trainer.py 26.7 KB
Newer Older
F
Feng Ni 已提交
1 2 3 4 5 6 7 8 9 10 11 12
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
K
Kaipeng Deng 已提交
13 14 15 16 17 18 19
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
G
George Ni 已提交
20
import sys
21
import copy
K
Kaipeng Deng 已提交
22
import time
M
Manuel Garcia 已提交
23

K
Kaipeng Deng 已提交
24 25 26 27
import numpy as np
from PIL import Image

import paddle
W
wangguanzhong 已提交
28 29
import paddle.distributed as dist
from paddle.distributed import fleet
30
from paddle import amp
K
Kaipeng Deng 已提交
31
from paddle.static import InputSpec
32
from ppdet.optimizer import ModelEMA
K
Kaipeng Deng 已提交
33 34 35

from ppdet.core.workspace import create
from ppdet.utils.checkpoint import load_weight, load_pretrain_weight
C
cnn 已提交
36
from ppdet.utils.visualizer import visualize_results, save_result
Z
zhiboniu 已提交
37
from ppdet.metrics import Metric, COCOMetric, VOCMetric, WiderFaceMetric, get_infer_results, KeyPointTopDownCOCOEval, KeyPointTopDownMPIIEval
G
George Ni 已提交
38
from ppdet.metrics import RBoxMetric, JDEDetMetric
K
Kaipeng Deng 已提交
39
from ppdet.data.source.category import get_categories
K
Kaipeng Deng 已提交
40
import ppdet.utils.stats as stats
41
from ppdet.utils import profiler
K
Kaipeng Deng 已提交
42

43
from .callbacks import Callback, ComposeCallback, LogPrinter, Checkpointer, WiferFaceEval, VisualDLWriter
G
Guanghua Yu 已提交
44
from .export_utils import _dump_infer_config, _prune_input_spec
K
Kaipeng Deng 已提交
45 46

from ppdet.utils.logger import setup_logger
47
logger = setup_logger('ppdet.engine')
K
Kaipeng Deng 已提交
48 49 50

__all__ = ['Trainer']

51 52
MOT_ARCH = ['DeepSORT', 'JDE', 'FairMOT']

K
Kaipeng Deng 已提交
53 54 55 56 57 58 59

class Trainer(object):
    def __init__(self, cfg, mode='train'):
        self.cfg = cfg
        assert mode.lower() in ['train', 'eval', 'test'], \
                "mode should be 'train', 'eval' or 'test'"
        self.mode = mode.lower()
60
        self.optimizer = None
61
        self.is_loaded_weights = False
K
Kaipeng Deng 已提交
62

G
George Ni 已提交
63
        # build data loader
64 65 66 67 68 69 70 71 72
        if cfg.architecture in MOT_ARCH and self.mode in ['eval', 'test']:
            self.dataset = cfg['{}MOTDataset'.format(self.mode.capitalize())]
        else:
            self.dataset = cfg['{}Dataset'.format(self.mode.capitalize())]

        if cfg.architecture == 'DeepSORT' and self.mode == 'train':
            logger.error('DeepSORT has no need of training on mot dataset.')
            sys.exit(1)

G
George Ni 已提交
73 74 75 76 77 78 79 80
        if self.mode == 'train':
            self.loader = create('{}Reader'.format(self.mode.capitalize()))(
                self.dataset, cfg.worker_num)

        if cfg.architecture == 'JDE' and self.mode == 'train':
            cfg['JDEEmbeddingHead'][
                'num_identifiers'] = self.dataset.total_identities

F
FlyingQianMM 已提交
81 82 83 84
        if cfg.architecture == 'FairMOT' and self.mode == 'train':
            cfg['FairMOTEmbeddingHead'][
                'num_identifiers'] = self.dataset.total_identities

K
Kaipeng Deng 已提交
85
        # build model
86 87 88 89 90
        if 'model' not in self.cfg:
            self.model = create(cfg.architecture)
        else:
            self.model = self.cfg.model
            self.is_loaded_weights = True
91

