hugetlb.c 88.1 KB
Newer Older
L
Linus Torvalds 已提交
1 2
/*
 * Generic hugetlb support.
3
 * (C) Nadia Yvette Chambers, April 2004
L
Linus Torvalds 已提交
4 5 6 7 8
 */
#include <linux/list.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/mm.h>
9
#include <linux/seq_file.h>
L
Linus Torvalds 已提交
10 11
#include <linux/sysctl.h>
#include <linux/highmem.h>
A
Andrea Arcangeli 已提交
12
#include <linux/mmu_notifier.h>
L
Linus Torvalds 已提交
13
#include <linux/nodemask.h>
D
David Gibson 已提交
14
#include <linux/pagemap.h>
15
#include <linux/mempolicy.h>
16
#include <linux/cpuset.h>
17
#include <linux/mutex.h>
18
#include <linux/bootmem.h>
19
#include <linux/sysfs.h>
20
#include <linux/slab.h>
21
#include <linux/rmap.h>
22 23
#include <linux/swap.h>
#include <linux/swapops.h>
24

D
David Gibson 已提交
25 26
#include <asm/page.h>
#include <asm/pgtable.h>
27
#include <asm/tlb.h>
D
David Gibson 已提交
28

29
#include <linux/io.h>
D
David Gibson 已提交
30
#include <linux/hugetlb.h>
31
#include <linux/hugetlb_cgroup.h>
32
#include <linux/node.h>
33
#include "internal.h"
L
Linus Torvalds 已提交
34 35

const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
36 37
static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
unsigned long hugepages_treat_as_movable;
38

39
int hugetlb_max_hstate __read_mostly;
40 41 42
unsigned int default_hstate_idx;
struct hstate hstates[HUGE_MAX_HSTATE];

43 44
__initdata LIST_HEAD(huge_boot_pages);

45 46 47
/* for command line parsing */
static struct hstate * __initdata parsed_hstate;
static unsigned long __initdata default_hstate_max_huge_pages;
48
static unsigned long __initdata default_hstate_size;
49

50 51 52
/*
 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
 */
53
DEFINE_SPINLOCK(hugetlb_lock);
54

55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
{
	bool free = (spool->count == 0) && (spool->used_hpages == 0);

	spin_unlock(&spool->lock);

	/* If no pages are used, and no other handles to the subpool
	 * remain, free the subpool the subpool remain */
	if (free)
		kfree(spool);
}

struct hugepage_subpool *hugepage_new_subpool(long nr_blocks)
{
	struct hugepage_subpool *spool;

	spool = kmalloc(sizeof(*spool), GFP_KERNEL);
	if (!spool)
		return NULL;

	spin_lock_init(&spool->lock);
	spool->count = 1;
	spool->max_hpages = nr_blocks;
	spool->used_hpages = 0;

	return spool;
}

void hugepage_put_subpool(struct hugepage_subpool *spool)
{
	spin_lock(&spool->lock);
	BUG_ON(!spool->count);
	spool->count--;
	unlock_or_release_subpool(spool);
}

static int hugepage_subpool_get_pages(struct hugepage_subpool *spool,
				      long delta)
{
	int ret = 0;

	if (!spool)
		return 0;

	spin_lock(&spool->lock);
	if ((spool->used_hpages + delta) <= spool->max_hpages) {
		spool->used_hpages += delta;
	} else {
		ret = -ENOMEM;
	}
	spin_unlock(&spool->lock);

	return ret;
}

static void hugepage_subpool_put_pages(struct hugepage_subpool *spool,
				       long delta)
{
	if (!spool)
		return;

	spin_lock(&spool->lock);
	spool->used_hpages -= delta;
	/* If hugetlbfs_put_super couldn't free spool due to
	* an outstanding quota reference, free it now. */
	unlock_or_release_subpool(spool);
}

static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
{
	return HUGETLBFS_SB(inode->i_sb)->spool;
}

static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
{
A
Al Viro 已提交
130
	return subpool_inode(file_inode(vma->vm_file));
131 132
}

133 134 135
/*
 * Region tracking -- allows tracking of reservations and instantiated pages
 *                    across the pages in a mapping.
136 137
 *
 * The region data structures are protected by a combination of the mmap_sem
138
 * and the hugetlb_instantiation_mutex.  To access or modify a region the caller
139
 * must either hold the mmap_sem for write, or the mmap_sem for read and
140
 * the hugetlb_instantiation_mutex:
141
 *
142
 *	down_write(&mm->mmap_sem);
143
 * or
144 145
 *	down_read(&mm->mmap_sem);
 *	mutex_lock(&hugetlb_instantiation_mutex);
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
 */
struct file_region {
	struct list_head link;
	long from;
	long to;
};

static long region_add(struct list_head *head, long f, long t)
{
	struct file_region *rg, *nrg, *trg;

	/* Locate the region we are either in or before. */
	list_for_each_entry(rg, head, link)
		if (f <= rg->to)
			break;

	/* Round our left edge to the current segment if it encloses us. */
	if (f > rg->from)
		f = rg->from;

	/* Check for and consume any regions we now overlap with. */
	nrg = rg;
	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		if (rg->from > t)
			break;

		/* If this area reaches higher then extend our area to
		 * include it completely.  If this is not the first area
		 * which we intend to reuse, free it. */
		if (rg->to > t)
			t = rg->to;
		if (rg != nrg) {
			list_del(&rg->link);
			kfree(rg);
		}
	}
	nrg->from = f;
	nrg->to = t;
	return 0;
}

static long region_chg(struct list_head *head, long f, long t)
{
	struct file_region *rg, *nrg;
	long chg = 0;

	/* Locate the region we are before or in. */
	list_for_each_entry(rg, head, link)
		if (f <= rg->to)
			break;

	/* If we are below the current region then a new region is required.
	 * Subtle, allocate a new region at the position but make it zero
	 * size such that we can guarantee to record the reservation. */
	if (&rg->link == head || t < rg->from) {
		nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
		if (!nrg)
			return -ENOMEM;
		nrg->from = f;
		nrg->to   = f;
		INIT_LIST_HEAD(&nrg->link);
		list_add(&nrg->link, rg->link.prev);

		return t - f;
	}

	/* Round our left edge to the current segment if it encloses us. */
	if (f > rg->from)
		f = rg->from;
	chg = t - f;

	/* Check for and consume any regions we now overlap with. */
	list_for_each_entry(rg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		if (rg->from > t)
			return chg;

L
Lucas De Marchi 已提交
226
		/* We overlap with this area, if it extends further than
227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
		 * us then we must extend ourselves.  Account for its
		 * existing reservation. */
		if (rg->to > t) {
			chg += rg->to - t;
			t = rg->to;
		}
		chg -= rg->to - rg->from;
	}
	return chg;
}

static long region_truncate(struct list_head *head, long end)
{
	struct file_region *rg, *trg;
	long chg = 0;

	/* Locate the region we are either in or before. */
	list_for_each_entry(rg, head, link)
		if (end <= rg->to)
			break;
	if (&rg->link == head)
		return 0;

	/* If we are in the middle of a region then adjust it. */
	if (end > rg->from) {
		chg = rg->to - end;
		rg->to = end;
		rg = list_entry(rg->link.next, typeof(*rg), link);
	}

	/* Drop any remaining regions. */
	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		chg += rg->to - rg->from;
		list_del(&rg->link);
		kfree(rg);
	}
	return chg;
}

268 269 270 271 272 273 274
static long region_count(struct list_head *head, long f, long t)
{
	struct file_region *rg;
	long chg = 0;

	/* Locate each segment we overlap with, and count that overlap. */
	list_for_each_entry(rg, head, link) {
275 276
		long seg_from;
		long seg_to;
277 278 279 280 281 282 283 284 285 286 287 288 289 290 291

		if (rg->to <= f)
			continue;
		if (rg->from >= t)
			break;

		seg_from = max(rg->from, f);
		seg_to = min(rg->to, t);

		chg += seg_to - seg_from;
	}

	return chg;
}

292 293 294 295
/*
 * Convert the address within this vma to the page offset within
 * the mapping, in pagecache page units; huge pages here.
 */
296 297
static pgoff_t vma_hugecache_offset(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address)
298
{
299 300
	return ((address - vma->vm_start) >> huge_page_shift(h)) +
			(vma->vm_pgoff >> huge_page_order(h));
301 302
}

303 304 305 306 307 308
pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
				     unsigned long address)
{
	return vma_hugecache_offset(hstate_vma(vma), vma, address);
}

309 310 311 312 313 314 315 316 317 318 319 320 321
/*
 * Return the size of the pages allocated when backing a VMA. In the majority
 * cases this will be same size as used by the page table entries.
 */
unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
{
	struct hstate *hstate;

	if (!is_vm_hugetlb_page(vma))
		return PAGE_SIZE;

	hstate = hstate_vma(vma);

322
	return 1UL << huge_page_shift(hstate);
323
}
324
EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
325

326 327 328 329 330 331 332 333 334 335 336 337 338
/*
 * Return the page size being used by the MMU to back a VMA. In the majority
 * of cases, the page size used by the kernel matches the MMU size. On
 * architectures where it differs, an architecture-specific version of this
 * function is required.
 */
#ifndef vma_mmu_pagesize
unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
{
	return vma_kernel_pagesize(vma);
}
#endif

339 340 341 342 343 344 345
/*
 * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
 * bits of the reservation map pointer, which are always clear due to
 * alignment.
 */
#define HPAGE_RESV_OWNER    (1UL << 0)
#define HPAGE_RESV_UNMAPPED (1UL << 1)
346
#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
347

348 349 350 351 352 353 354 355 356
/*
 * These helpers are used to track how many pages are reserved for
 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
 * is guaranteed to have their future faults succeed.
 *
 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
 * the reserve counters are updated with the hugetlb_lock held. It is safe
 * to reset the VMA at fork() time as it is not in use yet and there is no
 * chance of the global counters getting corrupted as a result of the values.
357 358 359 360 361 362 363 364 365
 *
 * The private mapping reservation is represented in a subtly different
 * manner to a shared mapping.  A shared mapping has a region map associated
 * with the underlying file, this region map represents the backing file
 * pages which have ever had a reservation assigned which this persists even
 * after the page is instantiated.  A private mapping has a region map
 * associated with the original mmap which is attached to all VMAs which
 * reference it, this region map represents those offsets which have consumed
 * reservation ie. where pages have been instantiated.
366
 */
367 368 369 370 371 372 373 374 375 376 377
static unsigned long get_vma_private_data(struct vm_area_struct *vma)
{
	return (unsigned long)vma->vm_private_data;
}

static void set_vma_private_data(struct vm_area_struct *vma,
							unsigned long value)
{
	vma->vm_private_data = (void *)value;
}

378 379 380 381 382
struct resv_map {
	struct kref refs;
	struct list_head regions;
};

383
static struct resv_map *resv_map_alloc(void)
384 385 386 387 388 389 390 391 392 393 394
{
	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
	if (!resv_map)
		return NULL;

	kref_init(&resv_map->refs);
	INIT_LIST_HEAD(&resv_map->regions);

	return resv_map;
}

395
static void resv_map_release(struct kref *ref)
396 397 398 399 400 401 402 403 404
{
	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);

	/* Clear out any active regions before we release the map. */
	region_truncate(&resv_map->regions, 0);
	kfree(resv_map);
}

static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
405 406
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
407
	if (!(vma->vm_flags & VM_MAYSHARE))
408 409
		return (struct resv_map *)(get_vma_private_data(vma) &
							~HPAGE_RESV_MASK);
410
	return NULL;
411 412
}

413
static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
414 415
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
416
	VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
417

418 419
	set_vma_private_data(vma, (get_vma_private_data(vma) &
				HPAGE_RESV_MASK) | (unsigned long)map);
420 421 422 423 424
}

static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
425
	VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
426 427

	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
428 429 430 431 432
}

static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
433 434

	return (get_vma_private_data(vma) & flag) != 0;
435 436
}

437
/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
438 439 440
void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
441
	if (!(vma->vm_flags & VM_MAYSHARE))
442 443 444 445
		vma->vm_private_data = (void *)0;
}

/* Returns true if the VMA has associated reserve pages */
446
static int vma_has_reserves(struct vm_area_struct *vma)
447
{
448 449
	if (vma->vm_flags & VM_NORESERVE)
		return 0;
450 451

	/* Shared mappings always use reserves */
452
	if (vma->vm_flags & VM_MAYSHARE)
453
		return 1;
454 455 456 457 458

	/*
	 * Only the process that called mmap() has reserves for
	 * private mappings.
	 */
459 460
	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
		return 1;
461

462
	return 0;
463 464
}

465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498
static void copy_gigantic_page(struct page *dst, struct page *src)
{
	int i;
	struct hstate *h = page_hstate(src);
	struct page *dst_base = dst;
	struct page *src_base = src;

	for (i = 0; i < pages_per_huge_page(h); ) {
		cond_resched();
		copy_highpage(dst, src);

		i++;
		dst = mem_map_next(dst, dst_base, i);
		src = mem_map_next(src, src_base, i);
	}
}

void copy_huge_page(struct page *dst, struct page *src)
{
	int i;
	struct hstate *h = page_hstate(src);

	if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) {
		copy_gigantic_page(dst, src);
		return;
	}

	might_sleep();
	for (i = 0; i < pages_per_huge_page(h); i++) {
		cond_resched();
		copy_highpage(dst + i, src + i);
	}
}

499
static void enqueue_huge_page(struct hstate *h, struct page *page)
L
Linus Torvalds 已提交
500 501
{
	int nid = page_to_nid(page);
502
	list_move(&page->lru, &h->hugepage_freelists[nid]);
503 504
	h->free_huge_pages++;
	h->free_huge_pages_node[nid]++;
L
Linus Torvalds 已提交
505 506
}

507 508 509 510 511 512 513
static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
{
	struct page *page;

	if (list_empty(&h->hugepage_freelists[nid]))
		return NULL;
	page = list_entry(h->hugepage_freelists[nid].next, struct page, lru);
514
	list_move(&page->lru, &h->hugepage_activelist);
515
	set_page_refcounted(page);
516 517 518 519 520
	h->free_huge_pages--;
	h->free_huge_pages_node[nid]--;
	return page;
}

