hugetlb.c 92.8 KB
Newer Older
L
Linus Torvalds 已提交
1 2
/*
 * Generic hugetlb support.
3
 * (C) Nadia Yvette Chambers, April 2004
L
Linus Torvalds 已提交
4 5 6 7 8
 */
#include <linux/list.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/mm.h>
9
#include <linux/seq_file.h>
L
Linus Torvalds 已提交
10 11
#include <linux/sysctl.h>
#include <linux/highmem.h>
A
Andrea Arcangeli 已提交
12
#include <linux/mmu_notifier.h>
L
Linus Torvalds 已提交
13
#include <linux/nodemask.h>
D
David Gibson 已提交
14
#include <linux/pagemap.h>
15
#include <linux/mempolicy.h>
16
#include <linux/cpuset.h>
17
#include <linux/mutex.h>
18
#include <linux/bootmem.h>
19
#include <linux/sysfs.h>
20
#include <linux/slab.h>
21
#include <linux/rmap.h>
22 23
#include <linux/swap.h>
#include <linux/swapops.h>
24
#include <linux/page-isolation.h>
25

D
David Gibson 已提交
26 27
#include <asm/page.h>
#include <asm/pgtable.h>
28
#include <asm/tlb.h>
D
David Gibson 已提交
29

30
#include <linux/io.h>
D
David Gibson 已提交
31
#include <linux/hugetlb.h>
32
#include <linux/hugetlb_cgroup.h>
33
#include <linux/node.h>
34
#include "internal.h"
L
Linus Torvalds 已提交
35 36

const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
37
unsigned long hugepages_treat_as_movable;
38

39
int hugetlb_max_hstate __read_mostly;
40 41 42
unsigned int default_hstate_idx;
struct hstate hstates[HUGE_MAX_HSTATE];

43 44
__initdata LIST_HEAD(huge_boot_pages);

45 46 47
/* for command line parsing */
static struct hstate * __initdata parsed_hstate;
static unsigned long __initdata default_hstate_max_huge_pages;
48
static unsigned long __initdata default_hstate_size;
49

50
/*
51 52
 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
 * free_huge_pages, and surplus_huge_pages.
53
 */
54
DEFINE_SPINLOCK(hugetlb_lock);
55

56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
{
	bool free = (spool->count == 0) && (spool->used_hpages == 0);

	spin_unlock(&spool->lock);

	/* If no pages are used, and no other handles to the subpool
	 * remain, free the subpool the subpool remain */
	if (free)
		kfree(spool);
}

struct hugepage_subpool *hugepage_new_subpool(long nr_blocks)
{
	struct hugepage_subpool *spool;

	spool = kmalloc(sizeof(*spool), GFP_KERNEL);
	if (!spool)
		return NULL;

	spin_lock_init(&spool->lock);
	spool->count = 1;
	spool->max_hpages = nr_blocks;
	spool->used_hpages = 0;

	return spool;
}

void hugepage_put_subpool(struct hugepage_subpool *spool)
{
	spin_lock(&spool->lock);
	BUG_ON(!spool->count);
	spool->count--;
	unlock_or_release_subpool(spool);
}

static int hugepage_subpool_get_pages(struct hugepage_subpool *spool,
				      long delta)
{
	int ret = 0;

	if (!spool)
		return 0;

	spin_lock(&spool->lock);
	if ((spool->used_hpages + delta) <= spool->max_hpages) {
		spool->used_hpages += delta;
	} else {
		ret = -ENOMEM;
	}
	spin_unlock(&spool->lock);

	return ret;
}

static void hugepage_subpool_put_pages(struct hugepage_subpool *spool,
				       long delta)
{
	if (!spool)
		return;

	spin_lock(&spool->lock);
	spool->used_hpages -= delta;
	/* If hugetlbfs_put_super couldn't free spool due to
	* an outstanding quota reference, free it now. */
	unlock_or_release_subpool(spool);
}

static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
{
	return HUGETLBFS_SB(inode->i_sb)->spool;
}

static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
{
A
Al Viro 已提交
131
	return subpool_inode(file_inode(vma->vm_file));
132 133
}

134 135 136
/*
 * Region tracking -- allows tracking of reservations and instantiated pages
 *                    across the pages in a mapping.
137
 *
138 139
 * The region data structures are embedded into a resv_map and
 * protected by a resv_map's lock
140 141 142 143 144 145 146
 */
struct file_region {
	struct list_head link;
	long from;
	long to;
};

147
static long region_add(struct resv_map *resv, long f, long t)
148
{
149
	struct list_head *head = &resv->regions;
150 151
	struct file_region *rg, *nrg, *trg;

152
	spin_lock(&resv->lock);
153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
	/* Locate the region we are either in or before. */
	list_for_each_entry(rg, head, link)
		if (f <= rg->to)
			break;

	/* Round our left edge to the current segment if it encloses us. */
	if (f > rg->from)
		f = rg->from;

	/* Check for and consume any regions we now overlap with. */
	nrg = rg;
	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		if (rg->from > t)
			break;

		/* If this area reaches higher then extend our area to
		 * include it completely.  If this is not the first area
		 * which we intend to reuse, free it. */
		if (rg->to > t)
			t = rg->to;
		if (rg != nrg) {
			list_del(&rg->link);
			kfree(rg);
		}
	}
	nrg->from = f;
	nrg->to = t;
182
	spin_unlock(&resv->lock);
183 184 185
	return 0;
}

186
static long region_chg(struct resv_map *resv, long f, long t)
187
{
188
	struct list_head *head = &resv->regions;
189
	struct file_region *rg, *nrg = NULL;
190 191
	long chg = 0;

192 193
retry:
	spin_lock(&resv->lock);
194 195 196 197 198 199 200 201 202
	/* Locate the region we are before or in. */
	list_for_each_entry(rg, head, link)
		if (f <= rg->to)
			break;

	/* If we are below the current region then a new region is required.
	 * Subtle, allocate a new region at the position but make it zero
	 * size such that we can guarantee to record the reservation. */
	if (&rg->link == head || t < rg->from) {
203 204 205 206 207 208 209 210 211 212 213
		if (!nrg) {
			spin_unlock(&resv->lock);
			nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
			if (!nrg)
				return -ENOMEM;

			nrg->from = f;
			nrg->to   = f;
			INIT_LIST_HEAD(&nrg->link);
			goto retry;
		}
214

215 216 217
		list_add(&nrg->link, rg->link.prev);
		chg = t - f;
		goto out_nrg;
218 219 220 221 222 223 224 225 226 227 228 229
	}

	/* Round our left edge to the current segment if it encloses us. */
	if (f > rg->from)
		f = rg->from;
	chg = t - f;

	/* Check for and consume any regions we now overlap with. */
	list_for_each_entry(rg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		if (rg->from > t)
230
			goto out;
231

L
Lucas De Marchi 已提交
232
		/* We overlap with this area, if it extends further than
233 234 235 236 237 238 239 240
		 * us then we must extend ourselves.  Account for its
		 * existing reservation. */
		if (rg->to > t) {
			chg += rg->to - t;
			t = rg->to;
		}
		chg -= rg->to - rg->from;
	}
241 242 243 244 245 246 247 248

out:
	spin_unlock(&resv->lock);
	/*  We already know we raced and no longer need the new region */
	kfree(nrg);
	return chg;
out_nrg:
	spin_unlock(&resv->lock);
249 250 251
	return chg;
}

252
static long region_truncate(struct resv_map *resv, long end)
253
{
254
	struct list_head *head = &resv->regions;
255 256 257
	struct file_region *rg, *trg;
	long chg = 0;

258
	spin_lock(&resv->lock);
259 260 261 262 263
	/* Locate the region we are either in or before. */
	list_for_each_entry(rg, head, link)
		if (end <= rg->to)
			break;
	if (&rg->link == head)
264
		goto out;
265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280

	/* If we are in the middle of a region then adjust it. */
	if (end > rg->from) {
		chg = rg->to - end;
		rg->to = end;
		rg = list_entry(rg->link.next, typeof(*rg), link);
	}

	/* Drop any remaining regions. */
	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		chg += rg->to - rg->from;
		list_del(&rg->link);
		kfree(rg);
	}
281 282 283

out:
	spin_unlock(&resv->lock);
284 285 286
	return chg;
}

287
static long region_count(struct resv_map *resv, long f, long t)
288
{
289
	struct list_head *head = &resv->regions;
290 291 292
	struct file_region *rg;
	long chg = 0;

293
	spin_lock(&resv->lock);
294 295
	/* Locate each segment we overlap with, and count that overlap. */
	list_for_each_entry(rg, head, link) {
296 297
		long seg_from;
		long seg_to;
298 299 300 301 302 303 304 305 306 307 308

		if (rg->to <= f)
			continue;
		if (rg->from >= t)
			break;

		seg_from = max(rg->from, f);
		seg_to = min(rg->to, t);

		chg += seg_to - seg_from;
	}
309
	spin_unlock(&resv->lock);
310 311 312 313

	return chg;
}

314 315 316 317
/*
 * Convert the address within this vma to the page offset within
 * the mapping, in pagecache page units; huge pages here.
 */
318 319
static pgoff_t vma_hugecache_offset(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address)
320
{
321 322
	return ((address - vma->vm_start) >> huge_page_shift(h)) +
			(vma->vm_pgoff >> huge_page_order(h));
323 324
}

325 326 327 328 329 330
pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
				     unsigned long address)
{
	return vma_hugecache_offset(hstate_vma(vma), vma, address);
}

331 332 333 334 335 336 337 338 339 340 341 342 343
/*
 * Return the size of the pages allocated when backing a VMA. In the majority
 * cases this will be same size as used by the page table entries.
 */
unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
{
	struct hstate *hstate;

	if (!is_vm_hugetlb_page(vma))
		return PAGE_SIZE;

	hstate = hstate_vma(vma);

344
	return 1UL << huge_page_shift(hstate);
345
}
346
EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
347

348 349 350 351 352 353 354 355 356 357 358 359 360
/*
 * Return the page size being used by the MMU to back a VMA. In the majority
 * of cases, the page size used by the kernel matches the MMU size. On
 * architectures where it differs, an architecture-specific version of this
 * function is required.
 */
#ifndef vma_mmu_pagesize
unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
{
	return vma_kernel_pagesize(vma);
}
#endif

361 362 363 364 365 366 367
/*
 * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
 * bits of the reservation map pointer, which are always clear due to
 * alignment.
 */
#define HPAGE_RESV_OWNER    (1UL << 0)
#define HPAGE_RESV_UNMAPPED (1UL << 1)
368
#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
369

370 371 372 373 374 375 376 377 378
/*
 * These helpers are used to track how many pages are reserved for
 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
 * is guaranteed to have their future faults succeed.
 *
 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
 * the reserve counters are updated with the hugetlb_lock held. It is safe
 * to reset the VMA at fork() time as it is not in use yet and there is no
 * chance of the global counters getting corrupted as a result of the values.
379 380 381 382 383 384 385 386 387
 *
 * The private mapping reservation is represented in a subtly different
 * manner to a shared mapping.  A shared mapping has a region map associated
 * with the underlying file, this region map represents the backing file
 * pages which have ever had a reservation assigned which this persists even
 * after the page is instantiated.  A private mapping has a region map
 * associated with the original mmap which is attached to all VMAs which
 * reference it, this region map represents those offsets which have consumed
 * reservation ie. where pages have been instantiated.
388
 */
389 390 391 392 393 394 395 396 397 398 399
static unsigned long get_vma_private_data(struct vm_area_struct *vma)
{
	return (unsigned long)vma->vm_private_data;
}

static void set_vma_private_data(struct vm_area_struct *vma,
							unsigned long value)
{
	vma->vm_private_data = (void *)value;
}

400
struct resv_map *resv_map_alloc(void)
401 402 403 404 405 406
{
	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
	if (!resv_map)
		return NULL;

	kref_init(&resv_map->refs);
407
	spin_lock_init(&resv_map->lock);
408 409 410 411 412
	INIT_LIST_HEAD(&resv_map->regions);

	return resv_map;
}

413
void resv_map_release(struct kref *ref)
414 415 416 417
{
	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);

	/* Clear out any active regions before we release the map. */
418
	region_truncate(resv_map, 0);
419 420 421 422
	kfree(resv_map);
}

static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
423 424
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
425
	if (!(vma->vm_flags & VM_MAYSHARE))
426 427
		return (struct resv_map *)(get_vma_private_data(vma) &
							~HPAGE_RESV_MASK);
428
	return NULL;
429 430
}

431
static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
432 433
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
434
	VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
435

436 437
	set_vma_private_data(vma, (get_vma_private_data(vma) &
				HPAGE_RESV_MASK) | (unsigned long)map);
438 439 440 441 442
}

static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
443
	VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
444 445

	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
446 447 448 449 450
}

static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
451 452

	return (get_vma_private_data(vma) & flag) != 0;
453 454
}

455
/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
456 457 458
void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
459
	if (!(vma->vm_flags & VM_MAYSHARE))
460 461 462 463
		vma->vm_private_data = (void *)0;
}

/* Returns true if the VMA has associated reserve pages */
464
static int vma_has_reserves(struct vm_area_struct *vma, long chg)
465
{
466 467 468 469 470 471 472 473 474 475 476 477 478 479 480
	if (vma->vm_flags & VM_NORESERVE) {
		/*
		 * This address is already reserved by other process(chg == 0),
		 * so, we should decrement reserved count. Without decrementing,
		 * reserve count remains after releasing inode, because this
		 * allocated page will go into page cache and is regarded as
		 * coming from reserved pool in releasing step.  Currently, we
		 * don't have any other solution to deal with this situation
		 * properly, so add work-around here.
		 */
		if (vma->vm_flags & VM_MAYSHARE && chg == 0)
			return 1;
		else
			return 0;
	}
481 482

	/* Shared mappings always use reserves */
483
	if (vma->vm_flags & VM_MAYSHARE)
484
		return 1;
485 486 487 488 489

	/*
	 * Only the process that called mmap() has reserves for
	 * private mappings.
	 */
490 491
	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
		return 1;
492

493
	return 0;
494 495
}

496
static void enqueue_huge_page(struct hstate *h, struct page *page)
L
Linus Torvalds 已提交
497 498
{
	int nid = page_to_nid(page);
499
	list_move(&page->lru, &h->hugepage_freelists[nid]);
500 501
	h->free_huge_pages++;
	h->free_huge_pages_node[nid]++;
L
Linus Torvalds 已提交
502 503
}

504 505 506 507
static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
{
	struct page *page;

508 509 510 511 512 513 514 515
	list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
		if (!is_migrate_isolate_page(page))
			break;
	/*
	 * if 'non-isolated free hugepage' not found on the list,
	 * the allocation fails.
	 */
	if (&h->hugepage_freelists[nid] == &page->lru)
516
		return NULL;
517
	list_move(&page->lru, &h->hugepage_activelist);
518
	set_page_refcounted(page);
519 520 521 522 523
	h->free_huge_pages--;
	h->free_huge_pages_node[nid]--;
	return page;
}