92 93 94
        #normalize params for deploy
        self.model.load_meanstd(cfg['TestReader']['sample_transforms'])

95 96
        self.use_ema = ('use_ema' in cfg and cfg['use_ema'])
        if self.use_ema:
G
Guanghua Yu 已提交
97 98
            ema_decay = self.cfg.get('ema_decay', 0.9998)
            cycle_epoch = self.cfg.get('cycle_epoch', -1)
99
            self.ema = ModelEMA(
G
Guanghua Yu 已提交
100 101 102 103
                self.model,
                decay=ema_decay,
                use_thres_step=True,
                cycle_epoch=cycle_epoch)
104

K
Kaipeng Deng 已提交
105 106 107 108 109 110 111 112
        # EvalDataset build with BatchSampler to evaluate in single device
        # TODO: multi-device evaluate
        if self.mode == 'eval':
            self._eval_batch_sampler = paddle.io.BatchSampler(
                self.dataset, batch_size=self.cfg.EvalReader['batch_size'])
            self.loader = create('{}Reader'.format(self.mode.capitalize()))(
                self.dataset, cfg.worker_num, self._eval_batch_sampler)
        # TestDataset build after user set images, skip loader creation here
K
Kaipeng Deng 已提交
113 114 115 116 117 118 119 120

        # build optimizer in train mode
        if self.mode == 'train':
            steps_per_epoch = len(self.loader)
            self.lr = create('LearningRate')(steps_per_epoch)
            self.optimizer = create('OptimizerBuilder')(self.lr,
                                                        self.model.parameters())

W
wangguanzhong 已提交
121 122
        self._nranks = dist.get_world_size()
        self._local_rank = dist.get_rank()
K
Kaipeng Deng 已提交
123

K
Kaipeng Deng 已提交
124 125 126
        self.status = {}

        self.start_epoch = 0
G
George Ni 已提交
127
        self.end_epoch = 0 if 'epoch' not in cfg else cfg.epoch
K
Kaipeng Deng 已提交
128 129 130 131 132 133 134 135 136 137 138

        # initial default callbacks
        self._init_callbacks()

        # initial default metrics
        self._init_metrics()
        self._reset_metrics()

    def _init_callbacks(self):
        if self.mode == 'train':
            self._callbacks = [LogPrinter(self), Checkpointer(self)]
139
            if self.cfg.get('use_vdl', False):
140
                self._callbacks.append(VisualDLWriter(self))
K
Kaipeng Deng 已提交
141 142 143
            self._compose_callback = ComposeCallback(self._callbacks)
        elif self.mode == 'eval':
            self._callbacks = [LogPrinter(self)]
144 145
            if self.cfg.metric == 'WiderFace':
                self._callbacks.append(WiferFaceEval(self))
K
Kaipeng Deng 已提交
146
            self._compose_callback = ComposeCallback(self._callbacks)
147
        elif self.mode == 'test' and self.cfg.get('use_vdl', False):
148 149
            self._callbacks = [VisualDLWriter(self)]
            self._compose_callback = ComposeCallback(self._callbacks)
K
Kaipeng Deng 已提交
150 151 152 153
        else:
            self._callbacks = []
            self._compose_callback = None

K
Kaipeng Deng 已提交
154 155
    def _init_metrics(self, validate=False):
        if self.mode == 'test' or (self.mode == 'train' and not validate):
G
Guanghua Yu 已提交
156 157
            self._metrics = []
            return
158
        classwise = self.cfg['classwise'] if 'classwise' in self.cfg else False
K
Kaipeng Deng 已提交
159
        if self.cfg.metric == 'COCO':
W
wangxinxin08 已提交
160
            # TODO: bias should be unified
161
            bias = self.cfg['bias'] if 'bias' in self.cfg else 0
S
shangliang Xu 已提交
162 163
            output_eval = self.cfg['output_eval'] \
                if 'output_eval' in self.cfg else None
164
            save_prediction_only = self.cfg.get('save_prediction_only', False)
165 166 167