521 522
static struct page *dequeue_huge_page_vma(struct hstate *h,
				struct vm_area_struct *vma,
523
				unsigned long address, int avoid_reserve)
L
Linus Torvalds 已提交
524
{
525
	struct page *page = NULL;
526
	struct mempolicy *mpol;
527
	nodemask_t *nodemask;
528
	struct zonelist *zonelist;
529 530
	struct zone *zone;
	struct zoneref *z;
531
	unsigned int cpuset_mems_cookie;
L
Linus Torvalds 已提交
532

533 534 535 536 537
	/*
	 * A child process with MAP_PRIVATE mappings created by their parent
	 * have no page reserves. This check ensures that reservations are
	 * not "stolen". The child may still get SIGKILLed
	 */
538
	if (!vma_has_reserves(vma) &&
539
			h->free_huge_pages - h->resv_huge_pages == 0)
540
		goto err;
541

542
	/* If reserves cannot be used, ensure enough pages are in the pool */
543
	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
544
		goto err;
545

546 547 548 549 550
retry_cpuset:
	cpuset_mems_cookie = get_mems_allowed();
	zonelist = huge_zonelist(vma, address,
					htlb_alloc_mask, &mpol, &nodemask);

551 552
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
						MAX_NR_ZONES - 1, nodemask) {
553 554 555
		if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask)) {
			page = dequeue_huge_page_node(h, zone_to_nid(zone));
			if (page) {
556 557
				if (!avoid_reserve && vma_has_reserves(vma))
					h->resv_huge_pages--;
558 559
				break;
			}
A
Andrew Morton 已提交
560
		}
L
Linus Torvalds 已提交
561
	}
562

563
	mpol_cond_put(mpol);
564 565
	if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
		goto retry_cpuset;
L
Linus Torvalds 已提交
566
	return page;
567 568 569

err:
	return NULL;
L
Linus Torvalds 已提交
570 571
}

572
static void update_and_free_page(struct hstate *h, struct page *page)
A
Adam Litke 已提交
573 574
{
	int i;
575

576 577
	VM_BUG_ON(h->order >= MAX_ORDER);

578 579 580
	h->nr_huge_pages--;
	h->nr_huge_pages_node[page_to_nid(page)]--;
	for (i = 0; i < pages_per_huge_page(h); i++) {
581 582 583 584
		page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
				1 << PG_referenced | 1 << PG_dirty |
				1 << PG_active | 1 << PG_reserved |
				1 << PG_private | 1 << PG_writeback);
A
Adam Litke 已提交
585
	}
586
	VM_BUG_ON(hugetlb_cgroup_from_page(page));
A
Adam Litke 已提交
587 588
	set_compound_page_dtor(page, NULL);
	set_page_refcounted(page);
589
	arch_release_hugepage(page);
590
	__free_pages(page, huge_page_order(h));
A
Adam Litke 已提交
591 592
}

593 594 595 596 597 598 599 600 601 602 603
struct hstate *size_to_hstate(unsigned long size)
{
	struct hstate *h;

	for_each_hstate(h) {
		if (huge_page_size(h) == size)
			return h;
	}
	return NULL;
}

604 605
static void free_huge_page(struct page *page)
{
606 607 608 609
	/*
	 * Can't pass hstate in here because it is called from the
	 * compound page destructor.
	 */
610
	struct hstate *h = page_hstate(page);
611
	int nid = page_to_nid(page);
612 613
	struct hugepage_subpool *spool =
		(struct hugepage_subpool *)page_private(page);
614

615
	set_page_private(page, 0);
616
	page->mapping = NULL;
617
	BUG_ON(page_count(page));
618
	BUG_ON(page_mapcount(page));
619 620

	spin_lock(&hugetlb_lock);
621 622
	hugetlb_cgroup_uncharge_page(hstate_index(h),
				     pages_per_huge_page(h), page);
623
	if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
624 625
		/* remove the page from active list */
		list_del(&page->lru);
626 627 628
		update_and_free_page(h, page);
		h->surplus_huge_pages--;
		h->surplus_huge_pages_node[nid]--;
629
	} else {
630
		arch_clear_hugepage_flags(page);
631
		enqueue_huge_page(h, page);
632
	}
633
	spin_unlock(&hugetlb_lock);
634
	hugepage_subpool_put_pages(spool, 1);
635 636
}

637
static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
638
{
639
	INIT_LIST_HEAD(&page->lru);
640 641
	set_compound_page_dtor(page, free_huge_page);
	spin_lock(&hugetlb_lock);
642
	set_hugetlb_cgroup(page, NULL);
643 644
	h->nr_huge_pages++;
	h->nr_huge_pages_node[nid]++;
645 646 647 648
	spin_unlock(&hugetlb_lock);
	put_page(page); /* free it into the hugepage allocator */
}

649 650 651 652 653 654 655 656 657 658 659
static void prep_compound_gigantic_page(struct page *page, unsigned long order)
{
	int i;
	int nr_pages = 1 << order;
	struct page *p = page + 1;

	/* we rely on prep_new_huge_page to set the destructor */
	set_compound_order(page, order);
	__SetPageHead(page);
	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
		__SetPageTail(p);
660
		set_page_count(p, 0);
661 662 663 664
		p->first_page = page;
	}
}

A
Andrew Morton 已提交
665 666 667 668 669
/*
 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
 * transparent huge pages.  See the PageTransHuge() documentation for more
 * details.
 */
670 671 672 673 674 675 676 677 678 679 680 681
int PageHuge(struct page *page)
{
	compound_page_dtor *dtor;

	if (!PageCompound(page))
		return 0;

	page = compound_head(page);
	dtor = get_compound_page_dtor(page);

	return dtor == free_huge_page;
}
682 683
EXPORT_SYMBOL_GPL(PageHuge);

684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700
pgoff_t __basepage_index(struct page *page)
{
	struct page *page_head = compound_head(page);
	pgoff_t index = page_index(page_head);
	unsigned long compound_idx;

	if (!PageHuge(page_head))
		return page_index(page);

	if (compound_order(page_head) >= MAX_ORDER)
		compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
	else
		compound_idx = page - page_head;

	return (index << compound_order(page_head)) + compound_idx;
}

701
static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
L
Linus Torvalds 已提交
702 703
{
	struct page *page;
704

705 706 707
	if (h->order >= MAX_ORDER)
		return NULL;

708
	page = alloc_pages_exact_node(nid,
709 710
		htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
						__GFP_REPEAT|__GFP_NOWARN,
711
		huge_page_order(h));
L
Linus Torvalds 已提交
712
	if (page) {
713
		if (arch_prepare_hugepage(page)) {
714
			__free_pages(page, huge_page_order(h));
715
			return NULL;
716
		}
717
		prep_new_huge_page(h, page, nid);
L
Linus Torvalds 已提交
718
	}
719 720 721 722

	return page;
}

723
/*
724 725 726 727 728
 * common helper functions for hstate_next_node_to_{alloc|free}.
 * We may have allocated or freed a huge page based on a different
 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
 * be outside of *nodes_allowed.  Ensure that we use an allowed
 * node for alloc or free.
729
 */
730
static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
731
{
732
	nid = next_node(nid, *nodes_allowed);
733
	if (nid == MAX_NUMNODES)
734
		nid = first_node(*nodes_allowed);
735 736 737 738 739
	VM_BUG_ON(nid >= MAX_NUMNODES);

	return nid;
}

740 741 742 743 744 745 746
static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
{
	if (!node_isset(nid, *nodes_allowed))
		nid = next_node_allowed(nid, nodes_allowed);
	return nid;
}

747
/*
748 749 750 751
 * returns the previously saved node ["this node"] from which to
 * allocate a persistent huge page for the pool and advance the
 * next node from which to allocate, handling wrap at end of node
 * mask.
752
 */
753 754
static int hstate_next_node_to_alloc(struct hstate *h,
					nodemask_t *nodes_allowed)
755
{
756 757 758 759 760 761
	int nid;

	VM_BUG_ON(!nodes_allowed);

	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
762 763

	return nid;
764 765
}

766
/*
767 768 769 770
 * helper for free_pool_huge_page() - return the previously saved
 * node ["this node"] from which to free a huge page.  Advance the
 * next node id whether or not we find a free huge page to free so
 * that the next attempt to free addresses the next node.
771
 */
772
static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
773
{
774 775 776 777 778 779
	int nid;

	VM_BUG_ON(!nodes_allowed);

	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
780 781

	return nid;
782 783
}

784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817
#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)		\
	for (nr_nodes = nodes_weight(*mask);				\
		nr_nodes > 0 &&						\
		((node = hstate_next_node_to_alloc(hs, mask)) || 1);	\
		nr_nodes--)

#define for_each_node_mask_to_free(hs, nr_nodes, node, mask)		\
	for (nr_nodes = nodes_weight(*mask);				\
		nr_nodes > 0 &&						\
		((node = hstate_next_node_to_free(hs, mask)) || 1);	\
		nr_nodes--)

static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
{
	struct page *page;
	int nr_nodes, node;
	int ret = 0;

	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
		page = alloc_fresh_huge_page_node(h, node);
		if (page) {
			ret = 1;
			break;
		}
	}

	if (ret)
		count_vm_event(HTLB_BUDDY_PGALLOC);
	else
		count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);

	return ret;
}

818 819 820 821 822 823
/*
 * Free huge page from pool from next node to free.
 * Attempt to keep persistent huge pages more or less
 * balanced over allowed nodes.
 * Called with hugetlb_lock locked.
 */
824 825
static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
							 bool acct_surplus)
826
{
827
	int nr_nodes, node;
828 829
	int ret = 0;

830
	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
831 832 833 834
		/*
		 * If we're returning unused surplus pages, only examine
		 * nodes with surplus pages.
		 */
835 836
		if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
		    !list_empty(&h->hugepage_freelists[node])) {
837
			struct page *page =
838
				list_entry(h->hugepage_freelists[node].next,
839 840 841
					  struct page, lru);
			list_del(&page->lru);
			h->free_huge_pages--;
842
			h->free_huge_pages_node[node]--;
843 844
			if (acct_surplus) {
				h->surplus_huge_pages--;
845
				h->surplus_huge_pages_node[node]--;
846
			}
847 848
			update_and_free_page(h, page);
			ret = 1;
849
			break;
850
		}
851
	}
852 853 854 855

	return ret;
}

856
static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
857 858
{
	struct page *page;
859
	unsigned int r_nid;
860

861 862 863
	if (h->order >= MAX_ORDER)
		return NULL;

864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887
	/*
	 * Assume we will successfully allocate the surplus page to
	 * prevent racing processes from causing the surplus to exceed
	 * overcommit
	 *
	 * This however introduces a different race, where a process B
	 * tries to grow the static hugepage pool while alloc_pages() is
	 * called by process A. B will only examine the per-node
	 * counters in determining if surplus huge pages can be
	 * converted to normal huge pages in adjust_pool_surplus(). A
	 * won't be able to increment the per-node counter, until the
	 * lock is dropped by B, but B doesn't drop hugetlb_lock until
	 * no more huge pages can be converted from surplus to normal
	 * state (and doesn't try to convert again). Thus, we have a
	 * case where a surplus huge page exists, the pool is grown, and
	 * the surplus huge page still exists after, even though it
	 * should just have been converted to a normal huge page. This
	 * does not leak memory, though, as the hugepage will be freed
	 * once it is out of use. It also does not allow the counters to
	 * go out of whack in adjust_pool_surplus() as we don't modify
	 * the node values until we've gotten the hugepage and only the
	 * per-node value is checked there.
	 */
	spin_lock(&hugetlb_lock);
888
	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
889 890 891
		spin_unlock(&hugetlb_lock);
		return NULL;
	} else {
892 893
		h->nr_huge_pages++;
		h->surplus_huge_pages++;
894 895 896
	}
	spin_unlock(&hugetlb_lock);

897 898 899 900 901 902 903 904
	if (nid == NUMA_NO_NODE)
		page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
				   __GFP_REPEAT|__GFP_NOWARN,
				   huge_page_order(h));
	else
		page = alloc_pages_exact_node(nid,
			htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
			__GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
905

906 907
	if (page && arch_prepare_hugepage(page)) {
		__free_pages(page, huge_page_order(h));
908
		page = NULL;
909 910
	}

911
	spin_lock(&hugetlb_lock);
912
	if (page) {
913
		INIT_LIST_HEAD(&page->lru);
914
		r_nid = page_to_nid(page);
915
		set_compound_page_dtor(page, free_huge_page);
916
		set_hugetlb_cgroup(page, NULL);
917 918 919
		/*
		 * We incremented the global counters already
		 */
920 921
		h->nr_huge_pages_node[r_nid]++;
		h->surplus_huge_pages_node[r_nid]++;
922
		__count_vm_event(HTLB_BUDDY_PGALLOC);
923
	} else {
924 925
		h->nr_huge_pages--;
		h->surplus_huge_pages--;
926
		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
927
	}
928
	spin_unlock(&hugetlb_lock);
929 930 931 932

	return page;
}

933 934 935 936 937 938 939 940 941 942 943 944 945
/*
 * This allocation function is useful in the context where vma is irrelevant.
 * E.g. soft-offlining uses this function because it only cares physical
 * address of error page.
 */
struct page *alloc_huge_page_node(struct hstate *h, int nid)
{
	struct page *page;

	spin_lock(&hugetlb_lock);
	page = dequeue_huge_page_node(h, nid);
	spin_unlock(&hugetlb_lock);

946
	if (!page)
947 948 949 950 951
		page = alloc_buddy_huge_page(h, nid);

	return page;
}

952
/*
L
Lucas De Marchi 已提交
953
 * Increase the hugetlb pool such that it can accommodate a reservation
954 955
 * of size 'delta'.
 */
956
static int gather_surplus_pages(struct hstate *h, int delta)
957 958 959 960 961
{
	struct list_head surplus_list;
	struct page *page, *tmp;
	int ret, i;
	int needed, allocated;
962
	bool alloc_ok = true;
963