524 525 526 527 528 529 530 531 532
/* Movability of hugepages depends on migration support. */
static inline gfp_t htlb_alloc_mask(struct hstate *h)
{
	if (hugepages_treat_as_movable || hugepage_migration_support(h))
		return GFP_HIGHUSER_MOVABLE;
	else
		return GFP_HIGHUSER;
}

533 534
static struct page *dequeue_huge_page_vma(struct hstate *h,
				struct vm_area_struct *vma,
535 536
				unsigned long address, int avoid_reserve,
				long chg)
L
Linus Torvalds 已提交
537
{
538
	struct page *page = NULL;
539
	struct mempolicy *mpol;
540
	nodemask_t *nodemask;
541
	struct zonelist *zonelist;
542 543
	struct zone *zone;
	struct zoneref *z;
544
	unsigned int cpuset_mems_cookie;
L
Linus Torvalds 已提交
545

546 547 548 549 550
	/*
	 * A child process with MAP_PRIVATE mappings created by their parent
	 * have no page reserves. This check ensures that reservations are
	 * not "stolen". The child may still get SIGKILLed
	 */
551
	if (!vma_has_reserves(vma, chg) &&
552
			h->free_huge_pages - h->resv_huge_pages == 0)
553
		goto err;
554

555
	/* If reserves cannot be used, ensure enough pages are in the pool */
556
	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
557
		goto err;
558

559
retry_cpuset:
560
	cpuset_mems_cookie = read_mems_allowed_begin();
561
	zonelist = huge_zonelist(vma, address,
562
					htlb_alloc_mask(h), &mpol, &nodemask);
563

564 565
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
						MAX_NR_ZONES - 1, nodemask) {
566
		if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask(h))) {
567 568
			page = dequeue_huge_page_node(h, zone_to_nid(zone));
			if (page) {
569 570 571 572 573
				if (avoid_reserve)
					break;
				if (!vma_has_reserves(vma, chg))
					break;

574
				SetPagePrivate(page);
575
				h->resv_huge_pages--;
576 577
				break;
			}
A
Andrew Morton 已提交
578
		}
L
Linus Torvalds 已提交
579
	}
580

581
	mpol_cond_put(mpol);
582
	if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
583
		goto retry_cpuset;
L
Linus Torvalds 已提交
584
	return page;
585 586 587

err:
	return NULL;
L
Linus Torvalds 已提交
588 589
}

590
static void update_and_free_page(struct hstate *h, struct page *page)
A
Adam Litke 已提交
591 592
{
	int i;
593

594 595
	VM_BUG_ON(h->order >= MAX_ORDER);

596 597 598
	h->nr_huge_pages--;
	h->nr_huge_pages_node[page_to_nid(page)]--;
	for (i = 0; i < pages_per_huge_page(h); i++) {
599 600 601 602
		page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
				1 << PG_referenced | 1 << PG_dirty |
				1 << PG_active | 1 << PG_reserved |
				1 << PG_private | 1 << PG_writeback);
A
Adam Litke 已提交
603
	}
604
	VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
A
Adam Litke 已提交
605 606
	set_compound_page_dtor(page, NULL);
	set_page_refcounted(page);
607
	arch_release_hugepage(page);
608
	__free_pages(page, huge_page_order(h));
A
Adam Litke 已提交
609 610
}

611 612 613 614 615 616 617 618 619 620 621
struct hstate *size_to_hstate(unsigned long size)
{
	struct hstate *h;

	for_each_hstate(h) {
		if (huge_page_size(h) == size)
			return h;
	}
	return NULL;
}

622 623
static void free_huge_page(struct page *page)
{
624 625 626 627
	/*
	 * Can't pass hstate in here because it is called from the
	 * compound page destructor.
	 */
628
	struct hstate *h = page_hstate(page);
629
	int nid = page_to_nid(page);
630 631
	struct hugepage_subpool *spool =
		(struct hugepage_subpool *)page_private(page);
632
	bool restore_reserve;
633

634
	set_page_private(page, 0);
635
	page->mapping = NULL;
636
	BUG_ON(page_count(page));
637
	BUG_ON(page_mapcount(page));
638
	restore_reserve = PagePrivate(page);
639
	ClearPagePrivate(page);
640 641

	spin_lock(&hugetlb_lock);
642 643
	hugetlb_cgroup_uncharge_page(hstate_index(h),
				     pages_per_huge_page(h), page);
644 645 646
	if (restore_reserve)
		h->resv_huge_pages++;

647
	if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
648 649
		/* remove the page from active list */
		list_del(&page->lru);
650 651 652
		update_and_free_page(h, page);
		h->surplus_huge_pages--;
		h->surplus_huge_pages_node[nid]--;
653
	} else {
654
		arch_clear_hugepage_flags(page);
655
		enqueue_huge_page(h, page);
656
	}
657
	spin_unlock(&hugetlb_lock);
658
	hugepage_subpool_put_pages(spool, 1);
659 660
}

661
static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
662
{
663
	INIT_LIST_HEAD(&page->lru);
664 665
	set_compound_page_dtor(page, free_huge_page);
	spin_lock(&hugetlb_lock);
666
	set_hugetlb_cgroup(page, NULL);
667 668
	h->nr_huge_pages++;
	h->nr_huge_pages_node[nid]++;
669 670 671 672
	spin_unlock(&hugetlb_lock);
	put_page(page); /* free it into the hugepage allocator */
}

673 674 675 676 677 678 679 680 681
static void prep_compound_gigantic_page(struct page *page, unsigned long order)
{
	int i;
	int nr_pages = 1 << order;
	struct page *p = page + 1;

	/* we rely on prep_new_huge_page to set the destructor */
	set_compound_order(page, order);
	__SetPageHead(page);
682
	__ClearPageReserved(page);
683 684
	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
		__SetPageTail(p);
685 686 687 688 689 690 691 692 693 694 695 696 697
		/*
		 * For gigantic hugepages allocated through bootmem at
		 * boot, it's safer to be consistent with the not-gigantic
		 * hugepages and clear the PG_reserved bit from all tail pages
		 * too.  Otherwse drivers using get_user_pages() to access tail
		 * pages may get the reference counting wrong if they see
		 * PG_reserved set on a tail page (despite the head page not
		 * having PG_reserved set).  Enforcing this consistency between
		 * head and tail pages allows drivers to optimize away a check
		 * on the head page when they need know if put_page() is needed
		 * after get_user_pages().
		 */
		__ClearPageReserved(p);
698
		set_page_count(p, 0);
699 700 701 702
		p->first_page = page;
	}
}

A
Andrew Morton 已提交
703 704 705 706 707
/*
 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
 * transparent huge pages.  See the PageTransHuge() documentation for more
 * details.
 */
708 709 710 711 712 713
int PageHuge(struct page *page)
{
	if (!PageCompound(page))
		return 0;

	page = compound_head(page);
714
	return get_compound_page_dtor(page) == free_huge_page;
715
}
716 717
EXPORT_SYMBOL_GPL(PageHuge);

718 719 720 721 722 723 724 725 726
/*
 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
 * normal or transparent huge pages.
 */
int PageHeadHuge(struct page *page_head)
{
	if (!PageHead(page_head))
		return 0;

727
	return get_compound_page_dtor(page_head) == free_huge_page;
728 729
}

730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746
pgoff_t __basepage_index(struct page *page)
{
	struct page *page_head = compound_head(page);
	pgoff_t index = page_index(page_head);
	unsigned long compound_idx;

	if (!PageHuge(page_head))
		return page_index(page);

	if (compound_order(page_head) >= MAX_ORDER)
		compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
	else
		compound_idx = page - page_head;

	return (index << compound_order(page_head)) + compound_idx;
}

747
static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
L
Linus Torvalds 已提交
748 749
{
	struct page *page;
750

751 752 753
	if (h->order >= MAX_ORDER)
		return NULL;

754
	page = alloc_pages_exact_node(nid,
755
		htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
756
						__GFP_REPEAT|__GFP_NOWARN,
757
		huge_page_order(h));
L
Linus Torvalds 已提交
758
	if (page) {
759
		if (arch_prepare_hugepage(page)) {
760
			__free_pages(page, huge_page_order(h));
761
			return NULL;
762
		}
763
		prep_new_huge_page(h, page, nid);
L
Linus Torvalds 已提交
764
	}
765 766 767 768

	return page;
}

769
/*
770 771 772 773 774
 * common helper functions for hstate_next_node_to_{alloc|free}.
 * We may have allocated or freed a huge page based on a different
 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
 * be outside of *nodes_allowed.  Ensure that we use an allowed
 * node for alloc or free.
775
 */
776
static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
777
{
778
	nid = next_node(nid, *nodes_allowed);
779
	if (nid == MAX_NUMNODES)
780
		nid = first_node(*nodes_allowed);
781 782 783 784 785
	VM_BUG_ON(nid >= MAX_NUMNODES);

	return nid;
}

786 787 788 789 790 791 792
static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
{
	if (!node_isset(nid, *nodes_allowed))
		nid = next_node_allowed(nid, nodes_allowed);
	return nid;
}

793
/*
794 795 796 797
 * returns the previously saved node ["this node"] from which to
 * allocate a persistent huge page for the pool and advance the
 * next node from which to allocate, handling wrap at end of node
 * mask.
798
 */
799 800
static int hstate_next_node_to_alloc(struct hstate *h,
					nodemask_t *nodes_allowed)
801
{
802 803 804 805 806 807
	int nid;

	VM_BUG_ON(!nodes_allowed);

	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
808 809

	return nid;
810 811
}

812
/*
813 814 815 816
 * helper for free_pool_huge_page() - return the previously saved
 * node ["this node"] from which to free a huge page.  Advance the
 * next node id whether or not we find a free huge page to free so
 * that the next attempt to free addresses the next node.
817
 */
818
static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
819
{
820 821 822 823 824 825
	int nid;

	VM_BUG_ON(!nodes_allowed);

	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
826 827

	return nid;
828 829
}

830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863
#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)		\
	for (nr_nodes = nodes_weight(*mask);				\
		nr_nodes > 0 &&						\
		((node = hstate_next_node_to_alloc(hs, mask)) || 1);	\
		nr_nodes--)

#define for_each_node_mask_to_free(hs, nr_nodes, node, mask)		\
	for (nr_nodes = nodes_weight(*mask);				\
		nr_nodes > 0 &&						\
		((node = hstate_next_node_to_free(hs, mask)) || 1);	\
		nr_nodes--)

static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
{
	struct page *page;
	int nr_nodes, node;
	int ret = 0;

	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
		page = alloc_fresh_huge_page_node(h, node);
		if (page) {
			ret = 1;
			break;
		}
	}

	if (ret)
		count_vm_event(HTLB_BUDDY_PGALLOC);
	else
		count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);

	return ret;
}

864 865 866 867 868 869
/*
 * Free huge page from pool from next node to free.
 * Attempt to keep persistent huge pages more or less
 * balanced over allowed nodes.
 * Called with hugetlb_lock locked.
 */
870 871
static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
							 bool acct_surplus)
872
{
873
	int nr_nodes, node;
874 875
	int ret = 0;

876
	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
877 878 879 880
		/*
		 * If we're returning unused surplus pages, only examine
		 * nodes with surplus pages.
		 */
881 882
		if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
		    !list_empty(&h->hugepage_freelists[node])) {
883
			struct page *page =
884
				list_entry(h->hugepage_freelists[node].next,
885 886 887
					  struct page, lru);
			list_del(&page->lru);
			h->free_huge_pages--;
888
			h->free_huge_pages_node[node]--;
889 890
			if (acct_surplus) {
				h->surplus_huge_pages--;
891
				h->surplus_huge_pages_node[node]--;
892
			}
893 894
			update_and_free_page(h, page);
			ret = 1;
895
			break;
896
		}
897
	}
898 899 900 901

	return ret;
}

902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939
/*
 * Dissolve a given free hugepage into free buddy pages. This function does
 * nothing for in-use (including surplus) hugepages.
 */
static void dissolve_free_huge_page(struct page *page)
{
	spin_lock(&hugetlb_lock);
	if (PageHuge(page) && !page_count(page)) {
		struct hstate *h = page_hstate(page);
		int nid = page_to_nid(page);
		list_del(&page->lru);
		h->free_huge_pages--;
		h->free_huge_pages_node[nid]--;
		update_and_free_page(h, page);
	}
	spin_unlock(&hugetlb_lock);
}

/*
 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
 * make specified memory blocks removable from the system.
 * Note that start_pfn should aligned with (minimum) hugepage size.
 */
void dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
{
	unsigned int order = 8 * sizeof(void *);
	unsigned long pfn;
	struct hstate *h;

	/* Set scan step to minimum hugepage size */
	for_each_hstate(h)
		if (order > huge_page_order(h))
			order = huge_page_order(h);
	VM_BUG_ON(!IS_ALIGNED(start_pfn, 1 << order));
	for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order)
		dissolve_free_huge_page(pfn_to_page(pfn));
}

940
static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
941 942
{
	struct page *page;
943
	unsigned int r_nid;
944

945 946 947
	if (h->order >= MAX_ORDER)
		return NULL;

948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971
	/*
	 * Assume we will successfully allocate the surplus page to
	 * prevent racing processes from causing the surplus to exceed
	 * overcommit
	 *
	 * This however introduces a different race, where a process B
	 * tries to grow the static hugepage pool while alloc_pages() is
	 * called by process A. B will only examine the per-node
	 * counters in determining if surplus huge pages can be
	 * converted to normal huge pages in adjust_pool_surplus(). A
	 * won't be able to increment the per-node counter, until the
	 * lock is dropped by B, but B doesn't drop hugetlb_lock until
	 * no more huge pages can be converted from surplus to normal
	 * state (and doesn't try to convert again). Thus, we have a
	 * case where a surplus huge page exists, the pool is grown, and
	 * the surplus huge page still exists after, even though it
	 * should just have been converted to a normal huge page. This
	 * does not leak memory, though, as the hugepage will be freed
	 * once it is out of use. It also does not allow the counters to
	 * go out of whack in adjust_pool_surplus() as we don't modify
	 * the node values until we've gotten the hugepage and only the
	 * per-node value is checked there.
	 */
	spin_lock(&hugetlb_lock);
972
	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
973 974 975
		spin_unlock(&hugetlb_lock);
		return NULL;
	} else {
976 977
		h->nr_huge_pages++;
		h->surplus_huge_pages++;
978 979 980
	}
	spin_unlock(&hugetlb_lock);

981
	if (nid == NUMA_NO_NODE)
982
		page = alloc_pages(htlb_alloc_mask(h)|__GFP_COMP|
983 984 985 986
				   __GFP_REPEAT|__GFP_NOWARN,
				   huge_page_order(h));
	else
		page = alloc_pages_exact_node(nid,
987
			htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
988
			__GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
989

990 991
	if (page && arch_prepare_hugepage(page)) {
		__free_pages(page, huge_page_order(h));
992
		page = NULL;
993 994
	}

