		spin_lock(&dst->page_table_lock);
781
		spin_lock(&src->page_table_lock);
H
Hugh Dickins 已提交
782
		if (!pte_none(*src_pte)) {
783 784
			if (cow)
				ptep_set_wrprotect(src, addr, src_pte);
785 786 787 788 789 790
			entry = *src_pte;
			ptepage = pte_page(entry);
			get_page(ptepage);
			set_huge_pte_at(dst, addr, dst_pte, entry);
		}
		spin_unlock(&src->page_table_lock);
H
Hugh Dickins 已提交
791
		spin_unlock(&dst->page_table_lock);
D
David Gibson 已提交
792 793 794 795 796 797 798
	}
	return 0;

nomem:
	return -ENOMEM;
}

799 800
void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
			    unsigned long end)
D
David Gibson 已提交
801 802 803
{
	struct mm_struct *mm = vma->vm_mm;
	unsigned long address;
804
	pte_t *ptep;
D
David Gibson 已提交
805 806
	pte_t pte;
	struct page *page;
807
	struct page *tmp;
808 809 810 811 812
	/*
	 * A page gathering list, protected by per file i_mmap_lock. The
	 * lock is used to avoid list corruption from multiple unmapping
	 * of the same page since we are using page->lru.
	 */
813
	LIST_HEAD(page_list);
D
David Gibson 已提交
814 815 816 817 818

	WARN_ON(!is_vm_hugetlb_page(vma));
	BUG_ON(start & ~HPAGE_MASK);
	BUG_ON(end & ~HPAGE_MASK);

819
	spin_lock(&mm->page_table_lock);
D
David Gibson 已提交
820
	for (address = start; address < end; address += HPAGE_SIZE) {
821
		ptep = huge_pte_offset(mm, address);
A
Adam Litke 已提交
822
		if (!ptep)
823 824
			continue;

825 826 827
		if (huge_pmd_unshare(mm, &address, ptep))
			continue;

828
		pte = huge_ptep_get_and_clear(mm, address, ptep);
D
David Gibson 已提交
829 830
		if (pte_none(pte))
			continue;
831

D
David Gibson 已提交
832
		page = pte_page(pte);
833 834
		if (pte_dirty(pte))
			set_page_dirty(page);
835
		list_add(&page->lru, &page_list);
D
David Gibson 已提交
836
	}
L
Linus Torvalds 已提交
837
	spin_unlock(&mm->page_table_lock);
838
	flush_tlb_range(vma, start, end);
839 840 841 842
	list_for_each_entry_safe(page, tmp, &page_list, lru) {
		list_del(&page->lru);
		put_page(page);
	}
L
Linus Torvalds 已提交
843
}
D
David Gibson 已提交
844

845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862
void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
			  unsigned long end)
{
	/*
	 * It is undesirable to test vma->vm_file as it should be non-null
	 * for valid hugetlb area. However, vm_file will be NULL in the error
	 * cleanup path of do_mmap_pgoff. When hugetlbfs ->mmap method fails,
	 * do_mmap_pgoff() nullifies vma->vm_file before calling this function
	 * to clean up. Since no pte has actually been setup, it is safe to
	 * do nothing in this case.
	 */
	if (vma->vm_file) {
		spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
		__unmap_hugepage_range(vma, start, end);
		spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
	}
}

863 864 865 866
static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
			unsigned long address, pte_t *ptep, pte_t pte)
{
	struct page *old_page, *new_page;
867
	int avoidcopy;
868 869 870 871 872 873 874 875

	old_page = pte_page(pte);

	/* If no-one else is actually using this page, avoid the copy
	 * and just make the page writable */
	avoidcopy = (page_count(old_page) == 1);
	if (avoidcopy) {
		set_huge_ptep_writable(vma, address, ptep);
N
Nick Piggin 已提交
876
		return 0;
877 878 879
	}

	page_cache_get(old_page);
880
	new_page = alloc_huge_page(vma, address);
881

882
	if (IS_ERR(new_page)) {
883
		page_cache_release(old_page);
884
		return -PTR_ERR(new_page);
885 886 887
	}

	spin_unlock(&mm->page_table_lock);
888
	copy_huge_page(new_page, old_page, address, vma);
N
Nick Piggin 已提交
889
	__SetPageUptodate(new_page);
890 891 892 893 894
	spin_lock(&mm->page_table_lock);

	ptep = huge_pte_offset(mm, address & HPAGE_MASK);
	if (likely(pte_same(*ptep, pte))) {
		/* Break COW */
895
		huge_ptep_clear_flush(vma, address, ptep);
896 897 898 899 900 901 902
		set_huge_pte_at(mm, address, ptep,
				make_huge_pte(vma, new_page, 1));
		/* Make the old page be freed below */
		new_page = old_page;
	}
	page_cache_release(new_page);
	page_cache_release(old_page);
N
Nick Piggin 已提交
903
	return 0;
904 905
}

