hugetlb.c 120.1 KB
Newer Older
L
Linus Torvalds 已提交
1 2
/*
 * Generic hugetlb support.
3
 * (C) Nadia Yvette Chambers, April 2004
L
Linus Torvalds 已提交
4 5 6 7
 */
#include <linux/list.h>
#include <linux/init.h>
#include <linux/mm.h>
8
#include <linux/seq_file.h>
L
Linus Torvalds 已提交
9 10
#include <linux/sysctl.h>
#include <linux/highmem.h>
A
Andrea Arcangeli 已提交
11
#include <linux/mmu_notifier.h>
L
Linus Torvalds 已提交
12
#include <linux/nodemask.h>
D
David Gibson 已提交
13
#include <linux/pagemap.h>
14
#include <linux/mempolicy.h>
15
#include <linux/compiler.h>
16
#include <linux/cpuset.h>
17
#include <linux/mutex.h>
18
#include <linux/bootmem.h>
19
#include <linux/sysfs.h>
20
#include <linux/slab.h>
21
#include <linux/rmap.h>
22 23
#include <linux/swap.h>
#include <linux/swapops.h>
24
#include <linux/page-isolation.h>
25
#include <linux/jhash.h>
26

D
David Gibson 已提交
27 28
#include <asm/page.h>
#include <asm/pgtable.h>
29
#include <asm/tlb.h>
D
David Gibson 已提交
30

31
#include <linux/io.h>
D
David Gibson 已提交
32
#include <linux/hugetlb.h>
33
#include <linux/hugetlb_cgroup.h>
34
#include <linux/node.h>
35
#include "internal.h"
L
Linus Torvalds 已提交
36

37
int hugepages_treat_as_movable;
38

39
int hugetlb_max_hstate __read_mostly;
40 41
unsigned int default_hstate_idx;
struct hstate hstates[HUGE_MAX_HSTATE];
42 43 44 45 46
/*
 * Minimum page order among possible hugepage sizes, set to a proper value
 * at boot time.
 */
static unsigned int minimum_order __read_mostly = UINT_MAX;
47

48 49
__initdata LIST_HEAD(huge_boot_pages);

50 51 52
/* for command line parsing */
static struct hstate * __initdata parsed_hstate;
static unsigned long __initdata default_hstate_max_huge_pages;
53
static unsigned long __initdata default_hstate_size;
54
static bool __initdata parsed_valid_hugepagesz = true;
55

56
/*
57 58
 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
 * free_huge_pages, and surplus_huge_pages.
59
 */
60
DEFINE_SPINLOCK(hugetlb_lock);
61

62 63 64 65 66
/*
 * Serializes faults on the same logical page.  This is used to
 * prevent spurious OOMs when the hugepage pool is fully utilized.
 */
static int num_fault_mutexes;
67
struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
68

69 70 71
/* Forward declaration */
static int hugetlb_acct_memory(struct hstate *h, long delta);

72 73 74 75 76 77 78
static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
{
	bool free = (spool->count == 0) && (spool->used_hpages == 0);

	spin_unlock(&spool->lock);

	/* If no pages are used, and no other handles to the subpool
79 80 81 82 83 84
	 * remain, give up any reservations mased on minimum size and
	 * free the subpool */
	if (free) {
		if (spool->min_hpages != -1)
			hugetlb_acct_memory(spool->hstate,
						-spool->min_hpages);
85
		kfree(spool);
86
	}
87 88
}

89 90
struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
						long min_hpages)
91 92 93
{
	struct hugepage_subpool *spool;

94
	spool = kzalloc(sizeof(*spool), GFP_KERNEL);
95 96 97 98 99
	if (!spool)
		return NULL;

	spin_lock_init(&spool->lock);
	spool->count = 1;
100 101 102 103 104 105 106 107 108
	spool->max_hpages = max_hpages;
	spool->hstate = h;
	spool->min_hpages = min_hpages;

	if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
		kfree(spool);
		return NULL;
	}
	spool->rsv_hpages = min_hpages;
109 110 111 112 113 114 115 116 117 118 119 120

	return spool;
}

void hugepage_put_subpool(struct hugepage_subpool *spool)
{
	spin_lock(&spool->lock);
	BUG_ON(!spool->count);
	spool->count--;
	unlock_or_release_subpool(spool);
}

121 122 123 124 125 126 127 128 129
/*
 * Subpool accounting for allocating and reserving pages.
 * Return -ENOMEM if there are not enough resources to satisfy the
 * the request.  Otherwise, return the number of pages by which the
 * global pools must be adjusted (upward).  The returned value may
 * only be different than the passed value (delta) in the case where
 * a subpool minimum size must be manitained.
 */
static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
130 131
				      long delta)
{
132
	long ret = delta;
133 134

	if (!spool)
135
		return ret;
136 137

	spin_lock(&spool->lock);
138 139 140 141 142 143 144 145

	if (spool->max_hpages != -1) {		/* maximum size accounting */
		if ((spool->used_hpages + delta) <= spool->max_hpages)
			spool->used_hpages += delta;
		else {
			ret = -ENOMEM;
			goto unlock_ret;
		}
146 147
	}

148 149
	/* minimum size accounting */
	if (spool->min_hpages != -1 && spool->rsv_hpages) {
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
		if (delta > spool->rsv_hpages) {
			/*
			 * Asking for more reserves than those already taken on
			 * behalf of subpool.  Return difference.
			 */
			ret = delta - spool->rsv_hpages;
			spool->rsv_hpages = 0;
		} else {
			ret = 0;	/* reserves already accounted for */
			spool->rsv_hpages -= delta;
		}
	}

unlock_ret:
	spin_unlock(&spool->lock);
165 166 167
	return ret;
}

168 169 170 171 172 173 174
/*
 * Subpool accounting for freeing and unreserving pages.
 * Return the number of global page reservations that must be dropped.
 * The return value may only be different than the passed value (delta)
 * in the case where a subpool minimum size must be maintained.
 */
static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
175 176
				       long delta)
{
177 178
	long ret = delta;

179
	if (!spool)
180
		return delta;
181 182

	spin_lock(&spool->lock);
183 184 185 186

	if (spool->max_hpages != -1)		/* maximum size accounting */
		spool->used_hpages -= delta;

187 188
	 /* minimum size accounting */
	if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
189 190 191 192 193 194 195 196 197 198 199 200 201 202
		if (spool->rsv_hpages + delta <= spool->min_hpages)
			ret = 0;
		else
			ret = spool->rsv_hpages + delta - spool->min_hpages;

		spool->rsv_hpages += delta;
		if (spool->rsv_hpages > spool->min_hpages)
			spool->rsv_hpages = spool->min_hpages;
	}

	/*
	 * If hugetlbfs_put_super couldn't free spool due to an outstanding
	 * quota reference, free it now.
	 */
203
	unlock_or_release_subpool(spool);
204 205

	return ret;
206 207 208 209 210 211 212 213 214
}

static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
{
	return HUGETLBFS_SB(inode->i_sb)->spool;
}

static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
{
A
Al Viro 已提交
215
	return subpool_inode(file_inode(vma->vm_file));
216 217
}

218 219 220
/*
 * Region tracking -- allows tracking of reservations and instantiated pages
 *                    across the pages in a mapping.
221
 *
222 223 224 225 226 227 228 229 230 231 232 233 234 235
 * The region data structures are embedded into a resv_map and protected
 * by a resv_map's lock.  The set of regions within the resv_map represent
 * reservations for huge pages, or huge pages that have already been
 * instantiated within the map.  The from and to elements are huge page
 * indicies into the associated mapping.  from indicates the starting index
 * of the region.  to represents the first index past the end of  the region.
 *
 * For example, a file region structure with from == 0 and to == 4 represents
 * four huge pages in a mapping.  It is important to note that the to element
 * represents the first element past the end of the region. This is used in
 * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
 *
 * Interval notation of the form [from, to) will be used to indicate that
 * the endpoint from is inclusive and to is exclusive.
236 237 238 239 240 241 242
 */
struct file_region {
	struct list_head link;
	long from;
	long to;
};

243 244
/*
 * Add the huge page range represented by [f, t) to the reserve
245 246 247 248 249 250 251 252
 * map.  In the normal case, existing regions will be expanded
 * to accommodate the specified range.  Sufficient regions should
 * exist for expansion due to the previous call to region_chg
 * with the same range.  However, it is possible that region_del
 * could have been called after region_chg and modifed the map
 * in such a way that no region exists to be expanded.  In this
 * case, pull a region descriptor from the cache associated with
 * the map and use that for the new range.
253 254 255
 *
 * Return the number of new huge pages added to the map.  This
 * number is greater than or equal to zero.
256
 */
257
static long region_add(struct resv_map *resv, long f, long t)
258
{
259
	struct list_head *head = &resv->regions;
260
	struct file_region *rg, *nrg, *trg;
261
	long add = 0;
262

263
	spin_lock(&resv->lock);
264 265 266 267 268
	/* Locate the region we are either in or before. */
	list_for_each_entry(rg, head, link)
		if (f <= rg->to)
			break;

269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
	/*
	 * If no region exists which can be expanded to include the
	 * specified range, the list must have been modified by an
	 * interleving call to region_del().  Pull a region descriptor
	 * from the cache and use it for this range.
	 */
	if (&rg->link == head || t < rg->from) {
		VM_BUG_ON(resv->region_cache_count <= 0);

		resv->region_cache_count--;
		nrg = list_first_entry(&resv->region_cache, struct file_region,
					link);
		list_del(&nrg->link);

		nrg->from = f;
		nrg->to = t;
		list_add(&nrg->link, rg->link.prev);

		add += t - f;
		goto out_locked;
	}

291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308
	/* Round our left edge to the current segment if it encloses us. */
	if (f > rg->from)
		f = rg->from;

	/* Check for and consume any regions we now overlap with. */
	nrg = rg;
	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		if (rg->from > t)
			break;

		/* If this area reaches higher then extend our area to
		 * include it completely.  If this is not the first area
		 * which we intend to reuse, free it. */
		if (rg->to > t)
			t = rg->to;
		if (rg != nrg) {
309 310 311 312 313
			/* Decrement return value by the deleted range.
			 * Another range will span this area so that by
			 * end of routine add will be >= zero
			 */
			add -= (rg->to - rg->from);
314 315 316 317
			list_del(&rg->link);
			kfree(rg);
		}
	}
318 319

	add += (nrg->from - f);		/* Added to beginning of region */
320
	nrg->from = f;
321
	add += t - nrg->to;		/* Added to end of region */
322
	nrg->to = t;
323

324 325
out_locked:
	resv->adds_in_progress--;
326
	spin_unlock(&resv->lock);
327 328
	VM_BUG_ON(add < 0);
	return add;
329 330
}

331 332 333 334 335 336 337 338 339 340 341 342 343
/*
 * Examine the existing reserve map and determine how many
 * huge pages in the specified range [f, t) are NOT currently
 * represented.  This routine is called before a subsequent
 * call to region_add that will actually modify the reserve
 * map to add the specified range [f, t).  region_chg does
 * not change the number of huge pages represented by the
 * map.  However, if the existing regions in the map can not
 * be expanded to represent the new range, a new file_region
 * structure is added to the map as a placeholder.  This is
 * so that the subsequent region_add call will have all the
 * regions it needs and will not fail.
 *
344 345 346 347 348 349 350 351
 * Upon entry, region_chg will also examine the cache of region descriptors
 * associated with the map.  If there are not enough descriptors cached, one
 * will be allocated for the in progress add operation.
 *
 * Returns the number of huge pages that need to be added to the existing
 * reservation map for the range [f, t).  This number is greater or equal to
 * zero.  -ENOMEM is returned if a new file_region structure or cache entry
 * is needed and can not be allocated.
352
 */
353
static long region_chg(struct resv_map *resv, long f, long t)
354
{
355
	struct list_head *head = &resv->regions;
356
	struct file_region *rg, *nrg = NULL;
357 358
	long chg = 0;

359 360
retry:
	spin_lock(&resv->lock);
361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
retry_locked:
	resv->adds_in_progress++;

	/*
	 * Check for sufficient descriptors in the cache to accommodate
	 * the number of in progress add operations.
	 */
	if (resv->adds_in_progress > resv->region_cache_count) {
		struct file_region *trg;

		VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1);
		/* Must drop lock to allocate a new descriptor. */
		resv->adds_in_progress--;
		spin_unlock(&resv->lock);

		trg = kmalloc(sizeof(*trg), GFP_KERNEL);
377 378
		if (!trg) {
			kfree(nrg);
379
			return -ENOMEM;
380
		}
381 382 383 384 385 386 387

		spin_lock(&resv->lock);
		list_add(&trg->link, &resv->region_cache);
		resv->region_cache_count++;
		goto retry_locked;
	}

388 389 390 391 392 393 394 395 396
	/* Locate the region we are before or in. */
	list_for_each_entry(rg, head, link)
		if (f <= rg->to)
			break;

	/* If we are below the current region then a new region is required.
	 * Subtle, allocate a new region at the position but make it zero
	 * size such that we can guarantee to record the reservation. */
	if (&rg->link == head || t < rg->from) {
397
		if (!nrg) {
398
			resv->adds_in_progress--;
399 400 401 402 403 404 405 406 407 408
			spin_unlock(&resv->lock);
			nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
			if (!nrg)
				return -ENOMEM;

			nrg->from = f;
			nrg->to   = f;
			INIT_LIST_HEAD(&nrg->link);
			goto retry;
		}
409

410 411 412
		list_add(&nrg->link, rg->link.prev);
		chg = t - f;
		goto out_nrg;
413 414 415 416 417 418 419 420 421 422 423 424
	}

	/* Round our left edge to the current segment if it encloses us. */
	if (f > rg->from)
		f = rg->from;
	chg = t - f;

	/* Check for and consume any regions we now overlap with. */
	list_for_each_entry(rg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		if (rg->from > t)
425
			goto out;
426

L
Lucas De Marchi 已提交
427
		/* We overlap with this area, if it extends further than
428 429 430 431 432 433 434 435
		 * us then we must extend ourselves.  Account for its
		 * existing reservation. */
		if (rg->to > t) {
			chg += rg->to - t;
			t = rg->to;
		}
		chg -= rg->to - rg->from;
	}
436 437 438 439 440 441 442 443

out:
	spin_unlock(&resv->lock);
	/*  We already know we raced and no longer need the new region */
	kfree(nrg);
	return chg;
out_nrg:
	spin_unlock(&resv->lock);
444 445 446
	return chg;
}

447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465
/*
 * Abort the in progress add operation.  The adds_in_progress field
 * of the resv_map keeps track of the operations in progress between
 * calls to region_chg and region_add.  Operations are sometimes
 * aborted after the call to region_chg.  In such cases, region_abort
 * is called to decrement the adds_in_progress counter.
 *
 * NOTE: The range arguments [f, t) are not needed or used in this
 * routine.  They are kept to make reading the calling code easier as
 * arguments will match the associated region_chg call.
 */
static void region_abort(struct resv_map *resv, long f, long t)
{
	spin_lock(&resv->lock);
	VM_BUG_ON(!resv->region_cache_count);
	resv->adds_in_progress--;
	spin_unlock(&resv->lock);
}

466
/*
467 468 469 470 471 472 473 474 475 476 477 478
 * Delete the specified range [f, t) from the reserve map.  If the
 * t parameter is LONG_MAX, this indicates that ALL regions after f
 * should be deleted.  Locate the regions which intersect [f, t)
 * and either trim, delete or split the existing regions.
 *
 * Returns the number of huge pages deleted from the reserve map.
 * In the normal case, the return value is zero or more.  In the
 * case where a region must be split, a new region descriptor must
 * be allocated.  If the allocation fails, -ENOMEM will be returned.
 * NOTE: If the parameter t == LONG_MAX, then we will never split
 * a region and possibly return -ENOMEM.  Callers specifying
 * t == LONG_MAX do not need to check for -ENOMEM error.
479
 */
480
static long region_del(struct resv_map *resv, long f, long t)
481
{
482
	struct list_head *head = &resv->regions;
483
	struct file_region *rg, *trg;
484 485
	struct file_region *nrg = NULL;
	long del = 0;
486

487
retry:
488
	spin_lock(&resv->lock);
489
	list_for_each_entry_safe(rg, trg, head, link) {
490 491 492 493 494 495 496 497
		/*
		 * Skip regions before the range to be deleted.  file_region
		 * ranges are normally of the form [from, to).  However, there
		 * may be a "placeholder" entry in the map which is of the form
		 * (from, to) with from == to.  Check for placeholder entries
		 * at the beginning of the range to be deleted.
		 */
		if (rg->to <= f && (rg->to != rg->from || rg->to != f))
498
			continue;
499

500
		if (rg->from >= t)
501 502
			break;

503 504 505 506 507 508 509 510 511 512 513 514 515
		if (f > rg->from && t < rg->to) { /* Must split region */
			/*
			 * Check for an entry in the cache before dropping
			 * lock and attempting allocation.
			 */
			if (!nrg &&
			    resv->region_cache_count > resv->adds_in_progress) {
				nrg = list_first_entry(&resv->region_cache,
							struct file_region,
							link);
				list_del(&nrg->link);
				resv->region_cache_count--;
			}
516

517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536
			if (!nrg) {
				spin_unlock(&resv->lock);
				nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
				if (!nrg)
					return -ENOMEM;
				goto retry;
			}

			del += t - f;

			/* New entry for end of split region */
			nrg->from = t;
			nrg->to = rg->to;
			INIT_LIST_HEAD(&nrg->link);

			/* Original entry is trimmed */
			rg->to = f;

			list_add(&nrg->link, &rg->link);
			nrg = NULL;
537
			break;
538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553
		}

		if (f <= rg->from && t >= rg->to) { /* Remove entire region */
			del += rg->to - rg->from;
			list_del(&rg->link);
			kfree(rg);
			continue;
		}

		if (f <= rg->from) {	/* Trim beginning of region */
			del += t - rg->from;
			rg->from = t;
		} else {		/* Trim end of region */
			del += rg->to - f;
			rg->to = f;
		}
554
	}
555 556

	spin_unlock(&resv->lock);
557 558
	kfree(nrg);
	return del;
559 560
}

561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582
/*
 * A rare out of memory error was encountered which prevented removal of
 * the reserve map region for a page.  The huge page itself was free'ed
 * and removed from the page cache.  This routine will adjust the subpool
 * usage count, and the global reserve count if needed.  By incrementing
 * these counts, the reserve map entry which could not be deleted will
 * appear as a "reserved" entry instead of simply dangling with incorrect
 * counts.
 */
void hugetlb_fix_reserve_counts(struct inode *inode, bool restore_reserve)
{
	struct hugepage_subpool *spool = subpool_inode(inode);
	long rsv_adjust;

	rsv_adjust = hugepage_subpool_get_pages(spool, 1);
	if (restore_reserve && rsv_adjust) {
		struct hstate *h = hstate_inode(inode);

		hugetlb_acct_memory(h, 1);
	}
}

583 584 585 586
/*
 * Count and return the number of huge pages in the reserve map
 * that intersect with the range [f, t).
 */
587
static long region_count(struct resv_map *resv, long f, long t)
588
{
589
	struct list_head *head = &resv->regions;
590 591 592
	struct file_region *rg;
	long chg = 0;