964
	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
965
	if (needed <= 0) {
966
		h->resv_huge_pages += delta;
967
		return 0;
968
	}
969 970 971 972 973 974 975 976

	allocated = 0;
	INIT_LIST_HEAD(&surplus_list);

	ret = -ENOMEM;
retry:
	spin_unlock(&hugetlb_lock);
	for (i = 0; i < needed; i++) {
977
		page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
978 979 980 981
		if (!page) {
			alloc_ok = false;
			break;
		}
982 983
		list_add(&page->lru, &surplus_list);
	}
984
	allocated += i;
985 986 987 988 989 990

	/*
	 * After retaking hugetlb_lock, we need to recalculate 'needed'
	 * because either resv_huge_pages or free_huge_pages may have changed.
	 */
	spin_lock(&hugetlb_lock);
991 992
	needed = (h->resv_huge_pages + delta) -
			(h->free_huge_pages + allocated);
993 994 995 996 997 998 999 1000 1001 1002
	if (needed > 0) {
		if (alloc_ok)
			goto retry;
		/*
		 * We were not able to allocate enough pages to
		 * satisfy the entire reservation so we free what
		 * we've allocated so far.
		 */
		goto free;
	}
1003 1004
	/*
	 * The surplus_list now contains _at_least_ the number of extra pages
L
Lucas De Marchi 已提交
1005
	 * needed to accommodate the reservation.  Add the appropriate number
1006
	 * of pages to the hugetlb pool and free the extras back to the buddy
1007 1008 1009
	 * allocator.  Commit the entire reservation here to prevent another
	 * process from stealing the pages as they are added to the pool but
	 * before they are reserved.
1010 1011
	 */
	needed += allocated;
1012
	h->resv_huge_pages += delta;
1013
	ret = 0;
1014

1015
	/* Free the needed pages to the hugetlb pool */
1016
	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1017 1018
		if ((--needed) < 0)
			break;
1019 1020 1021 1022 1023 1024
		/*
		 * This page is now managed by the hugetlb allocator and has
		 * no users -- drop the buddy allocator's reference.
		 */
		put_page_testzero(page);
		VM_BUG_ON(page_count(page));
1025
		enqueue_huge_page(h, page);
1026
	}
1027
free:
1028
	spin_unlock(&hugetlb_lock);
1029 1030

	/* Free unnecessary surplus pages to the buddy allocator */
1031 1032
	list_for_each_entry_safe(page, tmp, &surplus_list, lru)
		put_page(page);
1033
	spin_lock(&hugetlb_lock);
1034 1035 1036 1037 1038 1039 1040 1041

	return ret;
}

/*
 * When releasing a hugetlb pool reservation, any surplus pages that were
 * allocated to satisfy the reservation must be explicitly freed if they were
 * never used.
1042
 * Called with hugetlb_lock held.
1043
 */
1044 1045
static void return_unused_surplus_pages(struct hstate *h,
					unsigned long unused_resv_pages)
1046 1047 1048
{
	unsigned long nr_pages;

1049
	/* Uncommit the reservation */
1050
	h->resv_huge_pages -= unused_resv_pages;
1051

1052 1053 1054 1055
	/* Cannot return gigantic pages currently */
	if (h->order >= MAX_ORDER)
		return;

1056
	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1057

1058 1059
	/*
	 * We want to release as many surplus pages as possible, spread
1060 1061 1062 1063 1064
	 * evenly across all nodes with memory. Iterate across these nodes
	 * until we can no longer free unreserved surplus pages. This occurs
	 * when the nodes with surplus pages have no free pages.
	 * free_pool_huge_page() will balance the the freed pages across the
	 * on-line nodes with memory and will handle the hstate accounting.
1065 1066
	 */
	while (nr_pages--) {
1067
		if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1068
			break;
1069 1070 1071
	}
}

1072 1073 1074
/*
 * Determine if the huge page at addr within the vma has an associated
 * reservation.  Where it does not we will need to logically increase
1075 1076 1077 1078 1079 1080
 * reservation and actually increase subpool usage before an allocation
 * can occur.  Where any new reservation would be required the
 * reservation change is prepared, but not committed.  Once the page
 * has been allocated from the subpool and instantiated the change should
 * be committed via vma_commit_reservation.  No action is required on
 * failure.
1081
 */
1082
static long vma_needs_reservation(struct hstate *h,
1083
			struct vm_area_struct *vma, unsigned long addr)
1084 1085 1086 1087
{
	struct address_space *mapping = vma->vm_file->f_mapping;
	struct inode *inode = mapping->host;

1088
	if (vma->vm_flags & VM_MAYSHARE) {
1089
		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1090 1091 1092
		return region_chg(&inode->i_mapping->private_list,
							idx, idx + 1);

1093 1094
	} else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
		return 1;
1095

1096
	} else  {
1097
		long err;
1098
		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1099 1100 1101 1102 1103 1104 1105
		struct resv_map *reservations = vma_resv_map(vma);

		err = region_chg(&reservations->regions, idx, idx + 1);
		if (err < 0)
			return err;
		return 0;
	}
1106
}
1107 1108
static void vma_commit_reservation(struct hstate *h,
			struct vm_area_struct *vma, unsigned long addr)
1109 1110 1111 1112
{
	struct address_space *mapping = vma->vm_file->f_mapping;
	struct inode *inode = mapping->host;

1113
	if (vma->vm_flags & VM_MAYSHARE) {
1114
		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1115
		region_add(&inode->i_mapping->private_list, idx, idx + 1);
1116 1117

	} else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1118
		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1119 1120 1121 1122
		struct resv_map *reservations = vma_resv_map(vma);

		/* Mark this page used in the map. */
		region_add(&reservations->regions, idx, idx + 1);
1123 1124 1125
	}
}

1126
static struct page *alloc_huge_page(struct vm_area_struct *vma,
1127
				    unsigned long addr, int avoid_reserve)
L
Linus Torvalds 已提交
1128
{
1129
	struct hugepage_subpool *spool = subpool_vma(vma);
1130
	struct hstate *h = hstate_vma(vma);
1131
	struct page *page;
1132
	long chg;
1133 1134
	int ret, idx;
	struct hugetlb_cgroup *h_cg;
1135

1136
	idx = hstate_index(h);
1137
	/*
1138 1139 1140 1141 1142 1143
	 * Processes that did not create the mapping will have no
	 * reserves and will not have accounted against subpool
	 * limit. Check that the subpool limit can be made before
	 * satisfying the allocation MAP_NORESERVE mappings may also
	 * need pages and subpool limit allocated allocated if no reserve
	 * mapping overlaps.
1144
	 */
1145
	chg = vma_needs_reservation(h, vma, addr);
1146
	if (chg < 0)
1147
		return ERR_PTR(-ENOMEM);
1148
	if (chg)
1149
		if (hugepage_subpool_get_pages(spool, chg))
1150
			return ERR_PTR(-ENOSPC);
L
Linus Torvalds 已提交
1151

1152 1153 1154 1155 1156
	ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
	if (ret) {
		hugepage_subpool_put_pages(spool, chg);
		return ERR_PTR(-ENOSPC);
	}
L
Linus Torvalds 已提交
1157
	spin_lock(&hugetlb_lock);
1158
	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve);
1159
	if (!page) {
1160
		spin_unlock(&hugetlb_lock);
1161
		page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
K
Ken Chen 已提交
1162
		if (!page) {
1163 1164 1165
			hugetlb_cgroup_uncharge_cgroup(idx,
						       pages_per_huge_page(h),
						       h_cg);
1166
			hugepage_subpool_put_pages(spool, chg);
1167
			return ERR_PTR(-ENOSPC);
K
Ken Chen 已提交
1168
		}
1169 1170
		spin_lock(&hugetlb_lock);
		list_move(&page->lru, &h->hugepage_activelist);
1171
		/* Fall through */
K
Ken Chen 已提交
1172
	}
1173 1174
	hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
	spin_unlock(&hugetlb_lock);
1175

1176
	set_page_private(page, (unsigned long)spool);
1177

1178
	vma_commit_reservation(h, vma, addr);
1179
	return page;
1180 1181
}

1182
int __weak alloc_bootmem_huge_page(struct hstate *h)
1183 1184
{
	struct huge_bootmem_page *m;
1185
	int nr_nodes, node;
1186

1187
	for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
1188 1189
		void *addr;

1190
		addr = __alloc_bootmem_node_nopanic(NODE_DATA(node),
1191 1192 1193 1194 1195 1196 1197 1198 1199
				huge_page_size(h), huge_page_size(h), 0);

		if (addr) {
			/*
			 * Use the beginning of the huge page to store the
			 * huge_bootmem_page struct (until gather_bootmem
			 * puts them into the mem_map).
			 */
			m = addr;
1200
			goto found;
1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212
		}
	}
	return 0;

found:
	BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
	/* Put them into a private list first because mem_map is not up yet */
	list_add(&m->list, &huge_boot_pages);
	m->hstate = h;
	return 1;
}

1213 1214 1215 1216 1217 1218 1219 1220
static void prep_compound_huge_page(struct page *page, int order)
{
	if (unlikely(order > (MAX_ORDER - 1)))
		prep_compound_gigantic_page(page, order);
	else
		prep_compound_page(page, order);
}

1221 1222 1223 1224 1225 1226 1227
/* Put bootmem huge pages into the standard lists after mem_map is up */
static void __init gather_bootmem_prealloc(void)
{
	struct huge_bootmem_page *m;

	list_for_each_entry(m, &huge_boot_pages, list) {
		struct hstate *h = m->hstate;
1228 1229 1230 1231 1232 1233 1234 1235 1236
		struct page *page;

#ifdef CONFIG_HIGHMEM
		page = pfn_to_page(m->phys >> PAGE_SHIFT);
		free_bootmem_late((unsigned long)m,
				  sizeof(struct huge_bootmem_page));
#else
		page = virt_to_page(m);
#endif
1237 1238
		__ClearPageReserved(page);
		WARN_ON(page_count(page) != 1);
1239
		prep_compound_huge_page(page, h->order);
1240
		prep_new_huge_page(h, page, page_to_nid(page));
1241 1242 1243 1244 1245 1246 1247
		/*
		 * If we had gigantic hugepages allocated at boot time, we need
		 * to restore the 'stolen' pages to totalram_pages in order to
		 * fix confusing memory reports from free(1) and another
		 * side-effects, like CommitLimit going negative.
		 */
		if (h->order > (MAX_ORDER - 1))
1248
			adjust_managed_page_count(page, 1 << h->order);
1249 1250 1251
	}
}

1252
static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
L
Linus Torvalds 已提交
1253 1254
{
	unsigned long i;
1255

1256
	for (i = 0; i < h->max_huge_pages; ++i) {
1257 1258 1259
		if (h->order >= MAX_ORDER) {
			if (!alloc_bootmem_huge_page(h))
				break;
1260
		} else if (!alloc_fresh_huge_page(h,
1261
					 &node_states[N_MEMORY]))
L
Linus Torvalds 已提交
1262 1263
			break;
	}
1264
	h->max_huge_pages = i;
1265 1266 1267 1268 1269 1270 1271
}

static void __init hugetlb_init_hstates(void)
{
	struct hstate *h;

	for_each_hstate(h) {
1272 1273 1274
		/* oversize hugepages were init'ed in early boot */
		if (h->order < MAX_ORDER)
			hugetlb_hstate_alloc_pages(h);
1275 1276 1277
	}
}

A
Andi Kleen 已提交
1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288
static char * __init memfmt(char *buf, unsigned long n)
{
	if (n >= (1UL << 30))
		sprintf(buf, "%lu GB", n >> 30);
	else if (n >= (1UL << 20))
		sprintf(buf, "%lu MB", n >> 20);
	else
		sprintf(buf, "%lu KB", n >> 10);
	return buf;
}

1289 1290 1291 1292 1293
static void __init report_hugepages(void)
{
	struct hstate *h;

	for_each_hstate(h) {
A
Andi Kleen 已提交
1294
		char buf[32];
1295
		pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
A
Andi Kleen 已提交
1296 1297
			memfmt(buf, huge_page_size(h)),
			h->free_huge_pages);
1298 1299 1300
	}
}

L
Linus Torvalds 已提交
1301
#ifdef CONFIG_HIGHMEM
1302 1303
static void try_to_free_low(struct hstate *h, unsigned long count,
						nodemask_t *nodes_allowed)
L
Linus Torvalds 已提交
1304
{
1305 1306
	int i;

1307 1308 1309
	if (h->order >= MAX_ORDER)
		return;

1310
	for_each_node_mask(i, *nodes_allowed) {
L
Linus Torvalds 已提交
1311
		struct page *page, *next;
1312 1313 1314
		struct list_head *freel = &h->hugepage_freelists[i];
		list_for_each_entry_safe(page, next, freel, lru) {
			if (count >= h->nr_huge_pages)
1315
				return;
L
Linus Torvalds 已提交
1316 1317 1318
			if (PageHighMem(page))
				continue;
			list_del(&page->lru);
1319
			update_and_free_page(h, page);
1320 1321
			h->free_huge_pages--;
			h->free_huge_pages_node[page_to_nid(page)]--;
L
Linus Torvalds 已提交
1322 1323 1324 1325
		}
	}
}
#else
1326 1327
static inline void try_to_free_low(struct hstate *h, unsigned long count,
						nodemask_t *nodes_allowed)
L
Linus Torvalds 已提交
1328 1329 1330 1331
{
}
#endif

1332 1333 1334 1335 1336
/*
 * Increment or decrement surplus_huge_pages.  Keep node-specific counters
 * balanced by operating on them in a round-robin fashion.
 * Returns 1 if an adjustment was made.
 */
1337 1338
static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
				int delta)
1339
{
1340
	int nr_nodes, node;
1341 1342 1343

	VM_BUG_ON(delta != -1 && delta != 1);

1344 1345 1346 1347
	if (delta < 0) {
		for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
			if (h->surplus_huge_pages_node[node])
				goto found;
1348
		}
1349 1350 1351 1352 1353
	} else {
		for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
			if (h->surplus_huge_pages_node[node] <
					h->nr_huge_pages_node[node])
				goto found;
1354
		}
1355 1356
	}
	return 0;
1357

1358 1359 1360 1361
found:
	h->surplus_huge_pages += delta;
	h->surplus_huge_pages_node[node] += delta;
	return 1;
1362 1363
}

1364
#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1365 1366
static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
						nodemask_t *nodes_allowed)
L
Linus Torvalds 已提交
1367
{
1368
	unsigned long min_count, ret;
L
Linus Torvalds 已提交
1369