906
static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
907
			unsigned long address, pte_t *ptep, int write_access)
908 909
{
	int ret = VM_FAULT_SIGBUS;
A
Adam Litke 已提交
910 911 912 913
	unsigned long idx;
	unsigned long size;
	struct page *page;
	struct address_space *mapping;
914
	pte_t new_pte;
A
Adam Litke 已提交
915 916 917 918 919 920 921 922 923

	mapping = vma->vm_file->f_mapping;
	idx = ((address - vma->vm_start) >> HPAGE_SHIFT)
		+ (vma->vm_pgoff >> (HPAGE_SHIFT - PAGE_SHIFT));

	/*
	 * Use page lock to guard against racing truncation
	 * before we get page_table_lock.
	 */
924 925 926
retry:
	page = find_lock_page(mapping, idx);
	if (!page) {
927 928 929
		size = i_size_read(mapping->host) >> HPAGE_SHIFT;
		if (idx >= size)
			goto out;
930
		page = alloc_huge_page(vma, address);
931 932
		if (IS_ERR(page)) {
			ret = -PTR_ERR(page);
933 934
			goto out;
		}
935
		clear_huge_page(page, address);
N
Nick Piggin 已提交
936
		__SetPageUptodate(page);
937

938 939
		if (vma->vm_flags & VM_SHARED) {
			int err;
K
Ken Chen 已提交
940
			struct inode *inode = mapping->host;
941 942 943 944 945 946 947 948

			err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
			if (err) {
				put_page(page);
				if (err == -EEXIST)
					goto retry;
				goto out;
			}
K
Ken Chen 已提交
949 950 951 952

			spin_lock(&inode->i_lock);
			inode->i_blocks += BLOCKS_PER_HUGEPAGE;
			spin_unlock(&inode->i_lock);
953 954 955
		} else
			lock_page(page);
	}
956

957
	spin_lock(&mm->page_table_lock);
A
Adam Litke 已提交
958 959 960 961
	size = i_size_read(mapping->host) >> HPAGE_SHIFT;
	if (idx >= size)
		goto backout;

N
Nick Piggin 已提交
962
	ret = 0;
963
	if (!pte_none(*ptep))
A
Adam Litke 已提交
964 965
		goto backout;

966 967 968 969 970 971 972 973 974
	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
				&& (vma->vm_flags & VM_SHARED)));
	set_huge_pte_at(mm, address, ptep, new_pte);

	if (write_access && !(vma->vm_flags & VM_SHARED)) {
		/* Optimization, do the COW without a second fault */
		ret = hugetlb_cow(mm, vma, address, ptep, new_pte);
	}

975
	spin_unlock(&mm->page_table_lock);
A
Adam Litke 已提交
976 977
	unlock_page(page);
out:
978
	return ret;
A
Adam Litke 已提交
979 980 981 982 983 984

backout:
	spin_unlock(&mm->page_table_lock);
	unlock_page(page);
	put_page(page);
	goto out;
985 986
}

987 988 989 990 991
int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
			unsigned long address, int write_access)
{
	pte_t *ptep;
	pte_t entry;
992
	int ret;
993
	static DEFINE_MUTEX(hugetlb_instantiation_mutex);
994 995 996 997 998

	ptep = huge_pte_alloc(mm, address);
	if (!ptep)
		return VM_FAULT_OOM;

999 1000 1001 1002 1003 1004
	/*
	 * Serialize hugepage allocation and instantiation, so that we don't
	 * get spurious allocation failures if two CPUs race to instantiate
	 * the same page in the page cache.
	 */
	mutex_lock(&hugetlb_instantiation_mutex);
1005
	entry = *ptep;
1006 1007 1008 1009 1010
	if (pte_none(entry)) {
		ret = hugetlb_no_page(mm, vma, address, ptep, write_access);
		mutex_unlock(&hugetlb_instantiation_mutex);
		return ret;
	}
1011

N
Nick Piggin 已提交
1012
	ret = 0;
1013 1014 1015 1016 1017 1018 1019

	spin_lock(&mm->page_table_lock);
	/* Check for a racing update before calling hugetlb_cow */
	if (likely(pte_same(entry, *ptep)))
		if (write_access && !pte_write(entry))
			ret = hugetlb_cow(mm, vma, address, ptep, entry);
	spin_unlock(&mm->page_table_lock);
1020
	mutex_unlock(&hugetlb_instantiation_mutex);
1021 1022

	return ret;
1023 1024
}

D
David Gibson 已提交
1025 1026
int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
			struct page **pages, struct vm_area_struct **vmas,
1027 1028
			unsigned long *position, int *length, int i,
			int write)
D
David Gibson 已提交
1029
{
1030 1031
	unsigned long pfn_offset;
	unsigned long vaddr = *position;
D
David Gibson 已提交
1032 1033
	int remainder = *length;