            # pass clsid2catid info to metric instance to avoid multiple loading
            # annotation file
K
Kaipeng Deng 已提交
168 169
            clsid2catid = {v: k for k, v in self.dataset.catid2clsid.items()} \
                                if self.mode == 'eval' else None
170 171 172 173 174 175 176 177 178

            # when do validation in train, annotation file should be get from
            # EvalReader instead of self.dataset(which is TrainReader)
            anno_file = self.dataset.get_anno()
            if self.mode == 'train' and validate:
                eval_dataset = self.cfg['EvalDataset']
                eval_dataset.check_or_download_dataset()
                anno_file = eval_dataset.get_anno()

179
            IouType = self.cfg['IouType'] if 'IouType' in self.cfg else 'bbox'
W
wangxinxin08 已提交
180 181
            self._metrics = [
                COCOMetric(
182
                    anno_file=anno_file,
K
Kaipeng Deng 已提交
183
                    clsid2catid=clsid2catid,
184
                    classwise=classwise,
S
shangliang Xu 已提交
185
                    output_eval=output_eval,
186
                    bias=bias,
187
                    IouType=IouType,
188
                    save_prediction_only=save_prediction_only)
W
wangxinxin08 已提交
189
            ]
190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
        elif self.cfg.metric == 'RBOX':
            # TODO: bias should be unified
            bias = self.cfg['bias'] if 'bias' in self.cfg else 0
            output_eval = self.cfg['output_eval'] \
                if 'output_eval' in self.cfg else None
            save_prediction_only = self.cfg.get('save_prediction_only', False)

            # pass clsid2catid info to metric instance to avoid multiple loading
            # annotation file
            clsid2catid = {v: k for k, v in self.dataset.catid2clsid.items()} \
                                if self.mode == 'eval' else None

            # when do validation in train, annotation file should be get from
            # EvalReader instead of self.dataset(which is TrainReader)
            anno_file = self.dataset.get_anno()
            if self.mode == 'train' and validate:
                eval_dataset = self.cfg['EvalDataset']
                eval_dataset.check_or_download_dataset()
                anno_file = eval_dataset.get_anno()

            self._metrics = [
                RBoxMetric(
                    anno_file=anno_file,
                    clsid2catid=clsid2catid,
                    classwise=classwise,
                    output_eval=output_eval,
                    bias=bias,
                    save_prediction_only=save_prediction_only)
            ]
K
Kaipeng Deng 已提交
219 220 221
        elif self.cfg.metric == 'VOC':
            self._metrics = [
                VOCMetric(
222
                    label_list=self.dataset.get_label_list(),
K
Kaipeng Deng 已提交
223
                    class_num=self.cfg.num_classes,
224 225
                    map_type=self.cfg.map_type,
                    classwise=classwise)
K
Kaipeng Deng 已提交
226
            ]
227 228 229 230 231 232 233 234 235
        elif self.cfg.metric == 'WiderFace':
            multi_scale = self.cfg.multi_scale_eval if 'multi_scale_eval' in self.cfg else True
            self._metrics = [
                WiderFaceMetric(
                    image_dir=os.path.join(self.dataset.dataset_dir,
                                           self.dataset.image_dir),
                    anno_file=self.dataset.get_anno(),
                    multi_scale=multi_scale)
            ]
236 237 238 239
        elif self.cfg.metric == 'KeyPointTopDownCOCOEval':
            eval_dataset = self.cfg['EvalDataset']
            eval_dataset.check_or_download_dataset()
            anno_file = eval_dataset.get_anno()
240
            save_prediction_only = self.cfg.get('save_prediction_only', False)
241
            self._metrics = [
242 243 244 245 246 247
                KeyPointTopDownCOCOEval(
                    anno_file,
                    len(eval_dataset),
                    self.cfg.num_joints,
                    self.cfg.save_dir,
                    save_prediction_only=save_prediction_only)
248
            ]
Z
zhiboniu 已提交
249 250 251 252
        elif self.cfg.metric == 'KeyPointTopDownMPIIEval':
            eval_dataset = self.cfg['EvalDataset']
            eval_dataset.check_or_download_dataset()
            anno_file = eval_dataset.get_anno()
253
            save_prediction_only = self.cfg.get('save_prediction_only', False)
Z
zhiboniu 已提交
254
            self._metrics = [
255 256 257 258 259 260
                KeyPointTopDownMPIIEval(
                    anno_file,
                    len(eval_dataset),
                    self.cfg.num_joints,
                    self.cfg.save_dir,
                    save_prediction_only=save_prediction_only)
Z
zhiboniu 已提交
261
            ]
G
George Ni 已提交
262 263
        elif self.cfg.metric == 'MOTDet':
            self._metrics = [JDEDetMetric(), ]
K
Kaipeng Deng 已提交
264
        else:
265
            logger.warning("Metric not support for metric type {}".format(
K
Kaipeng Deng 已提交
266
                self.cfg.metric))
K
Kaipeng Deng 已提交
267 268 269 270 271 272 273
            self._metrics = []

