framework.py 115.8 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yu Yang 已提交
17
import collections
X
Xin Pan 已提交
18
from collections import defaultdict
W
WangZhen 已提交
19
from collections import Iterable
Q
qiaolongfei 已提交
20
import contextlib
S
rename  
sneaxiy 已提交
21
from .wrapped_decorator import signature_safe_contextmanager
P
peizhilin 已提交
22
import os
F
fengjiayi 已提交
23
import re
24
import traceback
25
import six
26

Y
Yu Yang 已提交
27
import numpy as np
28
import subprocess
S
sneaxiy 已提交
29
import multiprocessing
Q
qiaolongfei 已提交
30

M
minqiyang 已提交
31
from .. import compat as cpt
32
from .proto import framework_pb2
33
try:
P
peizhilin 已提交
34
    if os.name == 'nt':
P
peizhilin 已提交
35
        import sys
P
peizhilin 已提交
36 37 38 39 40
        third_lib_path = os.path.abspath(os.path.dirname(
            __file__)) + os.sep + '..' + os.sep + 'libs'
        os.environ['path'] += ';' + third_lib_path
        sys.path.append(third_lib_path)

41
    from . import core
42
except ImportError as e:
P
peizhilin 已提交
43
    if os.name == 'nt':
44
        executable_path = os.path.abspath(os.path.dirname(sys.executable))
P
peizhilin 已提交
45
        raise ImportError(
46 47 48 49 50
            """NOTE: You may need to run \"set PATH=%s;%%PATH%%\"
        if you encounters \"DLL load failed\" errors. If you have python
        installed in other directory, replace \"%s\" with your own
        directory. The original error is: \n %s""" %
            (executable_path, executable_path, cpt.get_exception_message(e)))
P
peizhilin 已提交
51 52 53 54 55 56
    else:
        raise ImportError(
            """NOTE: You may need to run \"export LD_LIBRARY_PATH=/usr/local/lib:$LD_LIBRARY_PATH\"
        if you encounters \"libmkldnn.so not found\" errors. If you have python
        installed in other directory, replace \"/usr/local/lib\" with your own
        directory. The original error is: \n""" + cpt.get_exception_message(e))
57
except Exception as e:
58
    raise e
59
from . import unique_name
Y
Yu Yang 已提交
60

61
__all__ = [
62 63 64 65
    'Program',
    'default_startup_program',
    'default_main_program',
    'program_guard',
66
    'name_scope',
S
sneaxiy 已提交
67 68 69
    'cuda_places',
    'cpu_places',
    'cuda_pinned_places',
L
lujun 已提交
70
    'in_dygraph_mode',
71
]
Y
Yu Yang 已提交
72

Q
qiaolongfei 已提交
73 74 75 76
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()
W
Wu Yi 已提交
77 78
CONTROL_DEP_VAR_PREFIX = core.kControlDepVarName()

L
lujun 已提交
79 80
_dygraph_tracer_ = None
_dygraph_current_expected_place_ = None
81 82


L
lujun 已提交
83 84 85 86
def in_dygraph_mode():
    '''
    Returns(bool): True if the program is running in dynamic graph mode
    '''
L
lujun 已提交
87
    return _dygraph_tracer_ is not None
88 89


L
lujun 已提交
90 91
def _dygraph_tracer():
    return _dygraph_tracer_
92

W
Wu Yi 已提交
93

M
minqiyang 已提交
94
def _current_expected_place():
L
lujun 已提交
95
    return _dygraph_current_expected_place_
M
minqiyang 已提交
96 97


S
sneaxiy 已提交
98 99 100 101 102
def _cpu_num():
    return int(os.environ.get('CPU_NUM', multiprocessing.cpu_count()))


def cuda_places(device_ids=None):
S
add doc  
sneaxiy 已提交
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
    '''
    Create a list of :code:`fluid.CUDAPlace` objects.

    If :code:`device_ids` is None, environment variable of
    :code:`FLAGS_selected_gpus` would be checked first. If
    :code:`FLAGS_selected_gpus=0,1,2`, the returned list would
    be [fluid.CUDAPlace(0), fluid.CUDAPlace(1), fluid.CUDAPlace(2)].
    If :code:`FLAGS_selected_gpus` is not set, all visible
    gpu places would be returned.  

    If :code:`device_ids` is not None, it should be the device
    ids of gpus. For example, if :code:`device_ids=[0,1,2]`, 
    the returned list would be 
    [fluid.CUDAPlace(0), fluid.CUDAPlace(1), fluid.CUDAPlace(2)].
    
    Args: 
        device_ids (None|list(int)|tuple(int)): gpu device id list.

    Returns:
        out (list(fluid.CUDAPlace)): gpu place list.
    '''
S
sneaxiy 已提交
124 125 126 127 128 129 130 131 132 133 134 135 136 137
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_ids is None:
        gpus_env = os.getenv("FLAGS_selected_gpus")
        if gpus_env:
            device_ids = [int(s) for s in gpus_env.split(",")]
        else:
            device_ids = six.moves.range(core.get_cuda_device_count())
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.CUDAPlace(dev_id) for dev_id in device_ids]


def cpu_places(device_count=None):
S
add doc  
sneaxiy 已提交
138 139 140 141 142 143 144 145 146 147 148 149 150 151
    '''
    Create a list of :code:`fluid.CPUPlace` objects.
    
    If :code:`device_count` is None, the device count would
    be determined by environment variable :code:`CPU_NUM`. 
    If :code:`CPU_NUM` is not set, the device count would
    be determined by :code:`multiprocessing.cpu_count()`. 

    Args:
        device_count (None|int): device number.

    Returns:
        out (list(fluid.CPUPlace)): cpu place list.
    '''
S
sneaxiy 已提交
152 153 154 155 156 157
    if device_count is None:
        device_count = _cpu_num()
    return [core.CPUPlace()] * device_count


def cuda_pinned_places(device_count=None):
S
add doc  
sneaxiy 已提交
158 159 160 161 162 163 164 165 166 167 168 169 170 171
    '''
    Create a list of :code:`fluid.CUDAPinnedPlace` objects.

    If :code:`device_count` is None, the device count would
    be determined by environment variable :code:`CPU_NUM`. 
    If :code:`CPU_NUM` is not set, the device count would
    be determined by :code:`multiprocessing.cpu_count()`. 

    Args:
        device_count (None|int): device number.

    Returns:
        out (list(fluid.CUDAPinnedPlace)): cuda pinned place list.
    '''
S
sneaxiy 已提交
172 173 174 175 176 177 178
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_count is None:
        device_count = _cpu_num()
    return [core.cuda_pinned_places()] * device_count


179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
class NameScope(object):
    def __init__(self, name="", parent=None):
        self._children = dict()
        self._name = name
        self._parent = parent

    def child(self, prefix):
        if prefix not in self._children:
            new_child = NameScope(prefix, self)
            self._children[prefix] = [new_child]
        else:
            new_child = NameScope(prefix + "_%d" % len(self._children[prefix]),
                                  self)
            self._children[prefix].append(new_child)
        return new_child

    def parent(self):
        return self._parent

    def name(self):
        return self._name


_name_scope = NameScope()


S
rename  
sneaxiy 已提交
205
@signature_safe_contextmanager
206 207 208 209 210 211 212 213 214 215 216 217
def name_scope(prefix=None):
    """
    Generate hierarchical name prefix for the operators.

    Note: This should only used for debugging and visualization purpose.
    Don't use it for serious analysis such as graph/program transformations.

    Args:
        prefix(str): prefix.

    Examples:
        .. code-block:: python
T
Tink_Y 已提交
218

219 220 221 222
          with name_scope("encoder"):
             ...
          with name_scope("decoder"):
             ...
T
Tink_Y 已提交
223 224
          with name_scope("attention"):
             ...
225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
    """
    # TODO(panyx0718): Only [0-9a-z].
    assert prefix, "namescope prefix cannot be empty."
    global _name_scope
    _name_scope = _name_scope.child(prefix)
    yield
    _name_scope = _name_scope.parent()


def _full_name_scope():
    global _name_scope
    scope = _name_scope
    name = ""
    while scope:
        name = scope.name() + "/" + name
        scope = scope.parent()
    return name


W
Wu Yi 已提交
244 245 246
def generate_control_dev_var_name():
    import random
    return CONTROL_DEP_VAR_PREFIX + "@" + str(random.random())
Q
qiaolongfei 已提交
247 248 249 250


def grad_var_name(var_name):
    """
251 252
    Returns:
        str: gradient name for a certain var name
Q
qiaolongfei 已提交
253 254 255
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
256

257
def convert_np_dtype_to_dtype_(np_dtype):
258 259
    """
    Convert the data type in numpy to the data type in Paddle
260

261
    Args:
262
        np_dtype(np.dtype): the data type in numpy.
263

264 265
    Returns:
        core.VarDesc.VarType: the data type in Paddle.
266 267

    """
268 269
    dtype = np.dtype(np_dtype)
    if dtype == np.float32:
270
        return core.VarDesc.VarType.FP32
271
    elif dtype == np.float64:
272
        return core.VarDesc.VarType.FP64
273
    elif dtype == np.float16:
274
        return core.VarDesc.VarType.FP16
275
    elif dtype == np.int32:
276
        return core.VarDesc.VarType.INT32
277
    elif dtype == np.int16:
278
        return core.VarDesc.VarType.INT16
279
    elif dtype == np.int64:
280
        return core.VarDesc.VarType.INT64
281
    elif dtype == np.bool:
282
        return core.VarDesc.VarType.BOOL
283 284
    elif dtype == np.uint16:
        return core.VarDesc.VarType.INT16
285 286
    elif dtype == np.uint8:
        return core.VarDesc.VarType.UINT8
Q
qingqing01 已提交
287 288
    elif dtype == np.int8:
        return core.VarDesc.VarType.INT8
289
    else:
M
minqiyang 已提交
290
        raise ValueError("Not supported numpy dtype %s" % dtype)
291 292 293


def dtype_is_floating(dtype):
294 295 296
    """
    Check the data type is floating or not.
    Args:
297
        dtype(np.dtype|core.VarDesc.VarType): data type.
298 299 300 301 302
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
303
    if not isinstance(dtype, core.VarDesc.VarType):
304 305
        dtype = convert_np_dtype_to_dtype_(dtype)

306 307 308 309
    return dtype in [
        core.VarDesc.VarType.FP16, core.VarDesc.VarType.FP32,
        core.VarDesc.VarType.FP64
    ]
310 311


Y
Yang Yang(Tony) 已提交
312
def _debug_string_(proto, throw_on_error=True):
313 314 315 316 317 318 319 320 321 322 323
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
324
    error_fields = list()
Y
Yang Yang(Tony) 已提交
325
    if not proto.IsInitialized(error_fields) and throw_on_error:
C
caoying03 已提交
326 327
        raise ValueError("{0} are not initialized.\nThe message is {1}:\n".
                         format(error_fields, proto))
Y
Yu Yang 已提交
328 329 330
    return proto.__str__()


X
Xin Pan 已提交
331
class Variable(object):
332
    """
333 334 335
    In Fluid, every input and output of an operator is a variable. In most
    cases, variables are used for holding different kinds of data or training
    labels. A variable belongs to a block. All variable has its own name and
336
    two variables in different blocks could have the same name.
337

338 339
    There are many kinds of variables. Each kind of them has its own attributes
    and usages. Please reference the framework.proto for details.
340

341
    Most of a Variable's member variables can be setted to be None. It mean
342
    it is not available or will be specified later.
343 344

    Args:
345
        block(Block): The block that the variable belongs to.
346 347
        type(core.VarDesc.VarType): Variable type. Please reference the
            framework.proto for details.
348 349
        name(str|None): The name of the variable. If setted None, it will be
            generated automatically. Default: None
350
        shape(tuple|list|None): The shape of the variable. -1 means the batch size.
351
            Some kinds of variable do not contain shape, just set it to None.
352 353 354
            Default: None
        dtype(np.dtype|core.VarDesc.VarType|str|None): The data type of variable.
            Default: None
355
        lod_level (int|None): The level of lod tensor. 0 means it is not a time
356
            series data.
357
            Default: None
358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379
        capacity (int|None): The capacity of Channel variable. Ignored for other
            types. Default: None
        persistable (bool|None): True if the variable is persistable. A persistable
            variable will not be deleted after an iteration ending. Defaults: None.
        error_clip (BaseErrorClipAttr|None): The error clip attributes of the
            corresponding gradient variable. Default: None
        stop_gradient (bool): True if the variable will stop to calculate its
            gradients when backward. Default: False.
        is_data (bool): True if the variable is an input data. Default: False

    Notes:
        The constructor of Variable should not be invoked directly. Please
        use `Block.create_var` to create a variable.