995
	spin_lock(&hugetlb_lock);
996
	if (page) {
997
		INIT_LIST_HEAD(&page->lru);
998
		r_nid = page_to_nid(page);
999
		set_compound_page_dtor(page, free_huge_page);
1000
		set_hugetlb_cgroup(page, NULL);
1001 1002 1003
		/*
		 * We incremented the global counters already
		 */
1004 1005
		h->nr_huge_pages_node[r_nid]++;
		h->surplus_huge_pages_node[r_nid]++;
1006
		__count_vm_event(HTLB_BUDDY_PGALLOC);
1007
	} else {
1008 1009
		h->nr_huge_pages--;
		h->surplus_huge_pages--;
1010
		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1011
	}
1012
	spin_unlock(&hugetlb_lock);
1013 1014 1015 1016

	return page;
}

1017 1018 1019 1020 1021 1022 1023
/*
 * This allocation function is useful in the context where vma is irrelevant.
 * E.g. soft-offlining uses this function because it only cares physical
 * address of error page.
 */
struct page *alloc_huge_page_node(struct hstate *h, int nid)
{
1024
	struct page *page = NULL;
1025 1026

	spin_lock(&hugetlb_lock);
1027 1028
	if (h->free_huge_pages - h->resv_huge_pages > 0)
		page = dequeue_huge_page_node(h, nid);
1029 1030
	spin_unlock(&hugetlb_lock);

1031
	if (!page)
1032 1033 1034 1035 1036
		page = alloc_buddy_huge_page(h, nid);

	return page;
}

1037
/*
L
Lucas De Marchi 已提交
1038
 * Increase the hugetlb pool such that it can accommodate a reservation
1039 1040
 * of size 'delta'.
 */
1041
static int gather_surplus_pages(struct hstate *h, int delta)
1042 1043 1044 1045 1046
{
	struct list_head surplus_list;
	struct page *page, *tmp;
	int ret, i;
	int needed, allocated;
1047
	bool alloc_ok = true;
1048

1049
	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1050
	if (needed <= 0) {
1051
		h->resv_huge_pages += delta;
1052
		return 0;
1053
	}
1054 1055 1056 1057 1058 1059 1060 1061

	allocated = 0;
	INIT_LIST_HEAD(&surplus_list);

	ret = -ENOMEM;
retry:
	spin_unlock(&hugetlb_lock);
	for (i = 0; i < needed; i++) {
1062
		page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1063 1064 1065 1066
		if (!page) {
			alloc_ok = false;
			break;
		}
1067 1068
		list_add(&page->lru, &surplus_list);
	}
1069
	allocated += i;
1070 1071 1072 1073 1074 1075

	/*
	 * After retaking hugetlb_lock, we need to recalculate 'needed'
	 * because either resv_huge_pages or free_huge_pages may have changed.
	 */
	spin_lock(&hugetlb_lock);
1076 1077
	needed = (h->resv_huge_pages + delta) -
			(h->free_huge_pages + allocated);
1078 1079 1080 1081 1082 1083 1084 1085 1086 1087
	if (needed > 0) {
		if (alloc_ok)
			goto retry;
		/*
		 * We were not able to allocate enough pages to
		 * satisfy the entire reservation so we free what
		 * we've allocated so far.
		 */
		goto free;
	}
1088 1089
	/*
	 * The surplus_list now contains _at_least_ the number of extra pages
L
Lucas De Marchi 已提交
1090
	 * needed to accommodate the reservation.  Add the appropriate number
1091
	 * of pages to the hugetlb pool and free the extras back to the buddy
1092 1093 1094
	 * allocator.  Commit the entire reservation here to prevent another
	 * process from stealing the pages as they are added to the pool but
	 * before they are reserved.
1095 1096
	 */
	needed += allocated;
1097
	h->resv_huge_pages += delta;
1098
	ret = 0;
1099

1100
	/* Free the needed pages to the hugetlb pool */
1101
	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1102 1103
		if ((--needed) < 0)
			break;
1104 1105 1106 1107 1108
		/*
		 * This page is now managed by the hugetlb allocator and has
		 * no users -- drop the buddy allocator's reference.
		 */
		put_page_testzero(page);
1109
		VM_BUG_ON_PAGE(page_count(page), page);
1110
		enqueue_huge_page(h, page);
1111
	}
1112
free:
1113
	spin_unlock(&hugetlb_lock);
1114 1115

	/* Free unnecessary surplus pages to the buddy allocator */
1116 1117
	list_for_each_entry_safe(page, tmp, &surplus_list, lru)
		put_page(page);
1118
	spin_lock(&hugetlb_lock);
1119 1120 1121 1122 1123 1124 1125 1126

	return ret;
}

/*
 * When releasing a hugetlb pool reservation, any surplus pages that were
 * allocated to satisfy the reservation must be explicitly freed if they were
 * never used.
1127
 * Called with hugetlb_lock held.
1128
 */
1129 1130
static void return_unused_surplus_pages(struct hstate *h,
					unsigned long unused_resv_pages)
1131 1132 1133
{
	unsigned long nr_pages;

1134
	/* Uncommit the reservation */
1135
	h->resv_huge_pages -= unused_resv_pages;
1136

1137 1138 1139 1140
	/* Cannot return gigantic pages currently */
	if (h->order >= MAX_ORDER)
		return;

1141
	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1142

1143 1144
	/*
	 * We want to release as many surplus pages as possible, spread
1145 1146 1147 1148 1149
	 * evenly across all nodes with memory. Iterate across these nodes
	 * until we can no longer free unreserved surplus pages. This occurs
	 * when the nodes with surplus pages have no free pages.
	 * free_pool_huge_page() will balance the the freed pages across the
	 * on-line nodes with memory and will handle the hstate accounting.
1150 1151
	 */
	while (nr_pages--) {
1152
		if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1153
			break;
1154 1155 1156
	}
}

1157 1158 1159
/*
 * Determine if the huge page at addr within the vma has an associated
 * reservation.  Where it does not we will need to logically increase
1160 1161 1162 1163 1164 1165
 * reservation and actually increase subpool usage before an allocation
 * can occur.  Where any new reservation would be required the
 * reservation change is prepared, but not committed.  Once the page
 * has been allocated from the subpool and instantiated the change should
 * be committed via vma_commit_reservation.  No action is required on
 * failure.
1166
 */
1167
static long vma_needs_reservation(struct hstate *h,
1168
			struct vm_area_struct *vma, unsigned long addr)
1169 1170 1171 1172
{
	struct address_space *mapping = vma->vm_file->f_mapping;
	struct inode *inode = mapping->host;

1173
	if (vma->vm_flags & VM_MAYSHARE) {
1174
		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1175 1176
		struct resv_map *resv = inode->i_mapping->private_data;

1177
		return region_chg(resv, idx, idx + 1);
1178

1179 1180
	} else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
		return 1;
1181

1182
	} else  {
1183
		long err;
1184
		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1185
		struct resv_map *resv = vma_resv_map(vma);
1186

1187
		err = region_chg(resv, idx, idx + 1);
1188 1189 1190 1191
		if (err < 0)
			return err;
		return 0;
	}
1192
}
1193 1194
static void vma_commit_reservation(struct hstate *h,
			struct vm_area_struct *vma, unsigned long addr)
1195 1196 1197 1198
{
	struct address_space *mapping = vma->vm_file->f_mapping;
	struct inode *inode = mapping->host;

1199
	if (vma->vm_flags & VM_MAYSHARE) {
1200
		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1201 1202
		struct resv_map *resv = inode->i_mapping->private_data;

1203
		region_add(resv, idx, idx + 1);
1204 1205

	} else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1206
		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1207
		struct resv_map *resv = vma_resv_map(vma);
1208 1209

		/* Mark this page used in the map. */
1210
		region_add(resv, idx, idx + 1);
1211 1212 1213
	}
}

1214
static struct page *alloc_huge_page(struct vm_area_struct *vma,
1215
				    unsigned long addr, int avoid_reserve)
L
Linus Torvalds 已提交
1216
{
1217
	struct hugepage_subpool *spool = subpool_vma(vma);
1218
	struct hstate *h = hstate_vma(vma);
1219
	struct page *page;
1220
	long chg;
1221 1222
	int ret, idx;
	struct hugetlb_cgroup *h_cg;
1223

1224
	idx = hstate_index(h);
1225
	/*
1226 1227 1228 1229 1230 1231
	 * Processes that did not create the mapping will have no
	 * reserves and will not have accounted against subpool
	 * limit. Check that the subpool limit can be made before
	 * satisfying the allocation MAP_NORESERVE mappings may also
	 * need pages and subpool limit allocated allocated if no reserve
	 * mapping overlaps.
1232
	 */
1233
	chg = vma_needs_reservation(h, vma, addr);
1234
	if (chg < 0)
1235
		return ERR_PTR(-ENOMEM);
1236 1237
	if (chg || avoid_reserve)
		if (hugepage_subpool_get_pages(spool, 1))
1238
			return ERR_PTR(-ENOSPC);
L
Linus Torvalds 已提交
1239

1240 1241
	ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
	if (ret) {
1242 1243
		if (chg || avoid_reserve)
			hugepage_subpool_put_pages(spool, 1);
1244 1245
		return ERR_PTR(-ENOSPC);
	}
L
Linus Torvalds 已提交
1246
	spin_lock(&hugetlb_lock);
1247
	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, chg);
1248
	if (!page) {
1249
		spin_unlock(&hugetlb_lock);
1250
		page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
K
Ken Chen 已提交
1251
		if (!page) {
1252 1253 1254
			hugetlb_cgroup_uncharge_cgroup(idx,
						       pages_per_huge_page(h),
						       h_cg);
1255 1256
			if (chg || avoid_reserve)
				hugepage_subpool_put_pages(spool, 1);
1257
			return ERR_PTR(-ENOSPC);
K
Ken Chen 已提交
1258
		}
1259 1260
		spin_lock(&hugetlb_lock);
		list_move(&page->lru, &h->hugepage_activelist);
1261
		/* Fall through */
K
Ken Chen 已提交
1262
	}
1263 1264
	hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
	spin_unlock(&hugetlb_lock);
1265

1266
	set_page_private(page, (unsigned long)spool);
1267

1268
	vma_commit_reservation(h, vma, addr);
1269
	return page;
1270 1271
}

1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285
/*
 * alloc_huge_page()'s wrapper which simply returns the page if allocation
 * succeeds, otherwise NULL. This function is called from new_vma_page(),
 * where no ERR_VALUE is expected to be returned.
 */
struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
				unsigned long addr, int avoid_reserve)
{
	struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
	if (IS_ERR(page))
		page = NULL;
	return page;
}

1286
int __weak alloc_bootmem_huge_page(struct hstate *h)
1287 1288
{
	struct huge_bootmem_page *m;
1289
	int nr_nodes, node;
1290

1291
	for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
1292 1293
		void *addr;

1294 1295 1296
		addr = memblock_virt_alloc_try_nid_nopanic(
				huge_page_size(h), huge_page_size(h),
				0, BOOTMEM_ALLOC_ACCESSIBLE, node);
1297 1298 1299 1300 1301 1302 1303
		if (addr) {
			/*
			 * Use the beginning of the huge page to store the
			 * huge_bootmem_page struct (until gather_bootmem
			 * puts them into the mem_map).
			 */
			m = addr;
1304
			goto found;
1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316
		}
	}
	return 0;

found:
	BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
	/* Put them into a private list first because mem_map is not up yet */
	list_add(&m->list, &huge_boot_pages);
	m->hstate = h;
	return 1;
}

1317 1318 1319 1320 1321 1322 1323 1324
static void prep_compound_huge_page(struct page *page, int order)
{
	if (unlikely(order > (MAX_ORDER - 1)))
		prep_compound_gigantic_page(page, order);
	else
		prep_compound_page(page, order);
}

1325 1326 1327 1328 1329 1330 1331
/* Put bootmem huge pages into the standard lists after mem_map is up */
static void __init gather_bootmem_prealloc(void)
{
	struct huge_bootmem_page *m;

	list_for_each_entry(m, &huge_boot_pages, list) {
		struct hstate *h = m->hstate;
1332 1333 1334 1335
		struct page *page;

#ifdef CONFIG_HIGHMEM
		page = pfn_to_page(m->phys >> PAGE_SHIFT);
1336 1337
		memblock_free_late(__pa(m),
				   sizeof(struct huge_bootmem_page));
1338 1339 1340
#else
		page = virt_to_page(m);
#endif
1341
		WARN_ON(page_count(page) != 1);
1342
		prep_compound_huge_page(page, h->order);
1343
		WARN_ON(PageReserved(page));
1344
		prep_new_huge_page(h, page, page_to_nid(page));
1345 1346 1347 1348 1349 1350 1351
		/*
		 * If we had gigantic hugepages allocated at boot time, we need
		 * to restore the 'stolen' pages to totalram_pages in order to
		 * fix confusing memory reports from free(1) and another
		 * side-effects, like CommitLimit going negative.
		 */
		if (h->order > (MAX_ORDER - 1))
1352
			adjust_managed_page_count(page, 1 << h->order);
1353 1354 1355
	}
}

1356
static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
L
Linus Torvalds 已提交
1357 1358
{
	unsigned long i;
1359

1360
	for (i = 0; i < h->max_huge_pages; ++i) {
1361 1362 1363
		if (h->order >= MAX_ORDER) {
			if (!alloc_bootmem_huge_page(h))
				break;
1364
		} else if (!alloc_fresh_huge_page(h,
1365
					 &node_states[N_MEMORY]))
L
Linus Torvalds 已提交
1366 1367
			break;
	}
1368
	h->max_huge_pages = i;
1369 1370 1371 1372 1373 1374 1375
}

static void __init hugetlb_init_hstates(void)
{
	struct hstate *h;

	for_each_hstate(h) {
1376 1377 1378
		/* oversize hugepages were init'ed in early boot */
		if (h->order < MAX_ORDER)
			hugetlb_hstate_alloc_pages(h);
1379 1380 1381
	}
}

A
Andi Kleen 已提交
1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392
static char * __init memfmt(char *buf, unsigned long n)
{
	if (n >= (1UL << 30))
		sprintf(buf, "%lu GB", n >> 30);
	else if (n >= (1UL << 20))
		sprintf(buf, "%lu MB", n >> 20);
	else
		sprintf(buf, "%lu KB", n >> 10);
	return buf;
}

1393 1394 1395 1396 1397
static void __init report_hugepages(void)
{
	struct hstate *h;

	for_each_hstate(h) {
A
Andi Kleen 已提交
1398
		char buf[32];
1399
		pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
A
Andi Kleen 已提交
1400 1401
			memfmt(buf, huge_page_size(h)),
			h->free_huge_pages);
1402 1403 1404
	}
}

L
Linus Torvalds 已提交
1405
#ifdef CONFIG_HIGHMEM
1406 1407
static void try_to_free_low(struct hstate *h, unsigned long count,
						nodemask_t *nodes_allowed)
L
Linus Torvalds 已提交
1408
{
1409 1410
	int i;

1411 1412 1413
	if (h->order >= MAX_ORDER)
		return;