    def _reset_metrics(self):
        for metric in self._metrics:
            metric.reset()

    def register_callbacks(self, callbacks):
274
        callbacks = [c for c in list(callbacks) if c is not None]
K
Kaipeng Deng 已提交
275 276 277 278 279 280 281 282 283 284 285 286 287
        for c in callbacks:
            assert isinstance(c, Callback), \
                    "metrics shoule be instances of subclass of Metric"
        self._callbacks.extend(callbacks)
        self._compose_callback = ComposeCallback(self._callbacks)

    def register_metrics(self, metrics):
        metrics = [m for m in list(metrics) if m is not None]
        for m in metrics:
            assert isinstance(m, Metric), \
                    "metrics shoule be instances of subclass of Metric"
        self._metrics.extend(metrics)

K
Kaipeng Deng 已提交
288
    def load_weights(self, weights):
289 290
        if self.is_loaded_weights:
            return
K
Kaipeng Deng 已提交
291
        self.start_epoch = 0
292
        load_pretrain_weight(self.model, weights)
K
Kaipeng Deng 已提交
293 294
        logger.debug("Load weights {} to start training".format(weights))

295 296 297 298 299 300 301
    def load_weights_sde(self, det_weights, reid_weights):
        if self.model.detector:
            load_weight(self.model.detector, det_weights)
            load_weight(self.model.reid, reid_weights)
        else:
            load_weight(self.model.reid, reid_weights)

K
Kaipeng Deng 已提交
302
    def resume_weights(self, weights):
303 304 305 306 307 308
        # support Distill resume weights
        if hasattr(self.model, 'student_model'):
            self.start_epoch = load_weight(self.model.student_model, weights,
                                           self.optimizer)
        else:
            self.start_epoch = load_weight(self.model, weights, self.optimizer)
K
Kaipeng Deng 已提交
309
        logger.debug("Resume weights of epoch {}".format(self.start_epoch))
K
Kaipeng Deng 已提交
310

K
Kaipeng Deng 已提交
311
    def train(self, validate=False):
K
Kaipeng Deng 已提交
312
        assert self.mode == 'train', "Model not in 'train' mode"
Z
zhiboniu 已提交
313
        Init_mark = False
K
Kaipeng Deng 已提交
314

315
        model = self.model
316
        if self.cfg.get('fleet', False):
317
            model = fleet.distributed_model(model)
W
wangguanzhong 已提交
318
            self.optimizer = fleet.distributed_optimizer(self.optimizer)
319
        elif self._nranks > 1:
G
George Ni 已提交
320 321 322 323
            find_unused_parameters = self.cfg[
                'find_unused_parameters'] if 'find_unused_parameters' in self.cfg else False
            model = paddle.DataParallel(
                self.model, find_unused_parameters=find_unused_parameters)
324 325

        # initial fp16
326
        if self.cfg.get('fp16', False):
327 328
            scaler = amp.GradScaler(
                enable=self.cfg.use_gpu, init_loss_scaling=1024)
K
Kaipeng Deng 已提交
329