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
380 381
    """

Y
Yu Yang 已提交
382 383
    def __init__(self,
                 block,
Y
Yu Yang 已提交
384
                 type=core.VarDesc.VarType.LOD_TENSOR,
Y
Yu Yang 已提交
385 386 387 388
                 name=None,
                 shape=None,
                 dtype=None,
                 lod_level=None,
389
                 capacity=None,
Q
QI JUN 已提交
390
                 persistable=None,
F
fengjiayi 已提交
391
                 error_clip=None,
Y
Yu Yang 已提交
392
                 stop_gradient=False,
F
fengjiayi 已提交
393
                 is_data=False,
Y
Yu Yang 已提交
394
                 **kwargs):
Y
Yu Yang 已提交
395 396
        self.block = block
        if name is None:
Y
Yu Yang 已提交
397
            name = unique_name.generate('_generated_var')
D
Dong Zhihong 已提交
398

Y
Yu Yang 已提交
399
        if dtype is not None:
400
            if not isinstance(dtype, core.VarDesc.VarType):
401
                dtype = convert_np_dtype_to_dtype_(dtype)
402

L
lujun 已提交
403
        if in_dygraph_mode():
M
minqiyang 已提交
404
            # record vars in tracer rather than blocks
M
minqiyang 已提交
405 406
            self._ivar = kwargs.get("ivar", None)
            if not self._ivar:
407 408 409
                self._ivar = core.VarBase(
                    name, dtype if dtype else core.VarDesc.VarType.FP32,
                    list(shape) if shape else [],
X
fix  
Xin Pan 已提交
410 411
                    _current_expected_place(), stop_gradient, True
                    if persistable else False)
M
minqiyang 已提交
412
            if persistable:
L
lujun 已提交
413
                _dygraph_tracer().trace_var(name, self)
M
minqiyang 已提交
414
        else:
415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486
            self.error_clip = error_clip

            is_new_var = False
            name = cpt.to_text(name)
            self.desc = self.block.desc.find_var(cpt.to_bytes(name))

            if self.desc is None:
                self.desc = self.block.desc.var(cpt.to_bytes(name))
                is_new_var = True

            if is_new_var:
                self.desc.set_type(type)
            elif self.desc.type() != type:
                raise ValueError(
                    "Variable {0} has been created before. The "
                    "previous type is {1}; the new type is {2}. They"
                    " are not matched".format(self.name, self.desc.type(),
                                              type))

            if shape is not None:
                if is_new_var:
                    self.desc.set_shape(shape)
                else:
                    old_shape = self.shape
                    shape = tuple(shape)
                    if shape != old_shape:
                        raise ValueError(
                            "Variable {0} has been created before. the previous "
                            "shape is {1}; the new shape is {2}. They are not "
                            "matched.".format(self.name, old_shape, shape))
            if dtype is not None:
                if is_new_var:
                    self.desc.set_dtype(dtype)
                else:
                    old_dtype = self.dtype
                    if dtype != old_dtype:
                        raise ValueError(
                            "Variable {0} has been created before. "
                            "The previous data type is {1}; the new "
                            "data type is {2}. They are not "
                            "matched.".format(self.name, old_dtype, dtype))

            if lod_level is not None:
                if is_new_var:
                    self.desc.set_lod_level(lod_level)
                else:
                    if lod_level != self.lod_level:
                        raise ValueError(
                            "Variable {0} has been created before. "
                            "The previous lod_level is {1}; the new "
                            "lod_level is {2}. They are not "
                            "matched".format(self.name, self.lod_level,
                                             lod_level))
            if persistable is not None:
                if is_new_var:
                    self.desc.set_persistable(persistable)
                else:
                    if persistable != self.persistable:
                        raise ValueError(
                            "Variable {0} has been created before."
                            "The previous persistable is {1}; the new "
                            "persistable is {2}. They are not matched".format(
                                self.name, self.persistable, persistable))

            if capacity is not None:
                if is_new_var:
                    self.desc.set_capacity(capacity)
                else:
                    # TODO(abhinavarora) : Compare with set capacity once,
                    # get_capacity is implemented
                    pass

M
minqiyang 已提交
487
            self.block.vars[name] = self
488
            self.op = None
L
lujun 已提交
489
            self._stop_gradient = stop_gradient
490
            self.is_data = is_data
Y
Yu Yang 已提交
491

L
lujun 已提交
492
    def numpy(self):
M
minqiyang 已提交
493
        new_ivar = self._ivar._copy_to(core.CPUPlace(), True)
P
Paddle CI 已提交
494
        return np.array(new_ivar.value().get_tensor())
495

L
lujun 已提交
496
    def backward(self):
X
Xin Pan 已提交
497
        self._ivar._run_backward()
498

L
lujun 已提交
499
    def gradient(self):
500 501
        new_ivar = self._ivar._grad_ivar()._copy_to(core.CPUPlace(), True)
        return np.array(new_ivar.value().get_tensor())
502

L
lujun 已提交
503
    def clear_gradient(self):
X
Xin Pan 已提交
504
        self._ivar._clear_gradient()
X
Xin Pan 已提交
505

506
    def __str__(self):
Y
Yang Yang(Tony) 已提交
507 508
        return self.to_string(True)

F
update  
fengjiayi 已提交
509
    def to_string(self, throw_on_error, with_details=False):
510 511 512 513
        """
        Get debug string.

        Args:
514 515
            throw_on_error(bool): True if raise an exception when self is
                not initialized.
F
update  
fengjiayi 已提交
516
            with_details(bool): more details about variables and parameters
517 518
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False;
519

520 521
        Returns:
            str: The debug string.
522
        """
L
lujun 已提交
523
        if in_dygraph_mode():
L
lujun 已提交
524
            # TODO(panyx0718): add more dygraph debug info.
525 526 527
            return 'name %s, dtype: %s shape: %s' % (self.name, self.dtype,
                                                     self.shape)

F
update  
fengjiayi 已提交
528 529
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
530
        protostr = self.desc.serialize_to_string()
531
        proto = framework_pb2.VarDesc.FromString(six.binary_type(protostr))
F
update  
fengjiayi 已提交
532 533 534 535
        res_str = _debug_string_(proto, throw_on_error)
        if with_details:
            additional_attr = ("error_clip", "stop_gradient")
            for attr_name in additional_attr:
536 537
                res_str += "%s: %s\n" % (
                    attr_name, six.binary_type(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
538
        return res_str
539 540 541

    __repr__ = __str__

L
lujun 已提交
542
    def set_desc(self, input):
543 544 545 546 547 548 549 550 551
        """
        Set the variable description.

        Args:
            input(core.VarDesc): The new VarDesc.

        Returns:
            None
        """
552 553
        self.desc = input

554
    @property
L
lujun 已提交
555 556
    def stop_gradient(self):
        if in_dygraph_mode():
M
minqiyang 已提交
557 558
            return self._ivar.stop_gradient
        else:
L
lujun 已提交
559
            return self._stop_gradient
560

L
lujun 已提交
561 562 563
    @stop_gradient.setter
    def stop_gradient(self, s):
        if in_dygraph_mode():
M
minqiyang 已提交
564
            self._ivar.stop_gradient = s
565
        else:
L
lujun 已提交
566
            self._stop_gradient = s
567

568 569
    @property
    def persistable(self):
L
lujun 已提交
570
        if in_dygraph_mode():
571 572 573
            return self._ivar.persistable
        else:
            return self.desc.persistable()
574

Y
Yu Yang 已提交
575 576
    @persistable.setter
    def persistable(self, p):
L
lujun 已提交
577
        if in_dygraph_mode():
578 579 580
            return self._ivar.persistable
        else:
            self.desc.set_persistable(p)
Y
Yu Yang 已提交
581

Y
Yu Yang 已提交
582 583
    @property
    def name(self):
L
lujun 已提交
584
        if in_dygraph_mode():
585 586 587
            return self._ivar.name
        else:
            return cpt.to_text(self.desc.name())
Y
Yu Yang 已提交
588

T
typhoonzero 已提交
589 590
    @name.setter
    def name(self, new_name):
L
lujun 已提交
591
        if in_dygraph_mode():
592 593 594
            self._ivar.name = new_name
        else:
            self.desc.set_name(new_name)
T
typhoonzero 已提交
595

Y
Yu Yang 已提交
596 597 598
    @property
    def shape(self):
        # convert to tuple, make it as same as numpy API.
L
lujun 已提交
599
        if in_dygraph_mode():
600 601 602
            return self._ivar.shape
        else:
            return tuple(self.desc.shape())
Y
Yu Yang 已提交
603 604

    @property
F
fengjiayi 已提交
605
    def dtype(self):
L
lujun 已提交
606
        if in_dygraph_mode():
607 608 609
            return self._ivar.dtype
        else:
            return self.desc.dtype()
Y
Yu Yang 已提交
610 611 612

    @property
    def lod_level(self):
L
lujun 已提交
613
        # TODO(minqiyang): Support lod_level in dygraph mode
614
        return self.desc.lod_level()
Y
Yu Yang 已提交
615

Y
Yu Yang 已提交
616 617
    @property
    def type(self):
L
lujun 已提交
618
        if in_dygraph_mode():
619 620 621
            return self._ivar.dtype
        else:
            return self.desc.type()
Y
Yu Yang 已提交
622

W
Wu Yi 已提交
623
    def _set_error_clip(self, error_clip):
624 625 626 627 628 629 630 631 632
        """
        Set the error_clip.

        Args:
            error_clip(BaseErrorClipAttr) : The new error_clip.

        Returns:
            None
        """
633 634
        self.error_clip = error_clip

635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727
    def _slice_indices(self, slice, length):
        """
        Reference implementation for the slice.indices method.
        """
        # Compute step and length as integers.
        step = 1 if slice.step is None else slice.step

        # Raise ValueError for negative length or zero step.
        if length < 0:
            raise ValueError("length should not be negative")
        if step == 0:
            raise ValueError("slice step cannot be zero")

        # Find lower and upper bounds for start and stop.
        lower = -1 if step < 0 else 0
        upper = length - 1 if step < 0 else length

        # Compute start.
        if slice.start is None:
            start = upper if step < 0 else lower
        else:
            start = slice.start
            start = max(start + length, lower) if start < 0 else min(start,
                                                                     upper)

        # Compute stop.
        if slice.stop is None:
            stop = lower if step < 0 else upper
        else:
            stop = slice.stop
            stop = max(stop + length, lower) if stop < 0 else min(stop, upper)

        return start, stop, step

    def _detectEllipsis(self, item):
        has_ellipsis = False
        start = 0
        end = len(self.shape)
        for index, o in enumerate(item):
            if o is Ellipsis:
                if has_ellipsis:
                    raise ValueError("Index can have one ellipsis only.")
                has_ellipsis = True
                start = index
            else:
                if has_ellipsis:
                    end = index
        return has_ellipsis, start, end

    def _reconstructSliceinfo(self, item):
        has_ellipsis, start, end = self._detectEllipsis(item)
        if has_ellipsis:
            newitem = []
            for i in range(start):
                newitem.append(item[i])
            for i in range(start, end):
                newitem.append(slice(None, None, None))
            for i in range(end, len(item)):
                newitem.append(item[i])
            return newitem
        else:
            return None

    def _detectContinuesSlice(self, item):
        starts = []
        ends = []
        for index, o in enumerate(item):
            if isinstance(o, int):
                start = int(o)
                if (index > 0 and index >= self.shape[index]) \
                        or (index < 0 and (index + self.shape[index]) < 0):
                    raise IndexError("invalid index")
                start = max(start + self.shape[index], 0) if start < 0 else min(
                    start, self.shape[index])
                starts.append(start)
                ends.append(start + 1)
            elif isinstance(o, slice):
                start, stop, step = self._slice_indices(o, self.shape[index])
                if step == 1 or step == -1:
                    starts.append(start)
                    ends.append(stop)
                else:
                    return False, None
            else:
                raise IndexError("Valid index accept int or slice or ellipsis")
        return True, [starts, ends]

    def _cloneVar(self, copy=False):
        if not copy:
            return self.block.create_var(
                name=unique_name.generate(".".join(self.name)),
                dtype=self.dtype,
                persistable=self.persistable,
L
lujun 已提交
728
                stop_gradient=self.stop_gradient, )
729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796
        else:
            return self

    def _sliceVar(self, axes, starts, ends):
        new_var = self._cloneVar()
        self.block.append_op(
            type="slice",
            inputs={'Input': [self]},
            outputs={'Out': [new_var]},
            attrs={'axes': axes,
                   'starts': starts,
                   'ends': ends})
        return new_var

    def _concatVar(self, inputs, axis):
        new_var = self._cloneVar()
        self.block.append_op(
            type="concat",
            inputs={'X': inputs},
            outputs={'Out': [new_var]},
            attrs={'axis': axis, })
        return new_var

    def _sliceAndConcatVar(self, item, axis):
        if isinstance(item, slice):
            if self.shape[axis] < 0:
                return self._cloneVar(True)
            start, stop, step = self._slice_indices(item, self.shape[axis])
            if step == 1:
                return self._sliceVar([axis], [start], [stop])
            else:
                vars = []
                if step > 0:
                    while start < stop:
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1]))
                        start += step
                else:
                    while start > stop:
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1]))
                        start += step
                return self._concatVar(vars, axis)
        elif isinstance(item, int):
            if self.shape[axis] < 0:
                return self._cloneVar(True)
            index = int(item)
            if (index > 0 and index >= self.shape[axis])\
                    or (index < 0 and (index + self.shape[axis]) < 0):
                raise IndexError("invalid index")
            return self._sliceVar([axis], [index], [index + 1])
        else:
            raise IndexError("Valid index accept int or slice or tuple")

    def __getitem__(self, item):
        """
        Slice the variable.

        Args:
            item(int/slice/tuple) : the index.

        Returns:
            Sliced variable
        """
        new_var = None
        if isinstance(item, tuple):
            if len(item) > len(self.shape):
                raise IndexError("Too many indexes")
W
wopeizl 已提交
797 798 799 800 801 802
            fixedSize = True
            for i in range(len(self.shape)):
                if self.shape[i] == -1:
                    fixedSize = False
                    break

803
            newitem = self._reconstructSliceinfo(item) or item
W
wopeizl 已提交
804 805
            if fixedSize:
                check, info = self._detectContinuesSlice(newitem)
806
                if check:
W
wopeizl 已提交
807 808 809 810 811 812 813 814
                    starts = info[0]
                    ends = info[1]
                    axes = [i for i in range(len(starts))]
                    return self._sliceVar(axes, starts, ends)
                else:
                    new_var = self
                    for index, o in enumerate(newitem):
                        new_var = new_var._sliceAndConcatVar(o, index)
815 816 817 818 819 820 821 822
            else:
                new_var = self
                for index, o in enumerate(newitem):
                    new_var = new_var._sliceAndConcatVar(o, index)
        else:
            new_var = self._sliceAndConcatVar(item, 0)
        return new_var

Y
Yu Yang 已提交
823

F
fengjiayi 已提交
824 825 826
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
827

828 829
    Returns:
       list: list of OpProto.
F
fengjiayi 已提交
830 831 832 833
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
834
        op_proto = framework_pb2.OpProto.FromString(six.binary_type(pbstr))
F
fengjiayi 已提交
835 836 837 838 839
        ret_values.append(op_proto)
    return ret_values


class OpProtoHolder(object):
840 841 842 843
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
844 845 846 847 848 849 850 851 852
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
            self.__class__,
853
            '_instance'), 'Please use `instance()` to get OpProtoHolder object!'
F
fengjiayi 已提交
854 855 856 857 858 859
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
860 861 862 863 864 865 866 867
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
868 869
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
870 871
        return self.op_proto_map[type]

872 873 874 875
    @staticmethod
    def generated_op_attr_names():
        return {
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
S
sneaxiy 已提交
876
            core.op_proto_and_checker_maker.kOpRoleVarAttrName(),
877 878
            core.op_proto_and_checker_maker.kOpNameScopeAttrName(),
            core.op_proto_and_checker_maker.kOpCreationCallstackAttrName()
879 880
        }

F
fengjiayi 已提交
881

X
Xin Pan 已提交
882
class Operator(object):
883
    """
884 885 886 887 888 889 890
    In Fluid, all the operation are represented by Operator, and Operator
    is regarded as a build in an instruction of a Block. Users can use the
    build in instructions to describe their neural network.

