nn.py 243.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14
"""
15
All layers just related to the neural network.
Y
Yu Yang 已提交
16 17
"""

18 19
from __future__ import print_function

20
import numpy as np
Y
Yu Yang 已提交
21 22
from ..layer_helper import LayerHelper
from ..initializer import Normal, Constant
S
sneaxiy 已提交
23
from ..framework import Variable, OpProtoHolder
Y
yangyaming 已提交
24
from ..param_attr import ParamAttr
S
sneaxiy 已提交
25
from .layer_function_generator import autodoc, templatedoc, _generate_doc_string_
26 27
from .tensor import concat
from . import utils
F
fengjiayi 已提交
28
from .. import unique_name
29
from functools import reduce
Y
Yu Yang 已提交
30 31

__all__ = [
G
fix  
gongweibao 已提交
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
    'fc', 'embedding', 'dynamic_lstm', 'dynamic_lstmp', 'dynamic_gru',
    'gru_unit', 'linear_chain_crf', 'crf_decoding', 'cos_sim', 'cross_entropy',
    'square_error_cost', 'chunk_eval', 'sequence_conv', 'conv2d', 'conv3d',
    'sequence_pool', 'sequence_softmax', 'softmax', 'pool2d', 'pool3d',
    'batch_norm', 'beam_search_decode', 'conv2d_transpose', 'conv3d_transpose',
    'sequence_expand', 'sequence_expand_as', 'sequence_pad', 'lstm_unit',
    'reduce_sum', 'reduce_mean', 'reduce_max', 'reduce_min', 'reduce_prod',
    'sequence_first_step', 'sequence_last_step', 'dropout', 'split',
    'ctc_greedy_decoder', 'edit_distance', 'l2_normalize', 'matmul', 'topk',
    'warpctc', 'sequence_reshape', 'transpose', 'im2sequence', 'nce',
    'hsigmoid', 'beam_search', 'row_conv', 'multiplex', 'layer_norm',
    'softmax_with_cross_entropy', 'smooth_l1', 'one_hot',
    'autoincreased_step_counter', 'reshape', 'squeeze', 'unsqueeze',
    'lod_reset', 'lrn', 'pad', 'pad_constant_like', 'label_smooth', 'roi_pool',
    'dice_loss', 'image_resize', 'image_resize_short', 'resize_bilinear',
    'gather', 'scatter', 'sequence_scatter', 'random_crop', 'mean_iou', 'relu',
G
gongweibao 已提交
48
    'log', 'crop', 'rank_loss', 'elu', 'relu6', 'pow', 'stanh', 'hard_sigmoid',
G
merge  
gongweibao 已提交
49 50 51 52 53 54
    'swish', 'prelu', 'brelu', 'leaky_relu', 'soft_relu', 'flatten',
    'sequence_mask', 'stack', 'pad2d', 'unstack', 'sequence_enumerate',
    'expand', 'sequence_concat', 'scale', 'elementwise_add', 'elementwise_div',
    'elementwise_sub', 'elementwise_mul', 'elementwise_max', 'elementwise_min',
    'elementwise_pow', 'uniform_random_batch_size_like', 'gaussian_random',
    'sampling_id', 'gaussian_random_batch_size_like', 'sum', 'slice', 'shape'
Y
Yu Yang 已提交
55 56 57 58 59 60 61 62
]


def fc(input,
       size,
       num_flatten_dims=1,
       param_attr=None,
       bias_attr=None,
63
       use_mkldnn=False,
Y
Yu Yang 已提交
64
       act=None,
J
Jacek Czaja 已提交
65
       is_test=False,
66
       name=None):
Y
Yu Yang 已提交
67
    """
68
    **Fully Connected Layer**
Y
Yu Yang 已提交
69

70 71 72 73 74 75 76 77
    This function creates a fully connected layer in the network. It can take
    multiple tensors as its inputs. It creates a variable called weights for
    each input tensor, which represents a fully connected weight matrix from
    each input unit to each output unit. The fully connected layer multiplies
    each input tensor with its coresponding weight to produce an output Tensor.
    If multiple input tensors are given, the results of multiple multiplications
    will be sumed up. If bias_attr is not None, a bias variable will be created
    and added to the output. Finally, if activation is not None, it will be applied
F
fengjiayi 已提交
78
    to the output as well.
C
caoying03 已提交
79

C
caoying03 已提交
80
    This process can be formulated as follows:
81 82 83

    .. math::

84
        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
85 86 87

    In the above equation:

C
caoying03 已提交
88 89 90 91
    * :math:`N`: Number of the input.
    * :math:`X_i`: The input tensor.
    * :math:`W`: The weights created by this layer.
    * :math:`b`: The bias parameter created by this layer (if needed).
92
    * :math:`Act`: The activation function.
C
caoying03 已提交
93
    * :math:`Out`: The output tensor.
Y
Yu Yang 已提交
94 95

    Args:
R
ranqiu 已提交
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
        input (Variable|list of Variable): The input tensor(s) of this layer, and the dimension of
            the input tensor(s) is at least 2.
        size(int): The number of output units in this layer.
        num_flatten_dims (int, default 1): The fc layer can accept an input tensor with more than
            two dimensions. If this happens, the multidimensional tensor will first be flattened
            into a 2-dimensional matrix. The parameter `num_flatten_dims` determines how the input
            tensor is flattened: the first `num_flatten_dims` (inclusive, index starts from 1)
            dimensions will be flatten to form the first dimension of the final matrix (height of
            the matrix), and the rest `rank(X) - num_flatten_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, suppose
            `X` is a 6-dimensional tensor with a shape [2, 3, 4, 5, 6], and `num_flatten_dims` = 3.
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30].
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for learnable
            parameters/weights of this layer.
        bias_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for the bias
111 112
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
R
ranqiu 已提交
113
        act (str, default None): Activation to be applied to the output of this layer.
J
Jacek Czaja 已提交
114
        is_test(bool): A flag indicating whether execution is in test phase.
M
mozga-intel 已提交
115 116
        use_mkldnn(bool): Use mkldnn kernel or not, it is valid only when the mkldnn
            library is installed. Default: False
R
ranqiu 已提交
117
        name (str, default None): The name of this layer.
Y
Yu Yang 已提交
118

119
    Returns:
F
fengjiayi 已提交
120
        Variable: The transformation result.
121 122

    Raises:
C
caoying03 已提交
123
        ValueError: If rank of the input tensor is less than 2.
124 125 126 127

    Examples:
        .. code-block:: python

F
fengjiayi 已提交
128
          data = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
129
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
Y
Yu Yang 已提交
130
    """
C
caoying03 已提交
131

C
caoying03 已提交
132
    helper = LayerHelper("fc", **locals())
Y
Yu Yang 已提交
133 134 135 136

    dtype = helper.input_dtype()

    mul_results = []
137 138
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
Y
Yu Yang 已提交
139 140 141
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
ying 已提交
142

Y
Yu Yang 已提交
143
        w = helper.create_parameter(
144 145
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
        tmp = helper.create_tmp_variable(dtype)
146
        helper.append_op(
147 148 149
            type="mul",
            inputs={"X": input_var,
                    "Y": w},
150
            outputs={"Out": tmp},
M
mozga-intel 已提交
151 152
            attrs={"x_num_col_dims": num_flatten_dims,
                   "y_num_col_dims": 1})
153 154 155 156
        mul_results.append(tmp)

    if len(mul_results) == 1:
        pre_bias = mul_results[0]
157
    else:
158 159
        pre_bias = helper.create_tmp_variable(dtype)
        helper.append_op(
160 161 162 163
            type="sum",
            inputs={"X": mul_results},
            outputs={"Out": pre_bias},
            attrs={"use_mkldnn": use_mkldnn})
164 165 166 167
    # add bias
    pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
    # add activation
    return helper.append_activation(pre_activation)
Y
Yu Yang 已提交
168 169


170 171 172
def embedding(input,
              size,
              is_sparse=False,
173
              is_distributed=False,
174 175 176
              padding_idx=None,
              param_attr=None,
              dtype='float32'):
Y
Yu Yang 已提交
177
    """
178 179
    **Embedding Layer**

180
    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
181 182
    a lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.
183 184 185

    All the input variables are passed in as local variables to the LayerHelper
    constructor.
Y
Yu Yang 已提交
186 187

    Args:
188 189 190 191 192
        input(Variable): The tensor variable containing the IDs.
        size(tuple|list): The shape of the look up table parameter. It should
            have two elements which indicate the size of the dictionary of
            embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update.
193
        is_distributed(bool): Whether to run lookup table from remote parameter server.
194 195
        padding_idx(int|long|None): If :attr:`None`, it makes no effect to lookup.
            Otherwise the given :attr:`padding_idx` indicates padding the output
196
            with zeros whenever lookup encounters it in :attr:`input`. If
197
            :math:`padding_idx < 0`, the :attr:`padding_idx` to use in lookup is
198 199
            :math:`size[0] + dim`.
        param_attr(ParamAttr): Parameters for this layer
200
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
Y
Yu Yang 已提交
201

202 203 204
    Returns:
        Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.
Y
Yu Yang 已提交
205

206 207
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
208

C
chengduoZH 已提交
209
          dict_size = len(dataset.ids)
210
          data = fluid.layers.data(name='ids', shape=[32, 32], dtype='float32')
C
chengduoZH 已提交
211
          fc = fluid.layers.embedding(input=data, size=[dict_size, 16])
Y
Yu Yang 已提交
212 213 214 215 216 217
    """

    helper = LayerHelper('embedding', **locals())
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False)
    tmp = helper.create_tmp_variable(dtype)
218 219
    padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
        size[0] + padding_idx)
Y
Yu Yang 已提交
220 221 222 223 224
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
        outputs={'Out': tmp},
225 226 227 228 229
        attrs={
            'is_sparse': is_sparse,
            'is_distributed': is_distributed,
            'padding_idx': padding_idx
        })
Y
Yu Yang 已提交
230 231 232
    return tmp


Y
yi.wu 已提交
233
@templatedoc(op_type="lstm")
Y
Yu Yang 已提交
234 235
def dynamic_lstm(input,
                 size,
Y
Yancey 已提交
236 237
                 h_0=None,
                 c_0=None,
Y
Yu Yang 已提交
238 239 240 241 242 243 244
                 param_attr=None,
                 bias_attr=None,
                 use_peepholes=True,
                 is_reverse=False,
                 gate_activation='sigmoid',
                 cell_activation='tanh',
                 candidate_activation='tanh',
245 246
                 dtype='float32',
                 name=None):
Y
Yibing Liu 已提交
247
    """
Y
yi.wu 已提交
248
    ${comment}
Y
Yibing Liu 已提交
249 250

    Args:
Y
yi.wu 已提交
251 252
        input (Variable): ${input_comment}
        size (int): 4 * hidden size.
Y
Yancey 已提交
253 254 255 256 257 258 259
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the hidden size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.