K
Kaipeng Deng 已提交
330 331 332 333 334 335 336 337 338 339 340 341
        self.status.update({
            'epoch_id': self.start_epoch,
            'step_id': 0,
            'steps_per_epoch': len(self.loader)
        })

        self.status['batch_time'] = stats.SmoothedValue(
            self.cfg.log_iter, fmt='{avg:.4f}')
        self.status['data_time'] = stats.SmoothedValue(
            self.cfg.log_iter, fmt='{avg:.4f}')
        self.status['training_staus'] = stats.TrainingStats(self.cfg.log_iter)

G
Guanghua Yu 已提交
342 343
        if self.cfg.get('print_flops', False):
            self._flops(self.loader)
344
        profiler_options = self.cfg.get('profiler_options', None)
G
Guanghua Yu 已提交
345

K
Kaipeng Deng 已提交
346
        for epoch_id in range(self.start_epoch, self.cfg.epoch):
K
Kaipeng Deng 已提交
347
            self.status['mode'] = 'train'
K
Kaipeng Deng 已提交
348 349 350
            self.status['epoch_id'] = epoch_id
            self._compose_callback.on_epoch_begin(self.status)
            self.loader.dataset.set_epoch(epoch_id)
K
Kaipeng Deng 已提交
351
            model.train()
K
Kaipeng Deng 已提交
352 353 354 355
            iter_tic = time.time()
            for step_id, data in enumerate(self.loader):
                self.status['data_time'].update(time.time() - iter_tic)
                self.status['step_id'] = step_id
356
                profiler.add_profiler_step(profiler_options)
K
Kaipeng Deng 已提交
357
                self._compose_callback.on_step_begin(self.status)
S
shangliang Xu 已提交
358
                data['epoch_id'] = epoch_id
K
Kaipeng Deng 已提交
359

360
                if self.cfg.get('fp16', False):
361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377
                    with amp.auto_cast(enable=self.cfg.use_gpu):
                        # model forward
                        outputs = model(data)
                        loss = outputs['loss']

                    # model backward
                    scaled_loss = scaler.scale(loss)
                    scaled_loss.backward()
                    # in dygraph mode, optimizer.minimize is equal to optimizer.step
                    scaler.minimize(self.optimizer, scaled_loss)
                else:
                    # model forward
                    outputs = model(data)
                    loss = outputs['loss']
                    # model backward
                    loss.backward()
                    self.optimizer.step()
K
Kaipeng Deng 已提交
378 379 380 381 382 383

                curr_lr = self.optimizer.get_lr()
                self.lr.step()
                self.optimizer.clear_grad()
                self.status['learning_rate'] = curr_lr

K
Kaipeng Deng 已提交
384
                if self._nranks < 2 or self._local_rank == 0:
K
Kaipeng Deng 已提交
385 386 387 388
                    self.status['training_staus'].update(outputs)

                self.status['batch_time'].update(time.time() - iter_tic)
                self._compose_callback.on_step_end(self.status)
389 390
                if self.use_ema:
                    self.ema.update(self.model)
F
Feng Ni 已提交
391
                iter_tic = time.time()
K
Kaipeng Deng 已提交
392

393 394
            # apply ema weight on model
            if self.use_ema:
395
                weight = copy.deepcopy(self.model.state_dict())
396 397
                self.model.set_dict(self.ema.apply())

K
Kaipeng Deng 已提交
398 399
            self._compose_callback.on_epoch_end(self.status)