1370 1371 1372
	if (h->order >= MAX_ORDER)
		return h->max_huge_pages;

1373 1374 1375 1376
	/*
	 * Increase the pool size
	 * First take pages out of surplus state.  Then make up the
	 * remaining difference by allocating fresh huge pages.
1377 1378 1379 1380 1381 1382
	 *
	 * We might race with alloc_buddy_huge_page() here and be unable
	 * to convert a surplus huge page to a normal huge page. That is
	 * not critical, though, it just means the overall size of the
	 * pool might be one hugepage larger than it needs to be, but
	 * within all the constraints specified by the sysctls.
1383
	 */
L
Linus Torvalds 已提交
1384
	spin_lock(&hugetlb_lock);
1385
	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1386
		if (!adjust_pool_surplus(h, nodes_allowed, -1))
1387 1388 1389
			break;
	}

1390
	while (count > persistent_huge_pages(h)) {
1391 1392 1393 1394 1395 1396
		/*
		 * If this allocation races such that we no longer need the
		 * page, free_huge_page will handle it by freeing the page
		 * and reducing the surplus.
		 */
		spin_unlock(&hugetlb_lock);
1397
		ret = alloc_fresh_huge_page(h, nodes_allowed);
1398 1399 1400 1401
		spin_lock(&hugetlb_lock);
		if (!ret)
			goto out;

1402 1403 1404
		/* Bail for signals. Probably ctrl-c from user */
		if (signal_pending(current))
			goto out;
1405 1406 1407 1408 1409 1410 1411 1412
	}

	/*
	 * Decrease the pool size
	 * First return free pages to the buddy allocator (being careful
	 * to keep enough around to satisfy reservations).  Then place
	 * pages into surplus state as needed so the pool will shrink
	 * to the desired size as pages become free.
1413 1414 1415 1416 1417 1418 1419 1420
	 *
	 * By placing pages into the surplus state independent of the
	 * overcommit value, we are allowing the surplus pool size to
	 * exceed overcommit. There are few sane options here. Since
	 * alloc_buddy_huge_page() is checking the global counter,
	 * though, we'll note that we're not allowed to exceed surplus
	 * and won't grow the pool anywhere else. Not until one of the
	 * sysctls are changed, or the surplus pages go out of use.
1421
	 */
1422
	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1423
	min_count = max(count, min_count);
1424
	try_to_free_low(h, min_count, nodes_allowed);
1425
	while (min_count < persistent_huge_pages(h)) {
1426
		if (!free_pool_huge_page(h, nodes_allowed, 0))
L
Linus Torvalds 已提交
1427 1428
			break;
	}
1429
	while (count < persistent_huge_pages(h)) {
1430
		if (!adjust_pool_surplus(h, nodes_allowed, 1))
1431 1432 1433
			break;
	}
out:
1434
	ret = persistent_huge_pages(h);
L
Linus Torvalds 已提交
1435
	spin_unlock(&hugetlb_lock);
1436
	return ret;
L
Linus Torvalds 已提交
1437 1438
}

1439 1440 1441 1442 1443 1444 1445 1446 1447 1448
#define HSTATE_ATTR_RO(_name) \
	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)

#define HSTATE_ATTR(_name) \
	static struct kobj_attribute _name##_attr = \
		__ATTR(_name, 0644, _name##_show, _name##_store)

static struct kobject *hugepages_kobj;
static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];

1449 1450 1451
static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);

static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
1452 1453
{
	int i;
1454

1455
	for (i = 0; i < HUGE_MAX_HSTATE; i++)
1456 1457 1458
		if (hstate_kobjs[i] == kobj) {
			if (nidp)
				*nidp = NUMA_NO_NODE;
1459
			return &hstates[i];
1460 1461 1462
		}

	return kobj_to_node_hstate(kobj, nidp);
1463 1464
}

1465
static ssize_t nr_hugepages_show_common(struct kobject *kobj,
1466 1467
					struct kobj_attribute *attr, char *buf)
{
1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478
	struct hstate *h;
	unsigned long nr_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		nr_huge_pages = h->nr_huge_pages;
	else
		nr_huge_pages = h->nr_huge_pages_node[nid];

	return sprintf(buf, "%lu\n", nr_huge_pages);
1479
}
1480

1481 1482 1483
static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
			struct kobject *kobj, struct kobj_attribute *attr,
			const char *buf, size_t len)
1484 1485
{
	int err;
1486
	int nid;
1487
	unsigned long count;
1488
	struct hstate *h;
1489
	NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
1490

1491
	err = kstrtoul(buf, 10, &count);
1492
	if (err)
1493
		goto out;
1494

1495
	h = kobj_to_hstate(kobj, &nid);
1496 1497 1498 1499 1500
	if (h->order >= MAX_ORDER) {
		err = -EINVAL;
		goto out;
	}

1501 1502 1503 1504 1505 1506 1507
	if (nid == NUMA_NO_NODE) {
		/*
		 * global hstate attribute
		 */
		if (!(obey_mempolicy &&
				init_nodemask_of_mempolicy(nodes_allowed))) {
			NODEMASK_FREE(nodes_allowed);
1508
			nodes_allowed = &node_states[N_MEMORY];
1509 1510 1511 1512 1513 1514 1515 1516 1517
		}
	} else if (nodes_allowed) {
		/*
		 * per node hstate attribute: adjust count to global,
		 * but restrict alloc/free to the specified node.
		 */
		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
		init_nodemask_of_node(nodes_allowed, nid);
	} else
1518
		nodes_allowed = &node_states[N_MEMORY];
1519

1520
	h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
1521

1522
	if (nodes_allowed != &node_states[N_MEMORY])
1523 1524 1525
		NODEMASK_FREE(nodes_allowed);

	return len;
1526 1527 1528
out:
	NODEMASK_FREE(nodes_allowed);
	return err;
1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540
}

static ssize_t nr_hugepages_show(struct kobject *kobj,
				       struct kobj_attribute *attr, char *buf)
{
	return nr_hugepages_show_common(kobj, attr, buf);
}

static ssize_t nr_hugepages_store(struct kobject *kobj,
	       struct kobj_attribute *attr, const char *buf, size_t len)
{
	return nr_hugepages_store_common(false, kobj, attr, buf, len);
1541 1542 1543
}
HSTATE_ATTR(nr_hugepages);

1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564
#ifdef CONFIG_NUMA

/*
 * hstate attribute for optionally mempolicy-based constraint on persistent
 * huge page alloc/free.
 */
static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
				       struct kobj_attribute *attr, char *buf)
{
	return nr_hugepages_show_common(kobj, attr, buf);
}

static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
	       struct kobj_attribute *attr, const char *buf, size_t len)
{
	return nr_hugepages_store_common(true, kobj, attr, buf, len);
}
HSTATE_ATTR(nr_hugepages_mempolicy);
#endif


1565 1566 1567
static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
1568
	struct hstate *h = kobj_to_hstate(kobj, NULL);
1569 1570
	return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
}
1571

1572 1573 1574 1575 1576
static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
		struct kobj_attribute *attr, const char *buf, size_t count)
{
	int err;
	unsigned long input;
1577
	struct hstate *h = kobj_to_hstate(kobj, NULL);
1578

1579 1580 1581
	if (h->order >= MAX_ORDER)
		return -EINVAL;

1582
	err = kstrtoul(buf, 10, &input);
1583
	if (err)
1584
		return err;
1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596

	spin_lock(&hugetlb_lock);
	h->nr_overcommit_huge_pages = input;
	spin_unlock(&hugetlb_lock);

	return count;
}
HSTATE_ATTR(nr_overcommit_hugepages);

static ssize_t free_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607
	struct hstate *h;
	unsigned long free_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		free_huge_pages = h->free_huge_pages;
	else
		free_huge_pages = h->free_huge_pages_node[nid];

	return sprintf(buf, "%lu\n", free_huge_pages);
1608 1609 1610 1611 1612 1613
}
HSTATE_ATTR_RO(free_hugepages);

static ssize_t resv_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
1614
	struct hstate *h = kobj_to_hstate(kobj, NULL);
1615 1616 1617 1618 1619 1620 1621
	return sprintf(buf, "%lu\n", h->resv_huge_pages);
}
HSTATE_ATTR_RO(resv_hugepages);

static ssize_t surplus_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632
	struct hstate *h;
	unsigned long surplus_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		surplus_huge_pages = h->surplus_huge_pages;
	else
		surplus_huge_pages = h->surplus_huge_pages_node[nid];

	return sprintf(buf, "%lu\n", surplus_huge_pages);
1633 1634 1635 1636 1637 1638 1639 1640 1641
}
HSTATE_ATTR_RO(surplus_hugepages);

static struct attribute *hstate_attrs[] = {
	&nr_hugepages_attr.attr,
	&nr_overcommit_hugepages_attr.attr,
	&free_hugepages_attr.attr,
	&resv_hugepages_attr.attr,
	&surplus_hugepages_attr.attr,
1642 1643 1644
#ifdef CONFIG_NUMA
	&nr_hugepages_mempolicy_attr.attr,
#endif
1645 1646 1647 1648 1649 1650 1651
	NULL,
};

static struct attribute_group hstate_attr_group = {
	.attrs = hstate_attrs,
};

J
Jeff Mahoney 已提交
1652 1653 1654
static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
				    struct kobject **hstate_kobjs,
				    struct attribute_group *hstate_attr_group)
1655 1656
{
	int retval;
1657
	int hi = hstate_index(h);
1658

1659 1660
	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
	if (!hstate_kobjs[hi])
1661 1662
		return -ENOMEM;

1663
	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
1664
	if (retval)
1665
		kobject_put(hstate_kobjs[hi]);
1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679

	return retval;
}

static void __init hugetlb_sysfs_init(void)
{
	struct hstate *h;
	int err;

	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
	if (!hugepages_kobj)
		return;

	for_each_hstate(h) {
1680 1681
		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
					 hstate_kobjs, &hstate_attr_group);
1682
		if (err)
1683
			pr_err("Hugetlb: Unable to add hstate %s", h->name);
1684 1685 1686
	}
}

1687 1688 1689 1690
#ifdef CONFIG_NUMA

/*
 * node_hstate/s - associate per node hstate attributes, via their kobjects,
1691 1692 1693
 * with node devices in node_devices[] using a parallel array.  The array
 * index of a node device or _hstate == node id.
 * This is here to avoid any static dependency of the node device driver, in
1694 1695 1696 1697 1698 1699 1700 1701 1702
 * the base kernel, on the hugetlb module.
 */
struct node_hstate {
	struct kobject		*hugepages_kobj;
	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
};
struct node_hstate node_hstates[MAX_NUMNODES];

/*
1703
 * A subset of global hstate attributes for node devices
1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716
 */
static struct attribute *per_node_hstate_attrs[] = {
	&nr_hugepages_attr.attr,
	&free_hugepages_attr.attr,
	&surplus_hugepages_attr.attr,
	NULL,
};

static struct attribute_group per_node_hstate_attr_group = {
	.attrs = per_node_hstate_attrs,
};

/*
1717
 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739
 * Returns node id via non-NULL nidp.
 */
static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
{
	int nid;

	for (nid = 0; nid < nr_node_ids; nid++) {
		struct node_hstate *nhs = &node_hstates[nid];
		int i;
		for (i = 0; i < HUGE_MAX_HSTATE; i++)
			if (nhs->hstate_kobjs[i] == kobj) {
				if (nidp)
					*nidp = nid;
				return &hstates[i];
			}
	}

	BUG();
	return NULL;
}

/*
1740
 * Unregister hstate attributes from a single node device.
1741 1742
 * No-op if no hstate attributes attached.
 */
1743
static void hugetlb_unregister_node(struct node *node)
1744 1745
{
	struct hstate *h;
1746
	struct node_hstate *nhs = &node_hstates[node->dev.id];
1747 1748

	if (!nhs->hugepages_kobj)
1749
		return;		/* no hstate attributes */
1750

1751 1752 1753 1754 1755
	for_each_hstate(h) {
		int idx = hstate_index(h);
		if (nhs->hstate_kobjs[idx]) {
			kobject_put(nhs->hstate_kobjs[idx]);
			nhs->hstate_kobjs[idx] = NULL;
1756
		}
1757
	}
1758 1759 1760 1761 1762 1763

	kobject_put(nhs->hugepages_kobj);
	nhs->hugepages_kobj = NULL;
}

/*
1764
 * hugetlb module exit:  unregister hstate attributes from node devices
1765 1766 1767 1768 1769 1770 1771
 * that have them.
 */
static void hugetlb_unregister_all_nodes(void)
{
	int nid;

	/*
1772
	 * disable node device registrations.
1773 1774 1775 1776 1777 1778 1779
	 */
	register_hugetlbfs_with_node(NULL, NULL);

	/*
	 * remove hstate attributes from any nodes that have them.
	 */
	for (nid = 0; nid < nr_node_ids; nid++)
1780
		hugetlb_unregister_node(node_devices[nid]);
1781 1782 1783
}

/*
1784
 * Register hstate attributes for a single node device.
1785 1786
 * No-op if attributes already registered.
 */
1787
static void hugetlb_register_node(struct node *node)
1788 1789
{
	struct hstate *h;
1790
	struct node_hstate *nhs = &node_hstates[node->dev.id];
1791 1792 1793 1794 1795 1796
	int err;

	if (nhs->hugepages_kobj)
		return;		/* already allocated */

	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
1797
							&node->dev.kobj);
1798 1799 1800 1801 1802 1803 1804 1805
	if (!nhs->hugepages_kobj)
		return;

	for_each_hstate(h) {
		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
						nhs->hstate_kobjs,
						&per_node_hstate_attr_group);
		if (err) {
1806 1807
			pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
				h->name, node->dev.id);
1808 1809 1810 1811 1812 1813 1814
			hugetlb_unregister_node(node);
			break;
		}
	}
}

/*
1815
 * hugetlb init time:  register hstate attributes for all registered node
1816 1817
 * devices of nodes that have memory.  All on-line nodes should have
 * registered their associated device by this time.
1818 1819 1820 1821 1822
 */
static void hugetlb_register_all_nodes(void)
{
	int nid;