260
        param_attr(ParamAttr|None): The parameter attribute for the learnable
261
                               hidden-hidden weights.
Y
Yibing Liu 已提交
262 263 264

                               - Weights = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}
265 266
                               - The shape is (D x 4D), where D is the hidden
                                 size.
Y
yi.wu 已提交
267
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
268 269 270
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.
Y
Yibing Liu 已提交
271

272
                              1. `use_peepholes = False`
Y
yi.wu 已提交
273 274
                                 - Biases = {:math:`b_c, b_i, b_f, b_o`}.
                                 - The shape is (1 x 4D).
275
                              2. `use_peepholes = True`
Y
yi.wu 已提交
276
                                 - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
Y
Yibing Liu 已提交
277
                                                 W_{fc}, W_{oc}`}.
Y
yi.wu 已提交
278
                                 - The shape is (1 x 7D).
Y
yi.wu 已提交
279 280 281 282 283 284 285 286
        use_peepholes (bool): ${use_peepholes_comment}
        is_reverse (bool): ${is_reverse_comment}
        gate_activation (str): ${gate_activation_comment}
        cell_activation (str): ${cell_activation_comment}
        candidate_activation (str): ${candidate_activation_comment}
        dtype (str): Data type. Choices = ["float32", "float64"], default "float32".
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
Y
Yibing Liu 已提交
287 288

    Returns:
Y
Yibing Liu 已提交
289 290
        tuple: The hidden state, and cell state of LSTM. The shape of both \
        is (T x D), and lod is the same with the `input`.
Y
Yibing Liu 已提交
291

Y
Yibing Liu 已提交
292
    Examples:
Y
Yibing Liu 已提交
293 294
        .. code-block:: python

Y
Yibing Liu 已提交
295 296
            hidden_dim = 512
            forward_proj = fluid.layers.fc(input=input_seq, size=hidden_dim * 4,
297
                                           act=None, bias_attr=None)
Y
Yibing Liu 已提交
298 299
            forward, _ = fluid.layers.dynamic_lstm(
                input=forward_proj, size=hidden_dim * 4, use_peepholes=False)
Y
Yibing Liu 已提交
300
    """
301

Y
Yu Yang 已提交
302
    helper = LayerHelper('lstm', **locals())
M
minqiyang 已提交
303
    size = size // 4
Y
Yu Yang 已提交
304 305 306 307 308 309 310 311 312 313 314 315
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 4 * size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    hidden = helper.create_tmp_variable(dtype)
    cell = helper.create_tmp_variable(dtype)
    batch_gate = helper.create_tmp_variable(dtype)
    batch_cell_pre_act = helper.create_tmp_variable(dtype)
Y
Yancey 已提交
316 317 318 319 320 321 322 323 324 325
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, size), \
            'The shape of h0 should be (batch_size, %d)' % size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0
Y
Yu Yang 已提交
326 327 328

    helper.append_op(
        type='lstm',
Y
Yancey 已提交
329
        inputs=inputs,
Y
Yu Yang 已提交
330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345
        outputs={
            'Hidden': hidden,
            'Cell': cell,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation
        })
    return hidden, cell


Y
Yibing Liu 已提交
346 347 348 349 350 351 352 353 354 355 356
def dynamic_lstmp(input,
                  size,
                  proj_size,
                  param_attr=None,
                  bias_attr=None,
                  use_peepholes=True,
                  is_reverse=False,
                  gate_activation='sigmoid',
                  cell_activation='tanh',
                  candidate_activation='tanh',
                  proj_activation='tanh',
357 358
                  dtype='float32',
                  name=None):
Y
Yibing Liu 已提交
359 360 361
    """
    **Dynamic LSTMP Layer**

362 363 364 365 366 367
    LSTMP (LSTM with recurrent projection) layer has a separate projection
    layer after the LSTM layer, projecting the original hidden state to a
    lower-dimensional one, which is proposed to reduce the number of total
    parameters and furthermore computational complexity for the LSTM,
    espeacially for the case that the size of output units is relative
    large (https://research.google.com/pubs/archive/43905.pdf).
Y
Yibing Liu 已提交
368 369 370 371 372

    The formula is as follows:

    .. math::

373
        i_t & = \sigma(W_{ix}x_{t} + W_{ir}r_{t-1} + W_{ic}c_{t-1} + b_i)
Y
Yibing Liu 已提交
374

375
        f_t & = \sigma(W_{fx}x_{t} + W_{fr}r_{t-1} + W_{fc}c_{t-1} + b_f)
Y
Yibing Liu 已提交
376

377
        \\tilde{c_t} & = act_g(W_{cx}x_t + W_{cr}r_{t-1} + b_c)
Y
Yibing Liu 已提交
378

379
        o_t & = \sigma(W_{ox}x_{t} + W_{or}r_{t-1} + W_{oc}c_t + b_o)
Y
Yibing Liu 已提交
380

381
        c_t & = f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}
Y
Yibing Liu 已提交
382

383
        h_t & = o_t \odot act_h(c_t)
Y
Yibing Liu 已提交
384

385
        r_t & = \overline{act_h}(W_{rh}h_t)
Y
Yibing Liu 已提交
386

Y
Yibing Liu 已提交
387 388 389 390 391 392
    In the above formula:

    * :math:`W`: Denotes weight matrices (e.g. :math:`W_{xi}` is \
          the matrix of weights from the input gate to the input).
    * :math:`W_{ic}`, :math:`W_{fc}`, :math:`W_{oc}`: Diagonal weight \
          matrices for peephole connections. In our implementation, \
393
          we use vectors to reprenset these diagonal weight matrices.
Y
Yibing Liu 已提交
394
    * :math:`b`: Denotes bias vectors (e.g. :math:`b_i` is the input gate \
395
          bias vector).
Y
Yibing Liu 已提交
396 397 398
    * :math:`\sigma`: The activation, such as logistic sigmoid function.
    * :math:`i, f, o` and :math:`c`: The input gate, forget gate, output \
          gate, and cell activation vectors, respectively, all of which have \
399
          the same size as the cell output activation vector :math:`h`.
Y
Yibing Liu 已提交
400
    * :math:`h`: The hidden state.
401
    * :math:`r`: The recurrent projection of the hidden state.
Y
Yibing Liu 已提交
402 403
    * :math:`\\tilde{c_t}`: The candidate hidden state, whose \
          computation is based on the current input and previous hidden state.
404
    * :math:`\odot`: The element-wise product of the vectors.
Y
Yibing Liu 已提交
405
    * :math:`act_g` and :math:`act_h`: The cell input and cell output \
406
          activation functions and `tanh` is usually used for them.
Y
Yibing Liu 已提交
407 408
    * :math:`\overline{act_h}`: The activation function for the projection \
          output, usually using `identity` or same as :math:`act_h`.
Y
Yibing Liu 已提交
409 410 411 412

    Set `use_peepholes` to `False` to disable peephole connection. The formula
    is omitted here, please refer to the paper
    http://www.bioinf.jku.at/publications/older/2604.pdf for details.
413

Y
Yibing Liu 已提交
414 415 416 417 418 419 420 421 422 423 424 425
    Note that these :math:`W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}`
    operations on the input :math:`x_{t}` are NOT included in this operator.
    Users can choose to use fully-connected layer before LSTMP layer.

    Args:
        input(Variable): The input of dynamic_lstmp layer, which supports
                         variable-time length input sequence. The underlying
                         tensor in this Variable is a matrix with shape
                         (T X 4D), where T is the total time steps in this
                         mini-batch, D is the hidden size.
        size(int): 4 * hidden size.
        proj_size(int): The size of projection output.
426
        param_attr(ParamAttr|None): The parameter attribute for the learnable
Y
Yibing Liu 已提交
427 428
                               hidden-hidden weight and projection weight.

429 430
                               - Hidden-hidden weight = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}.
431 432
                               - The shape of hidden-hidden weight is (P x 4D),
                                 where P is the projection size and D the hidden
Y
Yibing Liu 已提交
433 434
                                 size.
                               - Projection weight = {:math:`W_{rh}`}.
435 436
                               - The shape of projection weight is (D x P).
        bias_attr(ParamAttr|None): The bias attribute for the learnable bias
Y
Yibing Liu 已提交
437 438 439 440 441 442
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                - Biases = {:math:`b_c, b_i, b_f, b_o`}.
443
                                - The shape is (1 x 4D).
Y
Yibing Liu 已提交
444 445 446
                              2. `use_peepholes = True`
                                - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
447
                                - The shape is (1 x 7D).
Y
Yibing Liu 已提交
448 449 450 451 452 453 454 455 456
        use_peepholes(bool): Whether to enable diagonal/peephole connections,
                             default `True`.
        is_reverse(bool): Whether to compute reversed LSTM, default `False`.
        gate_activation(str): The activation for input gate, forget gate and
                              output gate. Choices = ["sigmoid", "tanh", "relu",
                              "identity"], default "sigmoid".
        cell_activation(str): The activation for cell output. Choices = ["sigmoid",
                              "tanh", "relu", "identity"], default "tanh".
        candidate_activation(str): The activation for candidate hidden state.
457
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
458 459
                              default "tanh".
        proj_activation(str): The activation for projection output.
460
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
461 462
                              default "tanh".
        dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
463 464
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
Y
Yibing Liu 已提交
465 466