K
Kaipeng Deng 已提交
400
            if validate and (self._nranks < 2 or self._local_rank == 0) \
G
Guanghua Yu 已提交
401
                    and ((epoch_id + 1) % self.cfg.snapshot_epoch == 0 \
K
Kaipeng Deng 已提交
402 403 404 405 406 407 408 409 410 411 412 413
                             or epoch_id == self.end_epoch - 1):
                if not hasattr(self, '_eval_loader'):
                    # build evaluation dataset and loader
                    self._eval_dataset = self.cfg.EvalDataset
                    self._eval_batch_sampler = \
                        paddle.io.BatchSampler(
                            self._eval_dataset,
                            batch_size=self.cfg.EvalReader['batch_size'])
                    self._eval_loader = create('EvalReader')(
                        self._eval_dataset,
                        self.cfg.worker_num,
                        batch_sampler=self._eval_batch_sampler)
Z
zhiboniu 已提交
414 415 416 417 418 419
                # if validation in training is enabled, metrics should be re-init
                # Init_mark makes sure this code will only execute once
                if validate and Init_mark == False:
                    Init_mark = True
                    self._init_metrics(validate=validate)
                    self._reset_metrics()
K
Kaipeng Deng 已提交
420
                with paddle.no_grad():
421
                    self.status['save_best_model'] = True
K
Kaipeng Deng 已提交
422 423
                    self._eval_with_loader(self._eval_loader)

424 425 426 427
            # restore origin weight on model
            if self.use_ema:
                self.model.set_dict(weight)

K
Kaipeng Deng 已提交
428
    def _eval_with_loader(self, loader):
K
Kaipeng Deng 已提交
429 430 431
        sample_num = 0
        tic = time.time()
        self._compose_callback.on_epoch_begin(self.status)
K
Kaipeng Deng 已提交
432 433
        self.status['mode'] = 'eval'
        self.model.eval()
G
Guanghua Yu 已提交
434 435
        if self.cfg.get('print_flops', False):
            self._flops(loader)
K
Kaipeng Deng 已提交
436
        for step_id, data in enumerate(loader):
K
Kaipeng Deng 已提交
437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455
            self.status['step_id'] = step_id
            self._compose_callback.on_step_begin(self.status)
            # forward
            outs = self.model(data)

            # update metrics
            for metric in self._metrics:
                metric.update(data, outs)

            sample_num += data['im_id'].numpy().shape[0]
            self._compose_callback.on_step_end(self.status)

        self.status['sample_num'] = sample_num
        self.status['cost_time'] = time.time() - tic

        # accumulate metric to log out
        for metric in self._metrics:
            metric.accumulate()
            metric.log()
456
        self._compose_callback.on_epoch_end(self.status)
K
Kaipeng Deng 已提交
457 458 459
        # reset metric states for metric may performed multiple times
        self._reset_metrics()

K
Kaipeng Deng 已提交
460
    def evaluate(self):
461 462
        with paddle.no_grad():
            self._eval_with_loader(self.loader)
K
Kaipeng Deng 已提交
463

C
cnn 已提交
464 465 466 467 468
    def predict(self,
                images,
                draw_threshold=0.5,
                output_dir='output',
                save_txt=False):
K
Kaipeng Deng 已提交
469 470 471 472 473 474
        self.dataset.set_images(images)
        loader = create('TestReader')(self.dataset, 0)

        imid2path = self.dataset.get_imid2path()

        anno_file = self.dataset.get_anno()
C
cnn 已提交
475 476
        clsid2catid, catid2name = get_categories(
            self.cfg.metric, anno_file=anno_file)
K
Kaipeng Deng 已提交
477

K
Kaipeng Deng 已提交
478 479 480
        # Run Infer 
        self.status['mode'] = 'test'
        self.model.eval()
G
Guanghua Yu 已提交
481 482
        if self.cfg.get('print_flops', False):
            self._flops(loader)
K
Kaipeng Deng 已提交
483 484 485 486
        for step_id, data in enumerate(loader):
            self.status['step_id'] = step_id
            # forward
            outs = self.model(data)
487

K
Kaipeng Deng 已提交
488 489
            for key in ['im_shape', 'scale_factor', 'im_id']:
                outs[key] = data[key]
G
Guanghua Yu 已提交
490
            for key, value in outs.items():
491 492
                if hasattr(value, 'numpy'):
                    outs[key] = value.numpy()
K
Kaipeng Deng 已提交
493 494 495

            batch_res = get_infer_results(outs, clsid2catid)
            bbox_num = outs['bbox_num']
Z
zhiboniu 已提交
496