1823
	for_each_node_state(nid, N_MEMORY) {
1824
		struct node *node = node_devices[nid];
1825
		if (node->dev.id == nid)
1826 1827 1828 1829
			hugetlb_register_node(node);
	}

	/*
1830
	 * Let the node device driver know we're here so it can
1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851
	 * [un]register hstate attributes on node hotplug.
	 */
	register_hugetlbfs_with_node(hugetlb_register_node,
				     hugetlb_unregister_node);
}
#else	/* !CONFIG_NUMA */

static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
{
	BUG();
	if (nidp)
		*nidp = -1;
	return NULL;
}

static void hugetlb_unregister_all_nodes(void) { }

static void hugetlb_register_all_nodes(void) { }

#endif

1852 1853 1854 1855
static void __exit hugetlb_exit(void)
{
	struct hstate *h;

1856 1857
	hugetlb_unregister_all_nodes();

1858
	for_each_hstate(h) {
1859
		kobject_put(hstate_kobjs[hstate_index(h)]);
1860 1861 1862 1863 1864 1865 1866 1867
	}

	kobject_put(hugepages_kobj);
}
module_exit(hugetlb_exit);

static int __init hugetlb_init(void)
{
1868 1869 1870 1871 1872 1873
	/* Some platform decide whether they support huge pages at boot
	 * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
	 * there is no such support
	 */
	if (HPAGE_SHIFT == 0)
		return 0;
1874

1875 1876 1877 1878
	if (!size_to_hstate(default_hstate_size)) {
		default_hstate_size = HPAGE_SIZE;
		if (!size_to_hstate(default_hstate_size))
			hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
1879
	}
1880
	default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
1881 1882
	if (default_hstate_max_huge_pages)
		default_hstate.max_huge_pages = default_hstate_max_huge_pages;
1883 1884

	hugetlb_init_hstates();
1885
	gather_bootmem_prealloc();
1886 1887 1888
	report_hugepages();

	hugetlb_sysfs_init();
1889
	hugetlb_register_all_nodes();
1890
	hugetlb_cgroup_file_init();
1891

1892 1893 1894 1895 1896 1897 1898 1899
	return 0;
}
module_init(hugetlb_init);

/* Should be called on processing a hugepagesz=... option */
void __init hugetlb_add_hstate(unsigned order)
{
	struct hstate *h;
1900 1901
	unsigned long i;

1902
	if (size_to_hstate(PAGE_SIZE << order)) {
1903
		pr_warning("hugepagesz= specified twice, ignoring\n");
1904 1905
		return;
	}
1906
	BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
1907
	BUG_ON(order == 0);
1908
	h = &hstates[hugetlb_max_hstate++];
1909 1910
	h->order = order;
	h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
1911 1912 1913 1914
	h->nr_huge_pages = 0;
	h->free_huge_pages = 0;
	for (i = 0; i < MAX_NUMNODES; ++i)
		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
1915
	INIT_LIST_HEAD(&h->hugepage_activelist);
1916 1917
	h->next_nid_to_alloc = first_node(node_states[N_MEMORY]);
	h->next_nid_to_free = first_node(node_states[N_MEMORY]);
1918 1919
	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
					huge_page_size(h)/1024);
1920

1921 1922 1923
	parsed_hstate = h;
}

1924
static int __init hugetlb_nrpages_setup(char *s)
1925 1926
{
	unsigned long *mhp;
1927
	static unsigned long *last_mhp;
1928 1929

	/*
1930
	 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
1931 1932
	 * so this hugepages= parameter goes to the "default hstate".
	 */
1933
	if (!hugetlb_max_hstate)
1934 1935 1936 1937
		mhp = &default_hstate_max_huge_pages;
	else
		mhp = &parsed_hstate->max_huge_pages;

1938
	if (mhp == last_mhp) {
1939 1940
		pr_warning("hugepages= specified twice without "
			   "interleaving hugepagesz=, ignoring\n");
1941 1942 1943
		return 1;
	}

1944 1945 1946
	if (sscanf(s, "%lu", mhp) <= 0)
		*mhp = 0;

1947 1948 1949 1950 1951
	/*
	 * Global state is always initialized later in hugetlb_init.
	 * But we need to allocate >= MAX_ORDER hstates here early to still
	 * use the bootmem allocator.
	 */
1952
	if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
1953 1954 1955 1956
		hugetlb_hstate_alloc_pages(parsed_hstate);

	last_mhp = mhp;

1957 1958
	return 1;
}
1959 1960 1961 1962 1963 1964 1965 1966
__setup("hugepages=", hugetlb_nrpages_setup);

static int __init hugetlb_default_setup(char *s)
{
	default_hstate_size = memparse(s, &s);
	return 1;
}
__setup("default_hugepagesz=", hugetlb_default_setup);
1967

1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979
static unsigned int cpuset_mems_nr(unsigned int *array)
{
	int node;
	unsigned int nr = 0;

	for_each_node_mask(node, cpuset_current_mems_allowed)
		nr += array[node];

	return nr;
}

#ifdef CONFIG_SYSCTL
1980 1981 1982
static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
			 struct ctl_table *table, int write,
			 void __user *buffer, size_t *length, loff_t *ppos)
L
Linus Torvalds 已提交
1983
{
1984 1985
	struct hstate *h = &default_hstate;
	unsigned long tmp;
1986
	int ret;
1987

1988
	tmp = h->max_huge_pages;
1989

1990 1991 1992
	if (write && h->order >= MAX_ORDER)
		return -EINVAL;

1993 1994
	table->data = &tmp;
	table->maxlen = sizeof(unsigned long);
1995 1996 1997
	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
	if (ret)
		goto out;
1998

1999
	if (write) {
2000 2001
		NODEMASK_ALLOC(nodemask_t, nodes_allowed,
						GFP_KERNEL | __GFP_NORETRY);
2002 2003 2004
		if (!(obey_mempolicy &&
			       init_nodemask_of_mempolicy(nodes_allowed))) {
			NODEMASK_FREE(nodes_allowed);
2005
			nodes_allowed = &node_states[N_MEMORY];
2006 2007 2008
		}
		h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed);

2009
		if (nodes_allowed != &node_states[N_MEMORY])
2010 2011
			NODEMASK_FREE(nodes_allowed);
	}
2012 2013
out:
	return ret;
L
Linus Torvalds 已提交
2014
}
2015

2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032
int hugetlb_sysctl_handler(struct ctl_table *table, int write,
			  void __user *buffer, size_t *length, loff_t *ppos)
{

	return hugetlb_sysctl_handler_common(false, table, write,
							buffer, length, ppos);
}

#ifdef CONFIG_NUMA
int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
			  void __user *buffer, size_t *length, loff_t *ppos)
{
	return hugetlb_sysctl_handler_common(true, table, write,
							buffer, length, ppos);
}
#endif /* CONFIG_NUMA */

2033
int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
2034
			void __user *buffer,
2035 2036
			size_t *length, loff_t *ppos)
{
2037
	proc_dointvec(table, write, buffer, length, ppos);
2038 2039 2040 2041 2042 2043 2044
	if (hugepages_treat_as_movable)
		htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
	else
		htlb_alloc_mask = GFP_HIGHUSER;
	return 0;
}

2045
int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2046
			void __user *buffer,
2047 2048
			size_t *length, loff_t *ppos)
{
2049
	struct hstate *h = &default_hstate;
2050
	unsigned long tmp;
2051
	int ret;
2052

2053
	tmp = h->nr_overcommit_huge_pages;
2054

2055 2056 2057
	if (write && h->order >= MAX_ORDER)
		return -EINVAL;

2058 2059
	table->data = &tmp;
	table->maxlen = sizeof(unsigned long);
2060 2061 2062
	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
	if (ret)
		goto out;
2063 2064 2065 2066 2067 2068

	if (write) {
		spin_lock(&hugetlb_lock);
		h->nr_overcommit_huge_pages = tmp;
		spin_unlock(&hugetlb_lock);
	}
2069 2070
out:
	return ret;
2071 2072
}

L
Linus Torvalds 已提交
2073 2074
#endif /* CONFIG_SYSCTL */

2075
void hugetlb_report_meminfo(struct seq_file *m)
L
Linus Torvalds 已提交
2076
{
2077
	struct hstate *h = &default_hstate;
2078
	seq_printf(m,
2079 2080 2081 2082 2083
			"HugePages_Total:   %5lu\n"
			"HugePages_Free:    %5lu\n"
			"HugePages_Rsvd:    %5lu\n"
			"HugePages_Surp:    %5lu\n"
			"Hugepagesize:   %8lu kB\n",
2084 2085 2086 2087 2088
			h->nr_huge_pages,
			h->free_huge_pages,
			h->resv_huge_pages,
			h->surplus_huge_pages,
			1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
L
Linus Torvalds 已提交
2089 2090 2091 2092
}

int hugetlb_report_node_meminfo(int nid, char *buf)
{
2093
	struct hstate *h = &default_hstate;
L
Linus Torvalds 已提交
2094 2095
	return sprintf(buf,
		"Node %d HugePages_Total: %5u\n"
2096 2097
		"Node %d HugePages_Free:  %5u\n"
		"Node %d HugePages_Surp:  %5u\n",
2098 2099 2100
		nid, h->nr_huge_pages_node[nid],
		nid, h->free_huge_pages_node[nid],
		nid, h->surplus_huge_pages_node[nid]);
L
Linus Torvalds 已提交
2101 2102
}

2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117
void hugetlb_show_meminfo(void)
{
	struct hstate *h;
	int nid;

	for_each_node_state(nid, N_MEMORY)
		for_each_hstate(h)
			pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
				nid,
				h->nr_huge_pages_node[nid],
				h->free_huge_pages_node[nid],
				h->surplus_huge_pages_node[nid],
				1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
}

L
Linus Torvalds 已提交
2118 2119 2120
/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
unsigned long hugetlb_total_pages(void)
{
2121 2122 2123 2124 2125 2126
	struct hstate *h;
	unsigned long nr_total_pages = 0;

	for_each_hstate(h)
		nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
	return nr_total_pages;
L
Linus Torvalds 已提交
2127 2128
}

2129
static int hugetlb_acct_memory(struct hstate *h, long delta)
M
Mel Gorman 已提交
2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151
{
	int ret = -ENOMEM;

	spin_lock(&hugetlb_lock);
	/*
	 * When cpuset is configured, it breaks the strict hugetlb page
	 * reservation as the accounting is done on a global variable. Such
	 * reservation is completely rubbish in the presence of cpuset because
	 * the reservation is not checked against page availability for the
	 * current cpuset. Application can still potentially OOM'ed by kernel
	 * with lack of free htlb page in cpuset that the task is in.
	 * Attempt to enforce strict accounting with cpuset is almost
	 * impossible (or too ugly) because cpuset is too fluid that
	 * task or memory node can be dynamically moved between cpusets.
	 *
	 * The change of semantics for shared hugetlb mapping with cpuset is
	 * undesirable. However, in order to preserve some of the semantics,
	 * we fall back to check against current free page availability as
	 * a best attempt and hopefully to minimize the impact of changing
	 * semantics that cpuset has.
	 */
	if (delta > 0) {
2152
		if (gather_surplus_pages(h, delta) < 0)
M
Mel Gorman 已提交
2153 2154
			goto out;

2155 2156
		if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
			return_unused_surplus_pages(h, delta);
M
Mel Gorman 已提交
2157 2158 2159 2160 2161 2162
			goto out;
		}
	}

	ret = 0;
	if (delta < 0)
2163
		return_unused_surplus_pages(h, (unsigned long) -delta);
M
Mel Gorman 已提交
2164 2165 2166 2167 2168 2169

out:
	spin_unlock(&hugetlb_lock);
	return ret;
}

2170 2171 2172 2173 2174 2175 2176 2177
static void hugetlb_vm_op_open(struct vm_area_struct *vma)
{
	struct resv_map *reservations = vma_resv_map(vma);

	/*
	 * This new VMA should share its siblings reservation map if present.
	 * The VMA will only ever have a valid reservation map pointer where
	 * it is being copied for another still existing VMA.  As that VMA
L
Lucas De Marchi 已提交
2178
	 * has a reference to the reservation map it cannot disappear until
2179 2180 2181 2182 2183 2184 2185
	 * after this open call completes.  It is therefore safe to take a
	 * new reference here without additional locking.
	 */
	if (reservations)
		kref_get(&reservations->refs);
}

2186 2187 2188 2189 2190 2191 2192 2193 2194
static void resv_map_put(struct vm_area_struct *vma)
{
	struct resv_map *reservations = vma_resv_map(vma);

	if (!reservations)
		return;
	kref_put(&reservations->refs, resv_map_release);
}

2195 2196
static void hugetlb_vm_op_close(struct vm_area_struct *vma)
{
2197
	struct hstate *h = hstate_vma(vma);
2198
	struct resv_map *reservations = vma_resv_map(vma);
2199
	struct hugepage_subpool *spool = subpool_vma(vma);
2200 2201 2202 2203 2204
	unsigned long reserve;
	unsigned long start;
	unsigned long end;

	if (reservations) {
2205 2206
		start = vma_hugecache_offset(h, vma, vma->vm_start);
		end = vma_hugecache_offset(h, vma, vma->vm_end);
2207 2208 2209 2210

		reserve = (end - start) -
			region_count(&reservations->regions, start, end);

2211
		resv_map_put(vma);
2212

2213
		if (reserve) {
2214
			hugetlb_acct_memory(h, -reserve);
2215
			hugepage_subpool_put_pages(spool, reserve);
2216
		}
2217
	}
2218 2219
}

L
Linus Torvalds 已提交
2220 2221 2222 2223 2224 2225
/*
 * We cannot handle pagefaults against hugetlb pages at all.  They cause
 * handle_mm_fault() to try to instantiate regular-sized pages in the
 * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
 * this far.
 */
N
Nick Piggin 已提交
2226
static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
L
Linus Torvalds 已提交
2227 2228
{
	BUG();
N
Nick Piggin 已提交
2229
	return 0;
L
Linus Torvalds 已提交
2230 2231
}

2232
const struct vm_operations_struct hugetlb_vm_ops = {
N
Nick Piggin 已提交
2233
	.fault = hugetlb_vm_op_fault,
2234
	.open = hugetlb_vm_op_open,
2235
	.close = hugetlb_vm_op_close,
L
Linus Torvalds 已提交
2236 2237
};