    Args:
        block(Block): The block has the current operator.
        desc(core.OpDesc): The protobuf description of Operator.
C
chengduoZH 已提交
891
        type(str): The type of operator. Default None.
892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911
        inputs(dict): The input of this Operator. it is a dictionary, for every
            element, key is the input parameter name, and value is a list of
            variables. Default None.
        outputs(dict): The output of this Operator. it is a dictionary, for
            every element, key is the input parameter name, and value is a list
            of variables. Default None.
        attrs(dict): The attributes of this Operator. it is a dictionary, for
            every element, key is attribute name, and value is the attribute value.
            The attribute type should be as same as the type registered in C++ side.
            Default None.

    Returns:
        Operator: The initialized Operator.

    Raises:
        ValueError: If the passed input, output and attrs doesn't match the
            initializing Operator's that registered in C++ side.

    Notes:
        The constructor of operator should not be invoked directly. Use
W
Wu Yi 已提交
912
        Block.append_op or Block._prepend_op instead.
913 914 915 916 917 918 919 920 921 922

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            # var1 += var2 + var3
            cur_block.append_op(type="sum",
                                inputs={"X": [var1, var2, var3]},
                                outputs={"Out": [var1]})
923
    """
924
    OP_WITHOUT_KERNEL_SET = {
925 926 927
        'feed', 'fetch', 'recurrent', 'go', 'rnn_memory_helper_grad',
        'conditional_block', 'while', 'send', 'recv', 'listen_and_serv',
        'ncclInit', 'select', 'checkpoint_notify', 'gen_nccl_id'
928
    }
929

Y
Yu Yang 已提交
930 931
    def __init__(self,
                 block,
Y
Yu Yang 已提交
932
                 desc,
Y
Yu Yang 已提交
933 934 935
                 type=None,
                 inputs=None,
                 outputs=None,
M
minqiyang 已提交
936
                 attrs=None):
L
lujun 已提交
937
        if in_dygraph_mode():
938 939
            if type is None:
                raise ValueError(
940
                    "`type` to initialized an Operator can not be None.")
941
            self.iop = core.OpBase(type)
M
minqiyang 已提交
942

943 944
            # TODO(minqiyang): remove these lines after we take apart all
            # backward grads and forward variables
X
Xin Pan 已提交
945
            self.inputs = defaultdict(list)
X
Xin Pan 已提交
946
            if inputs is not None:
X
Xin Pan 已提交
947 948 949 950 951
                for k, v in six.iteritems(inputs):
                    if isinstance(v, Variable):
                        self.inputs[k].append(v._ivar)
                    elif isinstance(v, list) or isinstance(v, tuple):
                        self.inputs[k].extend([var._ivar for var in v])
M
minqiyang 已提交
952

X
Xin Pan 已提交
953
            self.outputs = defaultdict(list)
X
Xin Pan 已提交
954
            if outputs is not None:
X
Xin Pan 已提交
955 956 957 958 959
                for k, v in six.iteritems(outputs):
                    if isinstance(v, Variable):
                        self.outputs[k].append(v._ivar)
                    elif isinstance(v, list) or isinstance(v, tuple):
                        self.outputs[k].extend([var._ivar for var in v])
F
fengjiayi 已提交
960

961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
            self.attrs = attrs if attrs else {}
        else:
            self.block = block
            self.desc = desc
            # note: not add self.attrs here:
            # https://github.com/PaddlePaddle/Paddle/pull/12583#pullrequestreview-145093173
            op_attrs = attrs
            if op_attrs is None:
                op_attrs = dict()
            del attrs

            op_maker = core.op_proto_and_checker_maker

            if op_maker.kOpRoleAttrName() not in op_attrs:
                op_attrs[op_maker.kOpRoleAttrName(
                )] = self.block.program.op_role

            role_var_name = op_maker.kOpRoleVarAttrName()
            if len(self.block.program.
                   op_role_var) != 0 and role_var_name not in op_attrs:
                op_attrs[role_var_name] = self.block.program.op_role_var

            if role_var_name in op_attrs and len(op_attrs[role_var_name]) == 0:
                del op_attrs[role_var_name]

            if len(self.desc.type()) != 0:
                return
            if type is None:
                raise ValueError(
                    "`type` to initilized an Operator can not be None.")
            else:
                callstack_var_name = op_maker.kOpCreationCallstackAttrName()
                op_attrs[callstack_var_name] = list(
                    reversed(traceback.format_stack()))[1:]

            self.desc.set_type(type)
            proto = OpProtoHolder.instance().get_op_proto(type)

            namescope_var_name = op_maker.kOpNameScopeAttrName()
            op_attrs[namescope_var_name] = _full_name_scope()

            def find_name(var_list, name):
                for var_name in var_list:
                    if var_list[var_name] is not None and var_name == name:
                        return True
                return False

            if inputs is not None:
                for in_proto in proto.inputs:
                    found = find_name(inputs, in_proto.name)
                    assert found or in_proto.dispensable, "Input {} not found".format(
                        in_proto.name)

                    if found:
                        in_args = inputs[in_proto.name]
                        if not isinstance(in_args, list):
                            in_args = [in_args]
                        if not in_proto.duplicable and len(in_args) > 1:
                            raise ValueError(
                                "Input %s expects only one input, but %d are given."
                                % (in_proto.name, len(in_args)))
                        in_arg_names = []
                        for arg in in_args:
                            if isinstance(arg, six.string_types):
                                in_arg_names.append(arg)
                            elif isinstance(arg, six.binary_type):
                                in_arg_names.append(arg.decode())
                            else:
                                in_arg_names.append(cpt.to_text(arg.name))
                        self.desc.set_input(in_proto.name, in_arg_names)
                    else:
                        self.desc.set_input(in_proto.name, [])

            if outputs is not None:
                for m in proto.outputs:
                    if (m.name not in outputs) and m.dispensable:
                        continue
                    if not ((m.name in outputs) or m.dispensable):
                        raise ValueError(("Incorrect setting for output(s) of "
                                          "operator \"%s\", should set: [%s].")
                                         % (type, m.name))
                for out_proto in proto.outputs:
                    if out_proto.name not in outputs:
                        continue
                    out_args = outputs[out_proto.name]
                    if not isinstance(out_args, list):
                        out_args = [out_args]
                    if not out_proto.duplicable and len(out_args) > 1:
                        raise ValueError(
                            "Output %s expects only one output, but %d are given."
                            % (out_proto.name, len(out_args)))
                    out_arg_names = []
                    for arg in out_args:
                        out_arg_names.append(cpt.to_text(arg.name))
                        # TODO(minqiyang): could we remove variable's op in static mode?
L
lujun 已提交
1056
                        if not in_dygraph_mode():
1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075
                            arg.op = self
                    self.desc.set_output(out_proto.name, out_arg_names)

            if op_attrs is not None:
                if not isinstance(op_attrs, dict):
                    raise TypeError("'attrs' should be a dict.")
                for attr in proto.attrs:
                    attr_name = attr.name
                    if (attr_name not in op_attrs) or (
                            op_attrs[attr_name] is None):
                        continue
                    attr_val = op_attrs[attr_name]
                    self._update_desc_attr(attr_name, attr_val)

            self.desc.check_attrs()
            if self._has_kernel(type):
                self.desc.infer_var_type(self.block.desc)
                self.desc.infer_shape(self.block.desc)

W
Wu Yi 已提交
1076
    def _has_kernel(self, op_type):
1077 1078
        return op_type not in self.OP_WITHOUT_KERNEL_SET

Y
Yang Yang(Tony) 已提交
1079
    def to_string(self, throw_on_error):
1080
        """
1081 1082
        Get debug string.

1083
        Args:
1084 1085
            throw_on_error(bool): Whether to raise exception if self is not
                initialized.
1086

1087 1088
        Returns:
            str: The debug string.
1089 1090

        """
1091
        protostr = self.desc.serialize_to_string()
1092
        proto = framework_pb2.OpDesc.FromString(six.binary_type(protostr))
Y
Yang Yang(Tony) 已提交
1093 1094 1095 1096
        return _debug_string_(proto, throw_on_error)

    def __str__(self):
        return self.to_string(True)
1097 1098 1099

    __repr__ = __str__

F
fengjiayi 已提交
1100 1101
    @property
    def type(self):
L
lujun 已提交
1102
        if in_dygraph_mode():
1103 1104 1105
            return self.iop.type
        else:
            return self.desc.type()
F
fengjiayi 已提交
1106 1107

    def input(self, name):
1108
        """
1109
        Get the input arguments according to the input parameter name.
1110

1111 1112
        Args:
            name(str): The input parameter name.
1113

1114 1115 1116
        Returns:
            list: return the list of argument names that associated with \
                the specific parameter name.
1117
        """
F
fengjiayi 已提交
1118 1119
        return self.desc.input(name)

W
Wu Yi 已提交
1120
    def _rename_input(self, old_name, new_name):
1121 1122 1123 1124 1125 1126 1127 1128 1129 1130
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's input.
            new_name(str): The new name of the Operator's input.

        Returns:
            None
        """
W
Wu Yi 已提交
1131
        self.desc._rename_input(old_name, new_name)
T
typhoonzero 已提交
1132

W
Wu Yi 已提交
1133
    def _rename_output(self, old_name, new_name):
1134 1135 1136 1137 1138 1139 1140 1141 1142 1143
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's output.
            new_name(str): The new name of the Operator's output.

        Returns:
            None
        """
W
Wu Yi 已提交
1144
        self.desc._rename_output(old_name, new_name)
T
typhoonzero 已提交
1145

F
fengjiayi 已提交
1146 1147 1148 1149
    @property
    def input_names(self):
        return self.desc.input_names()

T
typhoonzero 已提交
1150 1151 1152 1153 1154 1155 1156 1157
    @property
    def input_arg_names(self):
        return self.desc.input_arg_names()

    @property
    def output_arg_names(self):
        return self.desc.output_arg_names()

F
fengjiayi 已提交
1158
    def output(self, name):
1159
        """
1160
        Get output arguments by the output parameter name.
1161

1162 1163
        Args:
            name(str): The output parameter name.
1164

1165 1166 1167
        Returns:
            list: return the list of argument names associated with \
                the specific parameter name.
1168
        """
F
fengjiayi 已提交
1169 1170 1171 1172 1173 1174
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

1175 1176 1177 1178 1179 1180 1181 1182
    @property
    def idx(self):
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
            "Can't find op itself in it's block. It could be a bug of Paddle.")

F
fengjiayi 已提交
1183
    def has_attr(self, name):
1184
        """
1185 1186
        Whether this Operator has the attribute with name or not.

1187
        Args:
1188
            name(str): the attribute name.
1189

1190 1191
        Returns:
            bool: True if has this attribute.
1192 1193

        """
F
fengjiayi 已提交
1194 1195 1196
        return self.desc.has_attr(name)

    def attr_type(self, name):
1197
        """
1198
        Get the type of attribute by attribute's name.
1199

1200 1201
        Args:
            name(str): the attribute name.
1202

1203 1204
        Returns:
            core.AttrType: the attribute type.
1205
        """
F
fengjiayi 已提交
1206 1207
        return self.desc.attr_type(name)

W
Wu Yi 已提交
1208
    def _set_attr(self, name, val):
1209 1210 1211 1212 1213 1214 1215 1216 1217 1218
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
G
gongweibao 已提交
1219 1220
        self._update_desc_attr(name, val)

1221 1222 1223
    def _remove_attr(self, name):
        self.desc.remove_attr(name)

G
gongweibao 已提交
1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234
    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
Q
Qiyang Min 已提交
1235 1236
        if isinstance(val, Block):
            self.desc.set_block_attr(name, val.desc)
Y
Yancey1989 已提交
1237 1238
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
1239
            self.desc.set_blocks_attr(name, [v.desc for v in val])
Q
Qiyang Min 已提交
1240 1241 1242 1243
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            self.desc.set_serialized_attr(name, val.serialize_to_string())
        else:
W
Wu Yi 已提交
1244
            self.desc._set_attr(name, val)
Y
yuyang18 已提交
1245

F
fengjiayi 已提交
1246 1247 1248 1249 1250
    @property
    def attr_names(self):
        return self.desc.attr_names()

    def attr(self, name):
1251
        """
1252 1253
        Get the attribute by name.

1254
        Args:
1255
            name(str): the attribute name.
1256

1257 1258
        Returns:
            bool|int|str|float|list: The attribute value. The return value
1259 1260
            can be any valid attribute type.
        """
F
fengjiayi 已提交
1261
        return self.desc.attr(name)
Y
Yu Yang 已提交
1262

W
Wu Yi 已提交
1263
    def _block_attr_id(self, name):
1264
        """
G
gongweibao 已提交
1265
        Get the block attribute's id by name.
1266

1267 1268
        Args:
            name(str): the attribute name.
1269

1270 1271
        Returns:
            int: the block index.
1272
        """
W
Wu Yi 已提交
1273
        return self.desc._block_attr_id(name)
G
gongweibao 已提交
1274

W
Wu Yi 已提交
1275
    def _block_attr(self, name):
G
gongweibao 已提交
1276 1277 1278 1279 1280 1281 1282 1283 1284 1285
        """
        Get the block attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            block: the block attribute.
        """

W
Wu Yi 已提交
1286
        id = self._block_attr_id(name)
G
gongweibao 已提交
1287 1288 1289
        assert (id >= 0 and id < len(self.block.program.blocks))
        return self.block.program.blocks[id]

W
Wu Yi 已提交
1290
    def _blocks_attr(self, name):
G
gongweibao 已提交
1291 1292 1293 1294 1295 1296 1297 1298 1299 1300
        """
        Get the blocks attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks attribute.
        """
        attrs = []
W
Wu Yi 已提交
1301
        for i in self._blocks_attr_ids(name):
G
gongweibao 已提交
1302 1303 1304 1305 1306
            assert (i >= 0 and i < len(self.block.program.blocks))
            attrs.append(self.block.program.blocks[i])

        return attrs

W
Wu Yi 已提交
1307
    def _blocks_attr_ids(self, name):
G
gongweibao 已提交
1308 1309 1310 1311 1312 1313 1314 1315 1316 1317
        """
        Get the blocks attribute's ids by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks ids.
        """

W
Wu Yi 已提交
1318
        return self.desc._blocks_attr_ids(name)
Y
Yu Yang 已提交
1319

J
JiayiFeng 已提交
1320
    def all_attrs(self):
F
fengjiayi 已提交
1321
        """
1322 1323 1324
        Get the attribute dict.