593
	spin_lock(&resv->lock);
594 595
	/* Locate each segment we overlap with, and count that overlap. */
	list_for_each_entry(rg, head, link) {
596 597
		long seg_from;
		long seg_to;
598 599 600 601 602 603 604 605 606 607 608

		if (rg->to <= f)
			continue;
		if (rg->from >= t)
			break;

		seg_from = max(rg->from, f);
		seg_to = min(rg->to, t);

		chg += seg_to - seg_from;
	}
609
	spin_unlock(&resv->lock);
610 611 612 613

	return chg;
}

614 615 616 617
/*
 * Convert the address within this vma to the page offset within
 * the mapping, in pagecache page units; huge pages here.
 */
618 619
static pgoff_t vma_hugecache_offset(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address)
620
{
621 622
	return ((address - vma->vm_start) >> huge_page_shift(h)) +
			(vma->vm_pgoff >> huge_page_order(h));
623 624
}

625 626 627 628 629
pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
				     unsigned long address)
{
	return vma_hugecache_offset(hstate_vma(vma), vma, address);
}
630
EXPORT_SYMBOL_GPL(linear_hugepage_index);
631

632 633 634 635 636 637 638 639 640 641 642 643 644
/*
 * Return the size of the pages allocated when backing a VMA. In the majority
 * cases this will be same size as used by the page table entries.
 */
unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
{
	struct hstate *hstate;

	if (!is_vm_hugetlb_page(vma))
		return PAGE_SIZE;

	hstate = hstate_vma(vma);

645
	return 1UL << huge_page_shift(hstate);
646
}
647
EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
648

649 650 651 652 653 654 655 656 657 658 659 660 661
/*
 * Return the page size being used by the MMU to back a VMA. In the majority
 * of cases, the page size used by the kernel matches the MMU size. On
 * architectures where it differs, an architecture-specific version of this
 * function is required.
 */
#ifndef vma_mmu_pagesize
unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
{
	return vma_kernel_pagesize(vma);
}
#endif

662 663 664 665 666 667 668
/*
 * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
 * bits of the reservation map pointer, which are always clear due to
 * alignment.
 */
#define HPAGE_RESV_OWNER    (1UL << 0)
#define HPAGE_RESV_UNMAPPED (1UL << 1)
669
#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
670

671 672 673 674 675 676 677 678 679
/*
 * These helpers are used to track how many pages are reserved for
 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
 * is guaranteed to have their future faults succeed.
 *
 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
 * the reserve counters are updated with the hugetlb_lock held. It is safe
 * to reset the VMA at fork() time as it is not in use yet and there is no
 * chance of the global counters getting corrupted as a result of the values.
680 681 682 683 684 685 686 687 688
 *
 * The private mapping reservation is represented in a subtly different
 * manner to a shared mapping.  A shared mapping has a region map associated
 * with the underlying file, this region map represents the backing file
 * pages which have ever had a reservation assigned which this persists even
 * after the page is instantiated.  A private mapping has a region map
 * associated with the original mmap which is attached to all VMAs which
 * reference it, this region map represents those offsets which have consumed
 * reservation ie. where pages have been instantiated.
689
 */
690 691 692 693 694 695 696 697 698 699 700
static unsigned long get_vma_private_data(struct vm_area_struct *vma)
{
	return (unsigned long)vma->vm_private_data;
}

static void set_vma_private_data(struct vm_area_struct *vma,
							unsigned long value)
{
	vma->vm_private_data = (void *)value;
}

701
struct resv_map *resv_map_alloc(void)
702 703
{
	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
704 705 706 707 708
	struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);

	if (!resv_map || !rg) {
		kfree(resv_map);
		kfree(rg);
709
		return NULL;
710
	}
711 712

	kref_init(&resv_map->refs);
713
	spin_lock_init(&resv_map->lock);
714 715
	INIT_LIST_HEAD(&resv_map->regions);

716 717 718 719 720 721
	resv_map->adds_in_progress = 0;

	INIT_LIST_HEAD(&resv_map->region_cache);
	list_add(&rg->link, &resv_map->region_cache);
	resv_map->region_cache_count = 1;

722 723 724
	return resv_map;
}

725
void resv_map_release(struct kref *ref)
726 727
{
	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
728 729
	struct list_head *head = &resv_map->region_cache;
	struct file_region *rg, *trg;
730 731

	/* Clear out any active regions before we release the map. */
732
	region_del(resv_map, 0, LONG_MAX);
733 734 735 736 737 738 739 740 741

	/* ... and any entries left in the cache */
	list_for_each_entry_safe(rg, trg, head, link) {
		list_del(&rg->link);
		kfree(rg);
	}

	VM_BUG_ON(resv_map->adds_in_progress);

742 743 744
	kfree(resv_map);
}

745 746 747 748 749
static inline struct resv_map *inode_resv_map(struct inode *inode)
{
	return inode->i_mapping->private_data;
}

750
static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
751
{
752
	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
753 754 755 756 757 758 759
	if (vma->vm_flags & VM_MAYSHARE) {
		struct address_space *mapping = vma->vm_file->f_mapping;
		struct inode *inode = mapping->host;

		return inode_resv_map(inode);

	} else {
760 761
		return (struct resv_map *)(get_vma_private_data(vma) &
							~HPAGE_RESV_MASK);
762
	}
763 764
}

765
static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
766
{
767 768
	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
769

770 771
	set_vma_private_data(vma, (get_vma_private_data(vma) &
				HPAGE_RESV_MASK) | (unsigned long)map);
772 773 774 775
}

static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
{
776 777
	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
778 779

	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
780 781 782 783
}

static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
{
784
	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
785 786

	return (get_vma_private_data(vma) & flag) != 0;
787 788
}

789
/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
790 791
void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
{
792
	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
793
	if (!(vma->vm_flags & VM_MAYSHARE))
794 795 796 797
		vma->vm_private_data = (void *)0;
}

/* Returns true if the VMA has associated reserve pages */
798
static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
799
{
800 801 802 803 804 805 806 807 808 809 810
	if (vma->vm_flags & VM_NORESERVE) {
		/*
		 * This address is already reserved by other process(chg == 0),
		 * so, we should decrement reserved count. Without decrementing,
		 * reserve count remains after releasing inode, because this
		 * allocated page will go into page cache and is regarded as
		 * coming from reserved pool in releasing step.  Currently, we
		 * don't have any other solution to deal with this situation
		 * properly, so add work-around here.
		 */
		if (vma->vm_flags & VM_MAYSHARE && chg == 0)
811
			return true;
812
		else
813
			return false;
814
	}
815 816

	/* Shared mappings always use reserves */
817 818 819 820 821 822 823 824 825 826 827 828 829
	if (vma->vm_flags & VM_MAYSHARE) {
		/*
		 * We know VM_NORESERVE is not set.  Therefore, there SHOULD
		 * be a region map for all pages.  The only situation where
		 * there is no region map is if a hole was punched via
		 * fallocate.  In this case, there really are no reverves to
		 * use.  This situation is indicated if chg != 0.
		 */
		if (chg)
			return false;
		else
			return true;
	}
830 831 832 833 834

	/*
	 * Only the process that called mmap() has reserves for
	 * private mappings.
	 */
835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855
	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
		/*
		 * Like the shared case above, a hole punch or truncate
		 * could have been performed on the private mapping.
		 * Examine the value of chg to determine if reserves
		 * actually exist or were previously consumed.
		 * Very Subtle - The value of chg comes from a previous
		 * call to vma_needs_reserves().  The reserve map for
		 * private mappings has different (opposite) semantics
		 * than that of shared mappings.  vma_needs_reserves()
		 * has already taken this difference in semantics into
		 * account.  Therefore, the meaning of chg is the same
		 * as in the shared case above.  Code could easily be
		 * combined, but keeping it separate draws attention to
		 * subtle differences.
		 */
		if (chg)
			return false;
		else
			return true;
	}
856

857
	return false;
858 859
}

860
static void enqueue_huge_page(struct hstate *h, struct page *page)
L
Linus Torvalds 已提交
861 862
{
	int nid = page_to_nid(page);
863
	list_move(&page->lru, &h->hugepage_freelists[nid]);
864 865
	h->free_huge_pages++;
	h->free_huge_pages_node[nid]++;
L
Linus Torvalds 已提交
866 867
}

868 869 870 871
static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
{
	struct page *page;

872 873 874 875 876 877 878 879
	list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
		if (!is_migrate_isolate_page(page))
			break;
	/*
	 * if 'non-isolated free hugepage' not found on the list,
	 * the allocation fails.
	 */
	if (&h->hugepage_freelists[nid] == &page->lru)
880
		return NULL;
881
	list_move(&page->lru, &h->hugepage_activelist);
882
	set_page_refcounted(page);
883 884 885 886 887
	h->free_huge_pages--;
	h->free_huge_pages_node[nid]--;
	return page;
}

888 889 890
/* Movability of hugepages depends on migration support. */
static inline gfp_t htlb_alloc_mask(struct hstate *h)
{
891
	if (hugepages_treat_as_movable || hugepage_migration_supported(h))
892 893 894 895 896
		return GFP_HIGHUSER_MOVABLE;
	else
		return GFP_HIGHUSER;
}

897 898
static struct page *dequeue_huge_page_vma(struct hstate *h,
				struct vm_area_struct *vma,
899 900
				unsigned long address, int avoid_reserve,
				long chg)
L
Linus Torvalds 已提交
901
{
902
	struct page *page = NULL;
903
	struct mempolicy *mpol;
904
	nodemask_t *nodemask;
905
	struct zonelist *zonelist;
906 907
	struct zone *zone;
	struct zoneref *z;
908
	unsigned int cpuset_mems_cookie;
L
Linus Torvalds 已提交
909

910 911 912 913 914
	/*
	 * A child process with MAP_PRIVATE mappings created by their parent
	 * have no page reserves. This check ensures that reservations are
	 * not "stolen". The child may still get SIGKILLed
	 */
915
	if (!vma_has_reserves(vma, chg) &&
916
			h->free_huge_pages - h->resv_huge_pages == 0)
917
		goto err;
918

919
	/* If reserves cannot be used, ensure enough pages are in the pool */
920
	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
921
		goto err;
922

923
retry_cpuset:
924
	cpuset_mems_cookie = read_mems_allowed_begin();
925
	zonelist = huge_zonelist(vma, address,
926
					htlb_alloc_mask(h), &mpol, &nodemask);
927

928 929
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
						MAX_NR_ZONES - 1, nodemask) {
930
		if (cpuset_zone_allowed(zone, htlb_alloc_mask(h))) {
931 932
			page = dequeue_huge_page_node(h, zone_to_nid(zone));
			if (page) {
933 934 935 936 937
				if (avoid_reserve)
					break;
				if (!vma_has_reserves(vma, chg))
					break;

938
				SetPagePrivate(page);
939
				h->resv_huge_pages--;
940 941
				break;
			}
A
Andrew Morton 已提交
942
		}
L
Linus Torvalds 已提交
943
	}
944

945
	mpol_cond_put(mpol);
946
	if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
947
		goto retry_cpuset;
L
Linus Torvalds 已提交
948
	return page;
949 950 951

err:
	return NULL;
L
Linus Torvalds 已提交
952 953
}

954 955 956 957 958 959 960 961 962
/*
 * common helper functions for hstate_next_node_to_{alloc|free}.
 * We may have allocated or freed a huge page based on a different
 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
 * be outside of *nodes_allowed.  Ensure that we use an allowed
 * node for alloc or free.
 */
static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
{
963
	nid = next_node_in(nid, *nodes_allowed);
964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024
	VM_BUG_ON(nid >= MAX_NUMNODES);

	return nid;
}

static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
{
	if (!node_isset(nid, *nodes_allowed))
		nid = next_node_allowed(nid, nodes_allowed);
	return nid;
}

/*
 * returns the previously saved node ["this node"] from which to
 * allocate a persistent huge page for the pool and advance the
 * next node from which to allocate, handling wrap at end of node
 * mask.
 */
static int hstate_next_node_to_alloc(struct hstate *h,
					nodemask_t *nodes_allowed)
{
	int nid;

	VM_BUG_ON(!nodes_allowed);

	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);

	return nid;
}

/*
 * helper for free_pool_huge_page() - return the previously saved
 * node ["this node"] from which to free a huge page.  Advance the
 * next node id whether or not we find a free huge page to free so
 * that the next attempt to free addresses the next node.
 */
static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
{
	int nid;

	VM_BUG_ON(!nodes_allowed);

	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);

	return nid;
}

#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)		\
	for (nr_nodes = nodes_weight(*mask);				\
		nr_nodes > 0 &&						\
		((node = hstate_next_node_to_alloc(hs, mask)) || 1);	\
		nr_nodes--)

#define for_each_node_mask_to_free(hs, nr_nodes, node, mask)		\
	for (nr_nodes = nodes_weight(*mask);				\
		nr_nodes > 0 &&						\
		((node = hstate_next_node_to_free(hs, mask)) || 1);	\
		nr_nodes--)

1025 1026 1027
#if (defined(CONFIG_X86_64) || defined(CONFIG_S390)) && \
	((defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || \
	defined(CONFIG_CMA))
1028
static void destroy_compound_gigantic_page(struct page *page,
1029
					unsigned int order)
1030 1031 1032 1033 1034
{
	int i;
	int nr_pages = 1 << order;
	struct page *p = page + 1;

1035
	atomic_set(compound_mapcount_ptr(page), 0);
1036
	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1037
		clear_compound_head(p);
1038 1039 1040 1041 1042 1043 1044
		set_page_refcounted(p);
	}

	set_compound_order(page, 0);
	__ClearPageHead(page);
}

1045
static void free_gigantic_page(struct page *page, unsigned int order)
1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056
{
	free_contig_range(page_to_pfn(page), 1 << order);
}

static int __alloc_gigantic_page(unsigned long start_pfn,
				unsigned long nr_pages)
{
	unsigned long end_pfn = start_pfn + nr_pages;
	return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
}

1057 1058
static bool pfn_range_valid_gigantic(struct zone *z,
			unsigned long start_pfn, unsigned long nr_pages)
1059 1060 1061 1062 1063 1064 1065 1066 1067 1068
{
	unsigned long i, end_pfn = start_pfn + nr_pages;
	struct page *page;

	for (i = start_pfn; i < end_pfn; i++) {
		if (!pfn_valid(i))
			return false;

		page = pfn_to_page(i);

1069 1070 1071
		if (page_zone(page) != z)
			return false;

1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091
		if (PageReserved(page))
			return false;

		if (page_count(page) > 0)
			return false;

		if (PageHuge(page))
			return false;
	}

	return true;
}

static bool zone_spans_last_pfn(const struct zone *zone,
			unsigned long start_pfn, unsigned long nr_pages)
{
	unsigned long last_pfn = start_pfn + nr_pages - 1;
	return zone_spans_pfn(zone, last_pfn);
}

1092
static struct page *alloc_gigantic_page(int nid, unsigned int order)
1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103
{
	unsigned long nr_pages = 1 << order;
	unsigned long ret, pfn, flags;
	struct zone *z;

	z = NODE_DATA(nid)->node_zones;
	for (; z - NODE_DATA(nid)->node_zones < MAX_NR_ZONES; z++) {
		spin_lock_irqsave(&z->lock, flags);

		pfn = ALIGN(z->zone_start_pfn, nr_pages);
		while (zone_spans_last_pfn(z, pfn, nr_pages)) {
1104
			if (pfn_range_valid_gigantic(z, pfn, nr_pages)) {
1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127
				/*
				 * We release the zone lock here because
				 * alloc_contig_range() will also lock the zone
				 * at some point. If there's an allocation
				 * spinning on this lock, it may win the race
				 * and cause alloc_contig_range() to fail...
				 */
				spin_unlock_irqrestore(&z->lock, flags);
				ret = __alloc_gigantic_page(pfn, nr_pages);
				if (!ret)
					return pfn_to_page(pfn);
				spin_lock_irqsave(&z->lock, flags);
			}
			pfn += nr_pages;
		}

		spin_unlock_irqrestore(&z->lock, flags);
	}

	return NULL;
}

static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1128
static void prep_compound_gigantic_page(struct page *page, unsigned int order);
1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160

static struct page *alloc_fresh_gigantic_page_node(struct hstate *h, int nid)
{
	struct page *page;

	page = alloc_gigantic_page(nid, huge_page_order(h));
	if (page) {
		prep_compound_gigantic_page(page, huge_page_order(h));
		prep_new_huge_page(h, page, nid);
	}

	return page;
}

static int alloc_fresh_gigantic_page(struct hstate *h,
				nodemask_t *nodes_allowed)
{
	struct page *page = NULL;
	int nr_nodes, node;

	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
		page = alloc_fresh_gigantic_page_node(h, node);
		if (page)
			return 1;
	}

	return 0;
}

static inline bool gigantic_page_supported(void) { return true; }
#else
static inline bool gigantic_page_supported(void) { return false; }
1161
static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1162
static inline void destroy_compound_gigantic_page(struct page *page,
1163
						unsigned int order) { }
1164 1165 1166 1167
static inline int alloc_fresh_gigantic_page(struct hstate *h,
					nodemask_t *nodes_allowed) { return 0; }
#endif

1168
static void update_and_free_page(struct hstate *h, struct page *page)
A
Adam Litke 已提交
1169 1170
{
	int i;
1171

1172 1173
	if (hstate_is_gigantic(h) && !gigantic_page_supported())
		return;
1174

1175 1176 1177
	h->nr_huge_pages--;
	h->nr_huge_pages_node[page_to_nid(page)]--;
	for (i = 0; i < pages_per_huge_page(h); i++) {
1178 1179
		page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
				1 << PG_referenced | 1 << PG_dirty |
1180 1181
				1 << PG_active | 1 << PG_private |
				1 << PG_writeback);
A
Adam Litke 已提交
1182
	}
1183
	VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1184
	set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
A
Adam Litke 已提交
1185
	set_page_refcounted(page);
1186 1187 1188 1189 1190 1191
	if (hstate_is_gigantic(h)) {
		destroy_compound_gigantic_page(page, huge_page_order(h));
		free_gigantic_page(page, huge_page_order(h));
	} else {
		__free_pages(page, huge_page_order(h));
	}
A
Adam Litke 已提交
1192 1193
}

1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204
struct hstate *size_to_hstate(unsigned long size)
{
	struct hstate *h;

	for_each_hstate(h) {
		if (huge_page_size(h) == size)
			return h;
	}
	return NULL;
}

1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229
/*
 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
 * to hstate->hugepage_activelist.)
 *
 * This function can be called for tail pages, but never returns true for them.
 */
bool page_huge_active(struct page *page)
{
	VM_BUG_ON_PAGE(!PageHuge(page), page);
	return PageHead(page) && PagePrivate(&page[1]);
}