1034
	spin_lock(&mm->page_table_lock);
D
David Gibson 已提交
1035
	while (vaddr < vma->vm_end && remainder) {
A
Adam Litke 已提交
1036 1037
		pte_t *pte;
		struct page *page;
D
David Gibson 已提交
1038

A
Adam Litke 已提交
1039 1040 1041 1042 1043 1044
		/*
		 * Some archs (sparc64, sh*) have multiple pte_ts to
		 * each hugepage.  We have to make * sure we get the
		 * first, for the page indexing below to work.
		 */
		pte = huge_pte_offset(mm, vaddr & HPAGE_MASK);
D
David Gibson 已提交
1045

1046
		if (!pte || pte_none(*pte) || (write && !pte_write(*pte))) {
A
Adam Litke 已提交
1047
			int ret;
D
David Gibson 已提交
1048

A
Adam Litke 已提交
1049
			spin_unlock(&mm->page_table_lock);
1050
			ret = hugetlb_fault(mm, vma, vaddr, write);
A
Adam Litke 已提交
1051
			spin_lock(&mm->page_table_lock);
1052
			if (!(ret & VM_FAULT_ERROR))
A
Adam Litke 已提交
1053
				continue;
D
David Gibson 已提交
1054

A
Adam Litke 已提交
1055 1056 1057 1058 1059 1060
			remainder = 0;
			if (!i)
				i = -EFAULT;
			break;
		}

1061 1062 1063
		pfn_offset = (vaddr & ~HPAGE_MASK) >> PAGE_SHIFT;
		page = pte_page(*pte);
same_page:
1064 1065
		if (pages) {
			get_page(page);
1066
			pages[i] = page + pfn_offset;
1067
		}
D
David Gibson 已提交
1068 1069 1070 1071 1072

		if (vmas)
			vmas[i] = vma;

		vaddr += PAGE_SIZE;
1073
		++pfn_offset;
D
David Gibson 已提交
1074 1075
		--remainder;
		++i;
1076 1077 1078 1079 1080 1081 1082 1083
		if (vaddr < vma->vm_end && remainder &&
				pfn_offset < HPAGE_SIZE/PAGE_SIZE) {
			/*
			 * We use pfn_offset to avoid touching the pageframes
			 * of this compound page.
			 */
			goto same_page;
		}
D
David Gibson 已提交
1084
	}
1085
	spin_unlock(&mm->page_table_lock);
D
David Gibson 已提交
1086 1087 1088 1089 1090
	*length = remainder;
	*position = vaddr;

	return i;
}
1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102

void hugetlb_change_protection(struct vm_area_struct *vma,
		unsigned long address, unsigned long end, pgprot_t newprot)
{
	struct mm_struct *mm = vma->vm_mm;
	unsigned long start = address;
	pte_t *ptep;
	pte_t pte;

	BUG_ON(address >= end);
	flush_cache_range(vma, address, end);

1103
	spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
1104 1105 1106 1107 1108
	spin_lock(&mm->page_table_lock);
	for (; address < end; address += HPAGE_SIZE) {
		ptep = huge_pte_offset(mm, address);
		if (!ptep)
			continue;
1109 1110
		if (huge_pmd_unshare(mm, &address, ptep))
			continue;
1111 1112 1113 1114 1115 1116 1117
		if (!pte_none(*ptep)) {
			pte = huge_ptep_get_and_clear(mm, address, ptep);
			pte = pte_mkhuge(pte_modify(pte, newprot));
			set_huge_pte_at(mm, address, ptep, pte);
		}
	}
	spin_unlock(&mm->page_table_lock);
1118
	spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
1119 1120 1121 1122

	flush_tlb_range(vma, start, end);
}

1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176
struct file_region {
	struct list_head link;
	long from;
	long to;
};

static long region_add(struct list_head *head, long f, long t)
{
	struct file_region *rg, *nrg, *trg;

	/* Locate the region we are either in or before. */
	list_for_each_entry(rg, head, link)
		if (f <= rg->to)
			break;

	/* Round our left edge to the current segment if it encloses us. */
	if (f > rg->from)
		f = rg->from;

	/* Check for and consume any regions we now overlap with. */
	nrg = rg;
	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		if (rg->from > t)
			break;

		/* If this area reaches higher then extend our area to
		 * include it completely.  If this is not the first area
		 * which we intend to reuse, free it. */
		if (rg->to > t)
			t = rg->to;
		if (rg != nrg) {
			list_del(&rg->link);
			kfree(rg);
		}
	}
	nrg->from = f;
	nrg->to = t;
	return 0;
}

static long region_chg(struct list_head *head, long f, long t)
{
	struct file_region *rg, *nrg;
	long chg = 0;