2238 2239
static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
				int writable)
D
David Gibson 已提交
2240 2241 2242
{
	pte_t entry;

2243
	if (writable) {
2244 2245
		entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
					 vma->vm_page_prot)));
D
David Gibson 已提交
2246
	} else {
2247 2248
		entry = huge_pte_wrprotect(mk_huge_pte(page,
					   vma->vm_page_prot));
D
David Gibson 已提交
2249 2250 2251
	}
	entry = pte_mkyoung(entry);
	entry = pte_mkhuge(entry);
2252
	entry = arch_make_huge_pte(entry, vma, page, writable);
D
David Gibson 已提交
2253 2254 2255 2256

	return entry;
}

2257 2258 2259 2260 2261
static void set_huge_ptep_writable(struct vm_area_struct *vma,
				   unsigned long address, pte_t *ptep)
{
	pte_t entry;

2262
	entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
2263
	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
2264
		update_mmu_cache(vma, address, ptep);
2265 2266 2267
}


D
David Gibson 已提交
2268 2269 2270 2271 2272
int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
			    struct vm_area_struct *vma)
{
	pte_t *src_pte, *dst_pte, entry;
	struct page *ptepage;
2273
	unsigned long addr;
2274
	int cow;
2275 2276
	struct hstate *h = hstate_vma(vma);
	unsigned long sz = huge_page_size(h);
2277 2278

	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
D
David Gibson 已提交
2279

2280
	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
H
Hugh Dickins 已提交
2281 2282 2283
		src_pte = huge_pte_offset(src, addr);
		if (!src_pte)
			continue;
2284
		dst_pte = huge_pte_alloc(dst, addr, sz);
D
David Gibson 已提交
2285 2286
		if (!dst_pte)
			goto nomem;
2287 2288 2289 2290 2291

		/* If the pagetables are shared don't copy or take references */
		if (dst_pte == src_pte)
			continue;

H
Hugh Dickins 已提交
2292
		spin_lock(&dst->page_table_lock);
N
Nick Piggin 已提交
2293
		spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
2294
		if (!huge_pte_none(huge_ptep_get(src_pte))) {
2295
			if (cow)
2296 2297
				huge_ptep_set_wrprotect(src, addr, src_pte);
			entry = huge_ptep_get(src_pte);
2298 2299
			ptepage = pte_page(entry);
			get_page(ptepage);
2300
			page_dup_rmap(ptepage);
2301 2302 2303
			set_huge_pte_at(dst, addr, dst_pte, entry);
		}
		spin_unlock(&src->page_table_lock);
H
Hugh Dickins 已提交
2304
		spin_unlock(&dst->page_table_lock);
D
David Gibson 已提交
2305 2306 2307 2308 2309 2310 2311
	}
	return 0;

nomem:
	return -ENOMEM;
}

N
Naoya Horiguchi 已提交
2312 2313 2314 2315 2316 2317 2318
static int is_hugetlb_entry_migration(pte_t pte)
{
	swp_entry_t swp;

	if (huge_pte_none(pte) || pte_present(pte))
		return 0;
	swp = pte_to_swp_entry(pte);
2319
	if (non_swap_entry(swp) && is_migration_entry(swp))
N
Naoya Horiguchi 已提交
2320
		return 1;
2321
	else
N
Naoya Horiguchi 已提交
2322 2323 2324
		return 0;
}

2325 2326 2327 2328 2329 2330 2331
static int is_hugetlb_entry_hwpoisoned(pte_t pte)
{
	swp_entry_t swp;

	if (huge_pte_none(pte) || pte_present(pte))
		return 0;
	swp = pte_to_swp_entry(pte);
2332
	if (non_swap_entry(swp) && is_hwpoison_entry(swp))
2333
		return 1;
2334
	else
2335 2336 2337
		return 0;
}

2338 2339 2340
void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
			    unsigned long start, unsigned long end,
			    struct page *ref_page)
D
David Gibson 已提交
2341
{
2342
	int force_flush = 0;
D
David Gibson 已提交
2343 2344
	struct mm_struct *mm = vma->vm_mm;
	unsigned long address;
2345
	pte_t *ptep;
D
David Gibson 已提交
2346 2347
	pte_t pte;
	struct page *page;
2348 2349
	struct hstate *h = hstate_vma(vma);
	unsigned long sz = huge_page_size(h);
2350 2351
	const unsigned long mmun_start = start;	/* For mmu_notifiers */
	const unsigned long mmun_end   = end;	/* For mmu_notifiers */
2352

D
David Gibson 已提交
2353
	WARN_ON(!is_vm_hugetlb_page(vma));
2354 2355
	BUG_ON(start & ~huge_page_mask(h));
	BUG_ON(end & ~huge_page_mask(h));
D
David Gibson 已提交
2356

2357
	tlb_start_vma(tlb, vma);
2358
	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2359
again:
2360
	spin_lock(&mm->page_table_lock);
2361
	for (address = start; address < end; address += sz) {
2362
		ptep = huge_pte_offset(mm, address);
A
Adam Litke 已提交
2363
		if (!ptep)
2364 2365
			continue;

2366 2367 2368
		if (huge_pmd_unshare(mm, &address, ptep))
			continue;

2369 2370 2371 2372 2373 2374 2375
		pte = huge_ptep_get(ptep);
		if (huge_pte_none(pte))
			continue;

		/*
		 * HWPoisoned hugepage is already unmapped and dropped reference
		 */
2376
		if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
2377
			huge_pte_clear(mm, address, ptep);
2378
			continue;
2379
		}
2380 2381

		page = pte_page(pte);
2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398
		/*
		 * If a reference page is supplied, it is because a specific
		 * page is being unmapped, not a range. Ensure the page we
		 * are about to unmap is the actual page of interest.
		 */
		if (ref_page) {
			if (page != ref_page)
				continue;

			/*
			 * Mark the VMA as having unmapped its page so that
			 * future faults in this VMA will fail rather than
			 * looking like data was lost
			 */
			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
		}

2399
		pte = huge_ptep_get_and_clear(mm, address, ptep);
2400
		tlb_remove_tlb_entry(tlb, ptep, address);
2401
		if (huge_pte_dirty(pte))
2402
			set_page_dirty(page);
2403

2404 2405 2406 2407
		page_remove_rmap(page);
		force_flush = !__tlb_remove_page(tlb, page);
		if (force_flush)
			break;
2408 2409 2410
		/* Bail out after unmapping reference page if supplied */
		if (ref_page)
			break;
D
David Gibson 已提交
2411
	}
2412
	spin_unlock(&mm->page_table_lock);
2413 2414 2415 2416 2417 2418 2419 2420 2421 2422
	/*
	 * mmu_gather ran out of room to batch pages, we break out of
	 * the PTE lock to avoid doing the potential expensive TLB invalidate
	 * and page-free while holding it.
	 */
	if (force_flush) {
		force_flush = 0;
		tlb_flush_mmu(tlb);
		if (address < end && !ref_page)
			goto again;
2423
	}
2424
	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2425
	tlb_end_vma(tlb, vma);
L
Linus Torvalds 已提交
2426
}
D
David Gibson 已提交
2427

2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446
void __unmap_hugepage_range_final(struct mmu_gather *tlb,
			  struct vm_area_struct *vma, unsigned long start,
			  unsigned long end, struct page *ref_page)
{
	__unmap_hugepage_range(tlb, vma, start, end, ref_page);

	/*
	 * Clear this flag so that x86's huge_pmd_share page_table_shareable
	 * test will fail on a vma being torn down, and not grab a page table
	 * on its way out.  We're lucky that the flag has such an appropriate
	 * name, and can in fact be safely cleared here. We could clear it
	 * before the __unmap_hugepage_range above, but all that's necessary
	 * is to clear it before releasing the i_mmap_mutex. This works
	 * because in the context this is called, the VMA is about to be
	 * destroyed and the i_mmap_mutex is held.
	 */
	vma->vm_flags &= ~VM_MAYSHARE;
}

2447
void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2448
			  unsigned long end, struct page *ref_page)
2449
{
2450 2451 2452 2453 2454
	struct mm_struct *mm;
	struct mmu_gather tlb;

	mm = vma->vm_mm;

2455
	tlb_gather_mmu(&tlb, mm, start, end);
2456 2457
	__unmap_hugepage_range(&tlb, vma, start, end, ref_page);
	tlb_finish_mmu(&tlb, start, end);
2458 2459
}

2460 2461 2462 2463 2464 2465
/*
 * This is called when the original mapper is failing to COW a MAP_PRIVATE
 * mappping it owns the reserve page for. The intention is to unmap the page
 * from other VMAs and let the children be SIGKILLed if they are faulting the
 * same region.
 */
2466 2467
static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
				struct page *page, unsigned long address)
2468
{
2469
	struct hstate *h = hstate_vma(vma);
2470 2471 2472 2473 2474 2475 2476 2477
	struct vm_area_struct *iter_vma;
	struct address_space *mapping;
	pgoff_t pgoff;

	/*
	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
	 * from page cache lookup which is in HPAGE_SIZE units.
	 */
2478
	address = address & huge_page_mask(h);
2479 2480
	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
			vma->vm_pgoff;
A
Al Viro 已提交
2481
	mapping = file_inode(vma->vm_file)->i_mapping;
2482

2483 2484 2485 2486 2487
	/*
	 * Take the mapping lock for the duration of the table walk. As
	 * this mapping should be shared between all the VMAs,
	 * __unmap_hugepage_range() is called as the lock is already held
	 */
2488
	mutex_lock(&mapping->i_mmap_mutex);
2489
	vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501
		/* Do not unmap the current VMA */
		if (iter_vma == vma)
			continue;

		/*
		 * Unmap the page from other VMAs without their own reserves.
		 * They get marked to be SIGKILLed if they fault in these
		 * areas. This is because a future no-page fault on this VMA
		 * could insert a zeroed page instead of the data existing
		 * from the time of fork. This would look like data corruption
		 */
		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
2502 2503
			unmap_hugepage_range(iter_vma, address,
					     address + huge_page_size(h), page);
2504
	}
2505
	mutex_unlock(&mapping->i_mmap_mutex);
2506 2507 2508 2509

	return 1;
}

2510 2511
/*
 * Hugetlb_cow() should be called with page lock of the original hugepage held.
2512 2513 2514
 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
 * cannot race with other handlers or page migration.
 * Keep the pte_same checks anyway to make transition from the mutex easier.
2515
 */
2516
static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
2517 2518
			unsigned long address, pte_t *ptep, pte_t pte,
			struct page *pagecache_page)
2519
{
2520
	struct hstate *h = hstate_vma(vma);
2521
	struct page *old_page, *new_page;
2522
	int outside_reserve = 0;
2523 2524
	unsigned long mmun_start;	/* For mmu_notifiers */
	unsigned long mmun_end;		/* For mmu_notifiers */
2525 2526 2527

	old_page = pte_page(pte);

2528
retry_avoidcopy:
2529 2530
	/* If no-one else is actually using this page, avoid the copy
	 * and just make the page writable */
2531 2532
	if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
		page_move_anon_rmap(old_page, vma, address);
2533
		set_huge_ptep_writable(vma, address, ptep);
N
Nick Piggin 已提交
2534
		return 0;
2535 2536
	}

2537 2538 2539 2540 2541 2542 2543 2544 2545
	/*
	 * If the process that created a MAP_PRIVATE mapping is about to
	 * perform a COW due to a shared page count, attempt to satisfy
	 * the allocation without using the existing reserves. The pagecache
	 * page is used to determine if the reserve at this address was
	 * consumed or not. If reserves were used, a partial faulted mapping
	 * at the time of fork() could consume its reserves on COW instead
	 * of the full address range.
	 */
2546
	if (!(vma->vm_flags & VM_MAYSHARE) &&
2547 2548 2549 2550
			is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
			old_page != pagecache_page)
		outside_reserve = 1;

2551
	page_cache_get(old_page);
2552 2553 2554

	/* Drop page_table_lock as buddy allocator may be called */
	spin_unlock(&mm->page_table_lock);
2555
	new_page = alloc_huge_page(vma, address, outside_reserve);
2556

2557
	if (IS_ERR(new_page)) {
2558
		long err = PTR_ERR(new_page);
2559
		page_cache_release(old_page);
2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571

		/*
		 * If a process owning a MAP_PRIVATE mapping fails to COW,
		 * it is due to references held by a child and an insufficient
		 * huge page pool. To guarantee the original mappers
		 * reliability, unmap the page from child processes. The child
		 * may get SIGKILLed if it later faults.
		 */
		if (outside_reserve) {
			BUG_ON(huge_pte_none(pte));
			if (unmap_ref_private(mm, vma, old_page, address)) {
				BUG_ON(huge_pte_none(pte));
2572
				spin_lock(&mm->page_table_lock);
2573 2574 2575 2576 2577 2578 2579 2580
				ptep = huge_pte_offset(mm, address & huge_page_mask(h));
				if (likely(pte_same(huge_ptep_get(ptep), pte)))
					goto retry_avoidcopy;
				/*
				 * race occurs while re-acquiring page_table_lock, and
				 * our job is done.
				 */
				return 0;
2581 2582 2583 2584
			}
			WARN_ON_ONCE(1);
		}

2585 2586
		/* Caller expects lock to be held */
		spin_lock(&mm->page_table_lock);
2587 2588 2589 2590
		if (err == -ENOMEM)
			return VM_FAULT_OOM;
		else
			return VM_FAULT_SIGBUS;
2591 2592
	}

2593 2594 2595 2596
	/*
	 * When the original hugepage is shared one, it does not have
	 * anon_vma prepared.
	 */
2597
	if (unlikely(anon_vma_prepare(vma))) {
2598 2599
		page_cache_release(new_page);
		page_cache_release(old_page);
2600 2601
		/* Caller expects lock to be held */
		spin_lock(&mm->page_table_lock);
2602
		return VM_FAULT_OOM;
2603
	}
2604

A
Andrea Arcangeli 已提交
2605 2606
	copy_user_huge_page(new_page, old_page, address, vma,
			    pages_per_huge_page(h));
N
Nick Piggin 已提交
2607
	__SetPageUptodate(new_page);
2608