/* never called for tail page */
static void set_page_huge_active(struct page *page)
{
	VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
	SetPagePrivate(&page[1]);
}

static void clear_page_huge_active(struct page *page)
{
	VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
	ClearPagePrivate(&page[1]);
}

1230
void free_huge_page(struct page *page)
1231
{
1232 1233 1234 1235
	/*
	 * Can't pass hstate in here because it is called from the
	 * compound page destructor.
	 */
1236
	struct hstate *h = page_hstate(page);
1237
	int nid = page_to_nid(page);
1238 1239
	struct hugepage_subpool *spool =
		(struct hugepage_subpool *)page_private(page);
1240
	bool restore_reserve;
1241

1242
	set_page_private(page, 0);
1243
	page->mapping = NULL;
1244 1245
	VM_BUG_ON_PAGE(page_count(page), page);
	VM_BUG_ON_PAGE(page_mapcount(page), page);
1246
	restore_reserve = PagePrivate(page);
1247
	ClearPagePrivate(page);
1248

1249 1250 1251 1252 1253 1254 1255 1256
	/*
	 * A return code of zero implies that the subpool will be under its
	 * minimum size if the reservation is not restored after page is free.
	 * Therefore, force restore_reserve operation.
	 */
	if (hugepage_subpool_put_pages(spool, 1) == 0)
		restore_reserve = true;

1257
	spin_lock(&hugetlb_lock);
1258
	clear_page_huge_active(page);
1259 1260
	hugetlb_cgroup_uncharge_page(hstate_index(h),
				     pages_per_huge_page(h), page);
1261 1262 1263
	if (restore_reserve)
		h->resv_huge_pages++;

1264
	if (h->surplus_huge_pages_node[nid]) {
1265 1266
		/* remove the page from active list */
		list_del(&page->lru);
1267 1268 1269
		update_and_free_page(h, page);
		h->surplus_huge_pages--;
		h->surplus_huge_pages_node[nid]--;
1270
	} else {
1271
		arch_clear_hugepage_flags(page);
1272
		enqueue_huge_page(h, page);
1273
	}
1274 1275 1276
	spin_unlock(&hugetlb_lock);
}

1277
static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1278
{
1279
	INIT_LIST_HEAD(&page->lru);
1280
	set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1281
	spin_lock(&hugetlb_lock);
1282
	set_hugetlb_cgroup(page, NULL);
1283 1284
	h->nr_huge_pages++;
	h->nr_huge_pages_node[nid]++;
1285 1286 1287 1288
	spin_unlock(&hugetlb_lock);
	put_page(page); /* free it into the hugepage allocator */
}

1289
static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1290 1291 1292 1293 1294 1295 1296
{
	int i;
	int nr_pages = 1 << order;
	struct page *p = page + 1;

	/* we rely on prep_new_huge_page to set the destructor */
	set_compound_order(page, order);
1297
	__ClearPageReserved(page);
1298
	__SetPageHead(page);
1299
	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312
		/*
		 * For gigantic hugepages allocated through bootmem at
		 * boot, it's safer to be consistent with the not-gigantic
		 * hugepages and clear the PG_reserved bit from all tail pages
		 * too.  Otherwse drivers using get_user_pages() to access tail
		 * pages may get the reference counting wrong if they see
		 * PG_reserved set on a tail page (despite the head page not
		 * having PG_reserved set).  Enforcing this consistency between
		 * head and tail pages allows drivers to optimize away a check
		 * on the head page when they need know if put_page() is needed
		 * after get_user_pages().
		 */
		__ClearPageReserved(p);
1313
		set_page_count(p, 0);
1314
		set_compound_head(p, page);
1315
	}
1316
	atomic_set(compound_mapcount_ptr(page), -1);
1317 1318
}

A
Andrew Morton 已提交
1319 1320 1321 1322 1323
/*
 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
 * transparent huge pages.  See the PageTransHuge() documentation for more
 * details.
 */
1324 1325 1326 1327 1328 1329
int PageHuge(struct page *page)
{
	if (!PageCompound(page))
		return 0;

	page = compound_head(page);
1330
	return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1331
}
1332 1333
EXPORT_SYMBOL_GPL(PageHuge);

1334 1335 1336 1337 1338 1339 1340 1341 1342
/*
 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
 * normal or transparent huge pages.
 */
int PageHeadHuge(struct page *page_head)
{
	if (!PageHead(page_head))
		return 0;

1343
	return get_compound_page_dtor(page_head) == free_huge_page;
1344 1345
}

1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362
pgoff_t __basepage_index(struct page *page)
{
	struct page *page_head = compound_head(page);
	pgoff_t index = page_index(page_head);
	unsigned long compound_idx;

	if (!PageHuge(page_head))
		return page_index(page);

	if (compound_order(page_head) >= MAX_ORDER)
		compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
	else
		compound_idx = page - page_head;

	return (index << compound_order(page_head)) + compound_idx;
}

1363
static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
L
Linus Torvalds 已提交
1364 1365
{
	struct page *page;
1366

1367
	page = __alloc_pages_node(nid,
1368
		htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
1369
						__GFP_REPEAT|__GFP_NOWARN,
1370
		huge_page_order(h));
L
Linus Torvalds 已提交
1371
	if (page) {
1372
		prep_new_huge_page(h, page, nid);
L
Linus Torvalds 已提交
1373
	}
1374 1375 1376 1377

	return page;
}

1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399
static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
{
	struct page *page;
	int nr_nodes, node;
	int ret = 0;

	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
		page = alloc_fresh_huge_page_node(h, node);
		if (page) {
			ret = 1;
			break;
		}
	}

	if (ret)
		count_vm_event(HTLB_BUDDY_PGALLOC);
	else
		count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);

	return ret;
}

1400 1401 1402 1403 1404 1405
/*
 * Free huge page from pool from next node to free.
 * Attempt to keep persistent huge pages more or less
 * balanced over allowed nodes.
 * Called with hugetlb_lock locked.
 */
1406 1407
static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
							 bool acct_surplus)
1408
{
1409
	int nr_nodes, node;
1410 1411
	int ret = 0;

1412
	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1413 1414 1415 1416
		/*
		 * If we're returning unused surplus pages, only examine
		 * nodes with surplus pages.
		 */
1417 1418
		if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
		    !list_empty(&h->hugepage_freelists[node])) {
1419
			struct page *page =
1420
				list_entry(h->hugepage_freelists[node].next,
1421 1422 1423
					  struct page, lru);
			list_del(&page->lru);
			h->free_huge_pages--;
1424
			h->free_huge_pages_node[node]--;
1425 1426
			if (acct_surplus) {
				h->surplus_huge_pages--;
1427
				h->surplus_huge_pages_node[node]--;
1428
			}
1429 1430
			update_and_free_page(h, page);
			ret = 1;
1431
			break;
1432
		}
1433
	}
1434 1435 1436 1437

	return ret;
}

1438 1439
/*
 * Dissolve a given free hugepage into free buddy pages. This function does
1440 1441 1442
 * nothing for in-use (including surplus) hugepages. Returns -EBUSY if the
 * number of free hugepages would be reduced below the number of reserved
 * hugepages.
1443
 */
1444
static int dissolve_free_huge_page(struct page *page)
1445
{
1446 1447
	int rc = 0;

1448 1449
	spin_lock(&hugetlb_lock);
	if (PageHuge(page) && !page_count(page)) {
1450 1451 1452
		struct page *head = compound_head(page);
		struct hstate *h = page_hstate(head);
		int nid = page_to_nid(head);
1453 1454 1455 1456
		if (h->free_huge_pages - h->resv_huge_pages == 0) {
			rc = -EBUSY;
			goto out;
		}
1457
		list_del(&head->lru);
1458 1459
		h->free_huge_pages--;
		h->free_huge_pages_node[nid]--;
1460
		h->max_huge_pages--;
1461
		update_and_free_page(h, head);
1462
	}
1463
out:
1464
	spin_unlock(&hugetlb_lock);
1465
	return rc;
1466 1467 1468 1469 1470
}

/*
 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
 * make specified memory blocks removable from the system.
1471 1472
 * Note that this will dissolve a free gigantic hugepage completely, if any
 * part of it lies within the given range.
1473 1474
 * Also note that if dissolve_free_huge_page() returns with an error, all
 * free hugepages that were dissolved before that error are lost.
1475
 */
1476
int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1477 1478
{
	unsigned long pfn;
1479
	int rc = 0;
1480

1481
	if (!hugepages_supported())
1482
		return rc;
1483

1484
	for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order)
1485 1486 1487 1488
		if (rc = dissolve_free_huge_page(pfn_to_page(pfn)))
			break;

	return rc;
1489 1490
}

1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508
/*
 * There are 3 ways this can get called:
 * 1. With vma+addr: we use the VMA's memory policy
 * 2. With !vma, but nid=NUMA_NO_NODE:  We try to allocate a huge
 *    page from any node, and let the buddy allocator itself figure
 *    it out.
 * 3. With !vma, but nid!=NUMA_NO_NODE.  We allocate a huge page
 *    strictly from 'nid'
 */
static struct page *__hugetlb_alloc_buddy_huge_page(struct hstate *h,
		struct vm_area_struct *vma, unsigned long addr, int nid)
{
	int order = huge_page_order(h);
	gfp_t gfp = htlb_alloc_mask(h)|__GFP_COMP|__GFP_REPEAT|__GFP_NOWARN;
	unsigned int cpuset_mems_cookie;

	/*
	 * We need a VMA to get a memory policy.  If we do not
D
Dave Hansen 已提交
1509 1510 1511 1512 1513 1514
	 * have one, we use the 'nid' argument.
	 *
	 * The mempolicy stuff below has some non-inlined bits
	 * and calls ->vm_ops.  That makes it hard to optimize at
	 * compile-time, even when NUMA is off and it does
	 * nothing.  This helps the compiler optimize it out.
1515
	 */
D
Dave Hansen 已提交
1516
	if (!IS_ENABLED(CONFIG_NUMA) || !vma) {
1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532
		/*
		 * If a specific node is requested, make sure to
		 * get memory from there, but only when a node
		 * is explicitly specified.
		 */
		if (nid != NUMA_NO_NODE)
			gfp |= __GFP_THISNODE;
		/*
		 * Make sure to call something that can handle
		 * nid=NUMA_NO_NODE
		 */
		return alloc_pages_node(nid, gfp, order);
	}

	/*
	 * OK, so we have a VMA.  Fetch the mempolicy and try to
D
Dave Hansen 已提交
1533 1534
	 * allocate a huge page with it.  We will only reach this
	 * when CONFIG_NUMA=y.
1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566
	 */
	do {
		struct page *page;
		struct mempolicy *mpol;
		struct zonelist *zl;
		nodemask_t *nodemask;

		cpuset_mems_cookie = read_mems_allowed_begin();
		zl = huge_zonelist(vma, addr, gfp, &mpol, &nodemask);
		mpol_cond_put(mpol);
		page = __alloc_pages_nodemask(gfp, order, zl, nodemask);
		if (page)
			return page;
	} while (read_mems_allowed_retry(cpuset_mems_cookie));

	return NULL;
}

/*
 * There are two ways to allocate a huge page:
 * 1. When you have a VMA and an address (like a fault)
 * 2. When you have no VMA (like when setting /proc/.../nr_hugepages)
 *
 * 'vma' and 'addr' are only for (1).  'nid' is always NUMA_NO_NODE in
 * this case which signifies that the allocation should be done with
 * respect for the VMA's memory policy.
 *
 * For (2), we ignore 'vma' and 'addr' and use 'nid' exclusively. This
 * implies that memory policies will not be taken in to account.
 */
static struct page *__alloc_buddy_huge_page(struct hstate *h,
		struct vm_area_struct *vma, unsigned long addr, int nid)
1567 1568
{
	struct page *page;
1569
	unsigned int r_nid;
1570

1571
	if (hstate_is_gigantic(h))
1572 1573
		return NULL;

1574 1575 1576 1577 1578 1579
	/*
	 * Make sure that anyone specifying 'nid' is not also specifying a VMA.
	 * This makes sure the caller is picking _one_ of the modes with which
	 * we can call this function, not both.
	 */
	if (vma || (addr != -1)) {
D
Dave Hansen 已提交
1580 1581
		VM_WARN_ON_ONCE(addr == -1);
		VM_WARN_ON_ONCE(nid != NUMA_NO_NODE);
1582
	}
1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606
	/*
	 * Assume we will successfully allocate the surplus page to
	 * prevent racing processes from causing the surplus to exceed
	 * overcommit
	 *
	 * This however introduces a different race, where a process B
	 * tries to grow the static hugepage pool while alloc_pages() is
	 * called by process A. B will only examine the per-node
	 * counters in determining if surplus huge pages can be
	 * converted to normal huge pages in adjust_pool_surplus(). A
	 * won't be able to increment the per-node counter, until the
	 * lock is dropped by B, but B doesn't drop hugetlb_lock until
	 * no more huge pages can be converted from surplus to normal
	 * state (and doesn't try to convert again). Thus, we have a
	 * case where a surplus huge page exists, the pool is grown, and
	 * the surplus huge page still exists after, even though it
	 * should just have been converted to a normal huge page. This
	 * does not leak memory, though, as the hugepage will be freed
	 * once it is out of use. It also does not allow the counters to
	 * go out of whack in adjust_pool_surplus() as we don't modify
	 * the node values until we've gotten the hugepage and only the
	 * per-node value is checked there.
	 */
	spin_lock(&hugetlb_lock);
1607
	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1608 1609 1610
		spin_unlock(&hugetlb_lock);
		return NULL;
	} else {
1611 1612
		h->nr_huge_pages++;
		h->surplus_huge_pages++;
1613 1614 1615
	}
	spin_unlock(&hugetlb_lock);

1616
	page = __hugetlb_alloc_buddy_huge_page(h, vma, addr, nid);
1617 1618

	spin_lock(&hugetlb_lock);
1619
	if (page) {
1620
		INIT_LIST_HEAD(&page->lru);
1621
		r_nid = page_to_nid(page);
1622
		set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1623
		set_hugetlb_cgroup(page, NULL);
1624 1625 1626
		/*
		 * We incremented the global counters already
		 */
1627 1628
		h->nr_huge_pages_node[r_nid]++;
		h->surplus_huge_pages_node[r_nid]++;
1629
		__count_vm_event(HTLB_BUDDY_PGALLOC);
1630
	} else {
1631 1632
		h->nr_huge_pages--;
		h->surplus_huge_pages--;
1633
		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1634
	}
1635
	spin_unlock(&hugetlb_lock);
1636 1637 1638 1639

	return page;
}

1640 1641 1642 1643 1644
/*
 * Allocate a huge page from 'nid'.  Note, 'nid' may be
 * NUMA_NO_NODE, which means that it may be allocated
 * anywhere.
 */
D
Dave Hansen 已提交
1645
static
1646 1647 1648 1649 1650 1651 1652 1653 1654 1655
struct page *__alloc_buddy_huge_page_no_mpol(struct hstate *h, int nid)
{
	unsigned long addr = -1;

	return __alloc_buddy_huge_page(h, NULL, addr, nid);
}

/*
 * Use the VMA's mpolicy to allocate a huge page from the buddy.
 */
D
Dave Hansen 已提交
1656
static
1657 1658 1659 1660 1661 1662
struct page *__alloc_buddy_huge_page_with_mpol(struct hstate *h,
		struct vm_area_struct *vma, unsigned long addr)
{
	return __alloc_buddy_huge_page(h, vma, addr, NUMA_NO_NODE);
}

1663 1664 1665 1666 1667 1668 1669
/*
 * This allocation function is useful in the context where vma is irrelevant.
 * E.g. soft-offlining uses this function because it only cares physical
 * address of error page.
 */
struct page *alloc_huge_page_node(struct hstate *h, int nid)
{
1670
	struct page *page = NULL;
1671 1672

	spin_lock(&hugetlb_lock);
1673 1674
	if (h->free_huge_pages - h->resv_huge_pages > 0)
		page = dequeue_huge_page_node(h, nid);
1675 1676
	spin_unlock(&hugetlb_lock);

1677
	if (!page)
1678
		page = __alloc_buddy_huge_page_no_mpol(h, nid);
1679 1680 1681 1682

	return page;
}

1683
/*
L
Lucas De Marchi 已提交
1684
 * Increase the hugetlb pool such that it can accommodate a reservation
1685 1686
 * of size 'delta'.
 */
1687
static int gather_surplus_pages(struct hstate *h, int delta)
1688 1689 1690 1691 1692
{
	struct list_head surplus_list;
	struct page *page, *tmp;
	int ret, i;
	int needed, allocated;
1693
	bool alloc_ok = true;
1694

1695
	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1696
	if (needed <= 0) {
1697
		h->resv_huge_pages += delta;
1698
		return 0;
1699
	}
1700 1701 1702 1703 1704 1705 1706 1707

	allocated = 0;
	INIT_LIST_HEAD(&surplus_list);

	ret = -ENOMEM;
retry:
	spin_unlock(&hugetlb_lock);
	for (i = 0; i < needed; i++) {
1708
		page = __alloc_buddy_huge_page_no_mpol(h, NUMA_NO_NODE);
1709 1710 1711 1712
		if (!page) {
			alloc_ok = false;
			break;
		}
1713 1714
		list_add(&page->lru, &surplus_list);
	}
1715
	allocated += i;
1716 1717 1718 1719 1720 1721

	/*
	 * After retaking hugetlb_lock, we need to recalculate 'needed'
	 * because either resv_huge_pages or free_huge_pages may have changed.
	 */
	spin_lock(&hugetlb_lock);
1722 1723
	needed = (h->resv_huge_pages + delta) -
			(h->free_huge_pages + allocated);
1724 1725 1726 1727 1728 1729 1730 1731 1732 1733
	if (needed > 0) {
		if (alloc_ok)
			goto retry;
		/*
		 * We were not able to allocate enough pages to
		 * satisfy the entire reservation so we free what
		 * we've allocated so far.
		 */
		goto free;
	}
1734 1735
	/*
	 * The surplus_list now contains _at_least_ the number of extra pages
L
Lucas De Marchi 已提交
1736
	 * needed to accommodate the reservation.  Add the appropriate number
1737
	 * of pages to the hugetlb pool and free the extras back to the buddy
1738 1739 1740
	 * allocator.  Commit the entire reservation here to prevent another
	 * process from stealing the pages as they are added to the pool but
	 * before they are reserved.
1741 1742
	 */
	needed += allocated;
1743
	h->resv_huge_pages += delta;
1744
	ret = 0;
1745

1746
	/* Free the needed pages to the hugetlb pool */
1747
	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1748 1749
		if ((--needed) < 0)
			break;
1750 1751 1752 1753 1754
		/*
		 * This page is now managed by the hugetlb allocator and has
		 * no users -- drop the buddy allocator's reference.
		 */
		put_page_testzero(page);
1755
		VM_BUG_ON_PAGE(page_count(page), page);
1756
		enqueue_huge_page(h, page);
1757
	}
1758
free:
1759
	spin_unlock(&hugetlb_lock);
1760 1761