        Returns:
G
gongweibao 已提交
1325
            dict: The Operator's attribute dict, name->attr.
F
fengjiayi 已提交
1326 1327 1328 1329
        """
        attr_names = self.attr_names
        attr_map = {}
        for n in attr_names:
G
gongweibao 已提交
1330 1331
            attr_type = self.desc.attr_type(n)
            if attr_type == core.AttrType.BLOCK:
W
Wu Yi 已提交
1332
                attr_map[n] = self._block_attr(n)
G
gongweibao 已提交
1333 1334 1335
                continue

            if attr_type == core.AttrType.BLOCKS:
W
Wu Yi 已提交
1336
                attr_map[n] = self._blocks_attr(n)
G
gongweibao 已提交
1337 1338 1339 1340
                continue

            attr_map[n] = self.attr(n)

F
fengjiayi 已提交
1341 1342
        return attr_map

Y
Yu Yang 已提交
1343

Y
Yu Yang 已提交
1344
class Block(object):
1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358
    """
    In Fluid, a Program is consistence of multi-Block, and Block stores
    VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name.
    One block could have some child blocks, and child block's name scopes
    should inherit the parent's so that OpDesc in child block can reference
    a VarDesc that is stored in the parent block.
    Please reference the framework.proto for details.

    Args:
        program(Program): The Program that the Block belongs to.
        idx(int): The block's id in the Program.

    Notes:
        The constructor of Block should not be invoked directly. Please
W
Wu Yi 已提交
1359
        use `Program._create_block()` to create a block.
1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
    """

Y
Yu Yang 已提交
1374
    def __init__(self, program, idx):
Y
Yu Yang 已提交
1375
        self.desc = program.desc.block(idx)
1376
        self.vars = collections.OrderedDict()  # var_name --> var
Q
qiaolongfei 已提交
1377
        self.ops = list()  # operator list
Y
Yu Yang 已提交
1378
        self.program = program
1379
        self.removed_vars = collections.OrderedDict()
Y
Yu Yang 已提交
1380

1381
    def __str__(self):
Y
Yang Yang(Tony) 已提交
1382 1383
        return self.to_string(True)

F
fengjiayi 已提交
1384 1385
    def to_string(self, throw_on_error, with_details=False):
        """
1386 1387
        Get debug string.

F
fengjiayi 已提交
1388 1389
        Args:
            throw_on_error(bool): raise exception when self is not initialized
1390
                when throw_on_error is True.
F
update  
fengjiayi 已提交
1391
            with_details(bool): more details about variables and parameters
1392 1393
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False.
F
fengjiayi 已提交
1394

1395 1396
        Returns:
            str: The debug string.
F
fengjiayi 已提交
1397 1398 1399 1400
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
F
fengjiayi 已提交
1401
            re_add_indent = re.compile(r"\n(.)")
F
fengjiayi 已提交
1402 1403
            res_str = "blocks {\n  idx: %d\n  parent_idx: %d" % (
                self.idx, self.parent_idx)
1404
            for var in list(self.vars.values()):
F
fengjiayi 已提交
1405
                res_str += "\n  vars {\n    %s  }" % re_add_indent.sub(
F
update  
fengjiayi 已提交
1406
                    r"\n    \1", var.to_string(throw_on_error, with_details))
F
fengjiayi 已提交
1407
            for op in self.ops:
F
fengjiayi 已提交
1408 1409
                res_str += "\n  ops {\n    %s  }" % re_add_indent.sub(
                    r"\n    \1", op.to_string(throw_on_error))
F
fengjiayi 已提交
1410 1411 1412
            res_str += "\n}"
        else:
            protostr = self.desc.serialize_to_string()
1413 1414
            proto = framework_pb2.BlockDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
1415 1416
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
1417 1418 1419

    __repr__ = __str__

Y
Yu Yang 已提交
1420 1421
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
1422
        return self.desc.parent
Y
Yu Yang 已提交
1423

Y
Yu Yang 已提交
1424 1425 1426 1427
    @property
    def forward_block_idx(self):
        return self.desc.get_forward_block_idx()

W
Wu Yi 已提交
1428
    def _set_forward_block_idx(self, idx):
1429 1430 1431 1432 1433 1434 1435 1436 1437
        """
        Set the forward block Idx.

        Args:
            idx(int): the block index.

        Returns:
            None
        """
W
Wu Yi 已提交
1438
        self.desc._set_forward_block_idx(idx)
Y
Yu Yang 已提交
1439

Y
Yu Yang 已提交
1440 1441
    @property
    def idx(self):
Y
Yu Yang 已提交
1442
        return self.desc.id
Y
Yu Yang 已提交
1443

Q
Qiao Longfei 已提交
1444
    def var(self, name):
1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457
        """
        Get a Variable by name from this block.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: The If input's type is not str, or this block
                doesn't have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
1458
        if not isinstance(name, six.string_types):
M
minqiyang 已提交
1459 1460 1461
            raise TypeError(
                "var require string as parameter, but get %s instead." %
                (type(name)))
Y
Yu Yang 已提交
1462 1463
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
1464
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
1465
        return v
Q
Qiao Longfei 已提交
1466

X
Xin Pan 已提交
1467
    def _find_var_recursive(self, name):
1468 1469 1470 1471 1472 1473 1474
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Returns:
X
Xin Pan 已提交
1475
            Variable: the Variable with the giving name. Or None if not found.
1476
        """
Y
Yu Yang 已提交
1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500
        frontier = list()
        visited = set()

        frontier.append(self)

        prog = self.program

        while len(frontier) != 0:  # BFS
            cur = frontier[0]
            frontier = frontier[1:]

            if id(cur) in visited:
                continue

            if cur.has_var(name):
                return cur.var(name)

            if cur.parent_idx != -1:
                frontier.append(prog.block(cur.parent_idx))

            if cur.forward_block_idx != -1:
                frontier.append(prog.block(cur.forward_block_idx))

            visited.add(id(cur))
X
Xin Pan 已提交
1501
        return None
Y
Yu Yang 已提交
1502

X
Xin Pan 已提交
1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521
    def _var_recursive(self, name):
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: this block and this parent block doesn't
                have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
        var = self._find_var_recursive(name)
        if var:
            return var
        else:
            raise ValueError("Var {0} is not found recursively".format(name))
F
fengjiayi 已提交
1522

Q
Qiao Longfei 已提交
1523
    def all_parameters(self):
1524
        return list(self.iter_parameters())
1525

1526
    def iter_parameters(self):
M
minqiyang 已提交
1527
        return (item[1] for item in six.iteritems(self.vars)
1528
                if isinstance(item[1], Parameter))
Q
Qiao Longfei 已提交
1529

Y
Yu Yang 已提交
1530
    def create_var(self, *args, **kwargs):
1531
        var = Variable(block=self, *args, **kwargs)
1532 1533
        if 'initializer' in kwargs:
            kwargs['initializer'](var, self)
Q
Qiao Longfei 已提交
1534
        return var
Y
Yu Yang 已提交
1535

Q
Qiao Longfei 已提交
1536 1537 1538
    def has_var(self, name):
        return name in self.vars

W
Wu Yi 已提交
1539
    def _rename_var(self, name, new_name):
T
typhoonzero 已提交
1540 1541
        """
        Rename variable in vars and ops' inputs and outputs
1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553

        Args:
            name(str): the name that need to be renamed.
            new_name(str): the name that need to rename to.

        Raises:
            ValueError: If this block doesn't have this the giving name,
                or the type of the var with the giving name is not Parameter
                or Variable.

        Returns:
            Variable: the Variable with the giving name.
T
typhoonzero 已提交
1554
        """
M
minqiyang 已提交
1555 1556
        name = cpt.to_text(name)
        new_name = cpt.to_text(new_name)
M
minqiyang 已提交
1557

T
typhoonzero 已提交
1558
        if not self.has_var(name):
1559
            raise ValueError("var %s is not in current block" % name)
T
wip  
typhoonzero 已提交
1560 1561
        v = self.var(name)
        if type(v) == Parameter:
T
typhoonzero 已提交
1562
            var_type = "Parameter"
T
wip  
typhoonzero 已提交
1563 1564 1565 1566 1567 1568 1569
            stop_gradient = v.stop_gradient
            trainable = v.trainable
            optimize_attr = v.optimize_attr
            regularizer = v.regularizer
            gradient_clip_attr = v.gradient_clip_attr
            error_clip = v.error_clip
        elif type(v) == Variable:
T
typhoonzero 已提交
1570
            var_type = "Variable"
T
wip  
typhoonzero 已提交
1571 1572 1573 1574
            error_clip = v.error_clip
            stop_gradient = v.stop_gradient
        else:
            raise ValueError("unsupported var type: %s", type(v))
T
typhoonzero 已提交
1575
        orig_var_type = v.type
M
minqiyang 已提交
1576
        self.desc._rename_var(cpt.to_bytes(name), cpt.to_bytes(new_name))
W
Wu Yi 已提交
1577
        # NOTE: v is destroyed by C++ after calling _rename_var.
M
minqiyang 已提交
1578
        d = self.desc.find_var(cpt.to_bytes(new_name))
T
typhoonzero 已提交
1579
        if var_type == "Parameter":
T
wip  
typhoonzero 已提交
1580 1581 1582 1583
            var = Parameter(
                self,
                d.shape(),
                d.dtype(),
T
typhoonzero 已提交
1584
                type=orig_var_type,
T
wip  
typhoonzero 已提交
1585 1586 1587 1588 1589 1590 1591
                name=new_name,
                stop_gradient=stop_gradient,
                trainable=trainable,
                optimize_attr=optimize_attr,
                regularizer=regularizer,
                gradient_clip_attr=gradient_clip_attr,
                error_clip=error_clip)
T
typhoonzero 已提交
1592
        elif var_type == "Variable":
T
wip  
typhoonzero 已提交
1593 1594
            var = Variable(
                self,
T
typhoonzero 已提交
1595
                type=orig_var_type,
T
wip  
typhoonzero 已提交
1596 1597 1598 1599
                name=new_name,
                error_clip=error_clip,
                stop_gradient=stop_gradient)

W
Wu Yi 已提交
1600
        # rename the python side, _sync_with_cpp will only add
T
wip  
typhoonzero 已提交
1601 1602 1603
        # new vars/ops to python side.
        self.vars[new_name] = var
        del self.vars[name]
W
Wu Yi 已提交
1604
        self._sync_with_cpp()
1605
        return var
T
typhoonzero 已提交
1606

W
Wu Yi 已提交
1607 1608
    def _remove_var(self, name):
        self._sync_with_cpp()
M
minqiyang 已提交
1609
        self.desc._remove_var(cpt.to_bytes(name))
1610 1611
        del self.vars[name]

Y
Yu Yang 已提交
1612 1613
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
Q
Qiao Longfei 已提交
1614
        param = Parameter(global_block, *args, **kwargs)
1615
        if 'initializer' in kwargs:
1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635

            def _is_inited_by(block, var):
                init_ops = []
                for op in block.ops:
                    if var.name in op.output_arg_names:
                        init_ops.append(op)
                return init_ops

            initializer = kwargs['initializer']
            init_ops = _is_inited_by(global_block, param)
            init_ops_len = len(init_ops)
            if init_ops_len > 1:
                raise RuntimeError("param " + param.name +
                                   " is inited by multiple init ops " + str(
                                       init_ops))
            elif init_ops_len == 1:
                #TODO already inited, do nothing, should log a warning
                pass
            else:
                initializer(param, self)
Q
Qiao Longfei 已提交
1636
        return param
Y
Yu Yang 已提交
1637

Y
Yu Yang 已提交
1638
    def append_op(self, *args, **kwargs):
1639 1640 1641 1642 1643 1644
        """
        Appends a new Operator according to the giving arguments.

        Returns:
            Operator: the append Operator.
        """
L
lujun 已提交
1645
        if in_dygraph_mode():
1646 1647 1648 1649 1650 1651 1652 1653
            op = Operator(
                block=self,
                desc=None,
                type=kwargs.get("type", None),
                inputs=kwargs.get("inputs", None),
                outputs=kwargs.get("outputs", None),
                attrs=kwargs.get("attrs", None))

M
minqiyang 已提交
1654 1655 1656
            # record ops in tracer rather than blocks
            #
            # TODO(minqiyang): add op stop_gradient support in static mode too.
L
lujun 已提交
1657 1658
            # currently, we only support stop_gradient in dygraph mode.
            _dygraph_tracer().trace_op(op, kwargs.get("stop_gradient", False))
M
minqiyang 已提交
1659
        else:
1660 1661 1662 1663 1664 1665 1666 1667 1668
            op_desc = self.desc.append_op()
            op = Operator(
                block=self,
                desc=op_desc,
                type=kwargs.get("type", None),
                inputs=kwargs.get("inputs", None),
                outputs=kwargs.get("outputs", None),
                attrs=kwargs.get("attrs", None))

M
minqiyang 已提交
1669
            self.ops.append(op)
M
minqiyang 已提交
1670

1671 1672
        return op

W
Wu Yi 已提交
1673
    def _insert_op(self, index, *args, **kwargs):
1674 1675 1676 1677 1678 1679 1680 1681 1682
        """
        Insert a Operator according to the giving arguments.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
W
Wu Yi 已提交
1683 1684
        self._sync_with_cpp()
        op_desc = self.desc._insert_op(index)
Q
qiaolongfei 已提交
1685 1686 1687 1688
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

W
Wu Yi 已提交
1689
    def _remove_op(self, index):
1690 1691 1692 1693 1694 1695 1696 1697 1698
        """
        Remove the specific position operator.

        Args:
            index(int): the position that the operator to insert.

        Returns:
            None
        """
W
Wu Yi 已提交
1699 1700
        self._sync_with_cpp()
        self.desc._remove_op(index, index + 1)
1701 1702
        del self.ops[index]

W
Wu Yi 已提交
1703
    def _slice_ops(self, start, end):
1704 1705 1706 1707 1708 1709 1710 1711 1712 1713
        """
        Return the Operator between start and end.

        Args:
            start(int): the start position.
            end(int): the end position.