2609 2610 2611
	mmun_start = address & huge_page_mask(h);
	mmun_end = mmun_start + huge_page_size(h);
	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2612 2613 2614 2615 2616
	/*
	 * Retake the page_table_lock to check for racing updates
	 * before the page tables are altered
	 */
	spin_lock(&mm->page_table_lock);
2617
	ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2618
	if (likely(pte_same(huge_ptep_get(ptep), pte))) {
2619
		/* Break COW */
2620
		huge_ptep_clear_flush(vma, address, ptep);
2621 2622
		set_huge_pte_at(mm, address, ptep,
				make_huge_pte(vma, new_page, 1));
2623
		page_remove_rmap(old_page);
2624
		hugepage_add_new_anon_rmap(new_page, vma, address);
2625 2626 2627
		/* Make the old page be freed below */
		new_page = old_page;
	}
2628 2629 2630 2631
	spin_unlock(&mm->page_table_lock);
	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
	/* Caller expects lock to be held */
	spin_lock(&mm->page_table_lock);
2632 2633
	page_cache_release(new_page);
	page_cache_release(old_page);
N
Nick Piggin 已提交
2634
	return 0;
2635 2636
}

2637
/* Return the pagecache page at a given address within a VMA */
2638 2639
static struct page *hugetlbfs_pagecache_page(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address)
2640 2641
{
	struct address_space *mapping;
2642
	pgoff_t idx;
2643 2644

	mapping = vma->vm_file->f_mapping;
2645
	idx = vma_hugecache_offset(h, vma, address);
2646 2647 2648 2649

	return find_lock_page(mapping, idx);
}

H
Hugh Dickins 已提交
2650 2651 2652 2653 2654
/*
 * Return whether there is a pagecache page to back given address within VMA.
 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
 */
static bool hugetlbfs_pagecache_present(struct hstate *h,
H
Hugh Dickins 已提交
2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669
			struct vm_area_struct *vma, unsigned long address)
{
	struct address_space *mapping;
	pgoff_t idx;
	struct page *page;

	mapping = vma->vm_file->f_mapping;
	idx = vma_hugecache_offset(h, vma, address);

	page = find_get_page(mapping, idx);
	if (page)
		put_page(page);
	return page != NULL;
}

2670
static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
2671
			unsigned long address, pte_t *ptep, unsigned int flags)
2672
{
2673
	struct hstate *h = hstate_vma(vma);
2674
	int ret = VM_FAULT_SIGBUS;
2675
	int anon_rmap = 0;
2676
	pgoff_t idx;
A
Adam Litke 已提交
2677 2678 2679
	unsigned long size;
	struct page *page;
	struct address_space *mapping;
2680
	pte_t new_pte;
A
Adam Litke 已提交
2681

2682 2683 2684
	/*
	 * Currently, we are forced to kill the process in the event the
	 * original mapper has unmapped pages from the child due to a failed
L
Lucas De Marchi 已提交
2685
	 * COW. Warn that such a situation has occurred as it may not be obvious
2686 2687
	 */
	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
2688 2689
		pr_warning("PID %d killed due to inadequate hugepage pool\n",
			   current->pid);
2690 2691 2692
		return ret;
	}

A
Adam Litke 已提交
2693
	mapping = vma->vm_file->f_mapping;
2694
	idx = vma_hugecache_offset(h, vma, address);
A
Adam Litke 已提交
2695 2696 2697 2698 2699

	/*
	 * Use page lock to guard against racing truncation
	 * before we get page_table_lock.
	 */
2700 2701 2702
retry:
	page = find_lock_page(mapping, idx);
	if (!page) {
2703
		size = i_size_read(mapping->host) >> huge_page_shift(h);
2704 2705
		if (idx >= size)
			goto out;
2706
		page = alloc_huge_page(vma, address, 0);
2707
		if (IS_ERR(page)) {
2708 2709 2710 2711 2712
			ret = PTR_ERR(page);
			if (ret == -ENOMEM)
				ret = VM_FAULT_OOM;
			else
				ret = VM_FAULT_SIGBUS;
2713 2714
			goto out;
		}
A
Andrea Arcangeli 已提交
2715
		clear_huge_page(page, address, pages_per_huge_page(h));
N
Nick Piggin 已提交
2716
		__SetPageUptodate(page);
2717

2718
		if (vma->vm_flags & VM_MAYSHARE) {
2719
			int err;
K
Ken Chen 已提交
2720
			struct inode *inode = mapping->host;
2721 2722 2723 2724 2725 2726 2727 2728

			err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
			if (err) {
				put_page(page);
				if (err == -EEXIST)
					goto retry;
				goto out;
			}
K
Ken Chen 已提交
2729 2730

			spin_lock(&inode->i_lock);
2731
			inode->i_blocks += blocks_per_huge_page(h);
K
Ken Chen 已提交
2732
			spin_unlock(&inode->i_lock);
2733
		} else {
2734
			lock_page(page);
2735 2736 2737 2738
			if (unlikely(anon_vma_prepare(vma))) {
				ret = VM_FAULT_OOM;
				goto backout_unlocked;
			}
2739
			anon_rmap = 1;
2740
		}
2741
	} else {
2742 2743 2744 2745 2746 2747
		/*
		 * If memory error occurs between mmap() and fault, some process
		 * don't have hwpoisoned swap entry for errored virtual address.
		 * So we need to block hugepage fault by PG_hwpoison bit check.
		 */
		if (unlikely(PageHWPoison(page))) {
2748
			ret = VM_FAULT_HWPOISON |
2749
				VM_FAULT_SET_HINDEX(hstate_index(h));
2750 2751
			goto backout_unlocked;
		}
2752
	}
2753

2754 2755 2756 2757 2758 2759
	/*
	 * If we are going to COW a private mapping later, we examine the
	 * pending reservations for this page now. This will ensure that
	 * any allocations necessary to record that reservation occur outside
	 * the spinlock.
	 */
2760
	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2761 2762 2763 2764
		if (vma_needs_reservation(h, vma, address) < 0) {
			ret = VM_FAULT_OOM;
			goto backout_unlocked;
		}
2765

2766
	spin_lock(&mm->page_table_lock);
2767
	size = i_size_read(mapping->host) >> huge_page_shift(h);
A
Adam Litke 已提交
2768 2769 2770
	if (idx >= size)
		goto backout;

N
Nick Piggin 已提交
2771
	ret = 0;
2772
	if (!huge_pte_none(huge_ptep_get(ptep)))
A
Adam Litke 已提交
2773 2774
		goto backout;

2775 2776 2777 2778
	if (anon_rmap)
		hugepage_add_new_anon_rmap(page, vma, address);
	else
		page_dup_rmap(page);
2779 2780 2781 2782
	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
				&& (vma->vm_flags & VM_SHARED)));
	set_huge_pte_at(mm, address, ptep, new_pte);

2783
	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
2784
		/* Optimization, do the COW without a second fault */
2785
		ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
2786 2787
	}

2788
	spin_unlock(&mm->page_table_lock);
A
Adam Litke 已提交
2789 2790
	unlock_page(page);
out:
2791
	return ret;
A
Adam Litke 已提交
2792 2793 2794

backout:
	spin_unlock(&mm->page_table_lock);
2795
backout_unlocked:
A
Adam Litke 已提交
2796 2797 2798
	unlock_page(page);
	put_page(page);
	goto out;
2799 2800
}

2801
int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2802
			unsigned long address, unsigned int flags)
2803 2804 2805
{
	pte_t *ptep;
	pte_t entry;
2806
	int ret;
2807
	struct page *page = NULL;
2808
	struct page *pagecache_page = NULL;
2809
	static DEFINE_MUTEX(hugetlb_instantiation_mutex);
2810
	struct hstate *h = hstate_vma(vma);
2811

2812 2813
	address &= huge_page_mask(h);

2814 2815 2816
	ptep = huge_pte_offset(mm, address);
	if (ptep) {
		entry = huge_ptep_get(ptep);
N
Naoya Horiguchi 已提交
2817
		if (unlikely(is_hugetlb_entry_migration(entry))) {
2818
			migration_entry_wait_huge(mm, ptep);
N
Naoya Horiguchi 已提交
2819 2820
			return 0;
		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
2821
			return VM_FAULT_HWPOISON_LARGE |
2822
				VM_FAULT_SET_HINDEX(hstate_index(h));
2823 2824
	}

2825
	ptep = huge_pte_alloc(mm, address, huge_page_size(h));
2826 2827 2828
	if (!ptep)
		return VM_FAULT_OOM;

2829 2830 2831 2832 2833 2834
	/*
	 * Serialize hugepage allocation and instantiation, so that we don't
	 * get spurious allocation failures if two CPUs race to instantiate
	 * the same page in the page cache.
	 */
	mutex_lock(&hugetlb_instantiation_mutex);
2835 2836
	entry = huge_ptep_get(ptep);
	if (huge_pte_none(entry)) {
2837
		ret = hugetlb_no_page(mm, vma, address, ptep, flags);
2838
		goto out_mutex;
2839
	}
2840

N
Nick Piggin 已提交
2841
	ret = 0;
2842

2843 2844 2845 2846 2847 2848 2849 2850
	/*
	 * If we are going to COW the mapping later, we examine the pending
	 * reservations for this page now. This will ensure that any
	 * allocations necessary to record that reservation occur outside the
	 * spinlock. For private mappings, we also lookup the pagecache
	 * page now as it is used to determine if a reservation has been
	 * consumed.
	 */
2851
	if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
2852 2853
		if (vma_needs_reservation(h, vma, address) < 0) {
			ret = VM_FAULT_OOM;
2854
			goto out_mutex;
2855
		}
2856

2857
		if (!(vma->vm_flags & VM_MAYSHARE))
2858 2859 2860 2861
			pagecache_page = hugetlbfs_pagecache_page(h,
								vma, address);
	}

2862 2863 2864 2865 2866 2867 2868 2869
	/*
	 * hugetlb_cow() requires page locks of pte_page(entry) and
	 * pagecache_page, so here we need take the former one
	 * when page != pagecache_page or !pagecache_page.
	 * Note that locking order is always pagecache_page -> page,
	 * so no worry about deadlock.
	 */
	page = pte_page(entry);
2870
	get_page(page);
2871
	if (page != pagecache_page)
2872 2873
		lock_page(page);

2874 2875
	spin_lock(&mm->page_table_lock);
	/* Check for a racing update before calling hugetlb_cow */
2876 2877 2878 2879
	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
		goto out_page_table_lock;


2880
	if (flags & FAULT_FLAG_WRITE) {
2881
		if (!huge_pte_write(entry)) {
2882 2883
			ret = hugetlb_cow(mm, vma, address, ptep, entry,
							pagecache_page);
2884 2885
			goto out_page_table_lock;
		}
2886
		entry = huge_pte_mkdirty(entry);
2887 2888
	}
	entry = pte_mkyoung(entry);
2889 2890
	if (huge_ptep_set_access_flags(vma, address, ptep, entry,
						flags & FAULT_FLAG_WRITE))
2891
		update_mmu_cache(vma, address, ptep);
2892 2893

out_page_table_lock:
2894
	spin_unlock(&mm->page_table_lock);
2895 2896 2897 2898 2899

	if (pagecache_page) {
		unlock_page(pagecache_page);
		put_page(pagecache_page);
	}
2900 2901
	if (page != pagecache_page)
		unlock_page(page);
2902
	put_page(page);
2903

2904
out_mutex:
2905
	mutex_unlock(&hugetlb_instantiation_mutex);
2906 2907

	return ret;
2908 2909
}

2910 2911 2912 2913
long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
			 struct page **pages, struct vm_area_struct **vmas,
			 unsigned long *position, unsigned long *nr_pages,
			 long i, unsigned int flags)
D
David Gibson 已提交
2914
{
2915 2916
	unsigned long pfn_offset;
	unsigned long vaddr = *position;
2917
	unsigned long remainder = *nr_pages;
2918
	struct hstate *h = hstate_vma(vma);
D
David Gibson 已提交
2919

2920
	spin_lock(&mm->page_table_lock);
D
David Gibson 已提交
2921
	while (vaddr < vma->vm_end && remainder) {
A
Adam Litke 已提交
2922
		pte_t *pte;
H
Hugh Dickins 已提交
2923
		int absent;
A
Adam Litke 已提交
2924
		struct page *page;
D
David Gibson 已提交
2925

A
Adam Litke 已提交
2926 2927
		/*
		 * Some archs (sparc64, sh*) have multiple pte_ts to
H
Hugh Dickins 已提交
2928
		 * each hugepage.  We have to make sure we get the
A
Adam Litke 已提交
2929 2930
		 * first, for the page indexing below to work.
		 */
2931
		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
H
Hugh Dickins 已提交
2932 2933 2934 2935
		absent = !pte || huge_pte_none(huge_ptep_get(pte));

		/*
		 * When coredumping, it suits get_dump_page if we just return
H
Hugh Dickins 已提交
2936 2937 2938 2939
		 * an error where there's an empty slot with no huge pagecache
		 * to back it.  This way, we avoid allocating a hugepage, and
		 * the sparse dumpfile avoids allocating disk blocks, but its
		 * huge holes still show up with zeroes where they need to be.
H
Hugh Dickins 已提交
2940
		 */
H
Hugh Dickins 已提交
2941 2942
		if (absent && (flags & FOLL_DUMP) &&
		    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
H
Hugh Dickins 已提交
2943 2944 2945
			remainder = 0;
			break;
		}
D
David Gibson 已提交
2946

2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957
		/*
		 * We need call hugetlb_fault for both hugepages under migration
		 * (in which case hugetlb_fault waits for the migration,) and
		 * hwpoisoned hugepages (in which case we need to prevent the
		 * caller from accessing to them.) In order to do this, we use
		 * here is_swap_pte instead of is_hugetlb_entry_migration and
		 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
		 * both cases, and because we can't follow correct pages
		 * directly from any kind of swap entries.
		 */
		if (absent || is_swap_pte(huge_ptep_get(pte)) ||
2958 2959
		    ((flags & FOLL_WRITE) &&
		      !huge_pte_write(huge_ptep_get(pte)))) {
A
Adam Litke 已提交
2960
			int ret;
D
David Gibson 已提交
2961