	/* Locate the region we are before or in. */
	list_for_each_entry(rg, head, link)
		if (f <= rg->to)
			break;

	/* If we are below the current region then a new region is required.
	 * Subtle, allocate a new region at the position but make it zero
S
Simon Arlott 已提交
1177
	 * size such that we can guarantee to record the reservation. */
1178 1179
	if (&rg->link == head || t < rg->from) {
		nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
1180
		if (!nrg)
1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248
			return -ENOMEM;
		nrg->from = f;
		nrg->to   = f;
		INIT_LIST_HEAD(&nrg->link);
		list_add(&nrg->link, rg->link.prev);

		return t - f;
	}

	/* Round our left edge to the current segment if it encloses us. */
	if (f > rg->from)
		f = rg->from;
	chg = t - f;

	/* Check for and consume any regions we now overlap with. */
	list_for_each_entry(rg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		if (rg->from > t)
			return chg;

		/* We overlap with this area, if it extends futher than
		 * us then we must extend ourselves.  Account for its
		 * existing reservation. */
		if (rg->to > t) {
			chg += rg->to - t;
			t = rg->to;
		}
		chg -= rg->to - rg->from;
	}
	return chg;
}

static long region_truncate(struct list_head *head, long end)
{
	struct file_region *rg, *trg;
	long chg = 0;

	/* Locate the region we are either in or before. */
	list_for_each_entry(rg, head, link)
		if (end <= rg->to)
			break;
	if (&rg->link == head)
		return 0;

	/* If we are in the middle of a region then adjust it. */
	if (end > rg->from) {
		chg = rg->to - end;
		rg->to = end;
		rg = list_entry(rg->link.next, typeof(*rg), link);
	}

	/* Drop any remaining regions. */
	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		chg += rg->to - rg->from;
		list_del(&rg->link);
		kfree(rg);
	}
	return chg;
}

static int hugetlb_acct_memory(long delta)
{
	int ret = -ENOMEM;

	spin_lock(&hugetlb_lock);
1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265
	/*
	 * When cpuset is configured, it breaks the strict hugetlb page
	 * reservation as the accounting is done on a global variable. Such
	 * reservation is completely rubbish in the presence of cpuset because
	 * the reservation is not checked against page availability for the
	 * current cpuset. Application can still potentially OOM'ed by kernel
	 * with lack of free htlb page in cpuset that the task is in.
	 * Attempt to enforce strict accounting with cpuset is almost
	 * impossible (or too ugly) because cpuset is too fluid that
	 * task or memory node can be dynamically moved between cpusets.
	 *
	 * The change of semantics for shared hugetlb mapping with cpuset is
	 * undesirable. However, in order to preserve some of the semantics,
	 * we fall back to check against current free page availability as
	 * a best attempt and hopefully to minimize the impact of changing
	 * semantics that cpuset has.
	 */
1266 1267 1268 1269
	if (delta > 0) {
		if (gather_surplus_pages(delta) < 0)
			goto out;

1270 1271
		if (delta > cpuset_mems_nr(free_huge_pages_node)) {
			return_unused_surplus_pages(delta);
1272
			goto out;
1273
		}
1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291
	}

	ret = 0;
	if (delta < 0)
		return_unused_surplus_pages((unsigned long) -delta);

out:
	spin_unlock(&hugetlb_lock);
	return ret;
}

int hugetlb_reserve_pages(struct inode *inode, long from, long to)
{
	long ret, chg;

	chg = region_chg(&inode->i_mapping->private_list, from, to);
	if (chg < 0)
		return chg;
1292

1293 1294
	if (hugetlb_get_quota(inode->i_mapping, chg))
		return -ENOSPC;
1295
	ret = hugetlb_acct_memory(chg);
K
Ken Chen 已提交
1296 1297
	if (ret < 0) {
		hugetlb_put_quota(inode->i_mapping, chg);
1298
		return ret;
K
Ken Chen 已提交
1299
	}
1300 1301 1302 1303 1304 1305 1306
	region_add(&inode->i_mapping->private_list, from, to);
	return 0;
}

void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
{
	long chg = region_truncate(&inode->i_mapping->private_list, offset);
K
Ken Chen 已提交
1307 1308 1309 1310 1311

	spin_lock(&inode->i_lock);
	inode->i_blocks -= BLOCKS_PER_HUGEPAGE * freed;
	spin_unlock(&inode->i_lock);

1312 1313
	hugetlb_put_quota(inode->i_mapping, (chg - freed));
	hugetlb_acct_memory(-(chg - freed));
1314
}