    Returns:
467 468 469 470
        tuple: A tuple of two output variable: the projection of hidden state, \
               and cell state of LSTMP. The shape of projection is (T x P), \
               for the cell state which is (T x D), and both LoD is the same \
               with the `input`.
Y
Yibing Liu 已提交
471 472

    Examples:
473

Y
Yibing Liu 已提交
474 475
        .. code-block:: python

476 477 478 479
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
Y
Yibing Liu 已提交
480
            hidden_dim, proj_dim = 512, 256
481
            fc_out = fluid.layers.fc(input=emb, size=hidden_dim * 4,
Y
Yibing Liu 已提交
482
                                     act=None, bias_attr=None)
483 484 485
            proj_out, _ = fluid.layers.dynamic_lstmp(input=fc_out,
                                                     size=hidden_dim * 4,
                                                     proj_size=proj_dim,
Y
Yibing Liu 已提交
486 487 488 489
                                                     use_peepholes=False,
                                                     is_reverse=True,
                                                     cell_activation="tanh",
                                                     proj_activation="tanh")
Y
Yibing Liu 已提交
490
    """
491

Y
Yibing Liu 已提交
492
    helper = LayerHelper('lstmp', **locals())
M
minqiyang 已提交
493
    size = size // 4
Y
Yibing Liu 已提交
494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[proj_size, 4 * size], dtype=dtype)
    proj_weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, proj_size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    projection = helper.create_tmp_variable(dtype)
    cell = helper.create_tmp_variable(dtype)
    ordered_proj0 = helper.create_tmp_variable(dtype)
    batch_hidden = helper.create_tmp_variable(dtype)
    batch_gate = helper.create_tmp_variable(dtype)
    batch_cell_pre_act = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='lstmp',
        inputs={
            'Input': input,
            'Weight': weight,
            'ProjWeight': proj_weight,
            'Bias': bias
        },
        outputs={
            'Projection': projection,
            'Cell': cell,
            'OrderedP0': ordered_proj0,
            'BatchHidden': batch_hidden,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation,
            'proj_activation': proj_activation
        })
    return projection, cell


G
guosheng 已提交
538 539 540 541 542 543 544 545 546
def dynamic_gru(input,
                size,
                param_attr=None,
                bias_attr=None,
                is_reverse=False,
                gate_activation='sigmoid',
                candidate_activation='tanh',
                h_0=None):
    """
547
    **Gated Recurrent Unit (GRU) Layer**
G
guosheng 已提交
548

549
    Refer to `Empirical Evaluation of Gated Recurrent Neural Networks on
550
    Sequence Modeling <https://arxiv.org/abs/1412.3555>`_ .
551

G
guosheng 已提交
552 553 554 555 556 557 558 559 560
    The formula is as follows:

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)
561

G
guosheng 已提交
562
        h_t & = (1-u_t) \odot h_{t-1} + u_t \odot \\tilde{h_t}
563

G
guosheng 已提交
564
    The :math:`\odot` is the element-wise product of the vectors. :math:`act_g`
565 566
    is the update gate and reset gate activation function and :math:`sigmoid`
    is usually used for it. :math:`act_c` is the activation function for
G
guosheng 已提交
567 568 569 570
    candidate hidden state and :math:`tanh` is usually used for it.

    Note that these :math:`W_{ux}x_{t}, W_{rx}x_{t}, W_{cx}x_{t}` operations on
    the input :math:`x_{t}` are NOT included in this operator. Users can choose
571
    to use fully-connect layer before GRU layer.
G
guosheng 已提交
572 573

    Args:
574 575
        input(Variable): The input of dynamic_gru layer, which supports
            variable-time length input sequence. The underlying tensor in this
G
guosheng 已提交
576
            Variable is a matrix with shape :math:`(T \\times 3D)`, where
577
            :math:`T` is the total time steps in this mini-batch, :math:`D`
G
guosheng 已提交
578 579
            is the hidden size.
        size(int): The dimension of the gru cell.
580
        param_attr(ParamAttr|None): The parameter attribute for the learnable
G
guosheng 已提交
581 582
            hidden-hidden weight matrix. Note:

583
            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
G
guosheng 已提交
584
              :math:`D` is the hidden size.
585
            - All elements in the weight matrix can be divided into two parts.
G
guosheng 已提交
586
              The first part are weights of the update gate and reset gate with
587
              shape :math:`(D \\times 2D)`, and the second part are weights for
G
guosheng 已提交
588
              candidate hidden state with shape :math:`(D \\times D)`.
589
        bias_attr(ParamAttr): The parameter attribute for learnable the
G
guosheng 已提交
590
            hidden-hidden bias.
591
        is_reverse(bool): Whether to compute reversed GRU, default
G
guosheng 已提交
592 593 594
            :attr:`False`.
        gate_activation(str): The activation for update gate and reset gate.
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "sigmoid".
595
        candidate_activation(str): The activation for candidate hidden state.
G
guosheng 已提交
596
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "tanh".
597 598 599 600
        h_0 (Variable): This is initial hidden state. If not set, default is
            zero. This is a tensor with shape (N x D), where N is the number of
            total time steps of input mini-batch feature and D is the hidden
            size.
G
guosheng 已提交
601 602

    Returns:
G
guosheng 已提交
603
        Variable: The hidden state of GRU. The shape is :math:`(T \\times D)`, \
604
            and sequence length is the same with the input.
605

G
guosheng 已提交
606
    Examples:
607

G
guosheng 已提交
608 609
        .. code-block:: python

610 611 612 613
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
G
guosheng 已提交
614
            hidden_dim = 512
615
            x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
G
guosheng 已提交
616 617 618 619 620 621 622 623 624 625
            hidden = fluid.layers.dynamic_gru(input=x, dim=hidden_dim)
    """

    helper = LayerHelper('gru', **locals())
    dtype = helper.input_dtype()

    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=[1, 3 * size], dtype=dtype, is_bias=True)
Y
Yancey 已提交
626
    batch_size = input.shape[0]
G
guosheng 已提交
627 628 629
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    if h_0 != None:
        assert h_0.shape == (
Y
Yancey 已提交
630 631 632
            batch_size, size
        ), 'The shape of h0 should be(batch_size, %d)' % size
        inputs['H0'] = h_0
G
guosheng 已提交
633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655

    hidden = helper.create_tmp_variable(dtype)
    batch_gate = helper.create_tmp_variable(dtype)
    batch_reset_hidden_prev = helper.create_tmp_variable(dtype)
    batch_hidden = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='gru',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'BatchGate': batch_gate,
            'BatchResetHiddenPrev': batch_reset_hidden_prev,
            'BatchHidden': batch_hidden
        },
        attrs={
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'activation': candidate_activation
        })
    return hidden


Y
Yu Yang 已提交
656 657 658
def gru_unit(input,
             hidden,
             size,
659 660
             param_attr=None,
             bias_attr=None,
Y
Yu Yang 已提交
661
             activation='tanh',
662
             gate_activation='sigmoid'):
Y
Yu Yang 已提交
663
    """
664
    GRU unit layer. The equation of a gru step is:
Y
Yu Yang 已提交
665

666 667
        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)
Y
Yu Yang 已提交
668

669
            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)
Y
Yu Yang 已提交
670

671
            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)
672

673
            h_t & = dot((1-u_t), m_t) + dot(u_t, h_{t-1})
674 675

    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
676 677 678
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
679 680
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

681 682
    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
683 684 685
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.
686 687 688 689 690

    Args:
        input (Variable): The fc transformed input value of current step.
        hidden (Variable): The hidden value of lstm unit from previous step.
        size (integer): The input dimension value.
691 692
        param_attr (ParamAttr): The weight parameters for gru unit. Default: None
        bias_attr (ParamAttr): The bias parameters for gru unit. Default: None
693 694 695 696
        activation (string): The activation type for cell (actNode).
                             Default: 'tanh'
        gate_activation (string): The activation type for gates (actGate).
                                  Default: 'sigmoid'
Y
Yu Yang 已提交
697

698 699 700 701 702 703
    Returns:
        tuple: The hidden value, reset-hidden value and gate values.

    Examples:

        .. code-block:: python
Y
Yu Yang 已提交
704

705
             # assuming we have x_t_data and prev_hidden of size=10
706
             x_t = fluid.layers.fc(input=x_t_data, size=30)
707 708
             hidden_val, r_h_val, gate_val = fluid.layers.gru_unit(input=x_t,
                                                    hidden = prev_hidden)
Y
Yu Yang 已提交
709 710 711 712 713 714 715 716 717 718 719 720

    """
    activation_dict = dict(
        identity=0,
        sigmoid=1,
        tanh=2,
        relu=3, )
    activation = activation_dict[activation]
    gate_activation = activation_dict[gate_activation]

    helper = LayerHelper('gru_unit', **locals())
    dtype = helper.input_dtype()
M
minqiyang 已提交
721
    size = size // 3
Y
Yu Yang 已提交
722 723

    # create weight
724 725
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
Y
Yu Yang 已提交
726

727 728 729 730
    gate = helper.create_tmp_variable(dtype)
    reset_hidden_pre = helper.create_tmp_variable(dtype)
    updated_hidden = helper.create_tmp_variable(dtype)
    inputs = {'Input': input, 'HiddenPrev': hidden, 'Weight': weight}
Y
Yu Yang 已提交
731
    # create bias
732
    if helper.bias_attr:
Y
Yu Yang 已提交
733 734 735
        bias_size = [1, 3 * size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
736
        inputs['Bias'] = bias
Y
Yu Yang 已提交
737 738 739

    helper.append_op(
        type='gru_unit',
740
        inputs=inputs,
Y
Yu Yang 已提交
741 742 743 744 745 746
        outputs={
            'Gate': gate,
            'ResetHiddenPrev': reset_hidden_pre,
            'Hidden': updated_hidden,
        },
        attrs={
747 748
            'activation': 2,  # tanh
            'gate_activation': 1,  # sigmoid
Y
Yu Yang 已提交
749 750 751 752 753
        })

    return updated_hidden, reset_hidden_pre, gate


Y
yuyang18 已提交
754
@templatedoc()
755
def linear_chain_crf(input, label, param_attr=None):
Y
yuyang18 已提交
756 757 758 759 760 761 762
    """
    Linear Chain CRF.