        Returns:
            list: the Operators between start and end.
        """
Q
qiaolongfei 已提交
1714
        return self.ops[start:end]
Y
Yancey1989 已提交
1715

W
Wu Yi 已提交
1716
    def _prepend_op(self, *args, **kwargs):
L
lujun 已提交
1717
        if in_dygraph_mode():
1718 1719 1720 1721 1722 1723 1724
            op = Operator(
                self,
                None,
                type=kwargs.get("type", None),
                inputs=kwargs.get("inputs", None),
                outputs=kwargs.get("outputs", None),
                attrs=kwargs.get("attrs", None))
L
lujun 已提交
1725
            _dygraph_tracer().trace_op(op, kwargs.get("stop_gradient", False))
M
minqiyang 已提交
1726
        else:
1727 1728 1729 1730 1731 1732 1733 1734
            op_desc = self.desc._prepend_op()
            op = Operator(
                self,
                op_desc,
                type=kwargs.get("type", None),
                inputs=kwargs.get("inputs", None),
                outputs=kwargs.get("outputs", None),
                attrs=kwargs.get("attrs", None))
M
minqiyang 已提交
1735
            self.ops.insert(0, op)
1736

Y
Yu Yang 已提交
1737 1738
        return op

W
Wu Yi 已提交
1739
    def _sync_with_cpp(self):
1740
        """
1741 1742
        Sync from the desc on the c++ end. This method is used to synchronize
        the c++ desc instance generated by backward.
1743
        """
Q
Qiao Longfei 已提交
1744 1745 1746 1747 1748
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
                self.create_var(name=var.name(), desc=var, type=var.type())

1749
        # sync variables removed from c++ end
1750
        for var in list(self.vars.keys()):
M
minqiyang 已提交
1751
            if not self.desc.find_var(cpt.to_bytes(var)):
1752 1753
                self.vars.pop(var)

Q
Qiao Longfei 已提交
1754
        # sync operators from cpp
1755 1756 1757 1758
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
1775 1776 1777 1778 1779

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
Q
qiaolongfei 已提交
1780
            self.ops.insert(0, op)
Q
Qiao Longfei 已提交
1781 1782 1783 1784 1785 1786 1787

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800
        # sync ops removed from c++ end
        if end_index != -1 and end_index < len(self.ops):
            ops_in_cpp_index = 0
            ops_in_python_index = 0
            while ops_in_python_index < len(
                    self.ops) and ops_in_cpp_index < len(ops_in_cpp):
                if self.ops[ops_in_python_index].desc != ops_in_cpp[
                        ops_in_cpp_index]:
                    del self.ops[ops_in_python_index]
                else:
                    ops_in_cpp_index += 1
                    ops_in_python_index += 1

Q
Qiao Longfei 已提交
1801 1802 1803 1804
        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

W
Wu Yi 已提交
1805
    def _copy_param_info_from(self, other):
1806
        """
1807 1808
        Copy the information of parameters from the other block.

1809
        Args:
1810 1811 1812 1813 1814
            other(Block): the other block.

        Raises:
            ValueError: If type of input is not Block, or the `other` and this
                block is not in the same topology.
1815 1816 1817 1818 1819

        Returns:
            None
        """
        if not isinstance(other, Block):
W
Wu Yi 已提交
1820 1821
            raise TypeError(
                "_copy_param_info_from should be invoked with Block")
1822
        for p in other.iter_parameters():
1823 1824 1825
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
W
Wu Yi 已提交
1826
                raise ValueError("_copy_param_info_from should be invoked with "
1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838
                                 "same topology")
            assert isinstance(v, Variable)
            new_p = Parameter(
                block=self,
                shape=v.shape,
                dtype=v.dtype,
                type=v.type,
                lod_level=v.lod_level,
                stop_gradient=p.stop_gradient,
                trainable=p.trainable,
                optimize_attr=p.optimize_attr,
                regularizer=p.regularizer,
F
fengjiayi 已提交
1839
                gradient_clip_attr=p.gradient_clip_attr,
F
fengjiayi 已提交
1840
                error_clip=p.error_clip,
1841 1842 1843
                name=v.name)
            self.vars[new_p.name] = new_p

1844
    def _clone_variable(self, var, force_persistable=True):
1845 1846
        """
        Clone a variable into current block.
1847

1848 1849
        Args:
            var: the variable to be cloned.
1850 1851 1852
            force_persistable(bool): True means setting the result variable to being persistable.
                                     False means setting the persistable the same with that of input var.
                                     default: True.
1853 1854

        Returns:
1855
            Variable: the new  variable cloned from 'var' in current block.
1856 1857
        """
        assert isinstance(var, Variable)
T
update  
typhoonzero 已提交
1858 1859 1860 1861 1862
        ret_var = None
        # make STEP_SCOPES var can be safely cloned.
        if var.type == core.VarDesc.VarType.STEP_SCOPES:
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type)
T
tangwei12 已提交
1863 1864
        elif var.type == core.VarDesc.VarType.RAW:
            ret_var = self.create_var(
T
tangwei12 已提交
1865
                name=var.name, persistable=var.persistable, type=var.type)
T
typhoonzero 已提交
1866 1867 1868 1869 1870 1871
        elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
1872
                persistable=True if force_persistable else var.persistable,
F
fengjiayi 已提交
1873
                is_data=var.is_data)
T
update  
typhoonzero 已提交
1874 1875 1876 1877 1878 1879 1880
        else:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
1881
                persistable=True if force_persistable else var.persistable,
F
fengjiayi 已提交
1882
                is_data=var.is_data)
T
update  
typhoonzero 已提交
1883
        return ret_var
1884

Y
Yu Yang 已提交
1885

1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980
class IrNode(object):
    """
    Python IrNode. Beneath it is a core.Node, which is used for Ir Pass.
    """

    def __init__(self, node):
        """
        Construct an IrNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node,
                          core.Node), 'node must be the instance of core.Node.'
        self.node = node

    def name(self):
        """
        Return the node name.

        Returns:
            str: node name.
        """
        return self.node.name()

    def node_type(self):
        """
        Return the node type.

        Returns:
            core.Node.Type: node type(core.Node.Type.Operation or core.Node.Type.Variable).
        """
        return self.node.node_type()

    def var(self):
        """
        Return the node variable description.

        Returns:
            core.VarDesc: node variable description.
        """
        return self.node.var()

    def op(self):
        """
        Return the node operator description.

        Returns:
            core.OpDesc: node operator description.
        """
        return self.node.op()

    def id(self):
        """
        Return the node id.

        Returns:
            int: node id.
        """
        return self.node.id()

    def is_op(self):
        """
        If the node is an operator, then return true.

        Returns:
            bool: indicate whether the node is an operator.
        """
        return self.node.is_op()

    def is_var(self):
        """
        If the node is a variable, then return true.

        Returns:
            bool: indicate whether the node is a variable.
        """
        return self.node.is_var()

    def is_ctrl_var(self):
        """
        If the node is a control dependence variable, then return true.

        Returns:
            bool: indicate whether the node is a control dependence variable.
        """
        return self.node.is_ctrl_var()

    def clear_inputs(self):
        """
        Clear the node inputs. After executing the `clear_inputs` function,
        the node inputs will be empty.
        """
        self.node.clear_inputs()

1981
    def remove_input_by_id(self, node_id):
1982 1983 1984 1985 1986 1987
        """
        Remove a node from inputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
1988
        self.node.remove_input(node_id)
1989

1990
    def remove_input(self, node):
1991 1992 1993 1994
        """
        Remove a node from inputs.

        Args:
1995
            node(IrNode): the node being removed.
1996
        """
1997
        self.node.remove_input(node.node)
1998

1999
    def append_input(self, node):
2000 2001 2002 2003
        """
        Append a node in inputs.

        Args:
2004
            node(IrNode): the node being appended.
2005
        """
2006
        self.node.append_input(node.node)
2007 2008 2009 2010 2011 2012 2013 2014

    def clear_outputs(self):
        """
        Clear the node outputs. After executing the `clear_outputs` function,
        the node outputs will be empty.
        """
        self.node.clear_outputs()

2015
    def remove_output_by_id(self, node_id):
2016 2017 2018 2019 2020 2021
        """
        Remove a node from outputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
2022
        self.node.remove_output(node_id)
2023

2024
    def remove_output(self, node):
2025 2026 2027 2028
        """
        Remove a node from outputs.

        Args:
2029
            node(IrNode): the node being removed.
2030
        """
2031
        self.node.remove_output(node.node)
2032

2033
    def append_output(self, node):
2034 2035 2036 2037
        """
        Append a node in outputs.

        Args:
2038
            node(IrNode): the node being appended.
2039
        """
2040
        self.node.append_output(node.node)
2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101

    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrNode): node inputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrNode): node outputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.outputs]


class IrVarNode(IrNode):
    """
    Python IrVarNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrVarNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_var(), \
            'node must be the instance of core.Node and it must be a variable node.'
        super(IrVarNode, self).__init__(node)
        self.node = node

    def set_shape(self, shape):
        """
        Set the node variable shape.

        Args:
            shape(list): shape to be set.
        """
        assert self.node.var() is not None, \
            "The node variable description cannot be None."
        self.node.var().set_shape(shape)

    def persistable(self):
        """
        If the variable node is a persistable variable, then return true.

        Returns:
            bool: indicate whether the variable is persistable.
        """
        assert self.node.var() is not None, \
            "The node variable description cannot be None."
        return self.node.var().persistable()

2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134
    def type(self):
        """
        Return the variable type.

        Returns:
            core.VarDesc.VarType: the variable type.
        """
        assert self.node.var() is not None, \
            "The node variable description cannot be None."
        return self.node.var().type()

    def dtype(self):
        """
        Return the variable data type.

        Returns:
            core.VarDesc.VarType: the variable data type.
        """
        assert self.node.var() is not None, \
            "The node variable description cannot be None."
        return self.node.var().dtype()

    def shape(self):
        """
        Return the variable shape.

        Returns:
            list: the variable shape.
        """
        assert self.node.var() is not None, \
            "The node variable description cannot be None."
        return self.node.var().shape()

2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrOpNode): node inputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrOpNode): node outputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.outputs]


class IrOpNode(IrNode):
    """
    Python IrOpNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrOpNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_op(), \
            'node must be the instance of core.Node and it must be a operator node.'
        super(IrOpNode, self).__init__(node)
        self.node = node

    def rename_input(self, old_input_name, new_input_name):
        """
        Rename the input of this node.

        Args:
            old_input_name(str): the old input name.
            new_input_name(str): the new input name.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        self.node.op()._rename_input(old_input_name, new_input_name)

2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223
    def input(self, name):
        """
        Get the argument name list by the parameter name for input.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        return self.node.op().input(name)

    def output(self, name):
        """
        Get the argument name list by the parameter name for output.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        return self.node.op().output(name)

    def set_type(self, new_type):
        """
        Change the operator type into new type.

        Args:
            new_type(str): new operator type to be set.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        return self.node.op().set_type(new_type)

2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251
    def set_attr(self, name, val):
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.
        """
        self._update_desc_attr(name, val)

    def _update_desc_attr(self, name, val):
        """
        Update the value of the op desc's attribute by attribute's name.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        desc = self.node.op()
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and \
            all(isinstance(v, Block) for v in val):
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
            isinstance(val, core.ProgramDesc):
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)

2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273
    def input_arg_names(self):
        """
        Return input arguments' names of this op node.

        Returns:
            list(str): input arguments' names of this op node.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        return self.node.op().input_arg_names()

    def output_arg_names(self):
        """
        Return output arguments' names of this op node.

        Returns:
            list(str): output arguments' names of this op node.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        return self.node.op().output_arg_names()

2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrVarNode): node inputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrVarNode): node outputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.outputs]


2295 2296
class IrGraph(object):
    """
2297
    Python IrGraph. Beneath it is a core.Graph, which is used for
2298
    creating a c++ Ir Pass Graph. An IrGraph is just a graph view of
2299 2300
    a Program. In an IrGraph, both Variables and Operators are graph
    nodes.
2301 2302 2303 2304
    """

    def __init__(self, graph, for_test=False):
        """
2305 2306
        Construct an IrGraph using core.Graph.

2307 2308 2309 2310 2311 2312 2313 2314 2315
        Args:
            graph(core.Graph): C++ Graph.
            for_test(bool): True for the test graph and false for the train graph.
        """
        assert isinstance(
            graph, core.Graph), 'graph must be the instance of core.Graph.'
        self.graph = graph
        self._for_test = for_test

2316 2317 2318 2319
    def clone(self):
        """
        Create a new and duplicated IrGraph.

2320 2321 2322
        Warns:
            The method only clones the graph structure, not its attributes.

2323 2324 2325
        Returns:
            IrGraph: A new and duplicated graph.
        """
2326
        g = self.graph.clone()
2327 2328
        return IrGraph(g, self._for_test)

2329
    def is_test(self):
2330 2331 2332
        """
        If the graph is used for testing, the function returns true. Otherwise, returns false.
        """
2333 2334
        return self._for_test

W
WangZhen 已提交
2335
    def all_nodes(self):
2336 2337 2338
        """
        Return all nodes included in the graph as a set.
        """
2339
        return {IrNode(node) for node in self.graph.nodes()}
2340

2341
    def all_var_nodes(self):
2342 2343 2344
        """
        Return all variable nodes included in the graph as a set.
        """
2345
        return {IrVarNode(node) for node in self.graph.nodes() if node.is_var()}
2346

2347
    def all_persistable_nodes(self):
2348 2349 2350
        """
        Return all persistable variable nodes included in the graph as a set.
        """
W
WangZhen 已提交
2351 2352 2353 2354 2355
        persistable_nodes = set()
        for node in self.graph.nodes():
            if node.is_var() and node.var() is not None and node.var(
            ).persistable():
                persistable_nodes.add(node)
2356
        return {IrVarNode(p) for p in persistable_nodes}
W
WangZhen 已提交
2357

2358
    def all_op_nodes(self):
2359 2360 2361
        """
        Return all operator nodes included in the graph as a set.
        """
2362
        return {IrOpNode(node) for node in self.graph.nodes() if node.is_op()}
2363

2364
    def create_persistable_node(self, name, var_type, shape, var_dtype):
2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375
        """
        Create a persistable variable node in the graph. In IrGraph,
        it can not distinguish between persistable variables and parameters.

        Args:
            name(str): the name of the persistable variable node.
            vart_type(core.VarDesc.VarType): the type of the persistable variable node.
            shape(list): the shape of the persistable variable node.
            var_dtype(core.VarDesc.VarType): the data type of the persistable variable node.

        Returns:
2376
            IrVarNode: the created persistable variable node.
2377
        """
2378 2379 2380 2381 2382
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
        var_desc.set_persistable(True)
2383
        return IrVarNode(self.graph.create_var_node(var_desc))
2384 2385

    def create_var_node(self, name, var_type, shape, var_dtype):
2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396
        """
        Create a variable node in the graph. The created variable node is
        not persistable.