	/* Free unnecessary surplus pages to the buddy allocator */
1762 1763
	list_for_each_entry_safe(page, tmp, &surplus_list, lru)
		put_page(page);
1764
	spin_lock(&hugetlb_lock);
1765 1766 1767 1768 1769 1770 1771 1772

	return ret;
}

/*
 * When releasing a hugetlb pool reservation, any surplus pages that were
 * allocated to satisfy the reservation must be explicitly freed if they were
 * never used.
1773
 * Called with hugetlb_lock held.
1774
 */
1775 1776
static void return_unused_surplus_pages(struct hstate *h,
					unsigned long unused_resv_pages)
1777 1778 1779
{
	unsigned long nr_pages;

1780
	/* Uncommit the reservation */
1781
	h->resv_huge_pages -= unused_resv_pages;
1782

1783
	/* Cannot return gigantic pages currently */
1784
	if (hstate_is_gigantic(h))
1785 1786
		return;

1787
	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1788

1789 1790
	/*
	 * We want to release as many surplus pages as possible, spread
1791 1792 1793 1794 1795
	 * evenly across all nodes with memory. Iterate across these nodes
	 * until we can no longer free unreserved surplus pages. This occurs
	 * when the nodes with surplus pages have no free pages.
	 * free_pool_huge_page() will balance the the freed pages across the
	 * on-line nodes with memory and will handle the hstate accounting.
1796 1797
	 */
	while (nr_pages--) {
1798
		if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1799
			break;
1800
		cond_resched_lock(&hugetlb_lock);
1801 1802 1803
	}
}

1804

1805
/*
1806
 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
1807
 * are used by the huge page allocation routines to manage reservations.
1808 1809 1810 1811 1812 1813
 *
 * vma_needs_reservation is called to determine if the huge page at addr
 * within the vma has an associated reservation.  If a reservation is
 * needed, the value 1 is returned.  The caller is then responsible for
 * managing the global reservation and subpool usage counts.  After
 * the huge page has been allocated, vma_commit_reservation is called
1814 1815 1816
 * to add the page to the reservation map.  If the page allocation fails,
 * the reservation must be ended instead of committed.  vma_end_reservation
 * is called in such cases.
1817 1818 1819 1820 1821 1822
 *
 * In the normal case, vma_commit_reservation returns the same value
 * as the preceding vma_needs_reservation call.  The only time this
 * is not the case is if a reserve map was changed between calls.  It
 * is the responsibility of the caller to notice the difference and
 * take appropriate action.
1823
 */
1824 1825 1826
enum vma_resv_mode {
	VMA_NEEDS_RESV,
	VMA_COMMIT_RESV,
1827
	VMA_END_RESV,
1828
};
1829 1830
static long __vma_reservation_common(struct hstate *h,
				struct vm_area_struct *vma, unsigned long addr,
1831
				enum vma_resv_mode mode)
1832
{
1833 1834
	struct resv_map *resv;
	pgoff_t idx;
1835
	long ret;
1836

1837 1838
	resv = vma_resv_map(vma);
	if (!resv)
1839
		return 1;
1840

1841
	idx = vma_hugecache_offset(h, vma, addr);
1842 1843
	switch (mode) {
	case VMA_NEEDS_RESV:
1844
		ret = region_chg(resv, idx, idx + 1);
1845 1846 1847 1848
		break;
	case VMA_COMMIT_RESV:
		ret = region_add(resv, idx, idx + 1);
		break;
1849
	case VMA_END_RESV:
1850 1851 1852 1853 1854 1855
		region_abort(resv, idx, idx + 1);
		ret = 0;
		break;
	default:
		BUG();
	}
1856

1857
	if (vma->vm_flags & VM_MAYSHARE)
1858
		return ret;
1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877
	else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
		/*
		 * In most cases, reserves always exist for private mappings.
		 * However, a file associated with mapping could have been
		 * hole punched or truncated after reserves were consumed.
		 * As subsequent fault on such a range will not use reserves.
		 * Subtle - The reserve map for private mappings has the
		 * opposite meaning than that of shared mappings.  If NO
		 * entry is in the reserve map, it means a reservation exists.
		 * If an entry exists in the reserve map, it means the
		 * reservation has already been consumed.  As a result, the
		 * return value of this routine is the opposite of the
		 * value returned from reserve map manipulation routines above.
		 */
		if (ret)
			return 0;
		else
			return 1;
	}
1878
	else
1879
		return ret < 0 ? ret : 0;
1880
}
1881 1882

static long vma_needs_reservation(struct hstate *h,
1883
			struct vm_area_struct *vma, unsigned long addr)
1884
{
1885
	return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
1886
}
1887

1888 1889 1890
static long vma_commit_reservation(struct hstate *h,
			struct vm_area_struct *vma, unsigned long addr)
{
1891 1892 1893
	return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
}

1894
static void vma_end_reservation(struct hstate *h,
1895 1896
			struct vm_area_struct *vma, unsigned long addr)
{
1897
	(void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
1898 1899
}

1900
struct page *alloc_huge_page(struct vm_area_struct *vma,
1901
				    unsigned long addr, int avoid_reserve)
L
Linus Torvalds 已提交
1902
{
1903
	struct hugepage_subpool *spool = subpool_vma(vma);
1904
	struct hstate *h = hstate_vma(vma);
1905
	struct page *page;
1906 1907
	long map_chg, map_commit;
	long gbl_chg;
1908 1909
	int ret, idx;
	struct hugetlb_cgroup *h_cg;
1910

1911
	idx = hstate_index(h);
1912
	/*
1913 1914 1915
	 * Examine the region/reserve map to determine if the process
	 * has a reservation for the page to be allocated.  A return
	 * code of zero indicates a reservation exists (no change).
1916
	 */
1917 1918
	map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
	if (map_chg < 0)
1919
		return ERR_PTR(-ENOMEM);
1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930

	/*
	 * Processes that did not create the mapping will have no
	 * reserves as indicated by the region/reserve map. Check
	 * that the allocation will not exceed the subpool limit.
	 * Allocations for MAP_NORESERVE mappings also need to be
	 * checked against any subpool limit.
	 */
	if (map_chg || avoid_reserve) {
		gbl_chg = hugepage_subpool_get_pages(spool, 1);
		if (gbl_chg < 0) {
1931
			vma_end_reservation(h, vma, addr);
1932
			return ERR_PTR(-ENOSPC);
1933
		}
L
Linus Torvalds 已提交
1934

1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946
		/*
		 * Even though there was no reservation in the region/reserve
		 * map, there could be reservations associated with the
		 * subpool that can be used.  This would be indicated if the
		 * return value of hugepage_subpool_get_pages() is zero.
		 * However, if avoid_reserve is specified we still avoid even
		 * the subpool reservations.
		 */
		if (avoid_reserve)
			gbl_chg = 1;
	}

1947
	ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
1948 1949 1950
	if (ret)
		goto out_subpool_put;

L
Linus Torvalds 已提交
1951
	spin_lock(&hugetlb_lock);
1952 1953 1954 1955 1956 1957
	/*
	 * glb_chg is passed to indicate whether or not a page must be taken
	 * from the global free pool (global change).  gbl_chg == 0 indicates
	 * a reservation exists for the allocation.
	 */
	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
1958
	if (!page) {
1959
		spin_unlock(&hugetlb_lock);
1960
		page = __alloc_buddy_huge_page_with_mpol(h, vma, addr);
1961 1962
		if (!page)
			goto out_uncharge_cgroup;
1963 1964 1965 1966
		if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
			SetPagePrivate(page);
			h->resv_huge_pages--;
		}
1967 1968
		spin_lock(&hugetlb_lock);
		list_move(&page->lru, &h->hugepage_activelist);
1969
		/* Fall through */
K
Ken Chen 已提交
1970
	}
1971 1972
	hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
	spin_unlock(&hugetlb_lock);
1973

1974
	set_page_private(page, (unsigned long)spool);
1975

1976 1977
	map_commit = vma_commit_reservation(h, vma, addr);
	if (unlikely(map_chg > map_commit)) {
1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991
		/*
		 * The page was added to the reservation map between
		 * vma_needs_reservation and vma_commit_reservation.
		 * This indicates a race with hugetlb_reserve_pages.
		 * Adjust for the subpool count incremented above AND
		 * in hugetlb_reserve_pages for the same page.  Also,
		 * the reservation count added in hugetlb_reserve_pages
		 * no longer applies.
		 */
		long rsv_adjust;

		rsv_adjust = hugepage_subpool_put_pages(spool, 1);
		hugetlb_acct_memory(h, -rsv_adjust);
	}
1992
	return page;
1993 1994 1995 1996

out_uncharge_cgroup:
	hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
out_subpool_put:
1997
	if (map_chg || avoid_reserve)
1998
		hugepage_subpool_put_pages(spool, 1);
1999
	vma_end_reservation(h, vma, addr);
2000
	return ERR_PTR(-ENOSPC);
2001 2002
}

2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016
/*
 * alloc_huge_page()'s wrapper which simply returns the page if allocation
 * succeeds, otherwise NULL. This function is called from new_vma_page(),
 * where no ERR_VALUE is expected to be returned.
 */
struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
				unsigned long addr, int avoid_reserve)
{
	struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
	if (IS_ERR(page))
		page = NULL;
	return page;
}

2017
int __weak alloc_bootmem_huge_page(struct hstate *h)
2018 2019
{
	struct huge_bootmem_page *m;
2020
	int nr_nodes, node;
2021

2022
	for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2023 2024
		void *addr;

2025 2026 2027
		addr = memblock_virt_alloc_try_nid_nopanic(
				huge_page_size(h), huge_page_size(h),
				0, BOOTMEM_ALLOC_ACCESSIBLE, node);
2028 2029 2030 2031 2032 2033 2034
		if (addr) {
			/*
			 * Use the beginning of the huge page to store the
			 * huge_bootmem_page struct (until gather_bootmem
			 * puts them into the mem_map).
			 */
			m = addr;
2035
			goto found;
2036 2037 2038 2039 2040
		}
	}
	return 0;

found:
2041
	BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
2042 2043 2044 2045 2046 2047
	/* Put them into a private list first because mem_map is not up yet */
	list_add(&m->list, &huge_boot_pages);
	m->hstate = h;
	return 1;
}

2048 2049
static void __init prep_compound_huge_page(struct page *page,
		unsigned int order)
2050 2051 2052 2053 2054 2055 2056
{
	if (unlikely(order > (MAX_ORDER - 1)))
		prep_compound_gigantic_page(page, order);
	else
		prep_compound_page(page, order);
}

2057 2058 2059 2060 2061 2062 2063
/* Put bootmem huge pages into the standard lists after mem_map is up */
static void __init gather_bootmem_prealloc(void)
{
	struct huge_bootmem_page *m;

	list_for_each_entry(m, &huge_boot_pages, list) {
		struct hstate *h = m->hstate;
2064 2065 2066 2067
		struct page *page;

#ifdef CONFIG_HIGHMEM
		page = pfn_to_page(m->phys >> PAGE_SHIFT);
2068 2069
		memblock_free_late(__pa(m),
				   sizeof(struct huge_bootmem_page));
2070 2071 2072
#else
		page = virt_to_page(m);
#endif
2073
		WARN_ON(page_count(page) != 1);
2074
		prep_compound_huge_page(page, h->order);
2075
		WARN_ON(PageReserved(page));
2076
		prep_new_huge_page(h, page, page_to_nid(page));
2077 2078 2079 2080 2081 2082
		/*
		 * If we had gigantic hugepages allocated at boot time, we need
		 * to restore the 'stolen' pages to totalram_pages in order to
		 * fix confusing memory reports from free(1) and another
		 * side-effects, like CommitLimit going negative.
		 */
2083
		if (hstate_is_gigantic(h))
2084
			adjust_managed_page_count(page, 1 << h->order);
2085 2086 2087
	}
}

2088
static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
L
Linus Torvalds 已提交
2089 2090
{
	unsigned long i;
2091

2092
	for (i = 0; i < h->max_huge_pages; ++i) {
2093
		if (hstate_is_gigantic(h)) {
2094 2095
			if (!alloc_bootmem_huge_page(h))
				break;
2096
		} else if (!alloc_fresh_huge_page(h,
2097
					 &node_states[N_MEMORY]))
L
Linus Torvalds 已提交
2098 2099
			break;
	}
2100
	h->max_huge_pages = i;
2101 2102 2103 2104 2105 2106 2107
}

static void __init hugetlb_init_hstates(void)
{
	struct hstate *h;

	for_each_hstate(h) {
2108 2109 2110
		if (minimum_order > huge_page_order(h))
			minimum_order = huge_page_order(h);

2111
		/* oversize hugepages were init'ed in early boot */
2112
		if (!hstate_is_gigantic(h))
2113
			hugetlb_hstate_alloc_pages(h);
2114
	}
2115
	VM_BUG_ON(minimum_order == UINT_MAX);
2116 2117
}

A
Andi Kleen 已提交
2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128
static char * __init memfmt(char *buf, unsigned long n)
{
	if (n >= (1UL << 30))
		sprintf(buf, "%lu GB", n >> 30);
	else if (n >= (1UL << 20))
		sprintf(buf, "%lu MB", n >> 20);
	else
		sprintf(buf, "%lu KB", n >> 10);
	return buf;
}

2129 2130 2131 2132 2133
static void __init report_hugepages(void)
{
	struct hstate *h;

	for_each_hstate(h) {
A
Andi Kleen 已提交
2134
		char buf[32];
2135
		pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
A
Andi Kleen 已提交
2136 2137
			memfmt(buf, huge_page_size(h)),
			h->free_huge_pages);
2138 2139 2140
	}
}

L
Linus Torvalds 已提交
2141
#ifdef CONFIG_HIGHMEM
2142 2143
static void try_to_free_low(struct hstate *h, unsigned long count,
						nodemask_t *nodes_allowed)
L
Linus Torvalds 已提交
2144
{
2145 2146
	int i;

2147
	if (hstate_is_gigantic(h))
2148 2149
		return;

2150
	for_each_node_mask(i, *nodes_allowed) {
L
Linus Torvalds 已提交
2151
		struct page *page, *next;
2152 2153 2154
		struct list_head *freel = &h->hugepage_freelists[i];
		list_for_each_entry_safe(page, next, freel, lru) {
			if (count >= h->nr_huge_pages)
2155
				return;
L
Linus Torvalds 已提交
2156 2157 2158
			if (PageHighMem(page))
				continue;
			list_del(&page->lru);
2159
			update_and_free_page(h, page);
2160 2161
			h->free_huge_pages--;
			h->free_huge_pages_node[page_to_nid(page)]--;
L
Linus Torvalds 已提交
2162 2163 2164 2165
		}
	}
}
#else
2166 2167
static inline void try_to_free_low(struct hstate *h, unsigned long count,
						nodemask_t *nodes_allowed)
L
Linus Torvalds 已提交
2168 2169 2170 2171
{
}
#endif

2172 2173 2174 2175 2176
/*
 * Increment or decrement surplus_huge_pages.  Keep node-specific counters
 * balanced by operating on them in a round-robin fashion.
 * Returns 1 if an adjustment was made.
 */
2177 2178
static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
				int delta)
2179
{
2180
	int nr_nodes, node;
2181 2182 2183

	VM_BUG_ON(delta != -1 && delta != 1);

2184 2185 2186 2187
	if (delta < 0) {
		for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
			if (h->surplus_huge_pages_node[node])
				goto found;
2188
		}
2189 2190 2191 2192 2193
	} else {
		for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
			if (h->surplus_huge_pages_node[node] <
					h->nr_huge_pages_node[node])
				goto found;
2194
		}
2195 2196
	}
	return 0;
2197

2198 2199 2200 2201
found:
	h->surplus_huge_pages += delta;
	h->surplus_huge_pages_node[node] += delta;
	return 1;
2202 2203
}

2204
#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2205 2206
static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
						nodemask_t *nodes_allowed)
L
Linus Torvalds 已提交
2207
{
2208
	unsigned long min_count, ret;
L
Linus Torvalds 已提交
2209

2210
	if (hstate_is_gigantic(h) && !gigantic_page_supported())
2211 2212
		return h->max_huge_pages;

2213 2214 2215 2216
	/*
	 * Increase the pool size
	 * First take pages out of surplus state.  Then make up the
	 * remaining difference by allocating fresh huge pages.
2217
	 *
N
Naoya Horiguchi 已提交
2218
	 * We might race with __alloc_buddy_huge_page() here and be unable
2219 2220 2221 2222
	 * to convert a surplus huge page to a normal huge page. That is
	 * not critical, though, it just means the overall size of the
	 * pool might be one hugepage larger than it needs to be, but
	 * within all the constraints specified by the sysctls.
2223
	 */
L
Linus Torvalds 已提交
2224
	spin_lock(&hugetlb_lock);
2225
	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2226
		if (!adjust_pool_surplus(h, nodes_allowed, -1))
2227 2228 2229
			break;
	}

2230
	while (count > persistent_huge_pages(h)) {
2231 2232 2233 2234 2235 2236
		/*
		 * If this allocation races such that we no longer need the
		 * page, free_huge_page will handle it by freeing the page
		 * and reducing the surplus.
		 */
		spin_unlock(&hugetlb_lock);
2237 2238 2239 2240

		/* yield cpu to avoid soft lockup */
		cond_resched();

2241 2242 2243 2244
		if (hstate_is_gigantic(h))
			ret = alloc_fresh_gigantic_page(h, nodes_allowed);
		else
			ret = alloc_fresh_huge_page(h, nodes_allowed);
2245 2246 2247 2248
		spin_lock(&hugetlb_lock);
		if (!ret)
			goto out;

2249 2250 2251
		/* Bail for signals. Probably ctrl-c from user */
		if (signal_pending(current))
			goto out;
2252 2253 2254 2255 2256 2257 2258 2259
	}

	/*
	 * Decrease the pool size
	 * First return free pages to the buddy allocator (being careful
	 * to keep enough around to satisfy reservations).  Then place
	 * pages into surplus state as needed so the pool will shrink
	 * to the desired size as pages become free.
2260 2261 2262 2263
	 *
	 * By placing pages into the surplus state independent of the
	 * overcommit value, we are allowing the surplus pool size to
	 * exceed overcommit. There are few sane options here. Since
N
Naoya Horiguchi 已提交
2264
	 * __alloc_buddy_huge_page() is checking the global counter,
2265 2266 2267
	 * though, we'll note that we're not allowed to exceed surplus
	 * and won't grow the pool anywhere else. Not until one of the
	 * sysctls are changed, or the surplus pages go out of use.
2268
	 */
2269
	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2270
	min_count = max(count, min_count);
2271
	try_to_free_low(h, min_count, nodes_allowed);
2272
	while (min_count < persistent_huge_pages(h)) {
2273
		if (!free_pool_huge_page(h, nodes_allowed, 0))
L
Linus Torvalds 已提交
2274
			break;
2275
		cond_resched_lock(&hugetlb_lock);
L
Linus Torvalds 已提交
2276
	}
2277
	while (count < persistent_huge_pages(h)) {
2278
		if (!adjust_pool_surplus(h, nodes_allowed, 1))
2279 2280 2281
			break;
	}
out:
2282
	ret = persistent_huge_pages(h);
L
Linus Torvalds 已提交
2283
	spin_unlock(&hugetlb_lock);
2284
	return ret;
L
Linus Torvalds 已提交
2285 2286
}