    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
D
dzhwinter 已提交
763
        input(${transition_type}): ${transition_comment}
Y
yuyang18 已提交
764 765 766 767
        label(${label_type}): ${label_comment}
        param_attr(ParamAttr): The attribute of the learnable parameter.

    Returns:
D
dzhwinter 已提交
768 769 770
        output(${emission_exps_type}): ${emission_exps_comment} \n
        output(${transition_exps_type}): ${transition_exps_comment} \n
        output(${log_likelihood_type}): ${log_likelihood_comment}
Y
yuyang18 已提交
771 772

    """
Y
Yu Yang 已提交
773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797
    helper = LayerHelper('linear_chain_crf', **locals())
    size = input.shape[1]
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
        dtype=helper.input_dtype())
    alpha = helper.create_tmp_variable(dtype=helper.input_dtype())
    emission_exps = helper.create_tmp_variable(dtype=helper.input_dtype())
    transition_exps = helper.create_tmp_variable(dtype=helper.input_dtype())
    log_likelihood = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='linear_chain_crf',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood
        })

    return log_likelihood


Y
yuyang18 已提交
798
@templatedoc()
799
def crf_decoding(input, param_attr, label=None):
Y
yuyang18 已提交
800 801 802 803 804
    """
    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
Y
yi.wu 已提交
805

Y
yuyang18 已提交
806
        param_attr(ParamAttr): The parameter attribute for training.
Y
yi.wu 已提交
807

Y
yuyang18 已提交
808 809 810
        label(${label_type}): ${label_comment}

    Returns:
Y
update  
yi.wu 已提交
811
        Variable: ${viterbi_path_comment}
812

Y
yi.wu 已提交
813 814 815 816 817
    Examples:
        .. code-block:: python

           crf_decode = layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
Y
yuyang18 已提交
818
    """
Y
Yu Yang 已提交
819 820 821 822 823 824 825 826 827 828 829 830 831
    helper = LayerHelper('crf_decoding', **locals())
    transition = helper.get_parameter(param_attr.name)
    viterbi_path = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='crf_decoding',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={"ViterbiPath": [viterbi_path]})

    return viterbi_path


Y
yi.wu 已提交
832
@templatedoc()
F
fengjiayi 已提交
833
def cos_sim(X, Y):
Y
Yu Yang 已提交
834
    """
Y
yi.wu 已提交
835 836 837
    ${comment}

    Args:
838 839
        X (Variable): ${x_comment}.
        Y (Variable): ${y_comment}.
F
fengjiayi 已提交
840

Y
yi.wu 已提交
841
    Returns:
842
        Variable: the output of cosine(X, Y).
Y
Yu Yang 已提交
843
    """
F
fengjiayi 已提交
844
    helper = LayerHelper('cos_sim', **locals())
Y
Yu Yang 已提交
845 846 847 848 849 850 851 852 853 854 855 856 857
    out = helper.create_tmp_variable(dtype=X.dtype)
    xnorm = helper.create_tmp_variable(dtype=X.dtype)
    ynorm = helper.create_tmp_variable(dtype=X.dtype)
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
    return out


858
def dropout(x, dropout_prob, is_test=False, seed=None, name=None):
859 860 861 862 863
    """
    Computes dropout.

    Drop or keep each element of `x` independently. Dropout is a regularization
    technique for reducing overfitting by preventing neuron co-adaption during
864
    training. The dropout operator randomly sets (according to the given dropout
865 866 867 868
    probability) the outputs of some units to zero, while others are remain
    unchanged.

    Args:
869 870
        x (Variable): The input tensor variable.
        dropout_prob (float): Probability of setting units to zero.
871 872 873 874 875 876 877
        is_test (bool): A flag indicating whether it is in test phrase or not.
        seed (int): A Python integer used to create random seeds. If this
                    parameter is set to None, a random seed is used.
                    NOTE: If an integer seed is given, always the same output
                    units will be dropped. DO NOT use a fixed seed in training.
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
878 879

    Returns:
880
        Variable: A tensor variable is the shape with `x`.
881 882

    Examples:
883

884 885
        .. code-block:: python

886 887
            x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
            droped = fluid.layers.dropout(x, dropout_prob=0.5)
888 889
    """

F
fengjiayi 已提交
890
    helper = LayerHelper('dropout', **locals())
891 892
    out = helper.create_tmp_variable(dtype=x.dtype)
    mask = helper.create_tmp_variable(dtype=x.dtype, stop_gradient=True)
C
chengduo 已提交
893 894 895 896

    if (seed is None or seed == 0) and helper.main_program.random_seed != 0:
        seed = helper.main_program.random_seed

897 898 899 900 901
    helper.append_op(
        type='dropout',
        inputs={'X': [x]},
        outputs={'Out': [out],
                 'Mask': [mask]},
902 903 904 905 906 907
        attrs={
            'dropout_prob': dropout_prob,
            'is_test': is_test,
            'fix_seed': seed is not None,
            'seed': seed if seed is not None else 0
        })
908 909 910
    return out


911
def cross_entropy(input, label, soft_label=False, ignore_index=-100):
Y
Yu Yang 已提交
912
    """
Y
Yibing Liu 已提交
913 914
    **Cross Entropy Layer**

915 916 917
    This layer computes the cross entropy between `input` and `label`. It
    supports both standard cross-entropy and soft-label cross-entropy loss
    computation.
Y
Yibing Liu 已提交
918 919

    1) One-hot cross-entropy:
F
fengjiayi 已提交
920
        `soft_label = False`, `Label[i, 0]` indicates the class index for sample i:
Y
yangyaming 已提交
921

Y
Yibing Liu 已提交
922
        .. math::
Y
yangyaming 已提交
923

Y
Yibing Liu 已提交
924 925 926
            Y[i] = -\log(X[i, Label[i]])

    2) Soft-label cross-entropy:
F
fengjiayi 已提交
927 928
        `soft_label = True`, `Label[i, j]` indicates the soft label of class j
        for sample i:
Y
Yibing Liu 已提交
929 930 931 932 933

        .. math::

            Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}

Y
Yibing Liu 已提交
934
       Please make sure that in this case the summation of each row of `label`
Y
Yibing Liu 已提交
935 936 937
       equals one.

    3) One-hot cross-entropy with vecterized `label`:
F
fengjiayi 已提交
938 939
         As a special case of 2), when each row of 'label' has only one
         non-zero element which is equal to 1, soft-label cross-entropy degenerates
Y
Yibing Liu 已提交
940
         to a one-hot cross-entropy with one-hot label representation.
Y
yangyaming 已提交
941

Y
Yibing Liu 已提交
942
    Args:
Y
yangyaming 已提交
943
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
944 945 946 947
                                batch size and D is the number of classes. This
                                input is a probability computed by the previous
                                operator, which is almost always the result of
                                a softmax operator.
Y
yangyaming 已提交
948
        label (Variable|list): the ground truth which is a 2-D tensor. When
949 950 951 952
                               `soft_label` is set to `False`, `label` is a
                               tensor<int64> with shape [N x 1]. When
                               `soft_label` is set to `True`, `label` is a
                               tensor<float/double> with shape [N x D].
F
fengjiayi 已提交
953
        soft_label (bool): a flag indicating whether to
954
                                           interpretate the given labels as soft
955 956 957 958
                                           labels. Default: `False`.
        ignore_index (int): Specifies a target value that is ignored and does 
                            not contribute to the input gradient. Only valid 
                            if soft_label is set to False. Default: -100
Y
Yibing Liu 已提交
959 960 961 962 963

    Returns:
         A 2-D tensor with shape [N x 1], the cross entropy loss.

    Raises:
964 965 966 967 968
        `ValueError`: 1) the 1st dimension of `input` and `label` are not equal.
                      2) when `soft_label == True`, and the 2nd dimension of
                         `input` and `label` are not equal.
                      3) when `soft_label == False`, and the 2nd dimension of
                         `label` is not 1.
Y
Yibing Liu 已提交
969 970 971 972 973 974

    Examples:
        .. code-block:: python

          predict = fluid.layers.fc(input=net, size=classdim, act='softmax')
          cost = fluid.layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
975
    """
F
fengjiayi 已提交
976
    helper = LayerHelper('cross_entropy', **locals())
Y
Yu Yang 已提交
977 978 979 980 981 982
    out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
        type='cross_entropy',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
983 984
        attrs={"soft_label": soft_label,
               "ignore_index": ignore_index})
Y
Yu Yang 已提交
985 986 987
    return out


F
fengjiayi 已提交
988
def square_error_cost(input, label):
Y
Yu Yang 已提交
989
    """
990 991
    **Square error cost layer**

992 993
    This layer accepts input predictions and target label and returns the
    squared error cost.
Y
ying 已提交
994

995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007
    For predictions, :math:`X`, and target labels, :math:`Y`, the equation is:

    .. math::

        Out = (X - Y)^2

    In the above equation:

        * :math:`X`: Input predictions, a tensor.
        * :math:`Y`: Input labels, a tensor.
        * :math:`Out`: Output value, same shape with :math:`X`.

    Args:
1008 1009
        input (Variable): Input tensor, has predictions.
        label (Variable): Label tensor, has target labels.
1010 1011

    Returns:
G
guosheng 已提交
1012
        Variable: The tensor variable storing the element-wise squared error \
1013
                  difference of input and label.
1014 1015 1016 1017 1018 1019 1020 1021

    Examples:
        .. code-block:: python

          y = layers.data(name='y', shape=[1], dtype='float32')
          y_predict = layers.data(name='y_predict', shape=[1], dtype='float32')
          cost = layers.square_error_cost(input=y_predict, label=y)

Y
Yu Yang 已提交
1022
    """
F
fengjiayi 已提交
1023
    helper = LayerHelper('square_error_cost', **locals())
Y
Yu Yang 已提交
1024 1025 1026 1027 1028 1029 1030 1031 1032
    minus_out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
        type='elementwise_sub',
        inputs={'X': [input],
                'Y': [label]},
        outputs={'Out': [minus_out]})

    square_out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
F
fengjiayi 已提交
1033 1034
        type='square', inputs={'X': [minus_out]},
        outputs={'Out': [square_out]})
Y
Yu Yang 已提交
1035 1036 1037
    return square_out


Y
yi.wu 已提交
1038
@templatedoc()
Y
Yu Yang 已提交
1039 1040 1041 1042
def chunk_eval(input,
               label,
               chunk_scheme,
               num_chunk_types,
F
fengjiayi 已提交
1043
               excluded_chunk_types=None):
Y
Yu Yang 已提交
1044
    """
Y
yi.wu 已提交
1045
    **Chunk Evaluator**
Y
yi.wu 已提交
1046

Y
yangyaming 已提交
1047
    This function computes and outputs the precision, recall and
1048
    F1-score of chunk detection.
Y
yi.wu 已提交
1049

Y
yi.wu 已提交
1050 1051 1052 1053 1054 1055 1056 1057
    For some basics of chunking, please refer to
    'Chunking with Support Vector Machines <https://aclanthology.info/pdf/N/N01/N01-1025.pdf>'.