1414
	for_each_node_mask(i, *nodes_allowed) {
L
Linus Torvalds 已提交
1415
		struct page *page, *next;
1416 1417 1418
		struct list_head *freel = &h->hugepage_freelists[i];
		list_for_each_entry_safe(page, next, freel, lru) {
			if (count >= h->nr_huge_pages)
1419
				return;
L
Linus Torvalds 已提交
1420 1421 1422
			if (PageHighMem(page))
				continue;
			list_del(&page->lru);
1423
			update_and_free_page(h, page);
1424 1425
			h->free_huge_pages--;
			h->free_huge_pages_node[page_to_nid(page)]--;
L
Linus Torvalds 已提交
1426 1427 1428 1429
		}
	}
}
#else
1430 1431
static inline void try_to_free_low(struct hstate *h, unsigned long count,
						nodemask_t *nodes_allowed)
L
Linus Torvalds 已提交
1432 1433 1434 1435
{
}
#endif

1436 1437 1438 1439 1440
/*
 * Increment or decrement surplus_huge_pages.  Keep node-specific counters
 * balanced by operating on them in a round-robin fashion.
 * Returns 1 if an adjustment was made.
 */
1441 1442
static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
				int delta)
1443
{
1444
	int nr_nodes, node;
1445 1446 1447

	VM_BUG_ON(delta != -1 && delta != 1);

1448 1449 1450 1451
	if (delta < 0) {
		for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
			if (h->surplus_huge_pages_node[node])
				goto found;
1452
		}
1453 1454 1455 1456 1457
	} else {
		for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
			if (h->surplus_huge_pages_node[node] <
					h->nr_huge_pages_node[node])
				goto found;
1458
		}
1459 1460
	}
	return 0;
1461

1462 1463 1464 1465
found:
	h->surplus_huge_pages += delta;
	h->surplus_huge_pages_node[node] += delta;
	return 1;
1466 1467
}

1468
#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1469 1470
static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
						nodemask_t *nodes_allowed)
L
Linus Torvalds 已提交
1471
{
1472
	unsigned long min_count, ret;
L
Linus Torvalds 已提交
1473

1474 1475 1476
	if (h->order >= MAX_ORDER)
		return h->max_huge_pages;

1477 1478 1479 1480
	/*
	 * Increase the pool size
	 * First take pages out of surplus state.  Then make up the
	 * remaining difference by allocating fresh huge pages.
1481 1482 1483 1484 1485 1486
	 *
	 * We might race with alloc_buddy_huge_page() here and be unable
	 * to convert a surplus huge page to a normal huge page. That is
	 * not critical, though, it just means the overall size of the
	 * pool might be one hugepage larger than it needs to be, but
	 * within all the constraints specified by the sysctls.
1487
	 */
L
Linus Torvalds 已提交
1488
	spin_lock(&hugetlb_lock);
1489
	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1490
		if (!adjust_pool_surplus(h, nodes_allowed, -1))
1491 1492 1493
			break;
	}

1494
	while (count > persistent_huge_pages(h)) {
1495 1496 1497 1498 1499 1500
		/*
		 * If this allocation races such that we no longer need the
		 * page, free_huge_page will handle it by freeing the page
		 * and reducing the surplus.
		 */
		spin_unlock(&hugetlb_lock);
1501
		ret = alloc_fresh_huge_page(h, nodes_allowed);
1502 1503 1504 1505
		spin_lock(&hugetlb_lock);
		if (!ret)
			goto out;

1506 1507 1508
		/* Bail for signals. Probably ctrl-c from user */
		if (signal_pending(current))
			goto out;
1509 1510 1511 1512 1513 1514 1515 1516
	}

	/*
	 * Decrease the pool size
	 * First return free pages to the buddy allocator (being careful
	 * to keep enough around to satisfy reservations).  Then place
	 * pages into surplus state as needed so the pool will shrink
	 * to the desired size as pages become free.
1517 1518 1519 1520 1521 1522 1523 1524
	 *
	 * By placing pages into the surplus state independent of the
	 * overcommit value, we are allowing the surplus pool size to
	 * exceed overcommit. There are few sane options here. Since
	 * alloc_buddy_huge_page() is checking the global counter,
	 * though, we'll note that we're not allowed to exceed surplus
	 * and won't grow the pool anywhere else. Not until one of the
	 * sysctls are changed, or the surplus pages go out of use.
1525
	 */
1526
	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1527
	min_count = max(count, min_count);
1528
	try_to_free_low(h, min_count, nodes_allowed);
1529
	while (min_count < persistent_huge_pages(h)) {
1530
		if (!free_pool_huge_page(h, nodes_allowed, 0))
L
Linus Torvalds 已提交
1531 1532
			break;
	}
1533
	while (count < persistent_huge_pages(h)) {
1534
		if (!adjust_pool_surplus(h, nodes_allowed, 1))
1535 1536 1537
			break;
	}
out:
1538
	ret = persistent_huge_pages(h);
L
Linus Torvalds 已提交
1539
	spin_unlock(&hugetlb_lock);
1540
	return ret;
L
Linus Torvalds 已提交
1541 1542
}

1543 1544 1545 1546 1547 1548 1549 1550 1551 1552
#define HSTATE_ATTR_RO(_name) \
	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)

#define HSTATE_ATTR(_name) \
	static struct kobj_attribute _name##_attr = \
		__ATTR(_name, 0644, _name##_show, _name##_store)

static struct kobject *hugepages_kobj;
static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];

1553 1554 1555
static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);

static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
1556 1557
{
	int i;
1558

1559
	for (i = 0; i < HUGE_MAX_HSTATE; i++)
1560 1561 1562
		if (hstate_kobjs[i] == kobj) {
			if (nidp)
				*nidp = NUMA_NO_NODE;
1563
			return &hstates[i];
1564 1565 1566
		}

	return kobj_to_node_hstate(kobj, nidp);
1567 1568
}

1569
static ssize_t nr_hugepages_show_common(struct kobject *kobj,
1570 1571
					struct kobj_attribute *attr, char *buf)
{
1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582
	struct hstate *h;
	unsigned long nr_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		nr_huge_pages = h->nr_huge_pages;
	else
		nr_huge_pages = h->nr_huge_pages_node[nid];

	return sprintf(buf, "%lu\n", nr_huge_pages);
1583
}
1584

1585 1586 1587
static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
			struct kobject *kobj, struct kobj_attribute *attr,
			const char *buf, size_t len)
1588 1589
{
	int err;
1590
	int nid;
1591
	unsigned long count;
1592
	struct hstate *h;
1593
	NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
1594

1595
	err = kstrtoul(buf, 10, &count);
1596
	if (err)
1597
		goto out;
1598

1599
	h = kobj_to_hstate(kobj, &nid);
1600 1601 1602 1603 1604
	if (h->order >= MAX_ORDER) {
		err = -EINVAL;
		goto out;
	}

1605 1606 1607 1608 1609 1610 1611
	if (nid == NUMA_NO_NODE) {
		/*
		 * global hstate attribute
		 */
		if (!(obey_mempolicy &&
				init_nodemask_of_mempolicy(nodes_allowed))) {
			NODEMASK_FREE(nodes_allowed);
1612
			nodes_allowed = &node_states[N_MEMORY];
1613 1614 1615 1616 1617 1618 1619 1620 1621
		}
	} else if (nodes_allowed) {
		/*
		 * per node hstate attribute: adjust count to global,
		 * but restrict alloc/free to the specified node.
		 */
		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
		init_nodemask_of_node(nodes_allowed, nid);
	} else
1622
		nodes_allowed = &node_states[N_MEMORY];
1623

1624
	h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
1625

1626
	if (nodes_allowed != &node_states[N_MEMORY])
1627 1628 1629
		NODEMASK_FREE(nodes_allowed);

	return len;
1630 1631 1632
out:
	NODEMASK_FREE(nodes_allowed);
	return err;
1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644
}

static ssize_t nr_hugepages_show(struct kobject *kobj,
				       struct kobj_attribute *attr, char *buf)
{
	return nr_hugepages_show_common(kobj, attr, buf);
}

static ssize_t nr_hugepages_store(struct kobject *kobj,
	       struct kobj_attribute *attr, const char *buf, size_t len)
{
	return nr_hugepages_store_common(false, kobj, attr, buf, len);
1645 1646 1647
}
HSTATE_ATTR(nr_hugepages);

1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668
#ifdef CONFIG_NUMA

/*
 * hstate attribute for optionally mempolicy-based constraint on persistent
 * huge page alloc/free.
 */
static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
				       struct kobj_attribute *attr, char *buf)
{
	return nr_hugepages_show_common(kobj, attr, buf);
}

static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
	       struct kobj_attribute *attr, const char *buf, size_t len)
{
	return nr_hugepages_store_common(true, kobj, attr, buf, len);
}
HSTATE_ATTR(nr_hugepages_mempolicy);
#endif


1669 1670 1671
static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
1672
	struct hstate *h = kobj_to_hstate(kobj, NULL);
1673 1674
	return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
}
1675

1676 1677 1678 1679 1680
static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
		struct kobj_attribute *attr, const char *buf, size_t count)
{
	int err;
	unsigned long input;
1681
	struct hstate *h = kobj_to_hstate(kobj, NULL);
1682

1683 1684 1685
	if (h->order >= MAX_ORDER)
		return -EINVAL;

1686
	err = kstrtoul(buf, 10, &input);
1687
	if (err)
1688
		return err;
1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700

	spin_lock(&hugetlb_lock);
	h->nr_overcommit_huge_pages = input;
	spin_unlock(&hugetlb_lock);

	return count;
}
HSTATE_ATTR(nr_overcommit_hugepages);

static ssize_t free_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711
	struct hstate *h;
	unsigned long free_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		free_huge_pages = h->free_huge_pages;
	else
		free_huge_pages = h->free_huge_pages_node[nid];

	return sprintf(buf, "%lu\n", free_huge_pages);
1712 1713 1714 1715 1716 1717
}
HSTATE_ATTR_RO(free_hugepages);

static ssize_t resv_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
1718
	struct hstate *h = kobj_to_hstate(kobj, NULL);
1719 1720 1721 1722 1723 1724 1725
	return sprintf(buf, "%lu\n", h->resv_huge_pages);
}
HSTATE_ATTR_RO(resv_hugepages);

static ssize_t surplus_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736
	struct hstate *h;
	unsigned long surplus_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		surplus_huge_pages = h->surplus_huge_pages;
	else
		surplus_huge_pages = h->surplus_huge_pages_node[nid];

	return sprintf(buf, "%lu\n", surplus_huge_pages);
1737 1738 1739 1740 1741 1742 1743 1744 1745
}
HSTATE_ATTR_RO(surplus_hugepages);

static struct attribute *hstate_attrs[] = {
	&nr_hugepages_attr.attr,
	&nr_overcommit_hugepages_attr.attr,
	&free_hugepages_attr.attr,
	&resv_hugepages_attr.attr,
	&surplus_hugepages_attr.attr,
1746 1747 1748
#ifdef CONFIG_NUMA
	&nr_hugepages_mempolicy_attr.attr,
#endif
1749 1750 1751 1752 1753 1754 1755
	NULL,
};

static struct attribute_group hstate_attr_group = {
	.attrs = hstate_attrs,
};

J
Jeff Mahoney 已提交
1756 1757 1758
static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
				    struct kobject **hstate_kobjs,
				    struct attribute_group *hstate_attr_group)
1759 1760
{
	int retval;
1761
	int hi = hstate_index(h);
1762

1763 1764
	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
	if (!hstate_kobjs[hi])
1765 1766
		return -ENOMEM;

1767
	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
1768
	if (retval)
1769
		kobject_put(hstate_kobjs[hi]);
1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783

	return retval;
}

static void __init hugetlb_sysfs_init(void)
{
	struct hstate *h;
	int err;

	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
	if (!hugepages_kobj)
		return;

	for_each_hstate(h) {
1784 1785
		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
					 hstate_kobjs, &hstate_attr_group);
1786
		if (err)
1787
			pr_err("Hugetlb: Unable to add hstate %s", h->name);
1788 1789 1790
	}
}

1791 1792 1793 1794
#ifdef CONFIG_NUMA

/*
 * node_hstate/s - associate per node hstate attributes, via their kobjects,
1795 1796 1797
 * with node devices in node_devices[] using a parallel array.  The array
 * index of a node device or _hstate == node id.
 * This is here to avoid any static dependency of the node device driver, in
1798 1799 1800 1801 1802 1803 1804 1805 1806
 * the base kernel, on the hugetlb module.
 */
struct node_hstate {
	struct kobject		*hugepages_kobj;
	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
};
struct node_hstate node_hstates[MAX_NUMNODES];

/*
1807
 * A subset of global hstate attributes for node devices
1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820
 */
static struct attribute *per_node_hstate_attrs[] = {
	&nr_hugepages_attr.attr,
	&free_hugepages_attr.attr,
	&surplus_hugepages_attr.attr,
	NULL,
};

static struct attribute_group per_node_hstate_attr_group = {
	.attrs = per_node_hstate_attrs,
};

/*
1821
 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843
 * Returns node id via non-NULL nidp.
 */
static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
{
	int nid;

	for (nid = 0; nid < nr_node_ids; nid++) {
		struct node_hstate *nhs = &node_hstates[nid];
		int i;
		for (i = 0; i < HUGE_MAX_HSTATE; i++)
			if (nhs->hstate_kobjs[i] == kobj) {
				if (nidp)
					*nidp = nid;
				return &hstates[i];
			}
	}

	BUG();
	return NULL;
}

/*
1844
 * Unregister hstate attributes from a single node device.
1845 1846
 * No-op if no hstate attributes attached.
 */
1847
static void hugetlb_unregister_node(struct node *node)
1848 1849
{
	struct hstate *h;
1850
	struct node_hstate *nhs = &node_hstates[node->dev.id];
1851 1852

	if (!nhs->hugepages_kobj)
1853
		return;		/* no hstate attributes */
1854

1855 1856 1857 1858 1859
	for_each_hstate(h) {
		int idx = hstate_index(h);
		if (nhs->hstate_kobjs[idx]) {
			kobject_put(nhs->hstate_kobjs[idx]);
			nhs->hstate_kobjs[idx] = NULL;
1860
		}
1861
	}
1862 1863 1864 1865 1866 1867

	kobject_put(nhs->hugepages_kobj);
	nhs->hugepages_kobj = NULL;
}

/*
1868
 * hugetlb module exit:  unregister hstate attributes from node devices
1869 1870 1871 1872 1873 1874 1875
 * that have them.
 */
static void hugetlb_unregister_all_nodes(void)
{
	int nid;

	/*
1876
	 * disable node device registrations.
1877 1878 1879 1880 1881 1882 1883
	 */
	register_hugetlbfs_with_node(NULL, NULL);

	/*
	 * remove hstate attributes from any nodes that have them.
	 */
	for (nid = 0; nid < nr_node_ids; nid++)
1884
		hugetlb_unregister_node(node_devices[nid]);
1885 1886 1887
}