K
Kaipeng Deng 已提交
497 498 499 500
            start = 0
            for i, im_id in enumerate(outs['im_id']):
                image_path = imid2path[int(im_id)]
                image = Image.open(image_path).convert('RGB')
501
                self.status['original_image'] = np.array(image.copy())
K
Kaipeng Deng 已提交
502

503
                end = start + bbox_num[i]
K
Kaipeng Deng 已提交
504 505 506 507
                bbox_res = batch_res['bbox'][start:end] \
                        if 'bbox' in batch_res else None
                mask_res = batch_res['mask'][start:end] \
                        if 'mask' in batch_res else None
G
Guanghua Yu 已提交
508 509
                segm_res = batch_res['segm'][start:end] \
                        if 'segm' in batch_res else None
510 511 512 513
                keypoint_res = batch_res['keypoint'][start:end] \
                        if 'keypoint' in batch_res else None
                image = visualize_results(
                    image, bbox_res, mask_res, segm_res, keypoint_res,
C
cnn 已提交
514
                    int(im_id), catid2name, draw_threshold)
515
                self.status['result_image'] = np.array(image.copy())
516 517
                if self._compose_callback:
                    self._compose_callback.on_step_end(self.status)
K
Kaipeng Deng 已提交
518 519 520 521 522
                # save image with detection
                save_name = self._get_save_image_name(output_dir, image_path)
                logger.info("Detection bbox results save in {}".format(
                    save_name))
                image.save(save_name, quality=95)
C
cnn 已提交
523 524
                if save_txt:
                    save_path = os.path.splitext(save_name)[0] + '.txt'
525 526 527 528 529 530 531
                    results = {}
                    results["im_id"] = im_id
                    if bbox_res:
                        results["bbox_res"] = bbox_res
                    if keypoint_res:
                        results["keypoint_res"] = keypoint_res
                    save_result(save_path, results, catid2name, draw_threshold)
K
Kaipeng Deng 已提交
532 533 534 535 536 537 538 539 540 541 542 543
                start = end

    def _get_save_image_name(self, output_dir, image_path):
        """
        Get save image name from source image path.
        """
        if not os.path.exists(output_dir):
            os.makedirs(output_dir)
        image_name = os.path.split(image_path)[-1]
        name, ext = os.path.splitext(image_name)
        return os.path.join(output_dir, "{}".format(name)) + ext

G
Guanghua Yu 已提交
544
    def _get_infer_cfg_and_input_spec(self, save_dir, prune_input=True):
K
Kaipeng Deng 已提交
545
        image_shape = None
546 547 548 549 550 551
        if self.cfg.architecture in MOT_ARCH:
            test_reader_name = 'TestMOTReader'
        else:
            test_reader_name = 'TestReader'
        if 'inputs_def' in self.cfg[test_reader_name]:
            inputs_def = self.cfg[test_reader_name]['inputs_def']
K
Kaipeng Deng 已提交
552
            image_shape = inputs_def.get('image_shape', None)
G
Guanghua Yu 已提交
553
        # set image_shape=[None, 3, -1, -1] as default
K
Kaipeng Deng 已提交
554
        if image_shape is None:
G
Guanghua Yu 已提交
555 556 557
            image_shape = [None, 3, -1, -1]
        if len(image_shape) == 3:
            image_shape = [None] + image_shape
K
Kaipeng Deng 已提交
558

559 560 561 562 563
        if hasattr(self.model, 'deploy'):
            self.model.deploy = True
        if hasattr(self.model, 'fuse_norm'):
            self.model.fuse_norm = self.cfg['TestReader'].get('fuse_normalize',
                                                              False)
G
Guanghua Yu 已提交
564 565
        if hasattr(self.cfg, 'lite_deploy'):
            self.model.lite_deploy = self.cfg.lite_deploy
K
Kaipeng Deng 已提交
566