    ChunkEvalOp computes the precision, recall, and F1-score of chunk detection,
    and supports IOB, IOE, IOBES and IO (also known as plain) tagging schemes.
    Here is a NER example of labeling for these tagging schemes:

    .. code-block:: python
1058

Y
yi.wu 已提交
1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
              Li     Ming    works  at  Agricultural   Bank   of    China  in  Beijing.
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
       IO     I-PER  I-PER   O      O   I-ORG          I-ORG  I-ORG I-ORG  O   I-LOC
       IOB    B-PER  I-PER   O      O   B-ORG          I-ORG  I-ORG I-ORG  O   B-LOC
       IOE    I-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   E-LOC
       IOBES  B-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   S-LOC
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========

    There are three chunk types(named entity types) including PER(person), ORG(organization)
    and LOC(LOCATION), and we can see that the labels have the form <tag type>-<chunk type>.

    Since the calculations actually use label ids rather than labels, extra attention
    should be paid when mapping labels to ids to make CheckEvalOp work. The key point
    is that the listed equations are satisfied by ids.

    .. code-block:: python

       tag_type = label % num_tag_type
       chunk_type = label / num_tag_type

    where `num_tag_type` is the num of tag types in the tagging scheme, `num_chunk_type`
    is the num of chunk types, and `tag_type` get its value from the following table.

    .. code-block:: python
1084

Y
yi.wu 已提交
1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108
       Scheme Begin Inside End   Single
        plain   0     -      -     -
        IOB     0     1      -     -
        IOE     -     0      1     -
        IOBES   0     1      2     3

    Still use NER as example, assuming the tagging scheme is IOB while chunk types are ORG,
    PER and LOC. To satisfy the above equations, the label map can be like this:

    .. code-block:: python

       B-ORG  0
       I-ORG  1
       B-PER  2
       I-PER  3
       B-LOC  4
       I-LOC  5
       O      6

    It's not hard to verify the equations noting that the num of chunk types
    is 3 and the num of tag types in IOB scheme is 2. For example, the label
    id of I-LOC is 5, the tag type id of I-LOC is 1, and the chunk type id of
    I-LOC is 2, which consistent with the results from the equations.

Y
yi.wu 已提交
1109
    Args:
1110 1111 1112 1113 1114
        input (Variable): prediction output of the network.
        label (Variable): label of the test data set.
        chunk_scheme (str): ${chunk_scheme_comment}
        num_chunk_types (int): ${num_chunk_types_comment}
        excluded_chunk_types (list): ${excluded_chunk_types_comment}
F
fengjiayi 已提交
1115

Y
yi.wu 已提交
1116
    Returns:
Y
update  
yi.wu 已提交
1117 1118 1119
        tuple: tuple containing: precision, recall, f1_score,
        num_infer_chunks, num_label_chunks,
        num_correct_chunks
1120

Y
yi.wu 已提交
1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132
    Examples:
        .. code-block:: python

            crf = fluid.layers.linear_chain_crf(
                input=hidden, label=label, param_attr=ParamAttr(name="crfw"))
            crf_decode = fluid.layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
            fluid.layers.chunk_eval(
                input=crf_decode,
                label=label,
                chunk_scheme="IOB",
                num_chunk_types=(label_dict_len - 1) / 2)
Y
Yu Yang 已提交
1133
    """
F
fengjiayi 已提交
1134
    helper = LayerHelper("chunk_eval", **locals())
Y
Yu Yang 已提交
1135 1136 1137 1138 1139

    # prepare output
    precision = helper.create_tmp_variable(dtype="float32")
    recall = helper.create_tmp_variable(dtype="float32")
    f1_score = helper.create_tmp_variable(dtype="float32")
1140 1141 1142
    num_infer_chunks = helper.create_tmp_variable(dtype="int64")
    num_label_chunks = helper.create_tmp_variable(dtype="int64")
    num_correct_chunks = helper.create_tmp_variable(dtype="int64")
Y
Yu Yang 已提交
1143 1144 1145 1146 1147 1148 1149 1150

    helper.append_op(
        type="chunk_eval",
        inputs={"Inference": [input],
                "Label": [label]},
        outputs={
            "Precision": [precision],
            "Recall": [recall],
1151 1152 1153 1154
            "F1-Score": [f1_score],
            "NumInferChunks": [num_infer_chunks],
            "NumLabelChunks": [num_label_chunks],
            "NumCorrectChunks": [num_correct_chunks]
Y
Yu Yang 已提交
1155 1156 1157
        },
        attrs={
            "num_chunk_types": num_chunk_types,
G
guosheng 已提交
1158 1159
            "chunk_scheme": chunk_scheme,
            "excluded_chunk_types": excluded_chunk_types or []
Y
Yu Yang 已提交
1160
        })
1161 1162
    return (precision, recall, f1_score, num_infer_chunks, num_label_chunks,
            num_correct_chunks)
Y
Yu Yang 已提交
1163 1164


1165
@templatedoc()
Y
Yu Yang 已提交
1166 1167 1168 1169 1170 1171 1172
def sequence_conv(input,
                  num_filters,
                  filter_size=3,
                  filter_stride=1,
                  padding=None,
                  bias_attr=None,
                  param_attr=None,
1173
                  act=None):
Y
Yu Yang 已提交
1174 1175 1176 1177
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.
1178 1179 1180 1181 1182 1183 1184 1185 1186 1187

    Args:
        input (Variable): ${x_comment}
        num_filters (int): number of filters.
        filter_size (int): the filter size (H and W).
        filter_stride (int): stride of the filter.
        padding (bool): if True, add paddings.
        bias_attr (ParamAttr|None): attributes for bias
        param_attr (ParamAttr|None): attributes for parameter
        act (str): the activation type
F
fengjiayi 已提交
1188

1189 1190
    Returns:
        Variable: output of sequence_conv
Y
Yu Yang 已提交
1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208
    """

    helper = LayerHelper('sequence_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [filter_size * input.shape[1], num_filters]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
    pre_bias = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='sequence_conv',
        inputs={
            'X': [input],
            'Filter': [filter_param],
        },
        outputs={"Out": pre_bias},
        attrs={
            'contextStride': filter_stride,
M
minqiyang 已提交
1209
            'contextStart': -int(filter_size // 2),
Y
Yu Yang 已提交
1210 1211 1212 1213 1214 1215
            'contextLength': filter_size
        })
    pre_act = helper.append_bias_op(pre_bias)
    return helper.append_activation(pre_act)


1216
def sequence_softmax(input, param_attr=None, bias_attr=None, use_cudnn=False):
1217 1218 1219
    """
    This function computes the softmax activation among all time-steps for each
    sequence. The dimension of each time-step should be 1. Thus, the shape of
1220
    input Tensor can be either :math:`[N, 1]` or :math:`[N]`, where :math:`N`
1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238
    is the sum of the length of all sequences.

    For i-th sequence in a mini-batch:

    .. math::

        Out(X[lod[i]:lod[i+1]], :) = \\frac{\exp(X[lod[i]:lod[i+1], :])}{\sum(\exp(X[lod[i]:lod[i+1], :]))}

    For example, for a mini-batch of 3 sequences with variable-length,
    each containing 2, 3, 2 time-steps, the lod of which is [0, 2, 5, 7],
    then softmax will be computed among :math:`X[0:2, :]`, :math:`X[2:5, :]`,
    :math:`X[5:7, :]`, and :math:`N` turns out to be 7.

    Args:
        input (Variable): The input variable which is a LoDTensor.
        bias_attr (ParamAttr|None): attributes for bias
        param_attr (ParamAttr|None): attributes for parameter
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
1239
        library is installed. Default: False
1240

1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251
    Returns:
        Variable: output of sequence_softmax

    Examples:

        .. code-block:: python

             x = fluid.layers.data(name='x', shape=[7, 1],
                              dtype='float32', lod_level=1)
             x_sequence_softmax = fluid.layers.sequence_softmax(input=x)
    """
1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262
    helper = LayerHelper('sequence_softmax', **locals())
    dtype = helper.input_dtype()
    softmax_out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="sequence_softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


1263
def softmax(input, param_attr=None, bias_attr=None, use_cudnn=True, name=None):
Q
qiaolongfei 已提交
1264
    """
1265
    The input of the softmax operator is a tensor of any rank. The output tensor
F
fengjiayi 已提交
1266
    has the same shape as the input.
Q
qiaolongfei 已提交
1267

1268 1269 1270 1271 1272 1273
    The input tensor will first be logically flattened to a 2-D matrix. The matrix's
    second dimension(row length) is as same as the last dimension of the input
    tensor, and the first dimension(column length) is the product of all other
    dimensions of the input tensor. For each row of the matrix, the softmax operator
    squashes the K-dimensional(K is the width of the matrix, which is also the size
    of the input tensor's last dimension) vector of arbitrary real values to a
F
fengjiayi 已提交
1274
    K-dimensional vector of real values in the range [0, 1] that add up to 1.
Q
qiaolongfei 已提交
1275 1276 1277 1278 1279 1280 1281

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

F
fengjiayi 已提交
1282
    For each row :math:`i` and each column :math:`j` in the matrix, we have:
Q
qiaolongfei 已提交
1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305

    .. math::

        Out[i, j] = \\frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}

    Args:
        input (Variable): The input variable.
        bias_attr (ParamAttr): attributes for bias
        param_attr (ParamAttr): attributes for parameter
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
        library is installed.