/*
1888
 * Register hstate attributes for a single node device.
1889 1890
 * No-op if attributes already registered.
 */
1891
static void hugetlb_register_node(struct node *node)
1892 1893
{
	struct hstate *h;
1894
	struct node_hstate *nhs = &node_hstates[node->dev.id];
1895 1896 1897 1898 1899 1900
	int err;

	if (nhs->hugepages_kobj)
		return;		/* already allocated */

	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
1901
							&node->dev.kobj);
1902 1903 1904 1905 1906 1907 1908 1909
	if (!nhs->hugepages_kobj)
		return;

	for_each_hstate(h) {
		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
						nhs->hstate_kobjs,
						&per_node_hstate_attr_group);
		if (err) {
1910 1911
			pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
				h->name, node->dev.id);
1912 1913 1914 1915 1916 1917 1918
			hugetlb_unregister_node(node);
			break;
		}
	}
}

/*
1919
 * hugetlb init time:  register hstate attributes for all registered node
1920 1921
 * devices of nodes that have memory.  All on-line nodes should have
 * registered their associated device by this time.
1922 1923 1924 1925 1926
 */
static void hugetlb_register_all_nodes(void)
{
	int nid;

1927
	for_each_node_state(nid, N_MEMORY) {
1928
		struct node *node = node_devices[nid];
1929
		if (node->dev.id == nid)
1930 1931 1932 1933
			hugetlb_register_node(node);
	}

	/*
1934
	 * Let the node device driver know we're here so it can
1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955
	 * [un]register hstate attributes on node hotplug.
	 */
	register_hugetlbfs_with_node(hugetlb_register_node,
				     hugetlb_unregister_node);
}
#else	/* !CONFIG_NUMA */

static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
{
	BUG();
	if (nidp)
		*nidp = -1;
	return NULL;
}

static void hugetlb_unregister_all_nodes(void) { }

static void hugetlb_register_all_nodes(void) { }

#endif

1956 1957 1958 1959
static void __exit hugetlb_exit(void)
{
	struct hstate *h;

1960 1961
	hugetlb_unregister_all_nodes();

1962
	for_each_hstate(h) {
1963
		kobject_put(hstate_kobjs[hstate_index(h)]);
1964 1965 1966 1967 1968 1969 1970 1971
	}

	kobject_put(hugepages_kobj);
}
module_exit(hugetlb_exit);

static int __init hugetlb_init(void)
{
1972 1973 1974 1975 1976 1977
	/* Some platform decide whether they support huge pages at boot
	 * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
	 * there is no such support
	 */
	if (HPAGE_SHIFT == 0)
		return 0;
1978

1979 1980 1981 1982
	if (!size_to_hstate(default_hstate_size)) {
		default_hstate_size = HPAGE_SIZE;
		if (!size_to_hstate(default_hstate_size))
			hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
1983
	}
1984
	default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
1985 1986
	if (default_hstate_max_huge_pages)
		default_hstate.max_huge_pages = default_hstate_max_huge_pages;
1987 1988

	hugetlb_init_hstates();
1989
	gather_bootmem_prealloc();
1990 1991 1992
	report_hugepages();

	hugetlb_sysfs_init();
1993
	hugetlb_register_all_nodes();
1994
	hugetlb_cgroup_file_init();
1995

1996 1997 1998 1999 2000 2001 2002 2003
	return 0;
}
module_init(hugetlb_init);

/* Should be called on processing a hugepagesz=... option */
void __init hugetlb_add_hstate(unsigned order)
{
	struct hstate *h;
2004 2005
	unsigned long i;

2006
	if (size_to_hstate(PAGE_SIZE << order)) {
2007
		pr_warning("hugepagesz= specified twice, ignoring\n");
2008 2009
		return;
	}
2010
	BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
2011
	BUG_ON(order == 0);
2012
	h = &hstates[hugetlb_max_hstate++];
2013 2014
	h->order = order;
	h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
2015 2016 2017 2018
	h->nr_huge_pages = 0;
	h->free_huge_pages = 0;
	for (i = 0; i < MAX_NUMNODES; ++i)
		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2019
	INIT_LIST_HEAD(&h->hugepage_activelist);
2020 2021
	h->next_nid_to_alloc = first_node(node_states[N_MEMORY]);
	h->next_nid_to_free = first_node(node_states[N_MEMORY]);
2022 2023
	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
					huge_page_size(h)/1024);
2024

2025 2026 2027
	parsed_hstate = h;
}

2028
static int __init hugetlb_nrpages_setup(char *s)
2029 2030
{
	unsigned long *mhp;
2031
	static unsigned long *last_mhp;
2032 2033

	/*
2034
	 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2035 2036
	 * so this hugepages= parameter goes to the "default hstate".
	 */
2037
	if (!hugetlb_max_hstate)
2038 2039 2040 2041
		mhp = &default_hstate_max_huge_pages;
	else
		mhp = &parsed_hstate->max_huge_pages;

2042
	if (mhp == last_mhp) {
2043 2044
		pr_warning("hugepages= specified twice without "
			   "interleaving hugepagesz=, ignoring\n");
2045 2046 2047
		return 1;
	}

2048 2049 2050
	if (sscanf(s, "%lu", mhp) <= 0)
		*mhp = 0;

2051 2052 2053 2054 2055
	/*
	 * Global state is always initialized later in hugetlb_init.
	 * But we need to allocate >= MAX_ORDER hstates here early to still
	 * use the bootmem allocator.
	 */
2056
	if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2057 2058 2059 2060
		hugetlb_hstate_alloc_pages(parsed_hstate);

	last_mhp = mhp;

2061 2062
	return 1;
}
2063 2064 2065 2066 2067 2068 2069 2070
__setup("hugepages=", hugetlb_nrpages_setup);

static int __init hugetlb_default_setup(char *s)
{
	default_hstate_size = memparse(s, &s);
	return 1;
}
__setup("default_hugepagesz=", hugetlb_default_setup);
2071

2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083
static unsigned int cpuset_mems_nr(unsigned int *array)
{
	int node;
	unsigned int nr = 0;

	for_each_node_mask(node, cpuset_current_mems_allowed)
		nr += array[node];

	return nr;
}

#ifdef CONFIG_SYSCTL
2084 2085 2086
static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
			 struct ctl_table *table, int write,
			 void __user *buffer, size_t *length, loff_t *ppos)
L
Linus Torvalds 已提交
2087
{
2088 2089
	struct hstate *h = &default_hstate;
	unsigned long tmp;
2090
	int ret;
2091

2092
	tmp = h->max_huge_pages;
2093

2094 2095 2096
	if (write && h->order >= MAX_ORDER)
		return -EINVAL;

2097 2098
	table->data = &tmp;
	table->maxlen = sizeof(unsigned long);
2099 2100 2101
	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
	if (ret)
		goto out;
2102

2103
	if (write) {
2104 2105
		NODEMASK_ALLOC(nodemask_t, nodes_allowed,
						GFP_KERNEL | __GFP_NORETRY);
2106 2107 2108
		if (!(obey_mempolicy &&
			       init_nodemask_of_mempolicy(nodes_allowed))) {
			NODEMASK_FREE(nodes_allowed);
2109
			nodes_allowed = &node_states[N_MEMORY];
2110 2111 2112
		}
		h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed);

2113
		if (nodes_allowed != &node_states[N_MEMORY])
2114 2115
			NODEMASK_FREE(nodes_allowed);
	}
2116 2117
out:
	return ret;
L
Linus Torvalds 已提交
2118
}
2119

2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136
int hugetlb_sysctl_handler(struct ctl_table *table, int write,
			  void __user *buffer, size_t *length, loff_t *ppos)
{

	return hugetlb_sysctl_handler_common(false, table, write,
							buffer, length, ppos);
}

#ifdef CONFIG_NUMA
int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
			  void __user *buffer, size_t *length, loff_t *ppos)
{
	return hugetlb_sysctl_handler_common(true, table, write,
							buffer, length, ppos);
}
#endif /* CONFIG_NUMA */

2137
int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2138
			void __user *buffer,
2139 2140
			size_t *length, loff_t *ppos)
{
2141
	struct hstate *h = &default_hstate;
2142
	unsigned long tmp;
2143
	int ret;
2144

2145
	tmp = h->nr_overcommit_huge_pages;
2146

2147 2148 2149
	if (write && h->order >= MAX_ORDER)
		return -EINVAL;

2150 2151
	table->data = &tmp;
	table->maxlen = sizeof(unsigned long);
2152 2153 2154
	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
	if (ret)
		goto out;
2155 2156 2157 2158 2159 2160

	if (write) {
		spin_lock(&hugetlb_lock);
		h->nr_overcommit_huge_pages = tmp;
		spin_unlock(&hugetlb_lock);
	}
2161 2162
out:
	return ret;
2163 2164
}

L
Linus Torvalds 已提交
2165 2166
#endif /* CONFIG_SYSCTL */

2167
void hugetlb_report_meminfo(struct seq_file *m)
L
Linus Torvalds 已提交
2168
{
2169
	struct hstate *h = &default_hstate;
2170
	seq_printf(m,
2171 2172 2173 2174 2175
			"HugePages_Total:   %5lu\n"
			"HugePages_Free:    %5lu\n"
			"HugePages_Rsvd:    %5lu\n"
			"HugePages_Surp:    %5lu\n"
			"Hugepagesize:   %8lu kB\n",
2176 2177 2178 2179 2180
			h->nr_huge_pages,
			h->free_huge_pages,
			h->resv_huge_pages,
			h->surplus_huge_pages,
			1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
L
Linus Torvalds 已提交
2181 2182 2183 2184
}

int hugetlb_report_node_meminfo(int nid, char *buf)
{
2185
	struct hstate *h = &default_hstate;
L
Linus Torvalds 已提交
2186 2187
	return sprintf(buf,
		"Node %d HugePages_Total: %5u\n"
2188 2189
		"Node %d HugePages_Free:  %5u\n"
		"Node %d HugePages_Surp:  %5u\n",
2190 2191 2192
		nid, h->nr_huge_pages_node[nid],
		nid, h->free_huge_pages_node[nid],
		nid, h->surplus_huge_pages_node[nid]);
L
Linus Torvalds 已提交
2193 2194
}

2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209
void hugetlb_show_meminfo(void)
{
	struct hstate *h;
	int nid;

	for_each_node_state(nid, N_MEMORY)
		for_each_hstate(h)
			pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
				nid,
				h->nr_huge_pages_node[nid],
				h->free_huge_pages_node[nid],
				h->surplus_huge_pages_node[nid],
				1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
}

L
Linus Torvalds 已提交
2210 2211 2212
/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
unsigned long hugetlb_total_pages(void)
{
2213 2214 2215 2216 2217 2218
	struct hstate *h;
	unsigned long nr_total_pages = 0;

	for_each_hstate(h)
		nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
	return nr_total_pages;
L
Linus Torvalds 已提交
2219 2220
}

2221
static int hugetlb_acct_memory(struct hstate *h, long delta)
M
Mel Gorman 已提交
2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243
{
	int ret = -ENOMEM;

	spin_lock(&hugetlb_lock);
	/*
	 * When cpuset is configured, it breaks the strict hugetlb page
	 * reservation as the accounting is done on a global variable. Such
	 * reservation is completely rubbish in the presence of cpuset because
	 * the reservation is not checked against page availability for the
	 * current cpuset. Application can still potentially OOM'ed by kernel
	 * with lack of free htlb page in cpuset that the task is in.
	 * Attempt to enforce strict accounting with cpuset is almost
	 * impossible (or too ugly) because cpuset is too fluid that
	 * task or memory node can be dynamically moved between cpusets.
	 *
	 * The change of semantics for shared hugetlb mapping with cpuset is
	 * undesirable. However, in order to preserve some of the semantics,
	 * we fall back to check against current free page availability as
	 * a best attempt and hopefully to minimize the impact of changing
	 * semantics that cpuset has.
	 */
	if (delta > 0) {
2244
		if (gather_surplus_pages(h, delta) < 0)
M
Mel Gorman 已提交
2245 2246
			goto out;

2247 2248
		if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
			return_unused_surplus_pages(h, delta);
M
Mel Gorman 已提交
2249 2250 2251 2252 2253 2254
			goto out;
		}
	}

	ret = 0;
	if (delta < 0)
2255
		return_unused_surplus_pages(h, (unsigned long) -delta);
M
Mel Gorman 已提交
2256 2257 2258 2259 2260 2261

out:
	spin_unlock(&hugetlb_lock);
	return ret;
}

2262 2263
static void hugetlb_vm_op_open(struct vm_area_struct *vma)
{
2264
	struct resv_map *resv = vma_resv_map(vma);
2265 2266 2267 2268 2269

	/*
	 * This new VMA should share its siblings reservation map if present.
	 * The VMA will only ever have a valid reservation map pointer where
	 * it is being copied for another still existing VMA.  As that VMA
L
Lucas De Marchi 已提交
2270
	 * has a reference to the reservation map it cannot disappear until
2271 2272 2273
	 * after this open call completes.  It is therefore safe to take a
	 * new reference here without additional locking.
	 */
2274 2275
	if (resv)
		kref_get(&resv->refs);
2276 2277
}

2278 2279
static void resv_map_put(struct vm_area_struct *vma)
{
2280
	struct resv_map *resv = vma_resv_map(vma);
2281

2282
	if (!resv)
2283
		return;
2284
	kref_put(&resv->refs, resv_map_release);
2285 2286
}

2287 2288
static void hugetlb_vm_op_close(struct vm_area_struct *vma)
{
2289
	struct hstate *h = hstate_vma(vma);
2290
	struct resv_map *resv = vma_resv_map(vma);
2291
	struct hugepage_subpool *spool = subpool_vma(vma);
2292 2293 2294 2295
	unsigned long reserve;
	unsigned long start;
	unsigned long end;

2296
	if (resv) {
2297 2298
		start = vma_hugecache_offset(h, vma, vma->vm_start);
		end = vma_hugecache_offset(h, vma, vma->vm_end);
2299 2300

		reserve = (end - start) -
2301
			region_count(resv, start, end);
2302

2303
		resv_map_put(vma);
2304

2305
		if (reserve) {
2306
			hugetlb_acct_memory(h, -reserve);
2307
			hugepage_subpool_put_pages(spool, reserve);
2308
		}
2309
	}
2310 2311
}

L
Linus Torvalds 已提交
2312 2313 2314 2315 2316 2317
/*
 * We cannot handle pagefaults against hugetlb pages at all.  They cause
 * handle_mm_fault() to try to instantiate regular-sized pages in the
 * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
 * this far.
 */
N
Nick Piggin 已提交
2318
static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
L
Linus Torvalds 已提交
2319 2320
{
	BUG();
N
Nick Piggin 已提交
2321
	return 0;
L
Linus Torvalds 已提交
2322 2323
}

2324
const struct vm_operations_struct hugetlb_vm_ops = {
N
Nick Piggin 已提交
2325
	.fault = hugetlb_vm_op_fault,
2326
	.open = hugetlb_vm_op_open,
2327
	.close = hugetlb_vm_op_close,
L
Linus Torvalds 已提交
2328 2329
};

2330 2331
static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
				int writable)
D
David Gibson 已提交
2332 2333 2334
{
	pte_t entry;