2287 2288 2289 2290 2291 2292 2293 2294 2295 2296
#define HSTATE_ATTR_RO(_name) \
	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)

#define HSTATE_ATTR(_name) \
	static struct kobj_attribute _name##_attr = \
		__ATTR(_name, 0644, _name##_show, _name##_store)

static struct kobject *hugepages_kobj;
static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];

2297 2298 2299
static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);

static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2300 2301
{
	int i;
2302

2303
	for (i = 0; i < HUGE_MAX_HSTATE; i++)
2304 2305 2306
		if (hstate_kobjs[i] == kobj) {
			if (nidp)
				*nidp = NUMA_NO_NODE;
2307
			return &hstates[i];
2308 2309 2310
		}

	return kobj_to_node_hstate(kobj, nidp);
2311 2312
}

2313
static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2314 2315
					struct kobj_attribute *attr, char *buf)
{
2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326
	struct hstate *h;
	unsigned long nr_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		nr_huge_pages = h->nr_huge_pages;
	else
		nr_huge_pages = h->nr_huge_pages_node[nid];

	return sprintf(buf, "%lu\n", nr_huge_pages);
2327
}
2328

2329 2330 2331
static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
					   struct hstate *h, int nid,
					   unsigned long count, size_t len)
2332 2333
{
	int err;
2334
	NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
2335

2336
	if (hstate_is_gigantic(h) && !gigantic_page_supported()) {
2337 2338 2339 2340
		err = -EINVAL;
		goto out;
	}

2341 2342 2343 2344 2345 2346 2347
	if (nid == NUMA_NO_NODE) {
		/*
		 * global hstate attribute
		 */
		if (!(obey_mempolicy &&
				init_nodemask_of_mempolicy(nodes_allowed))) {
			NODEMASK_FREE(nodes_allowed);
2348
			nodes_allowed = &node_states[N_MEMORY];
2349 2350 2351 2352 2353 2354 2355 2356 2357
		}
	} else if (nodes_allowed) {
		/*
		 * per node hstate attribute: adjust count to global,
		 * but restrict alloc/free to the specified node.
		 */
		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
		init_nodemask_of_node(nodes_allowed, nid);
	} else
2358
		nodes_allowed = &node_states[N_MEMORY];
2359

2360
	h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
2361

2362
	if (nodes_allowed != &node_states[N_MEMORY])
2363 2364 2365
		NODEMASK_FREE(nodes_allowed);

	return len;
2366 2367 2368
out:
	NODEMASK_FREE(nodes_allowed);
	return err;
2369 2370
}

2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387
static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
					 struct kobject *kobj, const char *buf,
					 size_t len)
{
	struct hstate *h;
	unsigned long count;
	int nid;
	int err;

	err = kstrtoul(buf, 10, &count);
	if (err)
		return err;

	h = kobj_to_hstate(kobj, &nid);
	return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
}

2388 2389 2390 2391 2392 2393 2394 2395 2396
static ssize_t nr_hugepages_show(struct kobject *kobj,
				       struct kobj_attribute *attr, char *buf)
{
	return nr_hugepages_show_common(kobj, attr, buf);
}

static ssize_t nr_hugepages_store(struct kobject *kobj,
	       struct kobj_attribute *attr, const char *buf, size_t len)
{
2397
	return nr_hugepages_store_common(false, kobj, buf, len);
2398 2399 2400
}
HSTATE_ATTR(nr_hugepages);

2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415
#ifdef CONFIG_NUMA

/*
 * hstate attribute for optionally mempolicy-based constraint on persistent
 * huge page alloc/free.
 */
static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
				       struct kobj_attribute *attr, char *buf)
{
	return nr_hugepages_show_common(kobj, attr, buf);
}

static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
	       struct kobj_attribute *attr, const char *buf, size_t len)
{
2416
	return nr_hugepages_store_common(true, kobj, buf, len);
2417 2418 2419 2420 2421
}
HSTATE_ATTR(nr_hugepages_mempolicy);
#endif


2422 2423 2424
static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
2425
	struct hstate *h = kobj_to_hstate(kobj, NULL);
2426 2427
	return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
}
2428

2429 2430 2431 2432 2433
static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
		struct kobj_attribute *attr, const char *buf, size_t count)
{
	int err;
	unsigned long input;
2434
	struct hstate *h = kobj_to_hstate(kobj, NULL);
2435

2436
	if (hstate_is_gigantic(h))
2437 2438
		return -EINVAL;

2439
	err = kstrtoul(buf, 10, &input);
2440
	if (err)
2441
		return err;
2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453

	spin_lock(&hugetlb_lock);
	h->nr_overcommit_huge_pages = input;
	spin_unlock(&hugetlb_lock);

	return count;
}
HSTATE_ATTR(nr_overcommit_hugepages);

static ssize_t free_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464
	struct hstate *h;
	unsigned long free_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		free_huge_pages = h->free_huge_pages;
	else
		free_huge_pages = h->free_huge_pages_node[nid];

	return sprintf(buf, "%lu\n", free_huge_pages);
2465 2466 2467 2468 2469 2470
}
HSTATE_ATTR_RO(free_hugepages);

static ssize_t resv_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
2471
	struct hstate *h = kobj_to_hstate(kobj, NULL);
2472 2473 2474 2475 2476 2477 2478
	return sprintf(buf, "%lu\n", h->resv_huge_pages);
}
HSTATE_ATTR_RO(resv_hugepages);

static ssize_t surplus_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489
	struct hstate *h;
	unsigned long surplus_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		surplus_huge_pages = h->surplus_huge_pages;
	else
		surplus_huge_pages = h->surplus_huge_pages_node[nid];

	return sprintf(buf, "%lu\n", surplus_huge_pages);
2490 2491 2492 2493 2494 2495 2496 2497 2498
}
HSTATE_ATTR_RO(surplus_hugepages);

static struct attribute *hstate_attrs[] = {
	&nr_hugepages_attr.attr,
	&nr_overcommit_hugepages_attr.attr,
	&free_hugepages_attr.attr,
	&resv_hugepages_attr.attr,
	&surplus_hugepages_attr.attr,
2499 2500 2501
#ifdef CONFIG_NUMA
	&nr_hugepages_mempolicy_attr.attr,
#endif
2502 2503 2504 2505 2506 2507 2508
	NULL,
};

static struct attribute_group hstate_attr_group = {
	.attrs = hstate_attrs,
};

J
Jeff Mahoney 已提交
2509 2510 2511
static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
				    struct kobject **hstate_kobjs,
				    struct attribute_group *hstate_attr_group)
2512 2513
{
	int retval;
2514
	int hi = hstate_index(h);
2515

2516 2517
	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
	if (!hstate_kobjs[hi])
2518 2519
		return -ENOMEM;

2520
	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
2521
	if (retval)
2522
		kobject_put(hstate_kobjs[hi]);
2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536

	return retval;
}

static void __init hugetlb_sysfs_init(void)
{
	struct hstate *h;
	int err;

	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
	if (!hugepages_kobj)
		return;

	for_each_hstate(h) {
2537 2538
		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
					 hstate_kobjs, &hstate_attr_group);
2539
		if (err)
2540
			pr_err("Hugetlb: Unable to add hstate %s", h->name);
2541 2542 2543
	}
}

2544 2545 2546 2547
#ifdef CONFIG_NUMA

/*
 * node_hstate/s - associate per node hstate attributes, via their kobjects,
2548 2549 2550
 * with node devices in node_devices[] using a parallel array.  The array
 * index of a node device or _hstate == node id.
 * This is here to avoid any static dependency of the node device driver, in
2551 2552 2553 2554 2555 2556
 * the base kernel, on the hugetlb module.
 */
struct node_hstate {
	struct kobject		*hugepages_kobj;
	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
};
2557
static struct node_hstate node_hstates[MAX_NUMNODES];
2558 2559

/*
2560
 * A subset of global hstate attributes for node devices
2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573
 */
static struct attribute *per_node_hstate_attrs[] = {
	&nr_hugepages_attr.attr,
	&free_hugepages_attr.attr,
	&surplus_hugepages_attr.attr,
	NULL,
};

static struct attribute_group per_node_hstate_attr_group = {
	.attrs = per_node_hstate_attrs,
};

/*
2574
 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596
 * Returns node id via non-NULL nidp.
 */
static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
{
	int nid;

	for (nid = 0; nid < nr_node_ids; nid++) {
		struct node_hstate *nhs = &node_hstates[nid];
		int i;
		for (i = 0; i < HUGE_MAX_HSTATE; i++)
			if (nhs->hstate_kobjs[i] == kobj) {
				if (nidp)
					*nidp = nid;
				return &hstates[i];
			}
	}

	BUG();
	return NULL;
}

/*
2597
 * Unregister hstate attributes from a single node device.
2598 2599
 * No-op if no hstate attributes attached.
 */
2600
static void hugetlb_unregister_node(struct node *node)
2601 2602
{
	struct hstate *h;
2603
	struct node_hstate *nhs = &node_hstates[node->dev.id];
2604 2605

	if (!nhs->hugepages_kobj)
2606
		return;		/* no hstate attributes */
2607

2608 2609 2610 2611 2612
	for_each_hstate(h) {
		int idx = hstate_index(h);
		if (nhs->hstate_kobjs[idx]) {
			kobject_put(nhs->hstate_kobjs[idx]);
			nhs->hstate_kobjs[idx] = NULL;
2613
		}
2614
	}
2615 2616 2617 2618 2619 2620 2621

	kobject_put(nhs->hugepages_kobj);
	nhs->hugepages_kobj = NULL;
}


/*
2622
 * Register hstate attributes for a single node device.
2623 2624
 * No-op if attributes already registered.
 */
2625
static void hugetlb_register_node(struct node *node)
2626 2627
{
	struct hstate *h;
2628
	struct node_hstate *nhs = &node_hstates[node->dev.id];
2629 2630 2631 2632 2633 2634
	int err;

	if (nhs->hugepages_kobj)
		return;		/* already allocated */

	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
2635
							&node->dev.kobj);
2636 2637 2638 2639 2640 2641 2642 2643
	if (!nhs->hugepages_kobj)
		return;

	for_each_hstate(h) {
		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
						nhs->hstate_kobjs,
						&per_node_hstate_attr_group);
		if (err) {
2644 2645
			pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
				h->name, node->dev.id);
2646 2647 2648 2649 2650 2651 2652
			hugetlb_unregister_node(node);
			break;
		}
	}
}

/*
2653
 * hugetlb init time:  register hstate attributes for all registered node
2654 2655
 * devices of nodes that have memory.  All on-line nodes should have
 * registered their associated device by this time.
2656
 */
2657
static void __init hugetlb_register_all_nodes(void)
2658 2659 2660
{
	int nid;

2661
	for_each_node_state(nid, N_MEMORY) {
2662
		struct node *node = node_devices[nid];
2663
		if (node->dev.id == nid)
2664 2665 2666 2667
			hugetlb_register_node(node);
	}

	/*
2668
	 * Let the node device driver know we're here so it can
2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687
	 * [un]register hstate attributes on node hotplug.
	 */
	register_hugetlbfs_with_node(hugetlb_register_node,
				     hugetlb_unregister_node);
}
#else	/* !CONFIG_NUMA */

static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
{
	BUG();
	if (nidp)
		*nidp = -1;
	return NULL;
}

static void hugetlb_register_all_nodes(void) { }

#endif

2688 2689
static int __init hugetlb_init(void)
{
2690 2691
	int i;

2692
	if (!hugepages_supported())
2693
		return 0;
2694

2695 2696 2697 2698
	if (!size_to_hstate(default_hstate_size)) {
		default_hstate_size = HPAGE_SIZE;
		if (!size_to_hstate(default_hstate_size))
			hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
2699
	}
2700
	default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
2701 2702 2703 2704
	if (default_hstate_max_huge_pages) {
		if (!default_hstate.max_huge_pages)
			default_hstate.max_huge_pages = default_hstate_max_huge_pages;
	}
2705 2706

	hugetlb_init_hstates();
2707
	gather_bootmem_prealloc();
2708 2709 2710
	report_hugepages();

	hugetlb_sysfs_init();
2711
	hugetlb_register_all_nodes();
2712
	hugetlb_cgroup_file_init();
2713

2714 2715 2716 2717 2718
#ifdef CONFIG_SMP
	num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
#else
	num_fault_mutexes = 1;
#endif
2719
	hugetlb_fault_mutex_table =
2720
		kmalloc(sizeof(struct mutex) * num_fault_mutexes, GFP_KERNEL);
2721
	BUG_ON(!hugetlb_fault_mutex_table);
2722 2723

	for (i = 0; i < num_fault_mutexes; i++)
2724
		mutex_init(&hugetlb_fault_mutex_table[i]);
2725 2726
	return 0;
}
2727
subsys_initcall(hugetlb_init);
2728 2729

/* Should be called on processing a hugepagesz=... option */
2730 2731 2732 2733 2734
void __init hugetlb_bad_size(void)
{
	parsed_valid_hugepagesz = false;
}

2735
void __init hugetlb_add_hstate(unsigned int order)
2736 2737
{
	struct hstate *h;
2738 2739
	unsigned long i;

2740
	if (size_to_hstate(PAGE_SIZE << order)) {
J
Joe Perches 已提交
2741
		pr_warn("hugepagesz= specified twice, ignoring\n");
2742 2743
		return;
	}
2744
	BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
2745
	BUG_ON(order == 0);
2746
	h = &hstates[hugetlb_max_hstate++];
2747 2748
	h->order = order;
	h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
2749 2750 2751 2752
	h->nr_huge_pages = 0;
	h->free_huge_pages = 0;
	for (i = 0; i < MAX_NUMNODES; ++i)
		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2753
	INIT_LIST_HEAD(&h->hugepage_activelist);
2754 2755
	h->next_nid_to_alloc = first_memory_node;
	h->next_nid_to_free = first_memory_node;
2756 2757
	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
					huge_page_size(h)/1024);
2758

2759 2760 2761
	parsed_hstate = h;
}

2762
static int __init hugetlb_nrpages_setup(char *s)
2763 2764
{
	unsigned long *mhp;
2765
	static unsigned long *last_mhp;
2766

2767 2768 2769 2770 2771 2772
	if (!parsed_valid_hugepagesz) {
		pr_warn("hugepages = %s preceded by "
			"an unsupported hugepagesz, ignoring\n", s);
		parsed_valid_hugepagesz = true;
		return 1;
	}
2773
	/*
2774
	 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2775 2776
	 * so this hugepages= parameter goes to the "default hstate".
	 */
2777
	else if (!hugetlb_max_hstate)
2778 2779 2780 2781
		mhp = &default_hstate_max_huge_pages;
	else
		mhp = &parsed_hstate->max_huge_pages;

2782
	if (mhp == last_mhp) {
J
Joe Perches 已提交
2783
		pr_warn("hugepages= specified twice without interleaving hugepagesz=, ignoring\n");
2784 2785 2786
		return 1;
	}

2787 2788 2789
	if (sscanf(s, "%lu", mhp) <= 0)
		*mhp = 0;

2790 2791 2792 2793 2794
	/*
	 * Global state is always initialized later in hugetlb_init.
	 * But we need to allocate >= MAX_ORDER hstates here early to still
	 * use the bootmem allocator.
	 */
2795
	if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2796 2797 2798 2799
		hugetlb_hstate_alloc_pages(parsed_hstate);

	last_mhp = mhp;

2800 2801
	return 1;
}
2802 2803 2804 2805 2806 2807 2808 2809
__setup("hugepages=", hugetlb_nrpages_setup);

static int __init hugetlb_default_setup(char *s)
{
	default_hstate_size = memparse(s, &s);
	return 1;
}
__setup("default_hugepagesz=", hugetlb_default_setup);
2810

2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822
static unsigned int cpuset_mems_nr(unsigned int *array)
{
	int node;
	unsigned int nr = 0;

	for_each_node_mask(node, cpuset_current_mems_allowed)
		nr += array[node];

	return nr;
}

#ifdef CONFIG_SYSCTL
2823 2824 2825
static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
			 struct ctl_table *table, int write,
			 void __user *buffer, size_t *length, loff_t *ppos)
L
Linus Torvalds 已提交
2826
{
2827
	struct hstate *h = &default_hstate;
2828
	unsigned long tmp = h->max_huge_pages;
2829
	int ret;
2830

2831
	if (!hugepages_supported())
2832
		return -EOPNOTSUPP;
2833

2834 2835
	table->data = &tmp;
	table->maxlen = sizeof(unsigned long);
2836 2837 2838
	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
	if (ret)
		goto out;
2839

2840 2841 2842
	if (write)
		ret = __nr_hugepages_store_common(obey_mempolicy, h,
						  NUMA_NO_NODE, tmp, *length);
2843 2844
out:
	return ret;
L
Linus Torvalds 已提交
2845
}
2846

2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863
int hugetlb_sysctl_handler(struct ctl_table *table, int write,
			  void __user *buffer, size_t *length, loff_t *ppos)
{

	return hugetlb_sysctl_handler_common(false, table, write,
							buffer, length, ppos);
}

#ifdef CONFIG_NUMA
int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
			  void __user *buffer, size_t *length, loff_t *ppos)
{
	return hugetlb_sysctl_handler_common(true, table, write,
							buffer, length, ppos);
}
#endif /* CONFIG_NUMA */

2864
int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2865
			void __user *buffer,
2866 2867
			size_t *length, loff_t *ppos)
{
2868
	struct hstate *h = &default_hstate;
2869
	unsigned long tmp;
2870
	int ret;
2871

2872
	if (!hugepages_supported())
2873
		return -EOPNOTSUPP;
2874

2875
	tmp = h->nr_overcommit_huge_pages;
2876

2877
	if (write && hstate_is_gigantic(h))
2878 2879
		return -EINVAL;

2880 2881
	table->data = &tmp;
	table->maxlen = sizeof(unsigned long);
2882 2883 2884
	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
	if (ret)
		goto out;
2885 2886 2887 2888 2889 2890

	if (write) {
		spin_lock(&hugetlb_lock);
		h->nr_overcommit_huge_pages = tmp;
		spin_unlock(&hugetlb_lock);
	}
2891 2892
out:
	return ret;
2893 2894
}