    Returns:
        Variable: output of softmax

    Examples:

        .. code-block:: python

             fc = fluid.layers.fc(input=x, size=10)
             softmax = fluid.layers.softmax(input=fc)

    """
1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316
    helper = LayerHelper('softmax', **locals())
    dtype = helper.input_dtype()
    softmax_out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


Y
Yu Yang 已提交
1317 1318 1319
def conv2d(input,
           num_filters,
           filter_size,
C
chengduoZH 已提交
1320 1321
           stride=1,
           padding=0,
1322
           dilation=1,
Y
Yu Yang 已提交
1323 1324 1325
           groups=None,
           param_attr=None,
           bias_attr=None,
C
chengduoZH 已提交
1326
           use_cudnn=True,
1327
           use_mkldnn=False,
1328 1329
           act=None,
           name=None):
Y
Yu Yang 已提交
1330
    """
C
chengduoZH 已提交
1331
    The convolution2D layer calculates the output based on the input, filter
T
tensor-tang 已提交
1332 1333
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
1334
    channels, H is the height of the feature, and W is the width of the feature.
T
tensor-tang 已提交
1335 1336 1337 1338 1339 1340 1341
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more detials.
1342 1343 1344
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
C
chengduoZH 已提交
1345

1346
    For each input :math:`X`, the equation is:
C
refine  
chengduoZH 已提交
1347

C
chengduoZH 已提交
1348 1349
    .. math::

C
refine  
chengduoZH 已提交
1350
        Out = \sigma (W \\ast X + b)
C
chengduoZH 已提交
1351

T
tensor-tang 已提交
1352
    Where:
C
chengduoZH 已提交
1353

1354 1355 1356 1357 1358
    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
T
tensor-tang 已提交
1359
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1360 1361 1362

    Example:

1363 1364
        - Input:

W
weixing02 已提交
1365
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
C
refine  
chengduoZH 已提交
1366

W
weixing02 已提交
1367
          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
C
refine  
chengduoZH 已提交
1368

1369
        - Output:
T
tensor-tang 已提交
1370

W
weixing02 已提交
1371
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
C
refine  
chengduoZH 已提交
1372

C
chengduoZH 已提交
1373
        Where
1374 1375

        .. math::
C
chengduoZH 已提交
1376

W
weixing02 已提交
1377 1378
            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
chengduoZH 已提交
1379 1380

    Args:
1381
        input (Variable): The input image with [N, C, H, W] format.
T
tensor-tang 已提交
1382
        num_filters(int): The number of filter. It is as same as the output
1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
        param_attr (ParamAttr): The parameters to the Conv2d Layer. Default: None
        bias_attr (ParamAttr): Bias parameter for the Conv2d layer. Default: None
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
T
tensor-tang 已提交
1405 1406
        use_mkldnn (bool): Use mkldnn kernels or not, it is valid only when compiled
            with mkldnn library. Default: False
1407 1408 1409
        act (str): Activation type. Default: None
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
C
chengduoZH 已提交
1410 1411

    Returns:
G
guosheng 已提交
1412
        Variable: The tensor variable storing the convolution and \
C
chengduoZH 已提交
1413 1414
                  non-linearity activation result.

C
refine  
chengduoZH 已提交
1415
    Raises:
1416 1417
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
C
refine  
chengduoZH 已提交
1418

C
chengduoZH 已提交
1419 1420 1421
    Examples:
        .. code-block:: python

1422 1423
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.conv2d(input=data, num_filters=2, filter_size=3, act="relu")
Y
Yu Yang 已提交
1424 1425 1426
    """

    num_channels = input.shape[1]
1427 1428

    l_type = 'conv2d'
X
xzl 已提交
1429 1430
    if (num_channels == groups and num_filters % num_channels == 0 and
            not use_cudnn):
1431
        l_type = 'depthwise_conv2d'
1432 1433 1434 1435

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

Y
Yu Yang 已提交
1436 1437 1438 1439 1440
    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
1441
        num_filter_channels = num_channels // groups
Y
Yu Yang 已提交
1442

C
chengduoZH 已提交
1443 1444 1445
    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
1446
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
1447

C
chengduoZH 已提交
1448 1449
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
1450 1451

    input_shape = input.shape
M
minqiyang 已提交
1452
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size
Y
Yu Yang 已提交
1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466

    def _get_default_param_initializer():
        std = (2.0 / (filter_size[0]**2 * num_channels))**0.5
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

    pre_bias = helper.create_tmp_variable(dtype)

    helper.append_op(
1467
        type=l_type,
Y
Yu Yang 已提交
1468 1469 1470 1471 1472
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
C
chengduoZH 已提交
1473 1474 1475
        attrs={
            'strides': stride,
            'paddings': padding,
1476
            'dilations': dilation,
C
chengduoZH 已提交
1477
            'groups': groups,
1478 1479
            'use_cudnn': use_cudnn,
            'use_mkldnn': use_mkldnn
C
chengduoZH 已提交
1480
        })
Y
Yu Yang 已提交
1481 1482 1483 1484 1485 1486

    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)

    return helper.append_activation(pre_act)


C
chengduoZH 已提交
1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504
def conv3d(input,
           num_filters,
           filter_size,
           stride=1,
           padding=0,
           dilation=1,
           groups=None,
           param_attr=None,
           bias_attr=None,
           use_cudnn=True,
           use_mkldnn=False,
           act=None,
           name=None):
    """
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
1505 1506 1507 1508 1509 1510
    Output(Output) are in NCDHW format. Where N is batch size C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.
C
chengduoZH 已提交
1511 1512 1513 1514 1515 1516 1517 1518 1519

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

1520 1521
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
C
chengduoZH 已提交
1522 1523 1524
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
1525
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
        input (Variable): The input image with [N, C, D, H, W] format.
            num_filters(int): The number of filter. It is as same as the output
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
1551
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
C
chengduoZH 已提交
1552 1553
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
1554
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
C
chengduoZH 已提交
1555 1556
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
1557
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
C
chengduoZH 已提交
1558 1559
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
1560
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
C
chengduoZH 已提交
1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv3d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
        param_attr (ParamAttr): The parameters to the Conv3d Layer. Default: None
        bias_attr (ParamAttr): Bias parameter for the Conv3d layer. Default: None
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
        use_mkldnn (bool): Use mkldnn kernels or not.
        act (str): Activation type. Default: None
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: The tensor variable storing the convolution and \
                  non-linearity activation result.

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

1587 1588
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d = fluid.layers.conv3d(input=data, num_filters=2, filter_size=3, act="relu")
C
chengduoZH 已提交
1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602
    """

    l_type = 'conv3d'

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

    num_channels = input.shape[1]

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
1603
        num_filter_channels = num_channels // groups
C
chengduoZH 已提交
1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643

    filter_size = utils.convert_to_list(filter_size, 3, 'filter_size')
    stride = utils.convert_to_list(stride, 3, 'stride')
    padding = utils.convert_to_list(padding, 3, 'padding')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')

    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
        std = (2.0 / (filter_size[0]**3 * num_channels))**0.5
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

    pre_bias = helper.create_tmp_variable(dtype)

    helper.append_op(
        type=l_type,
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
            'use_mkldnn': use_mkldnn
        })

1644
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
C
chengduoZH 已提交
1645 1646 1647 1648

    return helper.append_activation(pre_act)


F
fengjiayi 已提交
1649
def sequence_pool(input, pool_type):
Y
Yu Yang 已提交
1650
    """
Y
yangyaming 已提交
1651 1652 1653
    This function add the operator for sequence pooling.
    It pools features of all time-steps of each instance, and is applied
    on top of the input using pool_type mentioned in the parameters.
L
Luo Tao 已提交
1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664

    It supports four pool_type:

    - average: :math:`Out[i] = \\frac{\sum_i X_i}{N}`
    - sum:     :math:`Out[i] = \sum_jX_{ij}`
    - sqrt:    :math:`Out[i] = \\frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}`
    - max:     :math:`Out[i] = max(X_i)`

    .. code-block:: text

       x is a 1-level LoDTensor:
1665
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
1666 1667 1668 1669 1670
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
1671
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
1672 1673 1674 1675 1676 1677 1678

       for different pool_type:
         average: out.data = [2, 4, 3], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
         sum    : out.data = [4, 12, 6], where 4=1+3, 12=2+4+6, 6=5+1
         sqrt   : out.data = [2.82, 6.93, 4.24], where 2.82=(1+3)/sqrt(2),
                    6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
         max    : out.data = [3, 6, 5], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
1679 1680
         last   : out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
         first  : out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
1681

L
Luo Tao 已提交
1682 1683
    Args:
        input(variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
1684
        pool_type (string): The pooling type of sequence_pool.
L
Luo Tao 已提交
1685 1686 1687 1688 1689 1690 1691 1692
            It supports average, sum, sqrt and max.

    Returns:
        The sequence pooling variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1693

Y
yangyaming 已提交
1694
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1695 1696 1697 1698 1699
                              dtype='float32', lod_level=1)
             avg_x = fluid.layers.sequence_pool(input=x, pool_type='average')
             sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum')
             sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt')
             max_x = fluid.layers.sequence_pool(input=x, pool_type='max')
1700 1701
             last_x = fluid.layers.sequence_pool(input=x, pool_type='last')
             first_x = fluid.layers.sequence_pool(input=x, pool_type='first')
Y
Yu Yang 已提交
1702
    """
F
fengjiayi 已提交
1703
    helper = LayerHelper('sequence_pool', **locals())
Y
Yu Yang 已提交
1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)
    max_index = helper.create_tmp_variable(dtype)

    helper.append_op(
        type="sequence_pool",
        inputs={"X": input},
        outputs={"Out": pool_out,
                 "MaxIndex": max_index},
        attrs={"pooltype": pool_type.upper()})

Y
yangyaming 已提交
1715 1716 1717 1718 1719
    # when pool_type is max, variable max_index is initialized,
    # so we stop the gradient explicitly here
    if pool_type == 'max':
        max_index.stop_gradient = True

Y
Yu Yang 已提交
1720 1721 1722
    return pool_out


C
add doc  
chengduoZH 已提交
1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747
@templatedoc()
def sequence_concat(input, name=None):
    """
    ${comment}

    Args:
        input(list): List of Variables to be concatenated.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: Output variable of the concatenation.