2335
	if (writable) {
2336 2337
		entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
					 vma->vm_page_prot)));
D
David Gibson 已提交
2338
	} else {
2339 2340
		entry = huge_pte_wrprotect(mk_huge_pte(page,
					   vma->vm_page_prot));
D
David Gibson 已提交
2341 2342 2343
	}
	entry = pte_mkyoung(entry);
	entry = pte_mkhuge(entry);
2344
	entry = arch_make_huge_pte(entry, vma, page, writable);
D
David Gibson 已提交
2345 2346 2347 2348

	return entry;
}

2349 2350 2351 2352 2353
static void set_huge_ptep_writable(struct vm_area_struct *vma,
				   unsigned long address, pte_t *ptep)
{
	pte_t entry;

2354
	entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
2355
	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
2356
		update_mmu_cache(vma, address, ptep);
2357 2358 2359
}


D
David Gibson 已提交
2360 2361 2362 2363 2364
int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
			    struct vm_area_struct *vma)
{
	pte_t *src_pte, *dst_pte, entry;
	struct page *ptepage;
2365
	unsigned long addr;
2366
	int cow;
2367 2368
	struct hstate *h = hstate_vma(vma);
	unsigned long sz = huge_page_size(h);
2369 2370 2371
	unsigned long mmun_start;	/* For mmu_notifiers */
	unsigned long mmun_end;		/* For mmu_notifiers */
	int ret = 0;
2372 2373

	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
D
David Gibson 已提交
2374

2375 2376 2377 2378 2379
	mmun_start = vma->vm_start;
	mmun_end = vma->vm_end;
	if (cow)
		mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);

2380
	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
2381
		spinlock_t *src_ptl, *dst_ptl;
H
Hugh Dickins 已提交
2382 2383 2384
		src_pte = huge_pte_offset(src, addr);
		if (!src_pte)
			continue;
2385
		dst_pte = huge_pte_alloc(dst, addr, sz);
2386 2387 2388 2389
		if (!dst_pte) {
			ret = -ENOMEM;
			break;
		}
2390 2391 2392 2393 2394

		/* If the pagetables are shared don't copy or take references */
		if (dst_pte == src_pte)
			continue;

2395 2396 2397
		dst_ptl = huge_pte_lock(h, dst, dst_pte);
		src_ptl = huge_pte_lockptr(h, src, src_pte);
		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
2398
		if (!huge_pte_none(huge_ptep_get(src_pte))) {
2399
			if (cow)
2400 2401
				huge_ptep_set_wrprotect(src, addr, src_pte);
			entry = huge_ptep_get(src_pte);
2402 2403
			ptepage = pte_page(entry);
			get_page(ptepage);
2404
			page_dup_rmap(ptepage);
2405 2406
			set_huge_pte_at(dst, addr, dst_pte, entry);
		}
2407 2408
		spin_unlock(src_ptl);
		spin_unlock(dst_ptl);
D
David Gibson 已提交
2409 2410
	}

2411 2412 2413 2414
	if (cow)
		mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);

	return ret;
D
David Gibson 已提交
2415 2416
}

N
Naoya Horiguchi 已提交
2417 2418 2419 2420 2421 2422 2423
static int is_hugetlb_entry_migration(pte_t pte)
{
	swp_entry_t swp;

	if (huge_pte_none(pte) || pte_present(pte))
		return 0;
	swp = pte_to_swp_entry(pte);
2424
	if (non_swap_entry(swp) && is_migration_entry(swp))
N
Naoya Horiguchi 已提交
2425
		return 1;
2426
	else
N
Naoya Horiguchi 已提交
2427 2428 2429
		return 0;
}

2430 2431 2432 2433 2434 2435 2436
static int is_hugetlb_entry_hwpoisoned(pte_t pte)
{
	swp_entry_t swp;

	if (huge_pte_none(pte) || pte_present(pte))
		return 0;
	swp = pte_to_swp_entry(pte);
2437
	if (non_swap_entry(swp) && is_hwpoison_entry(swp))
2438
		return 1;
2439
	else
2440 2441 2442
		return 0;
}

2443 2444 2445
void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
			    unsigned long start, unsigned long end,
			    struct page *ref_page)
D
David Gibson 已提交
2446
{
2447
	int force_flush = 0;
D
David Gibson 已提交
2448 2449
	struct mm_struct *mm = vma->vm_mm;
	unsigned long address;
2450
	pte_t *ptep;
D
David Gibson 已提交
2451
	pte_t pte;
2452
	spinlock_t *ptl;
D
David Gibson 已提交
2453
	struct page *page;
2454 2455
	struct hstate *h = hstate_vma(vma);
	unsigned long sz = huge_page_size(h);
2456 2457
	const unsigned long mmun_start = start;	/* For mmu_notifiers */
	const unsigned long mmun_end   = end;	/* For mmu_notifiers */
2458

D
David Gibson 已提交
2459
	WARN_ON(!is_vm_hugetlb_page(vma));
2460 2461
	BUG_ON(start & ~huge_page_mask(h));
	BUG_ON(end & ~huge_page_mask(h));
D
David Gibson 已提交
2462

2463
	tlb_start_vma(tlb, vma);
2464
	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2465
again:
2466
	for (address = start; address < end; address += sz) {
2467
		ptep = huge_pte_offset(mm, address);
A
Adam Litke 已提交
2468
		if (!ptep)
2469 2470
			continue;

2471
		ptl = huge_pte_lock(h, mm, ptep);
2472
		if (huge_pmd_unshare(mm, &address, ptep))
2473
			goto unlock;
2474

2475 2476
		pte = huge_ptep_get(ptep);
		if (huge_pte_none(pte))
2477
			goto unlock;
2478 2479 2480 2481

		/*
		 * HWPoisoned hugepage is already unmapped and dropped reference
		 */
2482
		if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
2483
			huge_pte_clear(mm, address, ptep);
2484
			goto unlock;
2485
		}
2486 2487

		page = pte_page(pte);
2488 2489 2490 2491 2492 2493 2494
		/*
		 * If a reference page is supplied, it is because a specific
		 * page is being unmapped, not a range. Ensure the page we
		 * are about to unmap is the actual page of interest.
		 */
		if (ref_page) {
			if (page != ref_page)
2495
				goto unlock;
2496 2497 2498 2499 2500 2501 2502 2503 2504

			/*
			 * Mark the VMA as having unmapped its page so that
			 * future faults in this VMA will fail rather than
			 * looking like data was lost
			 */
			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
		}

2505
		pte = huge_ptep_get_and_clear(mm, address, ptep);
2506
		tlb_remove_tlb_entry(tlb, ptep, address);
2507
		if (huge_pte_dirty(pte))
2508
			set_page_dirty(page);
2509

2510 2511
		page_remove_rmap(page);
		force_flush = !__tlb_remove_page(tlb, page);
2512 2513
		if (force_flush) {
			spin_unlock(ptl);
2514
			break;
2515
		}
2516
		/* Bail out after unmapping reference page if supplied */
2517 2518
		if (ref_page) {
			spin_unlock(ptl);
2519
			break;
2520 2521 2522
		}
unlock:
		spin_unlock(ptl);
D
David Gibson 已提交
2523
	}
2524 2525 2526 2527 2528 2529 2530 2531 2532 2533
	/*
	 * mmu_gather ran out of room to batch pages, we break out of
	 * the PTE lock to avoid doing the potential expensive TLB invalidate
	 * and page-free while holding it.
	 */
	if (force_flush) {
		force_flush = 0;
		tlb_flush_mmu(tlb);
		if (address < end && !ref_page)
			goto again;
2534
	}
2535
	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2536
	tlb_end_vma(tlb, vma);
L
Linus Torvalds 已提交
2537
}
D
David Gibson 已提交
2538

2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557
void __unmap_hugepage_range_final(struct mmu_gather *tlb,
			  struct vm_area_struct *vma, unsigned long start,
			  unsigned long end, struct page *ref_page)
{
	__unmap_hugepage_range(tlb, vma, start, end, ref_page);

	/*
	 * Clear this flag so that x86's huge_pmd_share page_table_shareable
	 * test will fail on a vma being torn down, and not grab a page table
	 * on its way out.  We're lucky that the flag has such an appropriate
	 * name, and can in fact be safely cleared here. We could clear it
	 * before the __unmap_hugepage_range above, but all that's necessary
	 * is to clear it before releasing the i_mmap_mutex. This works
	 * because in the context this is called, the VMA is about to be
	 * destroyed and the i_mmap_mutex is held.
	 */
	vma->vm_flags &= ~VM_MAYSHARE;
}

2558
void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2559
			  unsigned long end, struct page *ref_page)
2560
{
2561 2562 2563 2564 2565
	struct mm_struct *mm;
	struct mmu_gather tlb;

	mm = vma->vm_mm;

2566
	tlb_gather_mmu(&tlb, mm, start, end);
2567 2568
	__unmap_hugepage_range(&tlb, vma, start, end, ref_page);
	tlb_finish_mmu(&tlb, start, end);
2569 2570
}

2571 2572 2573 2574 2575 2576
/*
 * This is called when the original mapper is failing to COW a MAP_PRIVATE
 * mappping it owns the reserve page for. The intention is to unmap the page
 * from other VMAs and let the children be SIGKILLed if they are faulting the
 * same region.
 */
2577 2578
static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
				struct page *page, unsigned long address)
2579
{
2580
	struct hstate *h = hstate_vma(vma);
2581 2582 2583 2584 2585 2586 2587 2588
	struct vm_area_struct *iter_vma;
	struct address_space *mapping;
	pgoff_t pgoff;

	/*
	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
	 * from page cache lookup which is in HPAGE_SIZE units.
	 */
2589
	address = address & huge_page_mask(h);
2590 2591
	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
			vma->vm_pgoff;
A
Al Viro 已提交
2592
	mapping = file_inode(vma->vm_file)->i_mapping;
2593

2594 2595 2596 2597 2598
	/*
	 * Take the mapping lock for the duration of the table walk. As
	 * this mapping should be shared between all the VMAs,
	 * __unmap_hugepage_range() is called as the lock is already held
	 */
2599
	mutex_lock(&mapping->i_mmap_mutex);
2600
	vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612
		/* Do not unmap the current VMA */
		if (iter_vma == vma)
			continue;

		/*
		 * Unmap the page from other VMAs without their own reserves.
		 * They get marked to be SIGKILLed if they fault in these
		 * areas. This is because a future no-page fault on this VMA
		 * could insert a zeroed page instead of the data existing
		 * from the time of fork. This would look like data corruption
		 */
		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
2613 2614
			unmap_hugepage_range(iter_vma, address,
					     address + huge_page_size(h), page);
2615
	}
2616
	mutex_unlock(&mapping->i_mmap_mutex);
2617 2618 2619 2620

	return 1;
}

2621 2622
/*
 * Hugetlb_cow() should be called with page lock of the original hugepage held.
2623 2624 2625
 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
 * cannot race with other handlers or page migration.
 * Keep the pte_same checks anyway to make transition from the mutex easier.
2626
 */
2627
static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
2628
			unsigned long address, pte_t *ptep, pte_t pte,
2629
			struct page *pagecache_page, spinlock_t *ptl)
2630
{
2631
	struct hstate *h = hstate_vma(vma);
2632
	struct page *old_page, *new_page;
2633
	int outside_reserve = 0;
2634 2635
	unsigned long mmun_start;	/* For mmu_notifiers */
	unsigned long mmun_end;		/* For mmu_notifiers */
2636 2637 2638

	old_page = pte_page(pte);

2639
retry_avoidcopy:
2640 2641
	/* If no-one else is actually using this page, avoid the copy
	 * and just make the page writable */
2642 2643
	if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
		page_move_anon_rmap(old_page, vma, address);
2644
		set_huge_ptep_writable(vma, address, ptep);
N
Nick Piggin 已提交
2645
		return 0;
2646 2647
	}

2648 2649 2650 2651 2652 2653 2654 2655 2656
	/*
	 * If the process that created a MAP_PRIVATE mapping is about to
	 * perform a COW due to a shared page count, attempt to satisfy
	 * the allocation without using the existing reserves. The pagecache
	 * page is used to determine if the reserve at this address was
	 * consumed or not. If reserves were used, a partial faulted mapping
	 * at the time of fork() could consume its reserves on COW instead
	 * of the full address range.
	 */
2657
	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
2658 2659 2660
			old_page != pagecache_page)
		outside_reserve = 1;

2661
	page_cache_get(old_page);
2662

2663 2664
	/* Drop page table lock as buddy allocator may be called */
	spin_unlock(ptl);
2665
	new_page = alloc_huge_page(vma, address, outside_reserve);
2666

2667
	if (IS_ERR(new_page)) {
2668
		long err = PTR_ERR(new_page);
2669
		page_cache_release(old_page);
2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681

		/*
		 * If a process owning a MAP_PRIVATE mapping fails to COW,
		 * it is due to references held by a child and an insufficient
		 * huge page pool. To guarantee the original mappers
		 * reliability, unmap the page from child processes. The child
		 * may get SIGKILLed if it later faults.
		 */
		if (outside_reserve) {
			BUG_ON(huge_pte_none(pte));
			if (unmap_ref_private(mm, vma, old_page, address)) {
				BUG_ON(huge_pte_none(pte));
2682
				spin_lock(ptl);
2683 2684 2685 2686
				ptep = huge_pte_offset(mm, address & huge_page_mask(h));
				if (likely(pte_same(huge_ptep_get(ptep), pte)))
					goto retry_avoidcopy;
				/*
2687 2688
				 * race occurs while re-acquiring page table
				 * lock, and our job is done.
2689 2690
				 */
				return 0;
2691 2692 2693 2694
			}
			WARN_ON_ONCE(1);
		}

2695
		/* Caller expects lock to be held */
2696
		spin_lock(ptl);
2697 2698 2699 2700
		if (err == -ENOMEM)
			return VM_FAULT_OOM;
		else
			return VM_FAULT_SIGBUS;
2701 2702
	}

2703 2704 2705 2706
	/*
	 * When the original hugepage is shared one, it does not have
	 * anon_vma prepared.
	 */
2707
	if (unlikely(anon_vma_prepare(vma))) {
2708 2709
		page_cache_release(new_page);
		page_cache_release(old_page);
2710
		/* Caller expects lock to be held */
2711
		spin_lock(ptl);
2712
		return VM_FAULT_OOM;
2713
	}
2714

A
Andrea Arcangeli 已提交
2715 2716
	copy_user_huge_page(new_page, old_page, address, vma,
			    pages_per_huge_page(h));
N
Nick Piggin 已提交
2717
	__SetPageUptodate(new_page);
2718

2719 2720 2721
	mmun_start = address & huge_page_mask(h);
	mmun_end = mmun_start + huge_page_size(h);
	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2722
	/*
2723
	 * Retake the page table lock to check for racing updates
2724 2725
	 * before the page tables are altered
	 */
2726
	spin_lock(ptl);
2727
	ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2728
	if (likely(pte_same(huge_ptep_get(ptep), pte))) {
2729 2730
		ClearPagePrivate(new_page);