L
Linus Torvalds 已提交
2895 2896
#endif /* CONFIG_SYSCTL */

2897
void hugetlb_report_meminfo(struct seq_file *m)
L
Linus Torvalds 已提交
2898
{
2899
	struct hstate *h = &default_hstate;
2900 2901
	if (!hugepages_supported())
		return;
2902
	seq_printf(m,
2903 2904 2905 2906 2907
			"HugePages_Total:   %5lu\n"
			"HugePages_Free:    %5lu\n"
			"HugePages_Rsvd:    %5lu\n"
			"HugePages_Surp:    %5lu\n"
			"Hugepagesize:   %8lu kB\n",
2908 2909 2910 2911 2912
			h->nr_huge_pages,
			h->free_huge_pages,
			h->resv_huge_pages,
			h->surplus_huge_pages,
			1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
L
Linus Torvalds 已提交
2913 2914 2915 2916
}

int hugetlb_report_node_meminfo(int nid, char *buf)
{
2917
	struct hstate *h = &default_hstate;
2918 2919
	if (!hugepages_supported())
		return 0;
L
Linus Torvalds 已提交
2920 2921
	return sprintf(buf,
		"Node %d HugePages_Total: %5u\n"
2922 2923
		"Node %d HugePages_Free:  %5u\n"
		"Node %d HugePages_Surp:  %5u\n",
2924 2925 2926
		nid, h->nr_huge_pages_node[nid],
		nid, h->free_huge_pages_node[nid],
		nid, h->surplus_huge_pages_node[nid]);
L
Linus Torvalds 已提交
2927 2928
}

2929 2930 2931 2932 2933
void hugetlb_show_meminfo(void)
{
	struct hstate *h;
	int nid;

2934 2935 2936
	if (!hugepages_supported())
		return;

2937 2938 2939 2940 2941 2942 2943 2944 2945 2946
	for_each_node_state(nid, N_MEMORY)
		for_each_hstate(h)
			pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
				nid,
				h->nr_huge_pages_node[nid],
				h->free_huge_pages_node[nid],
				h->surplus_huge_pages_node[nid],
				1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
}

2947 2948 2949 2950 2951 2952
void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
{
	seq_printf(m, "HugetlbPages:\t%8lu kB\n",
		   atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
}

L
Linus Torvalds 已提交
2953 2954 2955
/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
unsigned long hugetlb_total_pages(void)
{
2956 2957 2958 2959 2960 2961
	struct hstate *h;
	unsigned long nr_total_pages = 0;

	for_each_hstate(h)
		nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
	return nr_total_pages;
L
Linus Torvalds 已提交
2962 2963
}

2964
static int hugetlb_acct_memory(struct hstate *h, long delta)
M
Mel Gorman 已提交
2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986
{
	int ret = -ENOMEM;

	spin_lock(&hugetlb_lock);
	/*
	 * When cpuset is configured, it breaks the strict hugetlb page
	 * reservation as the accounting is done on a global variable. Such
	 * reservation is completely rubbish in the presence of cpuset because
	 * the reservation is not checked against page availability for the
	 * current cpuset. Application can still potentially OOM'ed by kernel
	 * with lack of free htlb page in cpuset that the task is in.
	 * Attempt to enforce strict accounting with cpuset is almost
	 * impossible (or too ugly) because cpuset is too fluid that
	 * task or memory node can be dynamically moved between cpusets.
	 *
	 * The change of semantics for shared hugetlb mapping with cpuset is
	 * undesirable. However, in order to preserve some of the semantics,
	 * we fall back to check against current free page availability as
	 * a best attempt and hopefully to minimize the impact of changing
	 * semantics that cpuset has.
	 */
	if (delta > 0) {
2987
		if (gather_surplus_pages(h, delta) < 0)
M
Mel Gorman 已提交
2988 2989
			goto out;

2990 2991
		if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
			return_unused_surplus_pages(h, delta);
M
Mel Gorman 已提交
2992 2993 2994 2995 2996 2997
			goto out;
		}
	}

	ret = 0;
	if (delta < 0)
2998
		return_unused_surplus_pages(h, (unsigned long) -delta);
M
Mel Gorman 已提交
2999 3000 3001 3002 3003 3004

out:
	spin_unlock(&hugetlb_lock);
	return ret;
}

3005 3006
static void hugetlb_vm_op_open(struct vm_area_struct *vma)
{
3007
	struct resv_map *resv = vma_resv_map(vma);
3008 3009 3010 3011 3012

	/*
	 * This new VMA should share its siblings reservation map if present.
	 * The VMA will only ever have a valid reservation map pointer where
	 * it is being copied for another still existing VMA.  As that VMA
L
Lucas De Marchi 已提交
3013
	 * has a reference to the reservation map it cannot disappear until
3014 3015 3016
	 * after this open call completes.  It is therefore safe to take a
	 * new reference here without additional locking.
	 */
3017
	if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3018
		kref_get(&resv->refs);
3019 3020
}

3021 3022
static void hugetlb_vm_op_close(struct vm_area_struct *vma)
{
3023
	struct hstate *h = hstate_vma(vma);
3024
	struct resv_map *resv = vma_resv_map(vma);
3025
	struct hugepage_subpool *spool = subpool_vma(vma);
3026
	unsigned long reserve, start, end;
3027
	long gbl_reserve;
3028

3029 3030
	if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
		return;
3031

3032 3033
	start = vma_hugecache_offset(h, vma, vma->vm_start);
	end = vma_hugecache_offset(h, vma, vma->vm_end);
3034

3035
	reserve = (end - start) - region_count(resv, start, end);
3036

3037 3038 3039
	kref_put(&resv->refs, resv_map_release);

	if (reserve) {
3040 3041 3042 3043 3044 3045
		/*
		 * Decrement reserve counts.  The global reserve count may be
		 * adjusted if the subpool has a minimum size.
		 */
		gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
		hugetlb_acct_memory(h, -gbl_reserve);
3046
	}
3047 3048
}

L
Linus Torvalds 已提交
3049 3050 3051 3052 3053 3054
/*
 * We cannot handle pagefaults against hugetlb pages at all.  They cause
 * handle_mm_fault() to try to instantiate regular-sized pages in the
 * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
 * this far.
 */
N
Nick Piggin 已提交
3055
static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
L
Linus Torvalds 已提交
3056 3057
{
	BUG();
N
Nick Piggin 已提交
3058
	return 0;
L
Linus Torvalds 已提交
3059 3060
}

3061
const struct vm_operations_struct hugetlb_vm_ops = {
N
Nick Piggin 已提交
3062
	.fault = hugetlb_vm_op_fault,
3063
	.open = hugetlb_vm_op_open,
3064
	.close = hugetlb_vm_op_close,
L
Linus Torvalds 已提交
3065 3066
};

3067 3068
static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
				int writable)
D
David Gibson 已提交
3069 3070 3071
{
	pte_t entry;

3072
	if (writable) {
3073 3074
		entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
					 vma->vm_page_prot)));
D
David Gibson 已提交
3075
	} else {
3076 3077
		entry = huge_pte_wrprotect(mk_huge_pte(page,
					   vma->vm_page_prot));
D
David Gibson 已提交
3078 3079 3080
	}
	entry = pte_mkyoung(entry);
	entry = pte_mkhuge(entry);
3081
	entry = arch_make_huge_pte(entry, vma, page, writable);
D
David Gibson 已提交
3082 3083 3084 3085

	return entry;
}

3086 3087 3088 3089 3090
static void set_huge_ptep_writable(struct vm_area_struct *vma,
				   unsigned long address, pte_t *ptep)
{
	pte_t entry;

3091
	entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3092
	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3093
		update_mmu_cache(vma, address, ptep);
3094 3095
}

3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120
static int is_hugetlb_entry_migration(pte_t pte)
{
	swp_entry_t swp;

	if (huge_pte_none(pte) || pte_present(pte))
		return 0;
	swp = pte_to_swp_entry(pte);
	if (non_swap_entry(swp) && is_migration_entry(swp))
		return 1;
	else
		return 0;
}

static int is_hugetlb_entry_hwpoisoned(pte_t pte)
{
	swp_entry_t swp;

	if (huge_pte_none(pte) || pte_present(pte))
		return 0;
	swp = pte_to_swp_entry(pte);
	if (non_swap_entry(swp) && is_hwpoison_entry(swp))
		return 1;
	else
		return 0;
}
3121

D
David Gibson 已提交
3122 3123 3124 3125 3126
int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
			    struct vm_area_struct *vma)
{
	pte_t *src_pte, *dst_pte, entry;
	struct page *ptepage;
3127
	unsigned long addr;
3128
	int cow;
3129 3130
	struct hstate *h = hstate_vma(vma);
	unsigned long sz = huge_page_size(h);
3131 3132 3133
	unsigned long mmun_start;	/* For mmu_notifiers */
	unsigned long mmun_end;		/* For mmu_notifiers */
	int ret = 0;
3134 3135

	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
D
David Gibson 已提交
3136

3137 3138 3139 3140 3141
	mmun_start = vma->vm_start;
	mmun_end = vma->vm_end;
	if (cow)
		mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);

3142
	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
3143
		spinlock_t *src_ptl, *dst_ptl;
H
Hugh Dickins 已提交
3144 3145 3146
		src_pte = huge_pte_offset(src, addr);
		if (!src_pte)
			continue;
3147
		dst_pte = huge_pte_alloc(dst, addr, sz);
3148 3149 3150 3151
		if (!dst_pte) {
			ret = -ENOMEM;
			break;
		}
3152 3153 3154 3155 3156

		/* If the pagetables are shared don't copy or take references */
		if (dst_pte == src_pte)
			continue;

3157 3158 3159
		dst_ptl = huge_pte_lock(h, dst, dst_pte);
		src_ptl = huge_pte_lockptr(h, src, src_pte);
		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177
		entry = huge_ptep_get(src_pte);
		if (huge_pte_none(entry)) { /* skip none entry */
			;
		} else if (unlikely(is_hugetlb_entry_migration(entry) ||
				    is_hugetlb_entry_hwpoisoned(entry))) {
			swp_entry_t swp_entry = pte_to_swp_entry(entry);

			if (is_write_migration_entry(swp_entry) && cow) {
				/*
				 * COW mappings require pages in both
				 * parent and child to be set to read.
				 */
				make_migration_entry_read(&swp_entry);
				entry = swp_entry_to_pte(swp_entry);
				set_huge_pte_at(src, addr, src_pte, entry);
			}
			set_huge_pte_at(dst, addr, dst_pte, entry);
		} else {
3178
			if (cow) {
3179
				huge_ptep_set_wrprotect(src, addr, src_pte);
3180 3181 3182
				mmu_notifier_invalidate_range(src, mmun_start,
								   mmun_end);
			}
3183
			entry = huge_ptep_get(src_pte);
3184 3185
			ptepage = pte_page(entry);
			get_page(ptepage);
3186
			page_dup_rmap(ptepage, true);
3187
			set_huge_pte_at(dst, addr, dst_pte, entry);
3188
			hugetlb_count_add(pages_per_huge_page(h), dst);
3189
		}
3190 3191
		spin_unlock(src_ptl);
		spin_unlock(dst_ptl);
D
David Gibson 已提交
3192 3193
	}

3194 3195 3196 3197
	if (cow)
		mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);

	return ret;
D
David Gibson 已提交
3198 3199
}

3200 3201 3202
void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
			    unsigned long start, unsigned long end,
			    struct page *ref_page)
D
David Gibson 已提交
3203 3204 3205
{
	struct mm_struct *mm = vma->vm_mm;
	unsigned long address;
3206
	pte_t *ptep;
D
David Gibson 已提交
3207
	pte_t pte;
3208
	spinlock_t *ptl;
D
David Gibson 已提交
3209
	struct page *page;
3210 3211
	struct hstate *h = hstate_vma(vma);
	unsigned long sz = huge_page_size(h);
3212 3213
	const unsigned long mmun_start = start;	/* For mmu_notifiers */
	const unsigned long mmun_end   = end;	/* For mmu_notifiers */
3214

D
David Gibson 已提交
3215
	WARN_ON(!is_vm_hugetlb_page(vma));
3216 3217
	BUG_ON(start & ~huge_page_mask(h));
	BUG_ON(end & ~huge_page_mask(h));
D
David Gibson 已提交
3218

3219
	tlb_start_vma(tlb, vma);
3220
	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3221 3222
	address = start;
	for (; address < end; address += sz) {
3223
		ptep = huge_pte_offset(mm, address);
A
Adam Litke 已提交
3224
		if (!ptep)
3225 3226
			continue;

3227
		ptl = huge_pte_lock(h, mm, ptep);
3228 3229 3230 3231
		if (huge_pmd_unshare(mm, &address, ptep)) {
			spin_unlock(ptl);
			continue;
		}
3232

3233
		pte = huge_ptep_get(ptep);
3234 3235 3236 3237
		if (huge_pte_none(pte)) {
			spin_unlock(ptl);
			continue;
		}
3238 3239

		/*
3240 3241
		 * Migrating hugepage or HWPoisoned hugepage is already
		 * unmapped and its refcount is dropped, so just clear pte here.
3242
		 */
3243
		if (unlikely(!pte_present(pte))) {
3244
			huge_pte_clear(mm, address, ptep);
3245 3246
			spin_unlock(ptl);
			continue;
3247
		}
3248 3249

		page = pte_page(pte);
3250 3251 3252 3253 3254 3255
		/*
		 * If a reference page is supplied, it is because a specific
		 * page is being unmapped, not a range. Ensure the page we
		 * are about to unmap is the actual page of interest.
		 */
		if (ref_page) {
3256 3257 3258 3259
			if (page != ref_page) {
				spin_unlock(ptl);
				continue;
			}
3260 3261 3262 3263 3264 3265 3266 3267
			/*
			 * Mark the VMA as having unmapped its page so that
			 * future faults in this VMA will fail rather than
			 * looking like data was lost
			 */
			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
		}

3268
		pte = huge_ptep_get_and_clear(mm, address, ptep);
3269
		tlb_remove_tlb_entry(tlb, ptep, address);
3270
		if (huge_pte_dirty(pte))
3271
			set_page_dirty(page);
3272

3273
		hugetlb_count_sub(pages_per_huge_page(h), mm);
3274
		page_remove_rmap(page, true);
3275

3276
		spin_unlock(ptl);
3277
		tlb_remove_page_size(tlb, page, huge_page_size(h));
3278 3279 3280 3281 3282
		/*
		 * Bail out after unmapping reference page if supplied
		 */
		if (ref_page)
			break;
3283
	}
3284
	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3285
	tlb_end_vma(tlb, vma);
L
Linus Torvalds 已提交
3286
}
D
David Gibson 已提交
3287

3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299
void __unmap_hugepage_range_final(struct mmu_gather *tlb,
			  struct vm_area_struct *vma, unsigned long start,
			  unsigned long end, struct page *ref_page)
{
	__unmap_hugepage_range(tlb, vma, start, end, ref_page);

	/*
	 * Clear this flag so that x86's huge_pmd_share page_table_shareable
	 * test will fail on a vma being torn down, and not grab a page table
	 * on its way out.  We're lucky that the flag has such an appropriate
	 * name, and can in fact be safely cleared here. We could clear it
	 * before the __unmap_hugepage_range above, but all that's necessary
3300
	 * is to clear it before releasing the i_mmap_rwsem. This works
3301
	 * because in the context this is called, the VMA is about to be
3302
	 * destroyed and the i_mmap_rwsem is held.
3303 3304 3305 3306
	 */
	vma->vm_flags &= ~VM_MAYSHARE;
}

3307
void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
3308
			  unsigned long end, struct page *ref_page)
3309
{
3310 3311 3312 3313 3314
	struct mm_struct *mm;
	struct mmu_gather tlb;

	mm = vma->vm_mm;

3315
	tlb_gather_mmu(&tlb, mm, start, end);
3316 3317
	__unmap_hugepage_range(&tlb, vma, start, end, ref_page);
	tlb_finish_mmu(&tlb, start, end);
3318 3319
}

3320 3321 3322 3323 3324 3325
/*
 * This is called when the original mapper is failing to COW a MAP_PRIVATE
 * mappping it owns the reserve page for. The intention is to unmap the page
 * from other VMAs and let the children be SIGKILLed if they are faulting the
 * same region.
 */
3326 3327
static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
			      struct page *page, unsigned long address)
3328
{
3329
	struct hstate *h = hstate_vma(vma);
3330 3331 3332 3333 3334 3335 3336 3337
	struct vm_area_struct *iter_vma;
	struct address_space *mapping;
	pgoff_t pgoff;

	/*
	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
	 * from page cache lookup which is in HPAGE_SIZE units.
	 */
3338
	address = address & huge_page_mask(h);
3339 3340
	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
			vma->vm_pgoff;
3341
	mapping = vma->vm_file->f_mapping;
3342

3343 3344 3345 3346 3347
	/*
	 * Take the mapping lock for the duration of the table walk. As
	 * this mapping should be shared between all the VMAs,
	 * __unmap_hugepage_range() is called as the lock is already held
	 */
3348
	i_mmap_lock_write(mapping);
3349
	vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
3350 3351 3352 3353
		/* Do not unmap the current VMA */
		if (iter_vma == vma)
			continue;

3354 3355 3356 3357 3358 3359 3360 3361
		/*
		 * Shared VMAs have their own reserves and do not affect
		 * MAP_PRIVATE accounting but it is possible that a shared
		 * VMA is using the same page so check and skip such VMAs.
		 */
		if (iter_vma->vm_flags & VM_MAYSHARE)
			continue;

3362 3363 3364 3365 3366 3367 3368 3369
		/*
		 * Unmap the page from other VMAs without their own reserves.
		 * They get marked to be SIGKILLed if they fault in these
		 * areas. This is because a future no-page fault on this VMA
		 * could insert a zeroed page instead of the data existing
		 * from the time of fork. This would look like data corruption
		 */
		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
3370 3371
			unmap_hugepage_range(iter_vma, address,
					     address + huge_page_size(h), page);
3372
	}
3373
	i_mmap_unlock_write(mapping);
3374 3375
}

3376 3377
/*
 * Hugetlb_cow() should be called with page lock of the original hugepage held.
3378 3379 3380
 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
 * cannot race with other handlers or page migration.
 * Keep the pte_same checks anyway to make transition from the mutex easier.
3381
 */
3382
static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
3383
			unsigned long address, pte_t *ptep, pte_t pte,
3384
			struct page *pagecache_page, spinlock_t *ptl)
3385
{
3386
	struct hstate *h = hstate_vma(vma);
3387
	struct page *old_page, *new_page;
3388
	int ret = 0, outside_reserve = 0;
3389 3390
	unsigned long mmun_start;	/* For mmu_notifiers */
	unsigned long mmun_end;		/* For mmu_notifiers */
3391 3392 3393

	old_page = pte_page(pte);

3394
retry_avoidcopy:
3395 3396
	/* If no-one else is actually using this page, avoid the copy
	 * and just make the page writable */
3397
	if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
3398
		page_move_anon_rmap(old_page, vma);
3399
		set_huge_ptep_writable(vma, address, ptep);
N
Nick Piggin 已提交
3400
		return 0;
3401 3402
	}