    Examples:
        .. code-block:: python

           out = fluid.layers.sequence_concat(input=[seq1, seq2, seq3])
    """
    helper = LayerHelper('sequence_concat', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='sequence_concat', inputs={'X': input}, outputs={'Out': [out]})
    return out


F
fengjiayi 已提交
1748
def sequence_first_step(input):
L
Luo Tao 已提交
1749
    """
L
Luo Tao 已提交
1750
    This function gets the first step of sequence.
L
Luo Tao 已提交
1751 1752 1753 1754

    .. code-block:: text

       x is a 1-level LoDTensor:
1755
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
1756 1757 1758 1759 1760
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
1761
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
1762
         out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
1763

L
Luo Tao 已提交
1764 1765 1766 1767 1768 1769 1770 1771 1772
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's first step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1773

Y
yangyaming 已提交
1774
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1775 1776 1777
                              dtype='float32', lod_level=1)
             x_first_step = fluid.layers.sequence_first_step(input=x)
    """
1778 1779 1780
    return sequence_pool(input=input, pool_type="first")


F
fengjiayi 已提交
1781
def sequence_last_step(input):
L
Luo Tao 已提交
1782
    """
L
Luo Tao 已提交
1783
    This function gets the last step of sequence.
L
Luo Tao 已提交
1784 1785 1786 1787

    .. code-block:: text

       x is a 1-level LoDTensor:
1788
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
1789 1790 1791 1792 1793
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
1794
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
1795
         out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
F
fengjiayi 已提交
1796

L
Luo Tao 已提交
1797 1798 1799 1800 1801 1802 1803 1804 1805
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's last step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1806

Y
yangyaming 已提交
1807
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1808 1809 1810
                              dtype='float32', lod_level=1)
             x_last_step = fluid.layers.sequence_last_step(input=x)
    """
1811 1812 1813
    return sequence_pool(input=input, pool_type="last")


F
fengjiayi 已提交
1814
@templatedoc()
Y
Yu Yang 已提交
1815
def pool2d(input,
C
chengduoZH 已提交
1816 1817
           pool_size=-1,
           pool_type="max",
C
chengduoZH 已提交
1818 1819
           pool_stride=1,
           pool_padding=0,
C
caoying03 已提交
1820
           global_pooling=False,
C
chengduoZH 已提交
1821
           use_cudnn=True,
1822
           ceil_mode=False,
1823
           use_mkldnn=False,
C
caoying03 已提交
1824
           name=None):
Y
Yu Yang 已提交
1825
    """
F
fengjiayi 已提交
1826
    ${comment}
1827 1828

    Args:
1829 1830 1831
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
F
fengjiayi 已提交
1832
                          feature, and W is the width of the feature.
1833
        pool_size (int): The side length of pooling windows. All pooling
F
fengjiayi 已提交
1834
                         windows are squares with pool_size on a side.
F
fengjiayi 已提交
1835
        pool_type: ${pooling_type_comment}
1836 1837
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
F
fengjiayi 已提交
1838 1839 1840 1841
        global_pooling: ${global_pooling_comment}
        use_cudnn: ${use_cudnn_comment}
        ceil_mode: ${ceil_mode_comment}
        use_mkldnn: ${use_mkldnn_comment}
1842
        name (str|None): A name for this layer(optional). If set None, the
F
fengjiayi 已提交
1843 1844
                        layer will be named automatically.

1845
    Returns:
F
fengjiayi 已提交
1846
        Variable: The pooling result.
F
fengjiayi 已提交
1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859

    Raises:
        ValueError: If 'pool_type' is not "max" nor "avg"
        ValueError: If 'global_pooling' is False and 'pool_size' is -1
        ValueError: If 'use_cudnn' is not a bool value.

    Examples:

        .. code-block:: python

          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.pool2d(
1860 1861 1862 1863
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
F
fengjiayi 已提交
1864
                            global_pooling=False)
Y
Yu Yang 已提交
1865 1866 1867 1868 1869
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
1870

C
chengduoZH 已提交
1871 1872 1873 1874 1875
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

C
chengduoZH 已提交
1876 1877 1878 1879
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 2, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')

C
chengduoZH 已提交
1880 1881
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
1882

C
Add doc  
chengduoZH 已提交
1883
    l_type = 'pool2d'
1884 1885

    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
1886 1887 1888 1889
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)

    helper.append_op(
1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918
        type=l_type,
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
            "paddings": pool_padding,
            "use_cudnn": use_cudnn,
            "ceil_mode": ceil_mode,
            "use_mkldnn": use_mkldnn
        })

    return pool_out


def pool3d(input,
           pool_size=-1,
           pool_type="max",
           pool_stride=1,
           pool_padding=0,
           global_pooling=False,
           use_cudnn=True,
           ceil_mode=False,
           use_mkldnn=False,
           name=None):
    """
    This function adds the operator for pooling in 3-dimensions, using the
Y
Yu Yang 已提交
1919
    pooling configurations mentioned in input parameters.
1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932

    Args:
        input (Variable): ${input_comment}
        pool_size (int): ${ksize_comment}
        pool_type (str): ${pooling_type_comment}
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
        use_mkldnn (bool): ${use_mkldnn_comment}
        name (str): A name for this layer(optional). If set None, the layer
            will be named automatically.
1933

1934
    Returns:
1935
        Variable: output of pool3d layer.
Y
Yu Yang 已提交
1936 1937 1938 1939 1940
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
1941

C
chengduoZH 已提交
1942 1943 1944 1945 1946
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

1947 1948 1949
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 3, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 3, 'pool_stride')
C
chengduoZH 已提交
1950

C
chengduoZH 已提交
1951 1952
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
1953

1954 1955
    l_type = "pool3d"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
1956 1957 1958 1959
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)

    helper.append_op(
1960
        type=l_type,
Y
Yu Yang 已提交
1961 1962 1963 1964 1965 1966 1967
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
C
chengduoZH 已提交
1968
            "paddings": pool_padding,
1969
            "use_cudnn": use_cudnn,
1970 1971
            "ceil_mode": ceil_mode,
            "use_mkldnn": use_mkldnn
Y
Yu Yang 已提交
1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983
        })

    return pool_out


def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
C
caoying03 已提交
1984
               data_layout='NCHW',
Y
Yang Yang 已提交
1985
               in_place=False,
1986
               use_mkldnn=False,
1987 1988
               name=None,
               moving_mean_name=None,
W
wanghaoshuang 已提交
1989
               moving_variance_name=None,
1990 1991
               do_model_average_for_mean_and_var=False,
               fuse_with_relu=False):
Y
Yu Yang 已提交
1992
    """
Q
qiaolongfei 已提交
1993 1994 1995 1996
    **Batch Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:
Q
qiaolongfei 已提交
1997

Q
qiaolongfei 已提交
1998
    1. NHWC `[batch, in_height, in_width, in_channels]`
Q
qiaolongfei 已提交
1999

Q
qiaolongfei 已提交
2000 2001
    2. NCHW `[batch, in_channels, in_height, in_width]`

Q
qiaolongfei 已提交
2002 2003 2004
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.
Q
qiaolongfei 已提交
2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift
2017 2018

    Args:
Q
qiaolongfei 已提交
2019
        input(variable): The input variable which is a LoDTensor.
Q
qiaolongfei 已提交
2020 2021 2022 2023
        act(string, Default None): Activation type, linear|relu|prelu|...
        is_test(bool, Default False): Used for training or training.
        momentum(float, Default 0.9):
        epsilon(float, Default 1e-05):
Q
qiaolongfei 已提交
2024 2025 2026
        param_attr(ParamAttr): The parameter attribute for Parameter `scale`.
        bias_attr(ParamAttr): The parameter attribute for Parameter `bias`.
        data_layout(string, default NCHW): NCHW|NHWC
2027
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
Q
qiaolongfei 已提交
2028 2029 2030 2031 2032
        use_mkldnn(bool, Default false): ${use_mkldnn_comment}
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
Q
qiaolongfei 已提交
2033
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.
2034
        fuse_with_relu (bool): if True, this OP performs relu after batch norm.
2035 2036

    Returns:
Q
qiaolongfei 已提交
2037
        Variable: A tensor variable which is the result after applying batch normalization on the input.
Q
qiaolongfei 已提交
2038 2039 2040 2041 2042 2043 2044

    Examples:

        .. code-block:: python

            hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.batch_norm(input=hidden1)
Y
Yu Yang 已提交
2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067
    """
    helper = LayerHelper('batch_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))

    bias = helper.create_parameter(
2068
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
Y
Yu Yang 已提交
2069

2070 2071
    mean = helper.create_parameter(
        attr=ParamAttr(
W
wanghaoshuang 已提交
2072 2073 2074
            name=moving_mean_name,
            initializer=Constant(0.0),
            trainable=False,
W
wanghaoshuang 已提交
2075
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2076
        shape=param_shape,
2077 2078 2079 2080 2081 2082 2083
        dtype=input.dtype)
    mean.stop_gradient = True

    variance = helper.create_parameter(
        attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
W
wanghaoshuang 已提交
2084
            trainable=False,
W
wanghaoshuang 已提交
2085
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2086
        shape=param_shape,
2087 2088
        dtype=input.dtype)
    variance.stop_gradient = True
Y
Yu Yang 已提交
2089 2090 2091 2092 2093 2094

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
Q
QI JUN 已提交
2095 2096
    saved_mean = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
Y
Yu Yang 已提交
2097

2098
    batch_norm_out = input if in_place else helper.create_tmp_variable(dtype)
Y
Yu Yang 已提交
2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115

    helper.append_op(
        type="batch_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
            "Mean": mean,
            "Variance": variance
        },
        outputs={
            "Y": batch_norm_out,
            "MeanOut": mean_out,
            "VarianceOut": variance_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
2116 2117 2118 2119
        attrs={
            "momentum": momentum,
            "epsilon": epsilon,
            "is_test": is_test,
2120 2121
            "use_mkldnn": use_mkldnn,
            "fuse_with_relu": fuse_with_relu
2122
        })
Y
Yu Yang 已提交
2123 2124 2125 2126

    return helper.append_activation(batch_norm_out)


Y
yuyang18 已提交
2127
@templatedoc()
G
guosheng 已提交
2128 2129 2130 2131 2132 2133 2134 2135 2136 2137
def layer_norm(input,
               scale=True,
               shift=True,
               begin_norm_axis=1,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               name=None):
    """
Y
yuyang18 已提交
2138
    ${comment}
G
guosheng 已提交
2139 2140 2141

    The formula is as follows:

Y
yuyang18 已提交
2142
    ..  math::
G
guosheng 已提交
2143 2144 2145 2146 2147 2148 2149

        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} a_i

        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}(a_i - \\mu)^2}

        h & = f(\\frac{g}{\\sigma}(a - \\mu) + b)

Y
yuyang18 已提交
2150 2151 2152 2153 2154 2155 2156 2157
    * :math:`a`: the vector representation of the summed inputs to the neurons
    in that layer.