K
Kaipeng Deng 已提交
567 568 569 570 571 572 573
        # Save infer cfg
        _dump_infer_config(self.cfg,
                           os.path.join(save_dir, 'infer_cfg.yml'), image_shape,
                           self.model)

        input_spec = [{
            "image": InputSpec(
G
Guanghua Yu 已提交
574
                shape=image_shape, name='image'),
K
Kaipeng Deng 已提交
575 576 577 578 579
            "im_shape": InputSpec(
                shape=[None, 2], name='im_shape'),
            "scale_factor": InputSpec(
                shape=[None, 2], name='scale_factor')
        }]
G
George Ni 已提交
580 581 582 583 584
        if self.cfg.architecture == 'DeepSORT':
            input_spec[0].update({
                "crops": InputSpec(
                    shape=[None, 3, 192, 64], name='crops')
            })
G
Guanghua Yu 已提交
585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604
        if prune_input:
            static_model = paddle.jit.to_static(
                self.model, input_spec=input_spec)
            # NOTE: dy2st do not pruned program, but jit.save will prune program
            # input spec, prune input spec here and save with pruned input spec
            pruned_input_spec = _prune_input_spec(
                input_spec, static_model.forward.main_program,
                static_model.forward.outputs)
        else:
            static_model = None
            pruned_input_spec = input_spec

        return static_model, pruned_input_spec

    def export(self, output_dir='output_inference'):
        self.model.eval()
        model_name = os.path.splitext(os.path.split(self.cfg.filename)[-1])[0]
        save_dir = os.path.join(output_dir, model_name)
        if not os.path.exists(save_dir):
            os.makedirs(save_dir)
K
Kaipeng Deng 已提交
605

G
Guanghua Yu 已提交
606 607
        static_model, pruned_input_spec = self._get_infer_cfg_and_input_spec(
            save_dir)
G
Guanghua Yu 已提交
608 609 610

        # dy2st and save model
        if 'slim' not in self.cfg or self.cfg['slim_type'] != 'QAT':
611 612 613 614 615
            paddle.jit.save(
                static_model,
                os.path.join(save_dir, 'model'),
                input_spec=pruned_input_spec)
        else:
616
            self.cfg.slim.save_quantized_model(
617 618
                self.model,
                os.path.join(save_dir, 'model'),
G
Guanghua Yu 已提交
619 620
                input_spec=pruned_input_spec)
        logger.info("Export model and saved in {}".format(save_dir))
621

G
Guanghua Yu 已提交
622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641
    def post_quant(self, output_dir='output_inference'):
        model_name = os.path.splitext(os.path.split(self.cfg.filename)[-1])[0]
        save_dir = os.path.join(output_dir, model_name)
        if not os.path.exists(save_dir):
            os.makedirs(save_dir)

        for idx, data in enumerate(self.loader):
            self.model(data)
            if idx == int(self.cfg.get('quant_batch_num', 10)):
                break

        # TODO: support prune input_spec
        _, pruned_input_spec = self._get_infer_cfg_and_input_spec(
            save_dir, prune_input=False)

        self.cfg.slim.save_quantized_model(
            self.model,
            os.path.join(save_dir, 'model'),
            input_spec=pruned_input_spec)
        logger.info("Export Post-Quant model and saved in {}".format(save_dir))
G
Guanghua Yu 已提交
642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666

    def _flops(self, loader):
        self.model.eval()
        try:
            import paddleslim
        except Exception as e:
            logger.warning(
                'Unable to calculate flops, please install paddleslim, for example: `pip install paddleslim`'
            )
            return

        from paddleslim.analysis import dygraph_flops as flops
        input_data = None
        for data in loader:
            input_data = data
            break

        input_spec = [{
            "image": input_data['image'][0].unsqueeze(0),
            "im_shape": input_data['im_shape'][0].unsqueeze(0),
            "scale_factor": input_data['scale_factor'][0].unsqueeze(0)
        }]
        flops = flops(self.model, input_spec) / (1000**3)
        logger.info(" Model FLOPs : {:.6f}G. (image shape is {})".format(
            flops, input_data['image'][0].unsqueeze(0).shape))