A
Adam Litke 已提交
2962
			spin_unlock(&mm->page_table_lock);
H
Hugh Dickins 已提交
2963 2964
			ret = hugetlb_fault(mm, vma, vaddr,
				(flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
A
Adam Litke 已提交
2965
			spin_lock(&mm->page_table_lock);
2966
			if (!(ret & VM_FAULT_ERROR))
A
Adam Litke 已提交
2967
				continue;
D
David Gibson 已提交
2968

A
Adam Litke 已提交
2969 2970 2971 2972
			remainder = 0;
			break;
		}

2973
		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
2974
		page = pte_page(huge_ptep_get(pte));
2975
same_page:
2976
		if (pages) {
H
Hugh Dickins 已提交
2977
			pages[i] = mem_map_offset(page, pfn_offset);
K
KOSAKI Motohiro 已提交
2978
			get_page(pages[i]);
2979
		}
D
David Gibson 已提交
2980 2981 2982 2983 2984

		if (vmas)
			vmas[i] = vma;

		vaddr += PAGE_SIZE;
2985
		++pfn_offset;
D
David Gibson 已提交
2986 2987
		--remainder;
		++i;
2988
		if (vaddr < vma->vm_end && remainder &&
2989
				pfn_offset < pages_per_huge_page(h)) {
2990 2991 2992 2993 2994 2995
			/*
			 * We use pfn_offset to avoid touching the pageframes
			 * of this compound page.
			 */
			goto same_page;
		}
D
David Gibson 已提交
2996
	}
2997
	spin_unlock(&mm->page_table_lock);
2998
	*nr_pages = remainder;
D
David Gibson 已提交
2999 3000
	*position = vaddr;

H
Hugh Dickins 已提交
3001
	return i ? i : -EFAULT;
D
David Gibson 已提交
3002
}
3003

3004
unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
3005 3006 3007 3008 3009 3010
		unsigned long address, unsigned long end, pgprot_t newprot)
{
	struct mm_struct *mm = vma->vm_mm;
	unsigned long start = address;
	pte_t *ptep;
	pte_t pte;
3011
	struct hstate *h = hstate_vma(vma);
3012
	unsigned long pages = 0;
3013 3014 3015 3016

	BUG_ON(address >= end);
	flush_cache_range(vma, address, end);

3017
	mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
3018
	spin_lock(&mm->page_table_lock);
3019
	for (; address < end; address += huge_page_size(h)) {
3020 3021 3022
		ptep = huge_pte_offset(mm, address);
		if (!ptep)
			continue;
3023 3024
		if (huge_pmd_unshare(mm, &address, ptep)) {
			pages++;
3025
			continue;
3026
		}
3027
		if (!huge_pte_none(huge_ptep_get(ptep))) {
3028
			pte = huge_ptep_get_and_clear(mm, address, ptep);
3029
			pte = pte_mkhuge(huge_pte_modify(pte, newprot));
3030
			pte = arch_make_huge_pte(pte, vma, NULL, 0);
3031
			set_huge_pte_at(mm, address, ptep, pte);
3032
			pages++;
3033 3034 3035
		}
	}
	spin_unlock(&mm->page_table_lock);
3036 3037 3038 3039 3040 3041
	/*
	 * Must flush TLB before releasing i_mmap_mutex: x86's huge_pmd_unshare
	 * may have cleared our pud entry and done put_page on the page table:
	 * once we release i_mmap_mutex, another task can do the final put_page
	 * and that page table be reused and filled with junk.
	 */
3042
	flush_tlb_range(vma, start, end);
3043
	mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
3044 3045

	return pages << h->order;
3046 3047
}

3048 3049
int hugetlb_reserve_pages(struct inode *inode,
					long from, long to,
3050
					struct vm_area_struct *vma,
3051
					vm_flags_t vm_flags)
3052
{
3053
	long ret, chg;
3054
	struct hstate *h = hstate_inode(inode);
3055
	struct hugepage_subpool *spool = subpool_inode(inode);
3056

3057 3058 3059
	/*
	 * Only apply hugepage reservation if asked. At fault time, an
	 * attempt will be made for VM_NORESERVE to allocate a page
3060
	 * without using reserves
3061
	 */
3062
	if (vm_flags & VM_NORESERVE)
3063 3064
		return 0;

3065 3066 3067 3068 3069 3070
	/*
	 * Shared mappings base their reservation on the number of pages that
	 * are already allocated on behalf of the file. Private mappings need
	 * to reserve the full area even if read-only as mprotect() may be
	 * called to make the mapping read-write. Assume !vma is a shm mapping
	 */
3071
	if (!vma || vma->vm_flags & VM_MAYSHARE)
3072
		chg = region_chg(&inode->i_mapping->private_list, from, to);
3073 3074 3075 3076 3077
	else {
		struct resv_map *resv_map = resv_map_alloc();
		if (!resv_map)
			return -ENOMEM;

3078
		chg = to - from;
3079

3080 3081 3082 3083
		set_vma_resv_map(vma, resv_map);
		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
	}

3084 3085 3086 3087
	if (chg < 0) {
		ret = chg;
		goto out_err;
	}
3088

3089
	/* There must be enough pages in the subpool for the mapping */
3090 3091 3092 3093
	if (hugepage_subpool_get_pages(spool, chg)) {
		ret = -ENOSPC;
		goto out_err;
	}
3094 3095

	/*
3096
	 * Check enough hugepages are available for the reservation.
3097
	 * Hand the pages back to the subpool if there are not
3098
	 */
3099
	ret = hugetlb_acct_memory(h, chg);
K
Ken Chen 已提交
3100
	if (ret < 0) {
3101
		hugepage_subpool_put_pages(spool, chg);
3102
		goto out_err;
K
Ken Chen 已提交
3103
	}
3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115

	/*
	 * Account for the reservations made. Shared mappings record regions
	 * that have reservations as they are shared by multiple VMAs.
	 * When the last VMA disappears, the region map says how much
	 * the reservation was and the page cache tells how much of
	 * the reservation was consumed. Private mappings are per-VMA and
	 * only the consumed reservations are tracked. When the VMA
	 * disappears, the original reservation is the VMA size and the
	 * consumed reservations are stored in the map. Hence, nothing
	 * else has to be done for private mappings here
	 */
3116
	if (!vma || vma->vm_flags & VM_MAYSHARE)
3117
		region_add(&inode->i_mapping->private_list, from, to);
3118
	return 0;
3119
out_err:
3120 3121
	if (vma)
		resv_map_put(vma);
3122
	return ret;
3123 3124 3125 3126
}

void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
{
3127
	struct hstate *h = hstate_inode(inode);
3128
	long chg = region_truncate(&inode->i_mapping->private_list, offset);
3129
	struct hugepage_subpool *spool = subpool_inode(inode);
K
Ken Chen 已提交
3130 3131

	spin_lock(&inode->i_lock);
3132
	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
K
Ken Chen 已提交
3133 3134
	spin_unlock(&inode->i_lock);

3135
	hugepage_subpool_put_pages(spool, (chg - freed));
3136
	hugetlb_acct_memory(h, -(chg - freed));
3137
}
3138

3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258
#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
static unsigned long page_table_shareable(struct vm_area_struct *svma,
				struct vm_area_struct *vma,
				unsigned long addr, pgoff_t idx)
{
	unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
				svma->vm_start;
	unsigned long sbase = saddr & PUD_MASK;
	unsigned long s_end = sbase + PUD_SIZE;

	/* Allow segments to share if only one is marked locked */
	unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED;
	unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED;

	/*
	 * match the virtual addresses, permission and the alignment of the
	 * page table page.
	 */
	if (pmd_index(addr) != pmd_index(saddr) ||
	    vm_flags != svm_flags ||
	    sbase < svma->vm_start || svma->vm_end < s_end)
		return 0;

	return saddr;
}

static int vma_shareable(struct vm_area_struct *vma, unsigned long addr)
{
	unsigned long base = addr & PUD_MASK;
	unsigned long end = base + PUD_SIZE;

	/*
	 * check on proper vm_flags and page table alignment
	 */
	if (vma->vm_flags & VM_MAYSHARE &&
	    vma->vm_start <= base && end <= vma->vm_end)
		return 1;
	return 0;
}

/*
 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
 * and returns the corresponding pte. While this is not necessary for the
 * !shared pmd case because we can allocate the pmd later as well, it makes the
 * code much cleaner. pmd allocation is essential for the shared case because
 * pud has to be populated inside the same i_mmap_mutex section - otherwise
 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
 * bad pmd for sharing.
 */
pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
{
	struct vm_area_struct *vma = find_vma(mm, addr);
	struct address_space *mapping = vma->vm_file->f_mapping;
	pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
			vma->vm_pgoff;
	struct vm_area_struct *svma;
	unsigned long saddr;
	pte_t *spte = NULL;
	pte_t *pte;

	if (!vma_shareable(vma, addr))
		return (pte_t *)pmd_alloc(mm, pud, addr);

	mutex_lock(&mapping->i_mmap_mutex);
	vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
		if (svma == vma)
			continue;

		saddr = page_table_shareable(svma, vma, addr, idx);
		if (saddr) {
			spte = huge_pte_offset(svma->vm_mm, saddr);
			if (spte) {
				get_page(virt_to_page(spte));
				break;
			}
		}
	}

	if (!spte)
		goto out;

	spin_lock(&mm->page_table_lock);
	if (pud_none(*pud))
		pud_populate(mm, pud,
				(pmd_t *)((unsigned long)spte & PAGE_MASK));
	else
		put_page(virt_to_page(spte));
	spin_unlock(&mm->page_table_lock);
out:
	pte = (pte_t *)pmd_alloc(mm, pud, addr);
	mutex_unlock(&mapping->i_mmap_mutex);
	return pte;
}

/*
 * unmap huge page backed by shared pte.
 *
 * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
 * indicated by page_count > 1, unmap is achieved by clearing pud and
 * decrementing the ref count. If count == 1, the pte page is not shared.
 *
 * called with vma->vm_mm->page_table_lock held.
 *
 * returns: 1 successfully unmapped a shared pte page
 *	    0 the underlying pte page is not shared, or it is the last user
 */
int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
{
	pgd_t *pgd = pgd_offset(mm, *addr);
	pud_t *pud = pud_offset(pgd, *addr);

	BUG_ON(page_count(virt_to_page(ptep)) == 0);
	if (page_count(virt_to_page(ptep)) == 1)
		return 0;

	pud_clear(pud);
	put_page(virt_to_page(ptep));
	*addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
	return 1;
}
3259 3260 3261 3262 3263 3264 3265
#define want_pmd_share()	(1)
#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
{
	return NULL;
}
#define want_pmd_share()	(0)
3266 3267
#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */

3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348
#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
pte_t *huge_pte_alloc(struct mm_struct *mm,
			unsigned long addr, unsigned long sz)
{
	pgd_t *pgd;
	pud_t *pud;
	pte_t *pte = NULL;

	pgd = pgd_offset(mm, addr);
	pud = pud_alloc(mm, pgd, addr);
	if (pud) {
		if (sz == PUD_SIZE) {
			pte = (pte_t *)pud;
		} else {
			BUG_ON(sz != PMD_SIZE);
			if (want_pmd_share() && pud_none(*pud))
				pte = huge_pmd_share(mm, addr, pud);
			else
				pte = (pte_t *)pmd_alloc(mm, pud, addr);
		}
	}
	BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte));

	return pte;
}

pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
{
	pgd_t *pgd;
	pud_t *pud;
	pmd_t *pmd = NULL;

	pgd = pgd_offset(mm, addr);
	if (pgd_present(*pgd)) {
		pud = pud_offset(pgd, addr);
		if (pud_present(*pud)) {
			if (pud_huge(*pud))
				return (pte_t *)pud;
			pmd = pmd_offset(pud, addr);
		}
	}
	return (pte_t *) pmd;
}

struct page *
follow_huge_pmd(struct mm_struct *mm, unsigned long address,
		pmd_t *pmd, int write)
{
	struct page *page;

	page = pte_page(*(pte_t *)pmd);
	if (page)
		page += ((address & ~PMD_MASK) >> PAGE_SHIFT);
	return page;
}

struct page *
follow_huge_pud(struct mm_struct *mm, unsigned long address,
		pud_t *pud, int write)
{
	struct page *page;

	page = pte_page(*(pte_t *)pud);
	if (page)
		page += ((address & ~PUD_MASK) >> PAGE_SHIFT);
	return page;
}

#else /* !CONFIG_ARCH_WANT_GENERAL_HUGETLB */

/* Can be overriden by architectures */
__attribute__((weak)) struct page *
follow_huge_pud(struct mm_struct *mm, unsigned long address,
	       pud_t *pud, int write)
{
	BUG();
	return NULL;
}

#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */

3349 3350
#ifdef CONFIG_MEMORY_FAILURE

3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364
/* Should be called in hugetlb_lock */
static int is_hugepage_on_freelist(struct page *hpage)
{
	struct page *page;
	struct page *tmp;
	struct hstate *h = page_hstate(hpage);
	int nid = page_to_nid(hpage);

	list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru)
		if (page == hpage)
			return 1;
	return 0;
}

3365 3366 3367 3368
/*
 * This function is called from memory failure code.
 * Assume the caller holds page lock of the head page.
 */
3369
int dequeue_hwpoisoned_huge_page(struct page *hpage)
3370 3371 3372
{
	struct hstate *h = page_hstate(hpage);
	int nid = page_to_nid(hpage);
3373
	int ret = -EBUSY;
3374 3375

	spin_lock(&hugetlb_lock);
3376
	if (is_hugepage_on_freelist(hpage)) {
3377 3378 3379 3380 3381 3382 3383
		/*
		 * Hwpoisoned hugepage isn't linked to activelist or freelist,
		 * but dangling hpage->lru can trigger list-debug warnings
		 * (this happens when we call unpoison_memory() on it),
		 * so let it point to itself with list_del_init().
		 */
		list_del_init(&hpage->lru);
3384
		set_page_refcounted(hpage);
3385 3386 3387 3388
		h->free_huge_pages--;
		h->free_huge_pages_node[nid]--;
		ret = 0;
	}
3389
	spin_unlock(&hugetlb_lock);
3390
	return ret;
3391
}
3392
#endif