2731
		/* Break COW */
2732
		huge_ptep_clear_flush(vma, address, ptep);
2733 2734
		set_huge_pte_at(mm, address, ptep,
				make_huge_pte(vma, new_page, 1));
2735
		page_remove_rmap(old_page);
2736
		hugepage_add_new_anon_rmap(new_page, vma, address);
2737 2738 2739
		/* Make the old page be freed below */
		new_page = old_page;
	}
2740
	spin_unlock(ptl);
2741
	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2742 2743
	page_cache_release(new_page);
	page_cache_release(old_page);
2744 2745

	/* Caller expects lock to be held */
2746
	spin_lock(ptl);
N
Nick Piggin 已提交
2747
	return 0;
2748 2749
}

2750
/* Return the pagecache page at a given address within a VMA */
2751 2752
static struct page *hugetlbfs_pagecache_page(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address)
2753 2754
{
	struct address_space *mapping;
2755
	pgoff_t idx;
2756 2757

	mapping = vma->vm_file->f_mapping;
2758
	idx = vma_hugecache_offset(h, vma, address);
2759 2760 2761 2762

	return find_lock_page(mapping, idx);
}

H
Hugh Dickins 已提交
2763 2764 2765 2766 2767
/*
 * Return whether there is a pagecache page to back given address within VMA.
 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
 */
static bool hugetlbfs_pagecache_present(struct hstate *h,
H
Hugh Dickins 已提交
2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782
			struct vm_area_struct *vma, unsigned long address)
{
	struct address_space *mapping;
	pgoff_t idx;
	struct page *page;

	mapping = vma->vm_file->f_mapping;
	idx = vma_hugecache_offset(h, vma, address);

	page = find_get_page(mapping, idx);
	if (page)
		put_page(page);
	return page != NULL;
}

2783
static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
2784
			unsigned long address, pte_t *ptep, unsigned int flags)
2785
{
2786
	struct hstate *h = hstate_vma(vma);
2787
	int ret = VM_FAULT_SIGBUS;
2788
	int anon_rmap = 0;
2789
	pgoff_t idx;
A
Adam Litke 已提交
2790 2791 2792
	unsigned long size;
	struct page *page;
	struct address_space *mapping;
2793
	pte_t new_pte;
2794
	spinlock_t *ptl;
A
Adam Litke 已提交
2795

2796 2797 2798
	/*
	 * Currently, we are forced to kill the process in the event the
	 * original mapper has unmapped pages from the child due to a failed
L
Lucas De Marchi 已提交
2799
	 * COW. Warn that such a situation has occurred as it may not be obvious
2800 2801
	 */
	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
2802 2803
		pr_warning("PID %d killed due to inadequate hugepage pool\n",
			   current->pid);
2804 2805 2806
		return ret;
	}

A
Adam Litke 已提交
2807
	mapping = vma->vm_file->f_mapping;
2808
	idx = vma_hugecache_offset(h, vma, address);
A
Adam Litke 已提交
2809 2810 2811 2812 2813

	/*
	 * Use page lock to guard against racing truncation
	 * before we get page_table_lock.
	 */
2814 2815 2816
retry:
	page = find_lock_page(mapping, idx);
	if (!page) {
2817
		size = i_size_read(mapping->host) >> huge_page_shift(h);
2818 2819
		if (idx >= size)
			goto out;
2820
		page = alloc_huge_page(vma, address, 0);
2821
		if (IS_ERR(page)) {
2822 2823 2824 2825 2826
			ret = PTR_ERR(page);
			if (ret == -ENOMEM)
				ret = VM_FAULT_OOM;
			else
				ret = VM_FAULT_SIGBUS;
2827 2828
			goto out;
		}
A
Andrea Arcangeli 已提交
2829
		clear_huge_page(page, address, pages_per_huge_page(h));
N
Nick Piggin 已提交
2830
		__SetPageUptodate(page);
2831

2832
		if (vma->vm_flags & VM_MAYSHARE) {
2833
			int err;
K
Ken Chen 已提交
2834
			struct inode *inode = mapping->host;
2835 2836 2837 2838 2839 2840 2841 2842

			err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
			if (err) {
				put_page(page);
				if (err == -EEXIST)
					goto retry;
				goto out;
			}
2843
			ClearPagePrivate(page);
K
Ken Chen 已提交
2844 2845

			spin_lock(&inode->i_lock);
2846
			inode->i_blocks += blocks_per_huge_page(h);
K
Ken Chen 已提交
2847
			spin_unlock(&inode->i_lock);
2848
		} else {
2849
			lock_page(page);
2850 2851 2852 2853
			if (unlikely(anon_vma_prepare(vma))) {
				ret = VM_FAULT_OOM;
				goto backout_unlocked;
			}
2854
			anon_rmap = 1;
2855
		}
2856
	} else {
2857 2858 2859 2860 2861 2862
		/*
		 * If memory error occurs between mmap() and fault, some process
		 * don't have hwpoisoned swap entry for errored virtual address.
		 * So we need to block hugepage fault by PG_hwpoison bit check.
		 */
		if (unlikely(PageHWPoison(page))) {
2863
			ret = VM_FAULT_HWPOISON |
2864
				VM_FAULT_SET_HINDEX(hstate_index(h));
2865 2866
			goto backout_unlocked;
		}
2867
	}
2868

2869 2870 2871 2872 2873 2874
	/*
	 * If we are going to COW a private mapping later, we examine the
	 * pending reservations for this page now. This will ensure that
	 * any allocations necessary to record that reservation occur outside
	 * the spinlock.
	 */
2875
	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2876 2877 2878 2879
		if (vma_needs_reservation(h, vma, address) < 0) {
			ret = VM_FAULT_OOM;
			goto backout_unlocked;
		}
2880

2881 2882
	ptl = huge_pte_lockptr(h, mm, ptep);
	spin_lock(ptl);
2883
	size = i_size_read(mapping->host) >> huge_page_shift(h);
A
Adam Litke 已提交
2884 2885 2886
	if (idx >= size)
		goto backout;

N
Nick Piggin 已提交
2887
	ret = 0;
2888
	if (!huge_pte_none(huge_ptep_get(ptep)))
A
Adam Litke 已提交
2889 2890
		goto backout;

2891 2892
	if (anon_rmap) {
		ClearPagePrivate(page);
2893
		hugepage_add_new_anon_rmap(page, vma, address);
2894
	}
2895 2896
	else
		page_dup_rmap(page);
2897 2898 2899 2900
	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
				&& (vma->vm_flags & VM_SHARED)));
	set_huge_pte_at(mm, address, ptep, new_pte);

2901
	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
2902
		/* Optimization, do the COW without a second fault */
2903
		ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page, ptl);
2904 2905
	}

2906
	spin_unlock(ptl);
A
Adam Litke 已提交
2907 2908
	unlock_page(page);
out:
2909
	return ret;
A
Adam Litke 已提交
2910 2911

backout:
2912
	spin_unlock(ptl);
2913
backout_unlocked:
A
Adam Litke 已提交
2914 2915 2916
	unlock_page(page);
	put_page(page);
	goto out;
2917 2918
}

2919
int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2920
			unsigned long address, unsigned int flags)
2921 2922 2923
{
	pte_t *ptep;
	pte_t entry;
2924
	spinlock_t *ptl;
2925
	int ret;
2926
	struct page *page = NULL;
2927
	struct page *pagecache_page = NULL;
2928
	static DEFINE_MUTEX(hugetlb_instantiation_mutex);
2929
	struct hstate *h = hstate_vma(vma);
2930

2931 2932
	address &= huge_page_mask(h);

2933 2934 2935
	ptep = huge_pte_offset(mm, address);
	if (ptep) {
		entry = huge_ptep_get(ptep);
N
Naoya Horiguchi 已提交
2936
		if (unlikely(is_hugetlb_entry_migration(entry))) {
2937
			migration_entry_wait_huge(vma, mm, ptep);
N
Naoya Horiguchi 已提交
2938 2939
			return 0;
		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
2940
			return VM_FAULT_HWPOISON_LARGE |
2941
				VM_FAULT_SET_HINDEX(hstate_index(h));
2942 2943
	}

2944
	ptep = huge_pte_alloc(mm, address, huge_page_size(h));
2945 2946 2947
	if (!ptep)
		return VM_FAULT_OOM;

2948 2949 2950 2951 2952 2953
	/*
	 * Serialize hugepage allocation and instantiation, so that we don't
	 * get spurious allocation failures if two CPUs race to instantiate
	 * the same page in the page cache.
	 */
	mutex_lock(&hugetlb_instantiation_mutex);
2954 2955
	entry = huge_ptep_get(ptep);
	if (huge_pte_none(entry)) {
2956
		ret = hugetlb_no_page(mm, vma, address, ptep, flags);
2957
		goto out_mutex;
2958
	}
2959

N
Nick Piggin 已提交
2960
	ret = 0;
2961

2962 2963 2964 2965 2966 2967 2968 2969
	/*
	 * If we are going to COW the mapping later, we examine the pending
	 * reservations for this page now. This will ensure that any
	 * allocations necessary to record that reservation occur outside the
	 * spinlock. For private mappings, we also lookup the pagecache
	 * page now as it is used to determine if a reservation has been
	 * consumed.
	 */
2970
	if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
2971 2972
		if (vma_needs_reservation(h, vma, address) < 0) {
			ret = VM_FAULT_OOM;
2973
			goto out_mutex;
2974
		}
2975

2976
		if (!(vma->vm_flags & VM_MAYSHARE))
2977 2978 2979 2980
			pagecache_page = hugetlbfs_pagecache_page(h,
								vma, address);
	}

2981 2982 2983 2984 2985 2986 2987 2988
	/*
	 * hugetlb_cow() requires page locks of pte_page(entry) and
	 * pagecache_page, so here we need take the former one
	 * when page != pagecache_page or !pagecache_page.
	 * Note that locking order is always pagecache_page -> page,
	 * so no worry about deadlock.
	 */
	page = pte_page(entry);
2989
	get_page(page);
2990
	if (page != pagecache_page)
2991 2992
		lock_page(page);

2993 2994
	ptl = huge_pte_lockptr(h, mm, ptep);
	spin_lock(ptl);
2995
	/* Check for a racing update before calling hugetlb_cow */
2996
	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
2997
		goto out_ptl;
2998 2999


3000
	if (flags & FAULT_FLAG_WRITE) {
3001
		if (!huge_pte_write(entry)) {
3002
			ret = hugetlb_cow(mm, vma, address, ptep, entry,
3003 3004
					pagecache_page, ptl);
			goto out_ptl;
3005
		}
3006
		entry = huge_pte_mkdirty(entry);
3007 3008
	}
	entry = pte_mkyoung(entry);
3009 3010
	if (huge_ptep_set_access_flags(vma, address, ptep, entry,
						flags & FAULT_FLAG_WRITE))
3011
		update_mmu_cache(vma, address, ptep);
3012

3013 3014
out_ptl:
	spin_unlock(ptl);
3015 3016 3017 3018 3019

	if (pagecache_page) {
		unlock_page(pagecache_page);
		put_page(pagecache_page);
	}
3020 3021
	if (page != pagecache_page)
		unlock_page(page);
3022
	put_page(page);
3023

3024
out_mutex:
3025
	mutex_unlock(&hugetlb_instantiation_mutex);
3026 3027

	return ret;
3028 3029
}

3030 3031 3032 3033
long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
			 struct page **pages, struct vm_area_struct **vmas,
			 unsigned long *position, unsigned long *nr_pages,
			 long i, unsigned int flags)
D
David Gibson 已提交
3034
{
3035 3036
	unsigned long pfn_offset;
	unsigned long vaddr = *position;
3037
	unsigned long remainder = *nr_pages;
3038
	struct hstate *h = hstate_vma(vma);
D
David Gibson 已提交
3039 3040

	while (vaddr < vma->vm_end && remainder) {
A
Adam Litke 已提交
3041
		pte_t *pte;
3042
		spinlock_t *ptl = NULL;
H
Hugh Dickins 已提交
3043
		int absent;
A
Adam Litke 已提交
3044
		struct page *page;
D
David Gibson 已提交
3045

A
Adam Litke 已提交
3046 3047
		/*
		 * Some archs (sparc64, sh*) have multiple pte_ts to
H
Hugh Dickins 已提交
3048
		 * each hugepage.  We have to make sure we get the
A
Adam Litke 已提交
3049
		 * first, for the page indexing below to work.
3050 3051
		 *
		 * Note that page table lock is not held when pte is null.
A
Adam Litke 已提交
3052
		 */
3053
		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
3054 3055
		if (pte)
			ptl = huge_pte_lock(h, mm, pte);
H
Hugh Dickins 已提交
3056 3057 3058 3059
		absent = !pte || huge_pte_none(huge_ptep_get(pte));

		/*
		 * When coredumping, it suits get_dump_page if we just return
H
Hugh Dickins 已提交
3060 3061 3062 3063
		 * an error where there's an empty slot with no huge pagecache
		 * to back it.  This way, we avoid allocating a hugepage, and
		 * the sparse dumpfile avoids allocating disk blocks, but its
		 * huge holes still show up with zeroes where they need to be.
H
Hugh Dickins 已提交
3064
		 */
H
Hugh Dickins 已提交
3065 3066
		if (absent && (flags & FOLL_DUMP) &&
		    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
3067 3068
			if (pte)
				spin_unlock(ptl);
H
Hugh Dickins 已提交
3069 3070 3071
			remainder = 0;
			break;
		}
D
David Gibson 已提交
3072

3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083
		/*
		 * We need call hugetlb_fault for both hugepages under migration
		 * (in which case hugetlb_fault waits for the migration,) and
		 * hwpoisoned hugepages (in which case we need to prevent the
		 * caller from accessing to them.) In order to do this, we use
		 * here is_swap_pte instead of is_hugetlb_entry_migration and
		 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
		 * both cases, and because we can't follow correct pages
		 * directly from any kind of swap entries.
		 */
		if (absent || is_swap_pte(huge_ptep_get(pte)) ||
3084 3085
		    ((flags & FOLL_WRITE) &&
		      !huge_pte_write(huge_ptep_get(pte)))) {
A
Adam Litke 已提交
3086
			int ret;
D
David Gibson 已提交
3087

3088 3089
			if (pte)
				spin_unlock(ptl);
H
Hugh Dickins 已提交
3090 3091
			ret = hugetlb_fault(mm, vma, vaddr,
				(flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
3092
			if (!(ret & VM_FAULT_ERROR))
A
Adam Litke 已提交
3093
				continue;
D
David Gibson 已提交
3094