        Args:
            name(str): the name of the variable node.
            vart_type(core.VarDesc.VarType): the type of the variable node.
            shape(list): the shape of the variable node.
            var_dtype(core.VarDesc.VarType): the data type of the variable node.

        Returns:
2397
            IrVarNode: the created variable node.
2398 2399
        """

2400 2401 2402 2403
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
2404
        return IrVarNode(self.graph.create_var_node(var_desc))
2405 2406

    def create_var_node_from_desc(self, var_desc):
2407 2408 2409 2410 2411 2412 2413 2414
        """
        Create a variable node by using an existing VarDesc in the graph.
        Depend on the giving VarDesc, the created variable node may be persistable.

        Args:
            var_desc(core.VarDesc): the giving variable description.

        Returns:
2415
            IrVarNode: the created variable node.
2416
        """
2417
        return IrVarNode(self.graph.create_var_node(var_desc))
2418 2419

    def create_op_node(self, op_type, attrs, inputs, outputs):
2420 2421 2422 2423 2424 2425 2426 2427 2428 2429
        """
        Create a operator node in the graph.

        Args:
            op_type(str): the type of the operator node.
            attrs(dict): the attributes of the operator node.
            inputs(dict): the inputs of the operator node.
            outputs(dict): the outpus of the operator node.

        Returns:
2430
            IrOpNode: the created operator node.
2431
        """
2432 2433
        op_desc = core.OpDesc()
        op_desc.set_type(op_type)
2434
        for attr, value in six.iteritems(attrs):
2435
            self._update_desc_attr(op_desc, attr, value)
2436
        for input_name, var_nodes in six.iteritems(inputs):
2437 2438 2439 2440
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_input(input_name,
                              [var_node.name() for var_node in var_nodes])
2441
        for output_name, var_nodes in six.iteritems(outputs):
2442 2443 2444 2445
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_output(output_name,
                               [var_node.name() for var_node in var_nodes])
2446
        return IrOpNode(self.graph.create_op_node(op_desc))
2447 2448

    def create_op_node_from_desc(self, op_desc):
2449 2450 2451 2452 2453 2454 2455
        """
        Create a operator node by using an existing OpDesc in the graph.

        Args:
            op_desc(core.VarDesc): the giving operator description.

        Returns:
2456
            IrOpNode: the created operator node.
2457
        """
2458
        return IrOpNode(self.graph.create_op_node(op_desc))
2459 2460

    def update_input_link(self, old_input_node, new_input_node, op_node):
2461 2462 2463 2464
        """
        Update the input's link of a operator node.

        Args:
2465 2466 2467
            old_input_node(IrNode): the old input node of the giving op_node.
            new_input_node(IrNode): the new input node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
2468
        """
2469 2470
        assert old_input_node.node in self.graph.nodes() and new_input_node.node in \
        self.graph.nodes() and op_node.node in self.graph.nodes(), \
W
WangZhen 已提交
2471
        'The three arguments(old_input_node&new_input_node&op_node) must be in the graph nodes.'
2472 2473 2474 2475
        old_input_node.remove_output(op_node)
        op_node.remove_input(old_input_node)
        new_input_node.append_output(op_node)
        op_node.append_input(new_input_node)
2476
        op_node.rename_input(old_input_node.name(), new_input_node.name())
2477 2478

    def link_to(self, node_in, node_out):
2479 2480 2481 2482
        """
        Connect two nodes.

        Args:
2483 2484
            node_in(IrNode): the input node.
            node_out(IrNode): the output node.
2485
        """
2486
        assert node_in.node in self.graph.nodes() and node_out.node in self.graph.nodes(), \
W
WangZhen 已提交
2487
            'The two arguments(node_in&node_out) must be in the graph nodes.'
2488 2489
        node_in.append_output(node_out)
        node_out.append_input(node_in)
2490 2491

    def safe_remove_nodes(self, remove_nodes):
2492 2493 2494 2495 2496 2497 2498
        """
        Remove nodes safely since links connected to these removed nodes are
        also removed.

        Args:
            remove_nodes(set): the nodes prepared to be removed.
        """
2499
        if not isinstance(remove_nodes, set):
W
WangZhen 已提交
2500 2501 2502 2503
            if isinstance(remove_nodes, Iterable):
                remove_nodes = set(remove_nodes)
            else:
                remove_nodes = {remove_nodes}
2504 2505
        original_nodes = {n.node for n in remove_nodes}
        core.graph_safe_remove_nodes(self.graph, original_nodes)
2506

Z
Zhen Wang 已提交
2507 2508 2509 2510 2511 2512 2513 2514
    def resolve_hazard(self):
        ordered_nodes = core.topology_sort(self.graph)
        var_nodes = dict()
        for node in ordered_nodes:
            if node.is_op() and node.op() is not None:
                for each_var_name in node.op().input_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
2515
                            self._find_node_by_name(node.inputs, each_var_name)
Z
Zhen Wang 已提交
2516 2517 2518 2519
                        ]
                for each_var_name in node.op().output_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
2520
                            self._find_node_by_name(node.outputs, each_var_name)
Z
Zhen Wang 已提交
2521 2522 2523
                        ]
                    else:
                        var_nodes[each_var_name].append(
2524 2525
                            self._find_node_by_name(node.outputs,
                                                    each_var_name))
Z
Zhen Wang 已提交
2526 2527
        self.graph.resolve_hazard(var_nodes)

W
WangZhen 已提交
2528
    def has_circle(self):
2529 2530 2531 2532 2533 2534
        """
        Check if the graph has a circle.

        Returns:
            bool: True if the graph has a circle else False.
        """
W
WangZhen 已提交
2535 2536 2537
        return core.has_circle(self.graph)

    def graph_num(self):
2538 2539 2540 2541 2542 2543
        """
        Count the number of unconnected graphs in this graph.

        Returns:
            int: the number of unconnected graphs.
        """
W
WangZhen 已提交
2544 2545 2546
        return core.graph_num(self.graph)

    def topology_sort(self):
2547 2548 2549 2550 2551 2552
        """
        Perform the topology sort operation on the graph.

        Notes: the `graph` cannot contain a circle.

        Returns:
Z
Zhen Wang 已提交
2553
            list(IrNode): nodes in topology order.
2554
        """
2555
        ordered_nodes = core.topology_sort(self.graph)
Z
Zhen Wang 已提交
2556
        return [IrNode(n) for n in ordered_nodes]
W
WangZhen 已提交
2557 2558

    def build_adjacency_list(self):
2559 2560 2561 2562
        """
        Build an adjacency list of operations for the `graph`.

        Returns:
2563
            dict{IrNode: set(IrNode)}: the adjacency list.
2564
        """
2565 2566 2567 2568 2569
        adj_list = core.build_adjacency_list(self.graph)
        wrapped_adj_list = dict()
        for k, v in six.iteritems(adj_list):
            wrapped_adj_list[IrNode(k)] = {IrNode(n) for n in v}
        return wrapped_adj_list
W
WangZhen 已提交
2570

2571 2572 2573 2574 2575 2576 2577 2578
    def draw(self, save_path, name, marked_nodes=None, remove_ctr_var=True):
        """
        Draw the graph. If `dot` command is installed, the drawn graph
        will be saved as pdf file type, otherwise dot file type is used.

        Args:
            save_path(str): the save path of drawn graph.
            name(str): the name of drawn graph.
2579
            marked_nodes(set(IrNode)): nodes that are needed to be marked.
2580 2581 2582 2583 2584
            Default value is None.
            remove_ctr_var(bool): If it is set True, all control variable nodes
            in the graph will be removed. Default value is True.
        """

2585 2586 2587 2588 2589 2590 2591 2592 2593
        def _convert_to_pdf(dot_file_path):
            pdf_save_path = os.path.splitext(dot_file_path)[0] + '.pdf'
            exited_code = subprocess.call('dot -Tpdf ' + dot_file_path \
                            + ' -o ' + pdf_save_path, shell=True)
            if exited_code != 0:
                print('The dot command is needed for creating pdf files.')
                print('The {} is saved as the dot filetype.'.format(
                    dot_file_path))

2594
        remove_ctr_vars = set()
2595
        if remove_ctr_var:
2596
            for node in self.all_var_nodes():
2597 2598 2599
                if node.is_ctrl_var():
                    remove_ctr_vars.add(node)
            self.safe_remove_nodes(remove_ctr_vars)
2600 2601
        print('Total ops num = {}.'.format(len(self.all_op_nodes())))

2602 2603
        if marked_nodes is not None:
            if not isinstance(marked_nodes, set):
2604 2605 2606 2607 2608 2609
                if isinstance(marked_nodes, Iterable):
                    marked_nodes = set(marked_nodes)
                else:
                    marked_nodes = {marked_nodes}
            marked_nodes = {n.node for n in marked_nodes}
            remove_ctr_vars = {n.node for n in remove_ctr_vars}
2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620
            marked_nodes = marked_nodes - remove_ctr_vars
            if self.graph.has('__graphviz__marked_node__'):
                self.graph.erase('__graphviz__marked_node__')
            self.graph.set('__graphviz__marked_node__', marked_nodes)
        viz_dot_path = os.path.join(save_path, name) + '.dot'
        viz_pass = core.get_pass('graph_viz_pass')
        viz_pass.set('graph_viz_path', viz_dot_path)
        viz_pass.apply(self.graph)
        _convert_to_pdf(viz_dot_path)

    def to_program(self):
2621 2622 2623
        """
        Convert the graph into a Program.

Z
Zhen Wang 已提交
2624
        WARN: When the graph includes backward operator nodes, the
2625 2626 2627 2628 2629 2630
        conversion process may be failed. Usually, this function is
        only used to convert a test graph.

        Returns:
            Program: a program converted from the graph.
        """
2631
        convert_pass = core.get_pass('graph_to_program_pass')
2632 2633
        desc = core.ProgramDesc()
        convert_pass.set_not_owned('program', desc)
2634 2635 2636 2637
        convert_pass.apply(self.graph)
        program = Program._construct_from_desc(desc)
        return program

2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648
    def _find_node_by_name(self, nodes, node_name):
        """
        Find a node in the giving nodes set by the name.
        """
        target_node = None
        for n in nodes:
            if n.name() == node_name:
                target_node = n
        assert target_node is not None, "Cannot find the target node in the giving set."
        return target_node

2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664
    def _update_desc_attr(self, desc, name, val):
        """
        Update the value of desc's attribute by attribute's name.
        """
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)


Y
Yu Yang 已提交
2665
class Program(object):
D
dzhwinter 已提交
2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676
    """
    Python Program. Beneath it is a ProgramDesc, which is used for
    create c++ Program. A program is a self-contained programing
    language like container. It has at least one Block, when the
    control flow op like conditional_block, while_op is included,
    it will contains nested block.
    Please reference the framework.proto for details.

    Notes: we have default_startup_program and default_main_program
    by default, a pair of them will shared the parameters.
    The default_startup_program only run once to initialize parameters,
Y
yuyang18 已提交
2677
    default_main_program run in every mini batch and adjust the weights.
D
dzhwinter 已提交
2678 2679

    Returns:
Y
yuyang18 已提交
2680
        A empty program.
D
dzhwinter 已提交
2681 2682

    Examples:
Y
yuyang18 已提交
2683 2684 2685 2686 2687 2688
        >>> main_program = fluid.Program()
        >>> startup_program = fluid.Program()
        >>> with fluid.program_guard(main_program=main_program, startup_program=startup_program):
        >>>     fluid.layers.data(name="x", shape=[-1, 784], dtype='float32')
        >>>     fluid.layers.data(name="y", shape=[-1, 1], dtype='int32')
        >>>     fluid.layers.fc(name="fc", shape=[10], dtype='float32', act="relu")
D
dzhwinter 已提交
2689 2690 2691

    """

2692 2693
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
2694 2695
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
D
dzhwinter 已提交
2696
        self._seed = 0
Y
yuyang18 已提交
2697
        self._current_role = core.op_proto_and_checker_maker.OpRole.Forward
Y
yuyang18 已提交
2698
        self._op_role_var = []
T
tangwei12 已提交
2699

2700 2701
        # for distribute training
        # _is_distributed = True if under distributed training
T
tangwei12 已提交
2702
        self._is_distributed = False
2703
        # _is_chief = True if the trainer is the first one, usually No.0
T
tangwei12 已提交
2704
        self._is_chief = False
2705 2706 2707
        # _parameters_on_pservers records all the parameters distributed on parameter servers.
        self._parameters_on_pservers = None
        # _endpoints is a list about parameter servers ip:port, such as ["ip:port","ip:port"]
T
tangwei12 已提交
2708
        self._endpoints = []
2709 2710 2711
        # if current role is parameter server, the _ps_endpoint is its "ip:port"
        self._ps_endpoint = None
        # trainers_endpoints, it is used for distribution.
2712
        self._trainers_endpoints = []
2713
        # the distributed lookup table names
T
tangwei12 已提交
2714
        self._distributed_lookup_table = None
2715 2716 2717 2718

        # use Deep gradient comrepssion or not
        self._enable_dgc = False

D
dzhwinter 已提交
2719
        # @deprecated(the python memory optimize transpiler is deprecated)
D
dzhwinter 已提交
2720
        # whether the program is optimized by memory_optimize_transpiler
D
dzhwinter 已提交
2721
        self.__is_mem_optimized = False
D
dzhwinter 已提交
2722

2723 2724 2725
        # if this program has been optimized by distributed optimizer
        # fleet_opt will be given a value
        self._fleet_opt = None
D
dongdaxiang 已提交
2726
        self._program_config = None
2727

D
dzhwinter 已提交
2728
    @property
D
dzhwinter 已提交
2729
    def _is_mem_optimized(self):
D
dzhwinter 已提交
2730 2731
        # if the program is optimized, operator input/outputs
        # maybe same, which conflict with save_inference_model.
D
dzhwinter 已提交
2732
        return self.__is_mem_optimized
D
dzhwinter 已提交
2733

D
dzhwinter 已提交
2734 2735 2736
    @_is_mem_optimized.setter
    def _is_mem_optimized(self, target):
        self.__is_mem_optimized = target
Y
yuyang18 已提交
2737 2738 2739

    @property
    def op_role(self):
Y
yuyang18 已提交
2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752
        """
        The operator role. In a enum {Forward, Backward, Optimize}.

        Notes: this is a low level API. It is used only for ParallelExecutor to
        duplicate or schedule operator to devices.