3403 3404 3405 3406 3407 3408 3409 3410 3411
	/*
	 * If the process that created a MAP_PRIVATE mapping is about to
	 * perform a COW due to a shared page count, attempt to satisfy
	 * the allocation without using the existing reserves. The pagecache
	 * page is used to determine if the reserve at this address was
	 * consumed or not. If reserves were used, a partial faulted mapping
	 * at the time of fork() could consume its reserves on COW instead
	 * of the full address range.
	 */
3412
	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
3413 3414 3415
			old_page != pagecache_page)
		outside_reserve = 1;

3416
	get_page(old_page);
3417

3418 3419 3420 3421
	/*
	 * Drop page table lock as buddy allocator may be called. It will
	 * be acquired again before returning to the caller, as expected.
	 */
3422
	spin_unlock(ptl);
3423
	new_page = alloc_huge_page(vma, address, outside_reserve);
3424

3425
	if (IS_ERR(new_page)) {
3426 3427 3428 3429 3430 3431 3432 3433
		/*
		 * If a process owning a MAP_PRIVATE mapping fails to COW,
		 * it is due to references held by a child and an insufficient
		 * huge page pool. To guarantee the original mappers
		 * reliability, unmap the page from child processes. The child
		 * may get SIGKILLed if it later faults.
		 */
		if (outside_reserve) {
3434
			put_page(old_page);
3435
			BUG_ON(huge_pte_none(pte));
3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447
			unmap_ref_private(mm, vma, old_page, address);
			BUG_ON(huge_pte_none(pte));
			spin_lock(ptl);
			ptep = huge_pte_offset(mm, address & huge_page_mask(h));
			if (likely(ptep &&
				   pte_same(huge_ptep_get(ptep), pte)))
				goto retry_avoidcopy;
			/*
			 * race occurs while re-acquiring page table
			 * lock, and our job is done.
			 */
			return 0;
3448 3449
		}

3450 3451 3452
		ret = (PTR_ERR(new_page) == -ENOMEM) ?
			VM_FAULT_OOM : VM_FAULT_SIGBUS;
		goto out_release_old;
3453 3454
	}

3455 3456 3457 3458
	/*
	 * When the original hugepage is shared one, it does not have
	 * anon_vma prepared.
	 */
3459
	if (unlikely(anon_vma_prepare(vma))) {
3460 3461
		ret = VM_FAULT_OOM;
		goto out_release_all;
3462
	}
3463

A
Andrea Arcangeli 已提交
3464 3465
	copy_user_huge_page(new_page, old_page, address, vma,
			    pages_per_huge_page(h));
N
Nick Piggin 已提交
3466
	__SetPageUptodate(new_page);
3467
	set_page_huge_active(new_page);
3468

3469 3470 3471
	mmun_start = address & huge_page_mask(h);
	mmun_end = mmun_start + huge_page_size(h);
	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3472

3473
	/*
3474
	 * Retake the page table lock to check for racing updates
3475 3476
	 * before the page tables are altered
	 */
3477
	spin_lock(ptl);
3478
	ptep = huge_pte_offset(mm, address & huge_page_mask(h));
3479
	if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
3480 3481
		ClearPagePrivate(new_page);

3482
		/* Break COW */
3483
		huge_ptep_clear_flush(vma, address, ptep);
3484
		mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
3485 3486
		set_huge_pte_at(mm, address, ptep,
				make_huge_pte(vma, new_page, 1));
3487
		page_remove_rmap(old_page, true);
3488
		hugepage_add_new_anon_rmap(new_page, vma, address);
3489 3490 3491
		/* Make the old page be freed below */
		new_page = old_page;
	}
3492
	spin_unlock(ptl);
3493
	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3494
out_release_all:
3495
	put_page(new_page);
3496
out_release_old:
3497
	put_page(old_page);
3498

3499 3500
	spin_lock(ptl); /* Caller expects lock to be held */
	return ret;
3501 3502
}

3503
/* Return the pagecache page at a given address within a VMA */
3504 3505
static struct page *hugetlbfs_pagecache_page(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address)
3506 3507
{
	struct address_space *mapping;
3508
	pgoff_t idx;
3509 3510

	mapping = vma->vm_file->f_mapping;
3511
	idx = vma_hugecache_offset(h, vma, address);
3512 3513 3514 3515

	return find_lock_page(mapping, idx);
}

H
Hugh Dickins 已提交
3516 3517 3518 3519 3520
/*
 * Return whether there is a pagecache page to back given address within VMA.
 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
 */
static bool hugetlbfs_pagecache_present(struct hstate *h,
H
Hugh Dickins 已提交
3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535
			struct vm_area_struct *vma, unsigned long address)
{
	struct address_space *mapping;
	pgoff_t idx;
	struct page *page;

	mapping = vma->vm_file->f_mapping;
	idx = vma_hugecache_offset(h, vma, address);

	page = find_get_page(mapping, idx);
	if (page)
		put_page(page);
	return page != NULL;
}

3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552
int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
			   pgoff_t idx)
{
	struct inode *inode = mapping->host;
	struct hstate *h = hstate_inode(inode);
	int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);

	if (err)
		return err;
	ClearPagePrivate(page);

	spin_lock(&inode->i_lock);
	inode->i_blocks += blocks_per_huge_page(h);
	spin_unlock(&inode->i_lock);
	return 0;
}

3553
static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
3554 3555
			   struct address_space *mapping, pgoff_t idx,
			   unsigned long address, pte_t *ptep, unsigned int flags)
3556
{
3557
	struct hstate *h = hstate_vma(vma);
3558
	int ret = VM_FAULT_SIGBUS;
3559
	int anon_rmap = 0;
A
Adam Litke 已提交
3560 3561
	unsigned long size;
	struct page *page;
3562
	pte_t new_pte;
3563
	spinlock_t *ptl;
A
Adam Litke 已提交
3564

3565 3566 3567
	/*
	 * Currently, we are forced to kill the process in the event the
	 * original mapper has unmapped pages from the child due to a failed
L
Lucas De Marchi 已提交
3568
	 * COW. Warn that such a situation has occurred as it may not be obvious
3569 3570
	 */
	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
3571
		pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
3572
			   current->pid);
3573 3574 3575
		return ret;
	}

A
Adam Litke 已提交
3576 3577 3578 3579
	/*
	 * Use page lock to guard against racing truncation
	 * before we get page_table_lock.
	 */
3580 3581 3582
retry:
	page = find_lock_page(mapping, idx);
	if (!page) {
3583
		size = i_size_read(mapping->host) >> huge_page_shift(h);
3584 3585
		if (idx >= size)
			goto out;
3586
		page = alloc_huge_page(vma, address, 0);
3587
		if (IS_ERR(page)) {
3588 3589 3590 3591 3592
			ret = PTR_ERR(page);
			if (ret == -ENOMEM)
				ret = VM_FAULT_OOM;
			else
				ret = VM_FAULT_SIGBUS;
3593 3594
			goto out;
		}
A
Andrea Arcangeli 已提交
3595
		clear_huge_page(page, address, pages_per_huge_page(h));
N
Nick Piggin 已提交
3596
		__SetPageUptodate(page);
3597
		set_page_huge_active(page);
3598

3599
		if (vma->vm_flags & VM_MAYSHARE) {
3600
			int err = huge_add_to_page_cache(page, mapping, idx);
3601 3602 3603 3604 3605 3606
			if (err) {
				put_page(page);
				if (err == -EEXIST)
					goto retry;
				goto out;
			}
3607
		} else {
3608
			lock_page(page);
3609 3610 3611 3612
			if (unlikely(anon_vma_prepare(vma))) {
				ret = VM_FAULT_OOM;
				goto backout_unlocked;
			}
3613
			anon_rmap = 1;
3614
		}
3615
	} else {
3616 3617 3618 3619 3620 3621
		/*
		 * If memory error occurs between mmap() and fault, some process
		 * don't have hwpoisoned swap entry for errored virtual address.
		 * So we need to block hugepage fault by PG_hwpoison bit check.
		 */
		if (unlikely(PageHWPoison(page))) {
3622
			ret = VM_FAULT_HWPOISON |
3623
				VM_FAULT_SET_HINDEX(hstate_index(h));
3624 3625
			goto backout_unlocked;
		}
3626
	}
3627

3628 3629 3630 3631 3632 3633
	/*
	 * If we are going to COW a private mapping later, we examine the
	 * pending reservations for this page now. This will ensure that
	 * any allocations necessary to record that reservation occur outside
	 * the spinlock.
	 */
3634
	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3635 3636 3637 3638
		if (vma_needs_reservation(h, vma, address) < 0) {
			ret = VM_FAULT_OOM;
			goto backout_unlocked;
		}
3639
		/* Just decrements count, does not deallocate */
3640
		vma_end_reservation(h, vma, address);
3641
	}
3642

3643 3644
	ptl = huge_pte_lockptr(h, mm, ptep);
	spin_lock(ptl);
3645
	size = i_size_read(mapping->host) >> huge_page_shift(h);
A
Adam Litke 已提交
3646 3647 3648
	if (idx >= size)
		goto backout;

N
Nick Piggin 已提交
3649
	ret = 0;
3650
	if (!huge_pte_none(huge_ptep_get(ptep)))
A
Adam Litke 已提交
3651 3652
		goto backout;

3653 3654
	if (anon_rmap) {
		ClearPagePrivate(page);
3655
		hugepage_add_new_anon_rmap(page, vma, address);
3656
	} else
3657
		page_dup_rmap(page, true);
3658 3659 3660 3661
	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
				&& (vma->vm_flags & VM_SHARED)));
	set_huge_pte_at(mm, address, ptep, new_pte);

3662
	hugetlb_count_add(pages_per_huge_page(h), mm);
3663
	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3664
		/* Optimization, do the COW without a second fault */
3665
		ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page, ptl);
3666 3667
	}

3668
	spin_unlock(ptl);
A
Adam Litke 已提交
3669 3670
	unlock_page(page);
out:
3671
	return ret;
A
Adam Litke 已提交
3672 3673

backout:
3674
	spin_unlock(ptl);
3675
backout_unlocked:
A
Adam Litke 已提交
3676 3677 3678
	unlock_page(page);
	put_page(page);
	goto out;
3679 3680
}

3681
#ifdef CONFIG_SMP
3682
u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706
			    struct vm_area_struct *vma,
			    struct address_space *mapping,
			    pgoff_t idx, unsigned long address)
{
	unsigned long key[2];
	u32 hash;

	if (vma->vm_flags & VM_SHARED) {
		key[0] = (unsigned long) mapping;
		key[1] = idx;
	} else {
		key[0] = (unsigned long) mm;
		key[1] = address >> huge_page_shift(h);
	}

	hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);

	return hash & (num_fault_mutexes - 1);
}
#else
/*
 * For uniprocesor systems we always use a single mutex, so just
 * return 0 and avoid the hashing overhead.
 */
3707
u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3708 3709 3710 3711 3712 3713 3714 3715
			    struct vm_area_struct *vma,
			    struct address_space *mapping,
			    pgoff_t idx, unsigned long address)
{
	return 0;
}
#endif

3716
int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3717
			unsigned long address, unsigned int flags)
3718
{
3719
	pte_t *ptep, entry;
3720
	spinlock_t *ptl;
3721
	int ret;
3722 3723
	u32 hash;
	pgoff_t idx;
3724
	struct page *page = NULL;
3725
	struct page *pagecache_page = NULL;
3726
	struct hstate *h = hstate_vma(vma);
3727
	struct address_space *mapping;
3728
	int need_wait_lock = 0;
3729

3730 3731
	address &= huge_page_mask(h);

3732 3733 3734
	ptep = huge_pte_offset(mm, address);
	if (ptep) {
		entry = huge_ptep_get(ptep);
N
Naoya Horiguchi 已提交
3735
		if (unlikely(is_hugetlb_entry_migration(entry))) {
3736
			migration_entry_wait_huge(vma, mm, ptep);
N
Naoya Horiguchi 已提交
3737 3738
			return 0;
		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
3739
			return VM_FAULT_HWPOISON_LARGE |
3740
				VM_FAULT_SET_HINDEX(hstate_index(h));
3741 3742 3743 3744
	} else {
		ptep = huge_pte_alloc(mm, address, huge_page_size(h));
		if (!ptep)
			return VM_FAULT_OOM;
3745 3746
	}

3747 3748 3749
	mapping = vma->vm_file->f_mapping;
	idx = vma_hugecache_offset(h, vma, address);

3750 3751 3752 3753 3754
	/*
	 * Serialize hugepage allocation and instantiation, so that we don't
	 * get spurious allocation failures if two CPUs race to instantiate
	 * the same page in the page cache.
	 */
3755 3756
	hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping, idx, address);
	mutex_lock(&hugetlb_fault_mutex_table[hash]);
3757

3758 3759
	entry = huge_ptep_get(ptep);
	if (huge_pte_none(entry)) {
3760
		ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
3761
		goto out_mutex;
3762
	}
3763

N
Nick Piggin 已提交
3764
	ret = 0;
3765

3766 3767 3768 3769 3770 3771 3772 3773 3774 3775
	/*
	 * entry could be a migration/hwpoison entry at this point, so this
	 * check prevents the kernel from going below assuming that we have
	 * a active hugepage in pagecache. This goto expects the 2nd page fault,
	 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
	 * handle it.
	 */
	if (!pte_present(entry))
		goto out_mutex;

3776 3777 3778 3779 3780 3781 3782 3783
	/*
	 * If we are going to COW the mapping later, we examine the pending
	 * reservations for this page now. This will ensure that any
	 * allocations necessary to record that reservation occur outside the
	 * spinlock. For private mappings, we also lookup the pagecache
	 * page now as it is used to determine if a reservation has been
	 * consumed.
	 */
3784
	if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
3785 3786
		if (vma_needs_reservation(h, vma, address) < 0) {
			ret = VM_FAULT_OOM;
3787
			goto out_mutex;
3788
		}
3789
		/* Just decrements count, does not deallocate */
3790
		vma_end_reservation(h, vma, address);
3791

3792
		if (!(vma->vm_flags & VM_MAYSHARE))
3793 3794 3795 3796
			pagecache_page = hugetlbfs_pagecache_page(h,
								vma, address);
	}

3797 3798 3799 3800 3801 3802
	ptl = huge_pte_lock(h, mm, ptep);

	/* Check for a racing update before calling hugetlb_cow */
	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
		goto out_ptl;

3803 3804 3805 3806 3807 3808 3809
	/*
	 * hugetlb_cow() requires page locks of pte_page(entry) and
	 * pagecache_page, so here we need take the former one
	 * when page != pagecache_page or !pagecache_page.
	 */
	page = pte_page(entry);
	if (page != pagecache_page)
3810 3811 3812 3813
		if (!trylock_page(page)) {
			need_wait_lock = 1;
			goto out_ptl;
		}
3814

3815
	get_page(page);
3816

3817
	if (flags & FAULT_FLAG_WRITE) {
3818
		if (!huge_pte_write(entry)) {
3819
			ret = hugetlb_cow(mm, vma, address, ptep, entry,
3820
					pagecache_page, ptl);
3821
			goto out_put_page;
3822
		}
3823
		entry = huge_pte_mkdirty(entry);
3824 3825
	}
	entry = pte_mkyoung(entry);
3826 3827
	if (huge_ptep_set_access_flags(vma, address, ptep, entry,
						flags & FAULT_FLAG_WRITE))
3828
		update_mmu_cache(vma, address, ptep);
3829 3830 3831 3832
out_put_page:
	if (page != pagecache_page)
		unlock_page(page);
	put_page(page);
3833 3834
out_ptl:
	spin_unlock(ptl);
3835 3836 3837 3838 3839

	if (pagecache_page) {
		unlock_page(pagecache_page);
		put_page(pagecache_page);
	}
3840
out_mutex:
3841
	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
3842 3843 3844 3845 3846 3847 3848 3849 3850
	/*
	 * Generally it's safe to hold refcount during waiting page lock. But
	 * here we just wait to defer the next page fault to avoid busy loop and
	 * the page is not used after unlocked before returning from the current
	 * page fault. So we are safe from accessing freed page, even if we wait
	 * here without taking refcount.
	 */
	if (need_wait_lock)
		wait_on_page_locked(page);
3851
	return ret;
3852 3853
}

3854 3855 3856 3857
long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
			 struct page **pages, struct vm_area_struct **vmas,
			 unsigned long *position, unsigned long *nr_pages,
			 long i, unsigned int flags)
D
David Gibson 已提交
3858
{
3859 3860
	unsigned long pfn_offset;
	unsigned long vaddr = *position;
3861
	unsigned long remainder = *nr_pages;
3862
	struct hstate *h = hstate_vma(vma);
D
David Gibson 已提交
3863 3864

	while (vaddr < vma->vm_end && remainder) {
A
Adam Litke 已提交
3865
		pte_t *pte;
3866
		spinlock_t *ptl = NULL;
H
Hugh Dickins 已提交
3867
		int absent;
A
Adam Litke 已提交
3868
		struct page *page;
D
David Gibson 已提交
3869

3870 3871 3872 3873 3874 3875 3876 3877 3878
		/*
		 * If we have a pending SIGKILL, don't keep faulting pages and
		 * potentially allocating memory.
		 */
		if (unlikely(fatal_signal_pending(current))) {
			remainder = 0;
			break;
		}

A
Adam Litke 已提交
3879 3880
		/*
		 * Some archs (sparc64, sh*) have multiple pte_ts to
H
Hugh Dickins 已提交
3881
		 * each hugepage.  We have to make sure we get the
A
Adam Litke 已提交
3882
		 * first, for the page indexing below to work.
3883 3884
		 *
		 * Note that page table lock is not held when pte is null.
A
Adam Litke 已提交
3885
		 */
3886
		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
3887 3888
		if (pte)
			ptl = huge_pte_lock(h, mm, pte);
H
Hugh Dickins 已提交
3889 3890 3891 3892
		absent = !pte || huge_pte_none(huge_ptep_get(pte));

		/*
		 * When coredumping, it suits get_dump_page if we just return
H
Hugh Dickins 已提交
3893 3894 3895 3896
		 * an error where there's an empty slot with no huge pagecache
		 * to back it.  This way, we avoid allocating a hugepage, and
		 * the sparse dumpfile avoids allocating disk blocks, but its
		 * huge holes still show up with zeroes where they need to be.
H
Hugh Dickins 已提交
3897
		 */
H
Hugh Dickins 已提交
3898 3899
		if (absent && (flags & FOLL_DUMP) &&
		    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
3900 3901
			if (pte)
				spin_unlock(ptl);
H
Hugh Dickins 已提交
3902 3903 3904
			remainder = 0;
			break;
		}
D
David Gibson 已提交
3905