A
Adam Litke 已提交
3095 3096 3097 3098
			remainder = 0;
			break;
		}

3099
		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
3100
		page = pte_page(huge_ptep_get(pte));
3101
same_page:
3102
		if (pages) {
H
Hugh Dickins 已提交
3103
			pages[i] = mem_map_offset(page, pfn_offset);
3104
			get_page_foll(pages[i]);
3105
		}
D
David Gibson 已提交
3106 3107 3108 3109 3110

		if (vmas)
			vmas[i] = vma;

		vaddr += PAGE_SIZE;
3111
		++pfn_offset;
D
David Gibson 已提交
3112 3113
		--remainder;
		++i;
3114
		if (vaddr < vma->vm_end && remainder &&
3115
				pfn_offset < pages_per_huge_page(h)) {
3116 3117 3118 3119 3120 3121
			/*
			 * We use pfn_offset to avoid touching the pageframes
			 * of this compound page.
			 */
			goto same_page;
		}
3122
		spin_unlock(ptl);
D
David Gibson 已提交
3123
	}
3124
	*nr_pages = remainder;
D
David Gibson 已提交
3125 3126
	*position = vaddr;

H
Hugh Dickins 已提交
3127
	return i ? i : -EFAULT;
D
David Gibson 已提交
3128
}
3129

3130
unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
3131 3132 3133 3134 3135 3136
		unsigned long address, unsigned long end, pgprot_t newprot)
{
	struct mm_struct *mm = vma->vm_mm;
	unsigned long start = address;
	pte_t *ptep;
	pte_t pte;
3137
	struct hstate *h = hstate_vma(vma);
3138
	unsigned long pages = 0;
3139 3140 3141 3142

	BUG_ON(address >= end);
	flush_cache_range(vma, address, end);

3143
	mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
3144
	for (; address < end; address += huge_page_size(h)) {
3145
		spinlock_t *ptl;
3146 3147 3148
		ptep = huge_pte_offset(mm, address);
		if (!ptep)
			continue;
3149
		ptl = huge_pte_lock(h, mm, ptep);
3150 3151
		if (huge_pmd_unshare(mm, &address, ptep)) {
			pages++;
3152
			spin_unlock(ptl);
3153
			continue;
3154
		}
3155
		if (!huge_pte_none(huge_ptep_get(ptep))) {
3156
			pte = huge_ptep_get_and_clear(mm, address, ptep);
3157
			pte = pte_mkhuge(huge_pte_modify(pte, newprot));
3158
			pte = arch_make_huge_pte(pte, vma, NULL, 0);
3159
			set_huge_pte_at(mm, address, ptep, pte);
3160
			pages++;
3161
		}
3162
		spin_unlock(ptl);
3163
	}
3164 3165 3166 3167 3168 3169
	/*
	 * Must flush TLB before releasing i_mmap_mutex: x86's huge_pmd_unshare
	 * may have cleared our pud entry and done put_page on the page table:
	 * once we release i_mmap_mutex, another task can do the final put_page
	 * and that page table be reused and filled with junk.
	 */
3170
	flush_tlb_range(vma, start, end);
3171
	mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
3172 3173

	return pages << h->order;
3174 3175
}

3176 3177
int hugetlb_reserve_pages(struct inode *inode,
					long from, long to,
3178
					struct vm_area_struct *vma,
3179
					vm_flags_t vm_flags)
3180
{
3181
	long ret, chg;
3182
	struct hstate *h = hstate_inode(inode);
3183
	struct hugepage_subpool *spool = subpool_inode(inode);
3184
	struct resv_map *resv_map;
3185

3186 3187 3188
	/*
	 * Only apply hugepage reservation if asked. At fault time, an
	 * attempt will be made for VM_NORESERVE to allocate a page
3189
	 * without using reserves
3190
	 */
3191
	if (vm_flags & VM_NORESERVE)
3192 3193
		return 0;

3194 3195 3196 3197 3198 3199
	/*
	 * Shared mappings base their reservation on the number of pages that
	 * are already allocated on behalf of the file. Private mappings need
	 * to reserve the full area even if read-only as mprotect() may be
	 * called to make the mapping read-write. Assume !vma is a shm mapping
	 */
3200 3201 3202
	if (!vma || vma->vm_flags & VM_MAYSHARE) {
		resv_map = inode->i_mapping->private_data;

3203
		chg = region_chg(resv_map, from, to);
3204 3205 3206

	} else {
		resv_map = resv_map_alloc();
3207 3208 3209
		if (!resv_map)
			return -ENOMEM;

3210
		chg = to - from;
3211

3212 3213 3214 3215
		set_vma_resv_map(vma, resv_map);
		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
	}

3216 3217 3218 3219
	if (chg < 0) {
		ret = chg;
		goto out_err;
	}
3220

3221
	/* There must be enough pages in the subpool for the mapping */
3222 3223 3224 3225
	if (hugepage_subpool_get_pages(spool, chg)) {
		ret = -ENOSPC;
		goto out_err;
	}
3226 3227

	/*
3228
	 * Check enough hugepages are available for the reservation.
3229
	 * Hand the pages back to the subpool if there are not
3230
	 */
3231
	ret = hugetlb_acct_memory(h, chg);
K
Ken Chen 已提交
3232
	if (ret < 0) {
3233
		hugepage_subpool_put_pages(spool, chg);
3234
		goto out_err;
K
Ken Chen 已提交
3235
	}
3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247

	/*
	 * Account for the reservations made. Shared mappings record regions
	 * that have reservations as they are shared by multiple VMAs.
	 * When the last VMA disappears, the region map says how much
	 * the reservation was and the page cache tells how much of
	 * the reservation was consumed. Private mappings are per-VMA and
	 * only the consumed reservations are tracked. When the VMA
	 * disappears, the original reservation is the VMA size and the
	 * consumed reservations are stored in the map. Hence, nothing
	 * else has to be done for private mappings here
	 */
3248
	if (!vma || vma->vm_flags & VM_MAYSHARE)
3249
		region_add(resv_map, from, to);
3250
	return 0;
3251
out_err:
3252 3253
	if (vma)
		resv_map_put(vma);
3254
	return ret;
3255 3256 3257 3258
}

void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
{
3259
	struct hstate *h = hstate_inode(inode);
3260 3261
	struct resv_map *resv_map = inode->i_mapping->private_data;
	long chg = 0;
3262
	struct hugepage_subpool *spool = subpool_inode(inode);
K
Ken Chen 已提交
3263

3264
	if (resv_map)
3265
		chg = region_truncate(resv_map, offset);
K
Ken Chen 已提交
3266
	spin_lock(&inode->i_lock);
3267
	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
K
Ken Chen 已提交
3268 3269
	spin_unlock(&inode->i_lock);

3270
	hugepage_subpool_put_pages(spool, (chg - freed));
3271
	hugetlb_acct_memory(h, -(chg - freed));
3272
}
3273

3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332
#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
static unsigned long page_table_shareable(struct vm_area_struct *svma,
				struct vm_area_struct *vma,
				unsigned long addr, pgoff_t idx)
{
	unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
				svma->vm_start;
	unsigned long sbase = saddr & PUD_MASK;
	unsigned long s_end = sbase + PUD_SIZE;

	/* Allow segments to share if only one is marked locked */
	unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED;
	unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED;

	/*
	 * match the virtual addresses, permission and the alignment of the
	 * page table page.
	 */
	if (pmd_index(addr) != pmd_index(saddr) ||
	    vm_flags != svm_flags ||
	    sbase < svma->vm_start || svma->vm_end < s_end)
		return 0;

	return saddr;
}

static int vma_shareable(struct vm_area_struct *vma, unsigned long addr)
{
	unsigned long base = addr & PUD_MASK;
	unsigned long end = base + PUD_SIZE;

	/*
	 * check on proper vm_flags and page table alignment
	 */
	if (vma->vm_flags & VM_MAYSHARE &&
	    vma->vm_start <= base && end <= vma->vm_end)
		return 1;
	return 0;
}

/*
 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
 * and returns the corresponding pte. While this is not necessary for the
 * !shared pmd case because we can allocate the pmd later as well, it makes the
 * code much cleaner. pmd allocation is essential for the shared case because
 * pud has to be populated inside the same i_mmap_mutex section - otherwise
 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
 * bad pmd for sharing.
 */
pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
{
	struct vm_area_struct *vma = find_vma(mm, addr);
	struct address_space *mapping = vma->vm_file->f_mapping;
	pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
			vma->vm_pgoff;
	struct vm_area_struct *svma;
	unsigned long saddr;
	pte_t *spte = NULL;
	pte_t *pte;
3333
	spinlock_t *ptl;
3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355

	if (!vma_shareable(vma, addr))
		return (pte_t *)pmd_alloc(mm, pud, addr);

	mutex_lock(&mapping->i_mmap_mutex);
	vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
		if (svma == vma)
			continue;

		saddr = page_table_shareable(svma, vma, addr, idx);
		if (saddr) {
			spte = huge_pte_offset(svma->vm_mm, saddr);
			if (spte) {
				get_page(virt_to_page(spte));
				break;
			}
		}
	}

	if (!spte)
		goto out;

3356 3357
	ptl = huge_pte_lockptr(hstate_vma(vma), mm, spte);
	spin_lock(ptl);
3358 3359 3360 3361 3362
	if (pud_none(*pud))
		pud_populate(mm, pud,
				(pmd_t *)((unsigned long)spte & PAGE_MASK));
	else
		put_page(virt_to_page(spte));
3363
	spin_unlock(ptl);
3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376
out:
	pte = (pte_t *)pmd_alloc(mm, pud, addr);
	mutex_unlock(&mapping->i_mmap_mutex);
	return pte;
}

/*
 * unmap huge page backed by shared pte.
 *
 * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
 * indicated by page_count > 1, unmap is achieved by clearing pud and
 * decrementing the ref count. If count == 1, the pte page is not shared.
 *
3377
 * called with page table lock held.
3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395
 *
 * returns: 1 successfully unmapped a shared pte page
 *	    0 the underlying pte page is not shared, or it is the last user
 */
int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
{
	pgd_t *pgd = pgd_offset(mm, *addr);
	pud_t *pud = pud_offset(pgd, *addr);

	BUG_ON(page_count(virt_to_page(ptep)) == 0);
	if (page_count(virt_to_page(ptep)) == 1)
		return 0;

	pud_clear(pud);
	put_page(virt_to_page(ptep));
	*addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
	return 1;
}
3396 3397 3398 3399 3400 3401 3402
#define want_pmd_share()	(1)
#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
{
	return NULL;
}
#define want_pmd_share()	(0)
3403 3404
#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */

3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485
#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
pte_t *huge_pte_alloc(struct mm_struct *mm,
			unsigned long addr, unsigned long sz)
{
	pgd_t *pgd;
	pud_t *pud;
	pte_t *pte = NULL;

	pgd = pgd_offset(mm, addr);
	pud = pud_alloc(mm, pgd, addr);
	if (pud) {
		if (sz == PUD_SIZE) {
			pte = (pte_t *)pud;
		} else {
			BUG_ON(sz != PMD_SIZE);
			if (want_pmd_share() && pud_none(*pud))
				pte = huge_pmd_share(mm, addr, pud);
			else
				pte = (pte_t *)pmd_alloc(mm, pud, addr);
		}
	}
	BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte));

	return pte;
}

pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
{
	pgd_t *pgd;
	pud_t *pud;
	pmd_t *pmd = NULL;

	pgd = pgd_offset(mm, addr);
	if (pgd_present(*pgd)) {
		pud = pud_offset(pgd, addr);
		if (pud_present(*pud)) {
			if (pud_huge(*pud))
				return (pte_t *)pud;
			pmd = pmd_offset(pud, addr);
		}
	}
	return (pte_t *) pmd;
}

struct page *
follow_huge_pmd(struct mm_struct *mm, unsigned long address,
		pmd_t *pmd, int write)
{
	struct page *page;

	page = pte_page(*(pte_t *)pmd);
	if (page)
		page += ((address & ~PMD_MASK) >> PAGE_SHIFT);
	return page;
}

struct page *
follow_huge_pud(struct mm_struct *mm, unsigned long address,
		pud_t *pud, int write)
{
	struct page *page;

	page = pte_page(*(pte_t *)pud);
	if (page)
		page += ((address & ~PUD_MASK) >> PAGE_SHIFT);
	return page;
}

#else /* !CONFIG_ARCH_WANT_GENERAL_HUGETLB */

/* Can be overriden by architectures */
__attribute__((weak)) struct page *
follow_huge_pud(struct mm_struct *mm, unsigned long address,
	       pud_t *pud, int write)
{
	BUG();
	return NULL;
}

#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */

3486 3487
#ifdef CONFIG_MEMORY_FAILURE

3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501
/* Should be called in hugetlb_lock */
static int is_hugepage_on_freelist(struct page *hpage)
{
	struct page *page;
	struct page *tmp;
	struct hstate *h = page_hstate(hpage);
	int nid = page_to_nid(hpage);

	list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru)
		if (page == hpage)
			return 1;
	return 0;
}

3502 3503 3504 3505
/*
 * This function is called from memory failure code.
 * Assume the caller holds page lock of the head page.
 */
3506
int dequeue_hwpoisoned_huge_page(struct page *hpage)
3507 3508 3509
{
	struct hstate *h = page_hstate(hpage);
	int nid = page_to_nid(hpage);
3510
	int ret = -EBUSY;
3511 3512

	spin_lock(&hugetlb_lock);
3513
	if (is_hugepage_on_freelist(hpage)) {
3514 3515 3516 3517 3518 3519 3520
		/*
		 * Hwpoisoned hugepage isn't linked to activelist or freelist,
		 * but dangling hpage->lru can trigger list-debug warnings
		 * (this happens when we call unpoison_memory() on it),
		 * so let it point to itself with list_del_init().
		 */
		list_del_init(&hpage->lru);
3521
		set_page_refcounted(hpage);
3522 3523 3524 3525
		h->free_huge_pages--;
		h->free_huge_pages_node[nid]--;
		ret = 0;
	}
3526
	spin_unlock(&hugetlb_lock);
3527
	return ret;
3528
}
3529
#endif
3530 3531 3532

bool isolate_huge_page(struct page *page, struct list_head *list)
{
3533
	VM_BUG_ON_PAGE(!PageHead(page), page);
3534 3535 3536 3537 3538 3539 3540 3541 3542 3543
	if (!get_page_unless_zero(page))
		return false;
	spin_lock(&hugetlb_lock);
	list_move_tail(&page->lru, list);
	spin_unlock(&hugetlb_lock);
	return true;
}

void putback_active_hugepage(struct page *page)
{
3544
	VM_BUG_ON_PAGE(!PageHead(page), page);
3545 3546 3547 3548 3549
	spin_lock(&hugetlb_lock);
	list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
	spin_unlock(&hugetlb_lock);
	put_page(page);
}
3550 3551 3552

bool is_hugepage_active(struct page *page)
{
3553
	VM_BUG_ON_PAGE(!PageHuge(page), page);
3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571
	/*
	 * This function can be called for a tail page because the caller,
	 * scan_movable_pages, scans through a given pfn-range which typically
	 * covers one memory block. In systems using gigantic hugepage (1GB
	 * for x86_64,) a hugepage is larger than a memory block, and we don't
	 * support migrating such large hugepages for now, so return false
	 * when called for tail pages.
	 */
	if (PageTail(page))
		return false;
	/*
	 * Refcount of a hwpoisoned hugepages is 1, but they are not active,
	 * so we should return false for them.
	 */
	if (unlikely(PageHWPoison(page)))
		return false;
	return page_count(page) > 0;
}