        For example, the forward operator should be executed on every device.
        The backward operator should be executed on every device and the
        parameter gradient of backward (use :code:`op_role_var` to get this
        variable) operator should be merged to one device. The optimization
        operators should be executed on only one device and broadcast the
        optimization result, i.e., the new parameter, to every other device.
        """
Y
yuyang18 已提交
2753 2754 2755
        return self._current_role

    @op_role.setter
D
dzhwinter 已提交
2756
    def op_role(self, role):
Y
yuyang18 已提交
2757 2758 2759 2760
        self._current_role = role

    @property
    def op_role_var(self):
Y
yuyang18 已提交
2761 2762 2763 2764 2765 2766 2767
        """
        The auxiliary variables for :code:`op_role` property.

        See Also: :code:`Program.op_role`'s documentation for details.

        Notes: This is a very low-level API. Users should not use it directly.
        """
Y
yuyang18 已提交
2768 2769 2770 2771
        return self._op_role_var

    @op_role_var.setter
    def set_op_role_var(self, var_name):
Y
yuyang18 已提交
2772
        self._op_role_var = [var_name]
Y
yuyang18 已提交
2773

2774 2775 2776 2777 2778 2779 2780 2781 2782
    @contextlib.contextmanager
    def _backward_role_guard(self):
        tmp_role = self._current_role

        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Backward
        yield
        self._current_role = tmp_role

S
rename  
sneaxiy 已提交
2783
    @signature_safe_contextmanager
W
Wu Yi 已提交
2784
    def _optimized_guard(self, param_and_grads):
Y
yuyang18 已提交
2785 2786 2787 2788 2789 2790 2791
        """
        A with guard to set :code:`Optimization` :code:`OpRole` and
        :code:`OpRoleVar` automatically.

        Notes: This is a very low level API. Users should not use it directly.

        Args:
2792
            param_and_grads(list): The variables (names) to be optimized.
Y
yuyang18 已提交
2793 2794 2795 2796

        Examples:

            >>> p, g = backward(...)
W
Wu Yi 已提交
2797
            >>> with program._optimized_guard([p,g]):
Y
yuyang18 已提交
2798 2799
            >>>     p = p - 0.001 * g
        """
X
Xin Pan 已提交
2800 2801 2802
        tmp_role = self._current_role
        tmp_var = self._op_role_var

Y
yuyang18 已提交
2803 2804
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Optimize
2805 2806 2807 2808
        self._op_role_var = [
            var.name if isinstance(var, Variable) else var
            for var in param_and_grads
        ]
Y
yuyang18 已提交
2809
        yield
X
Xin Pan 已提交
2810 2811
        self._op_role_var = tmp_var
        self._current_role = tmp_role
Y
Yu Yang 已提交
2812

S
rename  
sneaxiy 已提交
2813
    @signature_safe_contextmanager
X
Xin Pan 已提交
2814
    def _lr_schedule_guard(self, is_with_opt=False):
2815 2816 2817 2818 2819 2820 2821
        """
        A with guard to set :code:`LRSched` :code:`OpRole` and
        :code:`OpRoleVar` automatically. The :code:`OpRoleVar` is
        set to the target learning rate.

        Notes: This is a very low level API. Users should not use it directly.

X
Xin Pan 已提交
2822 2823 2824 2825
        Args:
            is_with_opt: Only set to true if these ops a in the middle
                 of a bunch of optimize ops so that it can be treated
                 correctly. For example, sgd->lr_op->sgd->lr_op->sgd.
2826 2827 2828 2829 2830 2831 2832

        Examples:

            >>> p, g = backward(...)
            >>> with program.lr_schedule_guard():
            >>>     lr = lr * decay
        """
2833 2834 2835 2836

        tmp_role = self._current_role
        tmp_var = self._op_role_var

2837 2838
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.LRSched
X
Xin Pan 已提交
2839 2840
        if is_with_opt:
            self._current_role = int(OpRole.LRSched) | int(OpRole.Optimize)
2841 2842 2843
        # TODO(typhoonzero): how to set target learning rate var
        self._op_role_var = []
        yield
2844 2845
        self._op_role_var = tmp_var
        self._current_role = tmp_role
2846

2847
    def __str__(self):
Y
yuyang18 已提交
2848 2849 2850 2851 2852 2853 2854 2855 2856
        """
        Get the protobuf debug string of this Program.

        Returns:
            (str): The protobuf debug string.

        Raises:
            ValueError: If any of required fields is not set.
        """
Y
Yang Yang(Tony) 已提交
2857 2858
        return self.to_string(True)

F
fengjiayi 已提交
2859 2860 2861
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
Y
yuyang18 已提交
2862

F
fengjiayi 已提交
2863
        Args:
Y
yuyang18 已提交
2864 2865
            throw_on_error(bool): raise Value error when any of required fields
                is not set.
F
fengjiayi 已提交
2866

Y
yuyang18 已提交
2867 2868 2869 2870
            with_details(bool): True if more details about variables and
                parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need
                to print.

H
haowang101779990 已提交
2871 2872
        Returns:
            str : The debug string.
Y
yuyang18 已提交
2873 2874 2875 2876

        Raises:
            ValueError: If any of required fields is not set and throw_on_error is
                True.
F
fengjiayi 已提交
2877 2878 2879 2880 2881 2882 2883 2884 2885 2886

        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = ""
            for block in self.blocks:
                res_str += block.to_string(throw_on_error, with_details)
        else:
            protostr = self.desc.serialize_to_string()
2887 2888
            proto = framework_pb2.ProgramDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
2889 2890
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
2891

W
Wu Yi 已提交
2892
    def _get_desc(self):
Y
yuyang18 已提交
2893 2894 2895 2896 2897 2898 2899
        """
        Get the C++ side of `ProgramDesc` object pointer. The C++ object is
        exposed by :code:`pybind`.

        Notes: This is a very low level API. Users should not use this API
        directly.
        """
2900 2901
        return self.desc

X
version  
Xin Pan 已提交
2902 2903 2904
    def _version(self):
        return self.desc._version()

2905
    def clone(self, for_test=False):
Y
yuyang18 已提交
2906 2907 2908
        """
        Create a new, duplicated program.

2909

Y
yuyang18 已提交
2910 2911 2912 2913
        Some operators, e.g., :code:`batch_norm`, behave differently between
        training and testing. They have an attribute, :code:`is_test`, to
        control this behaviour. This method will change the :code:`is_test`
        attribute of them to :code:`True` when :code:`for_test=True`.
2914

Y
yuyang18 已提交
2915 2916 2917 2918
        * Set for_test to False when we want to clone the program for training.
        * Set for_test to True when we want to clone the program for testing.

        Notes: This API DOES NOT prune any operator. Use
L
Luo Tao 已提交
2919 2920 2921 2922 2923
        :code:`clone(for_test=True)` before backward and optimization please. e.g.

            >>> test_program = fluid.default_main_program().clone(for_test=True)
            >>> optimizer = fluid.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
            >>> optimizer.minimize()
2924 2925

        Args:
Y
yuyang18 已提交
2926 2927
            for_test(bool): True if change the :code:`is_test` attribute of
                operators to :code:`True`.
2928

D
dzhwinter 已提交
2929
        Returns:
Y
yuyang18 已提交
2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982
            Program: The new, duplicated Program object.

        Examples:

            1. To clone a test program, the sample code is:

            >>> import paddle.fluid as fluid
            >>> train_program = fluid.Program()
            >>> startup_program = fluid.Program()
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     img = fluid.layers.data(name='image', shape=[784])
            >>>     hidden = fluid.layers.fc(input=img, size=200, act='relu')
            >>>     hidden = fluid.layers.dropout(hidden, dropout_prob=0.5)
            >>>     loss = fluid.layers.cross_entropy(
            >>>                 input=fluid.layers.fc(hidden, size=10, act='softmax'),
            >>>                 label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
            >>>
            >>> test_program = train_program.clone(for_test=True)
            >>>
            >>> sgd = fluid.optimizer.SGD(learning_rate=1e-3)
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     sgd.minimize(loss)

            2. The :code:`clone` method can be avoid if you create program for
            training and program for testing individually.

            >>> import paddle.fluid as fluid
            >>>
            >>> def network(is_test):
            >>>     img = fluid.layers.data(name='image', shape=[784])
            >>>     hidden = fluid.layers.fc(input=img, size=200, act='relu')
            >>>     hidden = fluid.layers.dropout(hidden, dropout_prob=0.5, is_test=is_test)
            >>>     loss = fluid.layers.cross_entropy(
            >>>                 input=fluid.layers.fc(hidden, size=10, act='softmax'),
            >>>                 label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
            >>>     return loss
            >>>
            >>> train_program = fluid.Program()
            >>> startup_program = fluid.Program()
            >>> test_program = fluid.Program()
            >>>
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     with fluid.unique_name.guard():
            >>>         loss = network(is_test=False)
            >>>         sgd = fluid.optimizer.SGD(learning_rate=1e-3)
            >>>         sgd.minimize(loss)
            >>>
            >>> # the test startup program is not used.
            >>> with fluid.program_guard(test_program, fluid.Program()):
            >>>     with fluid.unique_name.guard():
            >>>         loss = network(is_test=True)

            The two code snippets above will generate same programs.
2983 2984
        """
        if for_test:
X
Xin Pan 已提交
2985
            p = self._inference_optimize(prune_read_op=False)
2986
        else:
2987
            p = Program()
G
gongweibao 已提交
2988 2989
            p.current_block_idx = self.current_block_idx
            p._seed = self._seed
2990
            p.desc = core.ProgramDesc(self.desc)
M
minqiyang 已提交
2991 2992 2993
            p.blocks = [
                Block(p, i) for i in six.moves.range(self.desc.num_blocks())
            ]
G
gongweibao 已提交
2994 2995 2996 2997

            p._current_role = self._current_role
            p._op_role_var = self._op_role_var

W
Wu Yi 已提交
2998
            p._sync_with_cpp()
2999

W
Wu Yi 已提交
3000
        p._copy_param_info_from(self)
W
Wu Yi 已提交
3001
        p._copy_data_info_from(self)
3002
        p._copy_dist_param_info_from(self)
Y
Yu Yang 已提交
3003
        return p
3004

W
Wu Yi 已提交
3005
    def _prune(self, targets):
Y
yuyang18 已提交
3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020
        """
        Prune operators and variables which are not needed to generate
        :code:`targets`.

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            targets(list|Variable|Operator): A list of variables or operators
                need to be pruned

        Returns:
            Program:  A new, pruned program.

        """
3021 3022 3023 3024 3025 3026
        if not isinstance(targets, list):
            targets = [targets]
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
3027 3028
                    # After transpiler processing, the op that output this
                    # variable maybe has been changed, so t.op is not reliable
3029
                    # and we need to find the current op that generate this
3030 3031 3032 3033 3034 3035 3036 3037
                    # variable here.
                    t.op = None
                    global_block = self.global_block()
                    for idx, op in enumerate(global_block.ops):
                        if t.name in op.output_arg_names:
                            t.op = op
                            break

3038
                    t = t.op
3039 3040 3041 3042
                    if t is None:
                        raise ValueError(
                            "The target variable must have an "
                            "associated operator that generates it.")
3043
                else:
3044 3045
                    raise ValueError("All targets of prune() can only be "
                                     "Variable or Operator.")
3046 3047 3048 3049

            targets_idx.append([t.block.idx, t.idx])
        res = Program()
        res.desc = core.prune(self.desc, targets_idx)
M
minqiyang 已提交
3050 3051 3052
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
3053
        res._sync_with_cpp()
3054 3055
        return res

X
Xin Pan 已提交
3056
    def _inference_optimize(self, prune_read_op=True):
Y
yuyang18 已提交
3057
        """
F
fengjiayi 已提交
3058 3059 3060 3061 3062
        This method will create a new program and do following adjustments on it:
        1. Remove all reader variables and their creator ops if exist.

        2. Remove the :code:`read_op` if exists.

3063
        3. change the :code:`is_test`
Y
yuyang18 已提交
3064 3065 3066
        attribute of operators to :code:`True`. All the :code:`Parameter`
        information will be lost.

3067
        Args:
X
Xin Pan 已提交
3068 3069
            prune_read_op(bool): remove the read ops that are added by py_reader
                                 for cpp inference library
3070

Y
yuyang18 已提交
3071 3072 3073 3074 3075 3076
        Notes: This API is a very low level API. Use
        :code:`Program.clone(for_test=True)` instead.

        Returns:
            Program: The new program.
        """
3077
        res = Program()
3078
        res.desc = core.ProgramDesc(self.desc)
F
fengjiayi 已提交
3079 3080 3081 3082

        # remove all readers and the read_op if exist
        read_op_idx = 0
        root_block = res.desc.block(0)
X
Xin Pan 已提交
3083
        if prune_read_op:
3084 3085 3086 3087 3088 3089 3090 3091 3092
            while True:
                if read_op_idx >= root_block.op_size() or root_block.op(
                        read_op_idx).type() == 'read':
                    break
                read_op_idx += 1
            if read_op_idx < root_block.op_size():
                root_block._remove_op(0, read_op_idx + 1)
            for var in root_block.all_vars():
                if var.type() == core.VarDesc.VarType.READER:
M
minqiyang 已提交
3093
                    root_block._remove_var(cpt.to_bytes(var.name()))
F
fengjiayi 已提交
3094 3095

        # change all `is_test` attributes to True
M
minqiyang 已提交
3096
        for i in six.moves.range(res.desc.num_blocks()):
3097
            block = res.desc.block(i)
M
minqiyang 已提交
3098
            for j in six.moves.range(block.op_size()):
3099 3100
                op = block.op(j)
                if op.has_attr('is_test'):
W
Wu Yi 已提交
3101
                    op._set_attr('is_test', True)
M
minqiyang 已提交
3102 3103 3104
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
3105
        res._sync_with_cpp()
3106 3107
        return res

3108 3109
    @staticmethod
    def parse_from_string(binary_str):
Y
yuyang18 已提交
3110 3111 3112 3113 3114 3115 3116
        """
        Deserialize a program desc from protobuf binary string.

        Notes: All information about parameters will be lost after serialization
        and deserialization.

        Args:
3117
            binary_str_type(str): The binary prootbuf string.
Y
yuyang18 已提交
3118 3119 3120 3121

        Returns:
            Program: A deserialized program desc.
        """
3122 3123
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
M
minqiyang 已提交
3124
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
W
Wu Yi 已提交
3125
        p._sync_with_cpp()
3126
        return p
Y
Yu Yang 已提交
3127

3128
    @staticmethod
3129
    def _construct_from_desc(desc):
3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144
        """
        Construct a program from program desc.