3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916
		/*
		 * We need call hugetlb_fault for both hugepages under migration
		 * (in which case hugetlb_fault waits for the migration,) and
		 * hwpoisoned hugepages (in which case we need to prevent the
		 * caller from accessing to them.) In order to do this, we use
		 * here is_swap_pte instead of is_hugetlb_entry_migration and
		 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
		 * both cases, and because we can't follow correct pages
		 * directly from any kind of swap entries.
		 */
		if (absent || is_swap_pte(huge_ptep_get(pte)) ||
3917 3918
		    ((flags & FOLL_WRITE) &&
		      !huge_pte_write(huge_ptep_get(pte)))) {
A
Adam Litke 已提交
3919
			int ret;
D
David Gibson 已提交
3920

3921 3922
			if (pte)
				spin_unlock(ptl);
H
Hugh Dickins 已提交
3923 3924
			ret = hugetlb_fault(mm, vma, vaddr,
				(flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
3925
			if (!(ret & VM_FAULT_ERROR))
A
Adam Litke 已提交
3926
				continue;
D
David Gibson 已提交
3927

A
Adam Litke 已提交
3928 3929 3930 3931
			remainder = 0;
			break;
		}

3932
		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
3933
		page = pte_page(huge_ptep_get(pte));
3934
same_page:
3935
		if (pages) {
H
Hugh Dickins 已提交
3936
			pages[i] = mem_map_offset(page, pfn_offset);
3937
			get_page(pages[i]);
3938
		}
D
David Gibson 已提交
3939 3940 3941 3942 3943

		if (vmas)
			vmas[i] = vma;

		vaddr += PAGE_SIZE;
3944
		++pfn_offset;
D
David Gibson 已提交
3945 3946
		--remainder;
		++i;
3947
		if (vaddr < vma->vm_end && remainder &&
3948
				pfn_offset < pages_per_huge_page(h)) {
3949 3950 3951 3952 3953 3954
			/*
			 * We use pfn_offset to avoid touching the pageframes
			 * of this compound page.
			 */
			goto same_page;
		}
3955
		spin_unlock(ptl);
D
David Gibson 已提交
3956
	}
3957
	*nr_pages = remainder;
D
David Gibson 已提交
3958 3959
	*position = vaddr;

H
Hugh Dickins 已提交
3960
	return i ? i : -EFAULT;
D
David Gibson 已提交
3961
}
3962

3963 3964 3965 3966 3967 3968 3969 3970
#ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
/*
 * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
 * implement this.
 */
#define flush_hugetlb_tlb_range(vma, addr, end)	flush_tlb_range(vma, addr, end)
#endif

3971
unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
3972 3973 3974 3975 3976 3977
		unsigned long address, unsigned long end, pgprot_t newprot)
{
	struct mm_struct *mm = vma->vm_mm;
	unsigned long start = address;
	pte_t *ptep;
	pte_t pte;
3978
	struct hstate *h = hstate_vma(vma);
3979
	unsigned long pages = 0;
3980 3981 3982 3983

	BUG_ON(address >= end);
	flush_cache_range(vma, address, end);

3984
	mmu_notifier_invalidate_range_start(mm, start, end);
3985
	i_mmap_lock_write(vma->vm_file->f_mapping);
3986
	for (; address < end; address += huge_page_size(h)) {
3987
		spinlock_t *ptl;
3988 3989 3990
		ptep = huge_pte_offset(mm, address);
		if (!ptep)
			continue;
3991
		ptl = huge_pte_lock(h, mm, ptep);
3992 3993
		if (huge_pmd_unshare(mm, &address, ptep)) {
			pages++;
3994
			spin_unlock(ptl);
3995
			continue;
3996
		}
3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016
		pte = huge_ptep_get(ptep);
		if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
			spin_unlock(ptl);
			continue;
		}
		if (unlikely(is_hugetlb_entry_migration(pte))) {
			swp_entry_t entry = pte_to_swp_entry(pte);

			if (is_write_migration_entry(entry)) {
				pte_t newpte;

				make_migration_entry_read(&entry);
				newpte = swp_entry_to_pte(entry);
				set_huge_pte_at(mm, address, ptep, newpte);
				pages++;
			}
			spin_unlock(ptl);
			continue;
		}
		if (!huge_pte_none(pte)) {
4017
			pte = huge_ptep_get_and_clear(mm, address, ptep);
4018
			pte = pte_mkhuge(huge_pte_modify(pte, newprot));
4019
			pte = arch_make_huge_pte(pte, vma, NULL, 0);
4020
			set_huge_pte_at(mm, address, ptep, pte);
4021
			pages++;
4022
		}
4023
		spin_unlock(ptl);
4024
	}
4025
	/*
4026
	 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
4027
	 * may have cleared our pud entry and done put_page on the page table:
4028
	 * once we release i_mmap_rwsem, another task can do the final put_page
4029 4030
	 * and that page table be reused and filled with junk.
	 */
4031
	flush_hugetlb_tlb_range(vma, start, end);
4032
	mmu_notifier_invalidate_range(mm, start, end);
4033
	i_mmap_unlock_write(vma->vm_file->f_mapping);
4034
	mmu_notifier_invalidate_range_end(mm, start, end);
4035 4036

	return pages << h->order;
4037 4038
}

4039 4040
int hugetlb_reserve_pages(struct inode *inode,
					long from, long to,
4041
					struct vm_area_struct *vma,
4042
					vm_flags_t vm_flags)
4043
{
4044
	long ret, chg;
4045
	struct hstate *h = hstate_inode(inode);
4046
	struct hugepage_subpool *spool = subpool_inode(inode);
4047
	struct resv_map *resv_map;
4048
	long gbl_reserve;
4049

4050 4051 4052
	/*
	 * Only apply hugepage reservation if asked. At fault time, an
	 * attempt will be made for VM_NORESERVE to allocate a page
4053
	 * without using reserves
4054
	 */
4055
	if (vm_flags & VM_NORESERVE)
4056 4057
		return 0;

4058 4059 4060 4061 4062 4063
	/*
	 * Shared mappings base their reservation on the number of pages that
	 * are already allocated on behalf of the file. Private mappings need
	 * to reserve the full area even if read-only as mprotect() may be
	 * called to make the mapping read-write. Assume !vma is a shm mapping
	 */
4064
	if (!vma || vma->vm_flags & VM_MAYSHARE) {
4065
		resv_map = inode_resv_map(inode);
4066

4067
		chg = region_chg(resv_map, from, to);
4068 4069 4070

	} else {
		resv_map = resv_map_alloc();
4071 4072 4073
		if (!resv_map)
			return -ENOMEM;

4074
		chg = to - from;
4075

4076 4077 4078 4079
		set_vma_resv_map(vma, resv_map);
		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
	}

4080 4081 4082 4083
	if (chg < 0) {
		ret = chg;
		goto out_err;
	}
4084

4085 4086 4087 4088 4089 4090 4091
	/*
	 * There must be enough pages in the subpool for the mapping. If
	 * the subpool has a minimum size, there may be some global
	 * reservations already in place (gbl_reserve).
	 */
	gbl_reserve = hugepage_subpool_get_pages(spool, chg);
	if (gbl_reserve < 0) {
4092 4093 4094
		ret = -ENOSPC;
		goto out_err;
	}
4095 4096

	/*
4097
	 * Check enough hugepages are available for the reservation.
4098
	 * Hand the pages back to the subpool if there are not
4099
	 */
4100
	ret = hugetlb_acct_memory(h, gbl_reserve);
K
Ken Chen 已提交
4101
	if (ret < 0) {
4102 4103
		/* put back original number of pages, chg */
		(void)hugepage_subpool_put_pages(spool, chg);
4104
		goto out_err;
K
Ken Chen 已提交
4105
	}
4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117

	/*
	 * Account for the reservations made. Shared mappings record regions
	 * that have reservations as they are shared by multiple VMAs.
	 * When the last VMA disappears, the region map says how much
	 * the reservation was and the page cache tells how much of
	 * the reservation was consumed. Private mappings are per-VMA and
	 * only the consumed reservations are tracked. When the VMA
	 * disappears, the original reservation is the VMA size and the
	 * consumed reservations are stored in the map. Hence, nothing
	 * else has to be done for private mappings here
	 */
4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135
	if (!vma || vma->vm_flags & VM_MAYSHARE) {
		long add = region_add(resv_map, from, to);

		if (unlikely(chg > add)) {
			/*
			 * pages in this range were added to the reserve
			 * map between region_chg and region_add.  This
			 * indicates a race with alloc_huge_page.  Adjust
			 * the subpool and reserve counts modified above
			 * based on the difference.
			 */
			long rsv_adjust;

			rsv_adjust = hugepage_subpool_put_pages(spool,
								chg - add);
			hugetlb_acct_memory(h, -rsv_adjust);
		}
	}
4136
	return 0;
4137
out_err:
4138 4139
	if (!vma || vma->vm_flags & VM_MAYSHARE)
		region_abort(resv_map, from, to);
J
Joonsoo Kim 已提交
4140 4141
	if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
		kref_put(&resv_map->refs, resv_map_release);
4142
	return ret;
4143 4144
}

4145 4146
long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
								long freed)
4147
{
4148
	struct hstate *h = hstate_inode(inode);
4149
	struct resv_map *resv_map = inode_resv_map(inode);
4150
	long chg = 0;
4151
	struct hugepage_subpool *spool = subpool_inode(inode);
4152
	long gbl_reserve;
K
Ken Chen 已提交
4153

4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164
	if (resv_map) {
		chg = region_del(resv_map, start, end);
		/*
		 * region_del() can fail in the rare case where a region
		 * must be split and another region descriptor can not be
		 * allocated.  If end == LONG_MAX, it will not fail.
		 */
		if (chg < 0)
			return chg;
	}

K
Ken Chen 已提交
4165
	spin_lock(&inode->i_lock);
4166
	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
K
Ken Chen 已提交
4167 4168
	spin_unlock(&inode->i_lock);

4169 4170 4171 4172 4173 4174
	/*
	 * If the subpool has a minimum size, the number of global
	 * reservations to be released may be adjusted.
	 */
	gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
	hugetlb_acct_memory(h, -gbl_reserve);
4175 4176

	return 0;
4177
}
4178

4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189
#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
static unsigned long page_table_shareable(struct vm_area_struct *svma,
				struct vm_area_struct *vma,
				unsigned long addr, pgoff_t idx)
{
	unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
				svma->vm_start;
	unsigned long sbase = saddr & PUD_MASK;
	unsigned long s_end = sbase + PUD_SIZE;

	/* Allow segments to share if only one is marked locked */
E
Eric B Munson 已提交
4190 4191
	unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
	unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204

	/*
	 * match the virtual addresses, permission and the alignment of the
	 * page table page.
	 */
	if (pmd_index(addr) != pmd_index(saddr) ||
	    vm_flags != svm_flags ||
	    sbase < svma->vm_start || svma->vm_end < s_end)
		return 0;

	return saddr;
}

4205
static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
4206 4207 4208 4209 4210 4211 4212 4213 4214
{
	unsigned long base = addr & PUD_MASK;
	unsigned long end = base + PUD_SIZE;

	/*
	 * check on proper vm_flags and page table alignment
	 */
	if (vma->vm_flags & VM_MAYSHARE &&
	    vma->vm_start <= base && end <= vma->vm_end)
4215 4216
		return true;
	return false;
4217 4218 4219 4220 4221 4222 4223
}

/*
 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
 * and returns the corresponding pte. While this is not necessary for the
 * !shared pmd case because we can allocate the pmd later as well, it makes the
 * code much cleaner. pmd allocation is essential for the shared case because
4224
 * pud has to be populated inside the same i_mmap_rwsem section - otherwise
4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237
 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
 * bad pmd for sharing.
 */
pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
{
	struct vm_area_struct *vma = find_vma(mm, addr);
	struct address_space *mapping = vma->vm_file->f_mapping;
	pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
			vma->vm_pgoff;
	struct vm_area_struct *svma;
	unsigned long saddr;
	pte_t *spte = NULL;
	pte_t *pte;
4238
	spinlock_t *ptl;
4239 4240 4241 4242

	if (!vma_shareable(vma, addr))
		return (pte_t *)pmd_alloc(mm, pud, addr);

4243
	i_mmap_lock_write(mapping);
4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260
	vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
		if (svma == vma)
			continue;

		saddr = page_table_shareable(svma, vma, addr, idx);
		if (saddr) {
			spte = huge_pte_offset(svma->vm_mm, saddr);
			if (spte) {
				get_page(virt_to_page(spte));
				break;
			}
		}
	}

	if (!spte)
		goto out;

4261 4262
	ptl = huge_pte_lockptr(hstate_vma(vma), mm, spte);
	spin_lock(ptl);
4263
	if (pud_none(*pud)) {
4264 4265
		pud_populate(mm, pud,
				(pmd_t *)((unsigned long)spte & PAGE_MASK));
4266
		mm_inc_nr_pmds(mm);
4267
	} else {
4268
		put_page(virt_to_page(spte));
4269
	}
4270
	spin_unlock(ptl);
4271 4272
out:
	pte = (pte_t *)pmd_alloc(mm, pud, addr);
4273
	i_mmap_unlock_write(mapping);
4274 4275 4276 4277 4278 4279 4280 4281 4282 4283
	return pte;
}

/*
 * unmap huge page backed by shared pte.
 *
 * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
 * indicated by page_count > 1, unmap is achieved by clearing pud and
 * decrementing the ref count. If count == 1, the pte page is not shared.
 *
4284
 * called with page table lock held.
4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299
 *
 * returns: 1 successfully unmapped a shared pte page
 *	    0 the underlying pte page is not shared, or it is the last user
 */
int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
{
	pgd_t *pgd = pgd_offset(mm, *addr);
	pud_t *pud = pud_offset(pgd, *addr);

	BUG_ON(page_count(virt_to_page(ptep)) == 0);
	if (page_count(virt_to_page(ptep)) == 1)
		return 0;

	pud_clear(pud);
	put_page(virt_to_page(ptep));
4300
	mm_dec_nr_pmds(mm);
4301 4302 4303
	*addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
	return 1;
}
4304 4305 4306 4307 4308 4309
#define want_pmd_share()	(1)
#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
{
	return NULL;
}
4310 4311 4312 4313 4314

int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
{
	return 0;
}
4315
#define want_pmd_share()	(0)
4316 4317
#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */

4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338
#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
pte_t *huge_pte_alloc(struct mm_struct *mm,
			unsigned long addr, unsigned long sz)
{
	pgd_t *pgd;
	pud_t *pud;
	pte_t *pte = NULL;

	pgd = pgd_offset(mm, addr);
	pud = pud_alloc(mm, pgd, addr);
	if (pud) {
		if (sz == PUD_SIZE) {
			pte = (pte_t *)pud;
		} else {
			BUG_ON(sz != PMD_SIZE);
			if (want_pmd_share() && pud_none(*pud))
				pte = huge_pmd_share(mm, addr, pud);
			else
				pte = (pte_t *)pmd_alloc(mm, pud, addr);
		}
	}
4339
	BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361

	return pte;
}

pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
{
	pgd_t *pgd;
	pud_t *pud;
	pmd_t *pmd = NULL;

	pgd = pgd_offset(mm, addr);
	if (pgd_present(*pgd)) {
		pud = pud_offset(pgd, addr);
		if (pud_present(*pud)) {
			if (pud_huge(*pud))
				return (pte_t *)pud;
			pmd = pmd_offset(pud, addr);
		}
	}
	return (pte_t *) pmd;
}

4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375
#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */

/*
 * These functions are overwritable if your architecture needs its own
 * behavior.
 */
struct page * __weak
follow_huge_addr(struct mm_struct *mm, unsigned long address,
			      int write)
{
	return ERR_PTR(-EINVAL);
}

struct page * __weak
4376
follow_huge_pmd(struct mm_struct *mm, unsigned long address,
4377
		pmd_t *pmd, int flags)
4378
{
4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390
	struct page *page = NULL;
	spinlock_t *ptl;
retry:
	ptl = pmd_lockptr(mm, pmd);
	spin_lock(ptl);
	/*
	 * make sure that the address range covered by this pmd is not
	 * unmapped from other threads.
	 */
	if (!pmd_huge(*pmd))
		goto out;
	if (pmd_present(*pmd)) {
4391
		page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406
		if (flags & FOLL_GET)
			get_page(page);
	} else {
		if (is_hugetlb_entry_migration(huge_ptep_get((pte_t *)pmd))) {
			spin_unlock(ptl);
			__migration_entry_wait(mm, (pte_t *)pmd, ptl);
			goto retry;
		}
		/*
		 * hwpoisoned entry is treated as no_page_table in
		 * follow_page_mask().
		 */
	}
out:
	spin_unlock(ptl);
4407 4408 4409
	return page;
}

4410
struct page * __weak
4411
follow_huge_pud(struct mm_struct *mm, unsigned long address,
4412
		pud_t *pud, int flags)
4413
{
4414 4415
	if (flags & FOLL_GET)
		return NULL;
4416

4417
	return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
4418 4419
}

4420 4421
#ifdef CONFIG_MEMORY_FAILURE

4422 4423 4424
/*
 * This function is called from memory failure code.
 */
4425
int dequeue_hwpoisoned_huge_page(struct page *hpage)
4426 4427 4428
{
	struct hstate *h = page_hstate(hpage);
	int nid = page_to_nid(hpage);
4429
	int ret = -EBUSY;
4430 4431

	spin_lock(&hugetlb_lock);
4432 4433 4434 4435 4436
	/*
	 * Just checking !page_huge_active is not enough, because that could be
	 * an isolated/hwpoisoned hugepage (which have >0 refcount).
	 */
	if (!page_huge_active(hpage) && !page_count(hpage)) {
4437 4438 4439 4440 4441 4442 4443
		/*
		 * Hwpoisoned hugepage isn't linked to activelist or freelist,
		 * but dangling hpage->lru can trigger list-debug warnings
		 * (this happens when we call unpoison_memory() on it),
		 * so let it point to itself with list_del_init().
		 */
		list_del_init(&hpage->lru);
4444
		set_page_refcounted(hpage);
4445 4446 4447 4448
		h->free_huge_pages--;
		h->free_huge_pages_node[nid]--;
		ret = 0;
	}
4449
	spin_unlock(&hugetlb_lock);
4450
	return ret;
4451
}
4452
#endif
4453 4454 4455

bool isolate_huge_page(struct page *page, struct list_head *list)
{
4456 4457
	bool ret = true;

4458
	VM_BUG_ON_PAGE(!PageHead(page), page);
4459
	spin_lock(&hugetlb_lock);
4460 4461 4462 4463 4464
	if (!page_huge_active(page) || !get_page_unless_zero(page)) {
		ret = false;
		goto unlock;
	}
	clear_page_huge_active(page);
4465
	list_move_tail(&page->lru, list);
4466
unlock:
4467
	spin_unlock(&hugetlb_lock);
4468
	return ret;
4469 4470 4471 4472
}

void putback_active_hugepage(struct page *page)
{
4473
	VM_BUG_ON_PAGE(!PageHead(page), page);
4474
	spin_lock(&hugetlb_lock);
4475
	set_page_huge_active(page);
4476 4477 4478 4479
	list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
	spin_unlock(&hugetlb_lock);
	put_page(page);
}