        Args:
            desc(core.ProgramDesc): The program desc for constructing.

        Returns:
            Program: A program.
        """
        p = Program()
        p.desc = desc
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
        p._sync_with_cpp()
        return p

D
dzhwinter 已提交
3145 3146
    @property
    def random_seed(self):
Y
yuyang18 已提交
3147 3148 3149 3150 3151 3152
        """
        The default random seed for random operators in Program. Zero means get
        the random seed from random device.

        Notes: It must be set before the operators have been added.
        """
D
dzhwinter 已提交
3153 3154
        return self._seed

Q
qiaolongfei 已提交
3155 3156
    @property
    def num_blocks(self):
Y
yuyang18 已提交
3157 3158 3159
        """
        The number of blocks in this program.
        """
Q
qiaolongfei 已提交
3160 3161
        return self.desc.num_blocks()

D
dzhwinter 已提交
3162 3163 3164 3165 3166 3167
    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
            raise ValueError("Seed must be a integer.")
        self._seed = seed

Y
Yu Yang 已提交
3168
    def __repr__(self):
3169
        return self.__str__()
3170

Y
Yu Yang 已提交
3171
    def global_block(self):
Y
yuyang18 已提交
3172 3173 3174
        """
        Get the first block of this program.
        """
Y
Yu Yang 已提交
3175 3176
        return self.blocks[0]

Q
Qiao Longfei 已提交
3177
    def block(self, index):
Y
yuyang18 已提交
3178 3179 3180 3181 3182 3183 3184 3185
        """
        Get the :code:`index` block of this program
        Args:
            index(int): The index of block to get

        Returns:
            Block: The :code:`index` block
        """
Q
Qiao Longfei 已提交
3186 3187
        return self.blocks[index]

Y
Yu Yang 已提交
3188
    def current_block(self):
Y
yuyang18 已提交
3189 3190 3191 3192
        """
        Get the current block. The :code:`current` block is the block to append
        operators.
        """
Y
Yu Yang 已提交
3193 3194
        return self.blocks[self.current_block_idx]

W
Wu Yi 已提交
3195
    def _create_block(self, parent_idx=None):
Y
yuyang18 已提交
3196 3197 3198 3199 3200 3201 3202 3203 3204 3205
        """
        Create a new block with the :code:`parent_idx` and change the current block
        to new block.

        Args:
            parent_idx(int): The parent block index.

        Returns:
            Block: The new block.
        """
Y
Yu Yang 已提交
3206
        new_block_idx = len(self.blocks)
F
update  
fengjiayi 已提交
3207 3208 3209
        parent = self.current_block() if parent_idx is None else self.block(
            parent_idx)
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
3210 3211 3212 3213
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

W
Wu Yi 已提交
3214
    def _rollback(self):
Y
yuyang18 已提交
3215 3216 3217 3218 3219
        """
        Exit a code block, i.e., roll back to the parent block.
        Returns:
            None
        """
Y
Yu Yang 已提交
3220 3221
        self.current_block_idx = self.current_block().parent_idx

W
Wu Yi 已提交
3222
    def _sync_with_cpp(self):
Y
yuyang18 已提交
3223 3224 3225 3226 3227 3228 3229 3230 3231 3232
        """
        Synchronize Python instance to its binding C++ object instance.
        If the program is modified in C++ space, this method should be invoked.

        Notes: This is a very low level API. Users should not invoke it
        directly.

        Returns:
            None
        """
Q
Qiao Longfei 已提交
3233 3234 3235
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
W
Wu Yi 已提交
3236
            block._sync_with_cpp()
Q
Qiao Longfei 已提交
3237

W
Wu Yi 已提交
3238
    def _copy_param_info_from(self, other):
3239
        """
3240
        Copy the information of parameters from other program.
D
dzhwinter 已提交
3241

Y
yuyang18 已提交
3242 3243 3244
        Notes: This is a very low level API. Users should not invoke it
        directly.

3245 3246 3247 3248 3249 3250 3251
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
W
Wu Yi 已提交
3252
            raise TypeError("_copy_param_info_from should be invoked with "
3253 3254 3255
                            "Program")

        if len(self.blocks) != len(other.blocks):
W
Wu Yi 已提交
3256
            raise ValueError("_copy_param_info_from should be invoked with two "
3257
                             "program, with represent the same topology")
W
Wu Yi 已提交
3258
        self.global_block()._copy_param_info_from(other.global_block())
3259

3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274
    def _copy_dist_param_info_from(self, other):
        """
        Copy the information of distributed information from other program.

        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
            raise TypeError("_copy_dist_param_info_from should be invoked with "
                            "Program")
        self._is_distributed = other._is_distributed
        self._is_chief = other._is_chief
3275
        self._parameters_on_pservers = other._parameters_on_pservers
3276
        self._endpoints = other._endpoints
3277
        self._ps_endpoint = other._ps_endpoint
3278 3279
        self._distributed_lookup_table = other._distributed_lookup_table

W
Wu Yi 已提交
3280
    def _copy_data_info_from(self, other):
F
fengjiayi 已提交
3281 3282
        """
        Copy the information of data variables from other program.
D
dzhwinter 已提交
3283

Y
yuyang18 已提交
3284 3285 3286
        Notes: This is a very low level API. Users should not invoke it
        directly.

F
fengjiayi 已提交
3287 3288 3289 3290 3291 3292 3293
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
W
Wu Yi 已提交
3294
            raise TypeError("_copy_param_info_from should be invoked with "
F
fengjiayi 已提交
3295 3296 3297
                            "Program")

        if len(self.blocks) != len(other.blocks):
W
Wu Yi 已提交
3298
            raise ValueError("_copy_param_info_from should be invoked with two "
F
fengjiayi 已提交
3299
                             "program, with represent the same topology")
3300
        for var in list(other.global_block().vars.values()):
F
fengjiayi 已提交
3301 3302 3303
            if var.is_data:
                self.global_block().var(var.name).is_data = True

3304
    def list_vars(self):
Y
yuyang18 已提交
3305 3306 3307 3308 3309 3310
        """
        Get all variables from this Program. A iterable object is returned.

        Returns:
            iterable: The generator will yield every variable in this program.
        """
3311
        for each_block in self.blocks:
3312
            for each_var in list(each_block.vars.values()):
3313 3314
                yield each_var

Y
Yu Yang 已提交
3315

Y
Yu Yang 已提交
3316
class Parameter(Variable):
3317
    """
3318
    Parameter is derived from Variable. A parameter is a persistable
3319
    Variable, and will be updated by optimizers after each iteration.
3320
    The training of a neural network is essentially the updating of
3321 3322
    its parameters.

3323
    Relative to a general Variable, a Parameter has several its own
3324 3325
    member variables:

3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337
    Args:
        trainable(bool): True if the parameter need to be updated after
            iterations.
        optimize_attr(map): Parameter attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the parameter. Default: None
        gradient_clip_attr(BaseGradientClipAttr): The gradint clip strategy
            which will be applied on the parameter. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this parameter.
3338 3339
    """

Y
Yu Yang 已提交
3340 3341 3342 3343 3344 3345 3346 3347 3348 3349
    def __init__(self, block, shape, dtype, **kwargs):
        if shape is None or dtype is None:
            raise ValueError("Parameter must set shape and dtype")
        if len(shape) == 0:
            raise ValueError("Parameter shape cannot be empty")

        for each in shape:
            if each < 0:
                raise ValueError("Parameter shape should not be related with "
                                 "batch-size")
3350 3351 3352

        Variable.__init__(
            self, block, persistable=True, shape=shape, dtype=dtype, **kwargs)
Y
Yu Yang 已提交
3353 3354 3355 3356
        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

3357 3358
        self.regularizer = kwargs.get('regularizer', None)

F
fengjiayi 已提交
3359
        self.gradient_clip_attr = kwargs.get('gradient_clip_attr', None)
Y
Yu Yang 已提交
3360

W
wanghaoshuang 已提交
3361
        self.do_model_average = kwargs.get('do_model_average', None)
W
wanghaoshuang 已提交
3362

F
fengjiayi 已提交
3363 3364 3365
    def __str__(self):
        return self.to_string(True)

F
update  
fengjiayi 已提交
3366 3367 3368
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
D
dzhwinter 已提交
3369

F
update  
fengjiayi 已提交
3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = Variable.to_string(self, throw_on_error, True)
            additional_attr = ("trainable", "optimize_attr", "regularizer",
W
wanghaoshuang 已提交
3384
                               "gradient_clip_attr", "do_model_average")
F
update  
fengjiayi 已提交
3385
            for attr_name in additional_attr:
3386 3387
                res_str += "%s: %s\n" % (
                    attr_name, six.binary_type(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
3388 3389
        else:
            res_str = Variable.to_string(self, throw_on_error, False)
F
fengjiayi 已提交
3390 3391 3392 3393
        return res_str

    __repr__ = __str__

Y
Yu Yang 已提交
3394

Y
Yu Yang 已提交
3395
# program is a global instance.
Y
Yu Yang 已提交
3396 3397
_main_program_ = Program()
_startup_program_ = Program()
3398

3399

3400
def default_startup_program():
Y
Yu Yang 已提交
3401
    """
Y
yuyang18 已提交
3402 3403 3404 3405 3406 3407 3408 3409 3410
    Get default/global startup program.

    The layer function in :code:`fluid.layers` will create parameters, readers,
    NCCL handles as global variables. The :code:`startup_program` will
    initialize them by the operators in startup program. The layer function will
    append these initialization operators into startup program.

    This method will return the :code:`default` or the :code:`current` startup
    program. Users can use :code:`fluid.program_guard` to switch program.
3411

Y
Yu Yang 已提交
3412 3413 3414
    Returns:
        Program: startup program
    """
Y
Yu Yang 已提交
3415
    return _startup_program_
3416

3417

3418
def default_main_program():
Y
Yu Yang 已提交
3419
    """
Y
yuyang18 已提交
3420 3421 3422 3423 3424 3425 3426 3427 3428
    Get default/global main program. The main program is used for training or
    testing.

    All layer function in :code:`fluid.layers` will append operators and
    variables to the :code:`default_main_program`.

    The :code:`default_main_program` is the default program in a lot of APIs.
    For example, the :code:`Executor.run()` will execute the
    :code:`default_main_program` when the program is not specified.
3429

Y
Yu Yang 已提交
3430 3431 3432
    Returns:
        Program: main program
    """
Y
Yu Yang 已提交
3433
    return _main_program_
Y
Yu Yang 已提交
3434 3435 3436 3437 3438


def switch_main_program(program):
    """
    Switch the main program to a new program.
3439

Y
Yu Yang 已提交
3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
3454
    Switch the startup program to a new program
Y
Yu Yang 已提交
3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


S
rename  
sneaxiy 已提交
3467
@signature_safe_contextmanager
Y
Yu Yang 已提交
3468 3469
def program_guard(main_program, startup_program=None):
    """
Y
yuyang18 已提交
3470 3471 3472
    Change the global main program and startup program with `with` statement.
    Layer functions in the Python `with` block will append operators and
    variables to the new main programs.
3473

Y
Yu Yang 已提交
3474
    Examples:
Y
yuyang18 已提交
3475 3476 3477 3478 3479 3480 3481 3482 3483 3484

        >>> import paddle.fluid as fluid
        >>> main_program = fluid.Program()
        >>> startup_program = fluid.Program()
        >>> with fluid.program_guard(main_program, startup_program):
        >>>     data = fluid.layers.data(...)
        >>>     hidden = fluid.layers.fc(...)

    Notes: The temporary :code:`Program` can be used if the user does not need
    to construct either of startup program or main program.
3485

Y
Yu Yang 已提交
3486
    Examples:
Y
yuyang18 已提交
3487 3488 3489 3490 3491 3492

        >>> import paddle.fluid as fluid
        >>> main_program = fluid.Program()
        >>> # does not care about startup program. Just pass a temporary value.
        >>> with fluid.program_guard(main_program, fluid.Program()):
        >>>     data = ...
3493

Y
Yu Yang 已提交
3494
    Args:
Y
yuyang18 已提交
3495
        main_program(Program): New main program inside `with` statement.
3496
        startup_program(Program): New startup program inside `with` statement.
Y
Yu Yang 已提交
3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509
            None means do not change startup program.
    """
    if not isinstance(main_program, Program):
        raise TypeError("main_program should be Program")
    main_program = switch_main_program(main_program)
    if startup_program is not None:
        if not isinstance(startup_program, Program):
            raise TypeError("startup_program should be Program")
        startup_program = switch_startup_program(startup_program)
    yield
    switch_main_program(main_program)
    if startup_program is not None:
        switch_startup_program(startup_program)
X
xuwei06 已提交
3510 3511


W
Wu Yi 已提交
3512
def _get_var(name, program=None):
X
xuwei06 已提交
3513
    """
Y
yuyang18 已提交
3514
    Get a variable by name from the global block of a program.
F
fengjiayi 已提交
3515

X
xuwei06 已提交
3516 3517 3518
    Args:
        name(str): name of the variable
        program(Program|None): program object.
T
tangwei12 已提交
3519
        If None, default_global_program() will be used.
X
xuwei06 已提交
3520 3521 3522 3523 3524 3525 3526

    Returns:
        Variable
    """
    if program is None:
        program = default_main_program()
    assert isinstance(name, str)
3527
    assert isinstance(program, Program)
X
xuwei06 已提交
3528 3529

    return program.global_block().var(name)
3530 3531


S
rename  
sneaxiy 已提交
3532
@signature_safe_contextmanager
L
lujun 已提交
3533 3534 3535 3536
def _dygraph_guard(tracer):
    global _dygraph_tracer_
    tmp_trace = _dygraph_tracer_
    _dygraph_tracer_ = tracer
M
minqiyang 已提交
3537

3538
    yield
P
Paddle CI 已提交
3539

L
lujun 已提交
3540
    _dygraph_tracer_ = tmp_trace
P
Paddle CI 已提交
3541 3542


S
rename  
sneaxiy 已提交
3543
@signature_safe_contextmanager
L
lujun 已提交
3544 3545 3546 3547
def _dygraph_place_guard(place):
    global _dygraph_current_expected_place_
    tmp_place = _dygraph_current_expected_place_
    _dygraph_current_expected_place_ = place
M
minqiyang 已提交
3548

3549
    yield
M
minqiyang 已提交
3550

L
lujun 已提交
3551
    _dygraph_current_expected_place_ = tmp_place