    * :math:`H`: the number of hidden units in a layers

    * :math:`g`: the trainable scale parameter.

    * :math:`b`: the trainable bias parameter.
Y
yuyang18 已提交
2158

G
guosheng 已提交
2159 2160
    Args:
        input(Variable): The input tensor variable.
2161
        scale(bool): Whether to learn the adaptive gain :math:`g` after
G
guosheng 已提交
2162
            normalization.
2163
        shift(bool): Whether to learn the adaptive bias :math:`b` after
G
guosheng 已提交
2164
            normalization.
2165
        begin_norm_axis(bool): The normalization will be performed along
G
guosheng 已提交
2166
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
2167
        epsilon(float): The small value added to the variance to prevent
G
guosheng 已提交
2168 2169 2170 2171 2172 2173
            division by zero.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            gain :math:`g`.
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
            bias :math:`b`.
        act(str): Activation to be applied to the output of layer normalizaiton.
2174
        name (str): The name of this layer. It is optional.
G
guosheng 已提交
2175 2176

    Returns:
Y
yuyang18 已提交
2177
        ${y_comment}
G
guosheng 已提交
2178 2179 2180

    Examples:

Y
yuyang18 已提交
2181 2182 2183
        >>> data = fluid.layers.data(name='data', shape=[3, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.layer_norm(input=data, begin_norm_axis=1)
G
guosheng 已提交
2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198
    """
    helper = LayerHelper('layer_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    param_shape = [reduce(lambda x, y: x * y, input_shape[begin_norm_axis:])]
    if scale:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
G
guosheng 已提交
2199
    if shift:
G
guosheng 已提交
2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223
        assert bias_attr is not False
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
    mean_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    variance_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    layer_norm_out = helper.create_tmp_variable(dtype)

    helper.append_op(
        type="layer_norm",
        inputs=inputs,
        outputs={
            "Y": layer_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "begin_norm_axis": begin_norm_axis})

    return helper.append_activation(layer_norm_out)


Y
Yu Yang 已提交
2224 2225 2226 2227
def conv2d_transpose(input,
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
2228 2229 2230
                     padding=0,
                     stride=1,
                     dilation=1,
2231
                     groups=None,
C
caoying03 已提交
2232
                     param_attr=None,
2233
                     bias_attr=None,
C
chengduoZH 已提交
2234
                     use_cudnn=True,
2235
                     act=None,
C
caoying03 已提交
2236
                     name=None):
Y
Yu Yang 已提交
2237
    """
2238 2239 2240 2241 2242 2243 2244 2245
    **Convlution2D transpose layer**

    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
2246 2247
    layer, please refer to the following explanation and references
    `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
2248 2249 2250
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
2251 2252 2253 2254 2255

    For each input :math:`X`, the equation is:

    .. math::

2256
        Out = \sigma (W \\ast X + b)
2257

2258
    Where:
2259 2260 2261

    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
2262 2263 2264 2265
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
2266

2267 2268 2269 2270
    Example:

        - Input:

2271
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
2272

2273
          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`
2274 2275 2276

        - Output:

2277
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
2278 2279

        Where
Y
Yu Yang 已提交
2280

2281 2282
        .. math::

2283 2284 2285 2286
           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\\\
           H_{out} \in [ H^\prime_{out}, H^\prime_{out} + strides[0] ) \\\\
           W_{out} \in [ W^\prime_{out}, W^\prime_{out} + strides[1] )
Y
Yu Yang 已提交
2287 2288

    Args:
2289 2290 2291 2292
        input(Variable): The input image with [N, C, H, W] format.
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
2293 2294 2295 2296
            tuple, it must contain two integers, (image_H, image_W). None if use
            filter_size, padding, and stride to calculate output_size.
            if output_size and filter_size are specified at the same time, They
            should follow the formula above.
2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv2d transpose layer. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
        param_attr(ParamAttr): The parameters to the Conv2d_transpose Layer.
                               Default: None
        bias_attr(ParamAttr): Bias parameter for the Conv2d layer. Default: None
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
        act(str): Activation type. Default: None
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
2324 2325

    Returns:
2326
        Variable: The tensor variable storing the convolution transpose result.
2327 2328

    Raises:
2329 2330
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
2331 2332 2333 2334

    Examples:
       .. code-block:: python

2335 2336
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d_transpose = fluid.layers.conv2d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
2337
    """
2338 2339 2340 2341 2342 2343 2344 2345 2346

    input_channel = input.shape[1]

    op_type = 'conv2d_transpose'
    if (input_channel == groups and num_filters == input_channel and
            not use_cudnn):
        op_type = 'depthwise_conv2d_transpose'

    helper = LayerHelper(op_type, **locals())
Y
Yu Yang 已提交
2347 2348 2349
    if not isinstance(input, Variable):
        raise TypeError("Input of conv2d_transpose must be Variable")

C
chengduoZH 已提交
2350 2351 2352
    padding = utils.convert_to_list(padding, 2, 'padding')
    stride = utils.convert_to_list(stride, 2, 'stride')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
G
guosheng 已提交
2353

C
chengduoZH 已提交
2354 2355
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
G
guosheng 已提交
2356

Y
Yu Yang 已提交
2357 2358 2359 2360 2361
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]
G
guosheng 已提交
2362

Y
Yu Yang 已提交
2363 2364
        h_in = input.shape[2]
        w_in = input.shape[3]
G
guosheng 已提交
2365

C
chengduoZH 已提交
2366
        filter_size_h = (output_size[0] - (h_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
2367
                         padding[0] - 1) // dilation[0] + 1
C
chengduoZH 已提交
2368
        filter_size_w = (output_size[1] - (w_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
2369
                         padding[1] - 1) // dilation[1] + 1
Y
Yu Yang 已提交
2370
        filter_size = [filter_size_h, filter_size_w]
C
chengduoZH 已提交
2371 2372 2373
    else:
        filter_size = utils.convert_to_list(filter_size, 2,
                                            'conv2d_transpose.filter_size')
2374 2375 2376 2377 2378 2379 2380
    if output_size is None:
        output_size = []
    elif isinstance(output_size, list) or isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 2, 'output_size')
    else:
        raise ValueError("output_size should be list or int")
    padding = utils.convert_to_list(padding, 2, 'padding')
2381
    groups = 1 if groups is None else groups
M
minqiyang 已提交
2382
    filter_shape = [input_channel, num_filters // groups] + filter_size
Y
Yu Yang 已提交
2383 2384 2385
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

2386
    pre_bias = helper.create_tmp_variable(dtype=input.dtype)
Y
Yu Yang 已提交
2387
    helper.append_op(
2388
        type=op_type,
Y
Yu Yang 已提交
2389 2390
        inputs={'Input': [input],
                'Filter': [img_filter]},
2391
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
2392
        attrs={
2393
            'output_size': output_size,
2394 2395 2396 2397 2398
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn
Y
Yu Yang 已提交
2399 2400
        })

2401 2402 2403
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
    return out
Y
Yu Yang 已提交
2404 2405


2406
def conv3d_transpose(input,
Y
Yu Yang 已提交
2407 2408 2409
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
2410 2411 2412
                     padding=0,
                     stride=1,
                     dilation=1,
2413
                     groups=None,
C
caoying03 已提交
2414
                     param_attr=None,
2415
                     bias_attr=None,
C
chengduoZH 已提交
2416
                     use_cudnn=True,
2417
                     act=None,
C
caoying03 已提交
2418
                     name=None):
Y
Yu Yang 已提交
2419
    """
2420
    **Convlution3D transpose layer**
2421

2422
    The convolution3D transpose layer calculates the output based on the input,
2423
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
2424 2425 2426 2427 2428 2429
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
2430 2431 2432
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
2433 2434 2435 2436 2437

    For each input :math:`X`, the equation is:

    .. math::

2438
        Out = \sigma (W \\ast X + b)
2439 2440 2441

    In the above equation:

2442 2443
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
2444 2445 2446 2447
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
2448

2449 2450 2451 2452
    Example:

        - Input:

2453
          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
2454

2455
          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`
2456 2457 2458

        - Output:

2459
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
2460 2461

        Where
Y
Yu Yang 已提交
2462

2463 2464
        .. math::

2465 2466 2467
           D_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1
Y
Yu Yang 已提交
2468 2469

    Args:
2470
        input(Variable): The input image with [N, C, D, H, W] format.
2471 2472 2473
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
2474
            tuple, it must contain three integers, (image_D, image_H, image_W). This
2475 2476
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
2477
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
2478 2479 2480
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
2481 2482
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
2483
        stride(int|tuple): The stride size. If stride is a tuple, it must
2484 2485
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
2486
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
2487 2488 2489
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv3d transpose layer. Inspired by
2490 2491 2492 2493 2494
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
2495 2496 2497
        param_attr(ParamAttr): The parameters to the Conv3d_transpose Layer.
            Default: None
        bias_attr(ParamAttr): Bias parameter for the Conv3d layer. Default: None
2498 2499 2500 2501 2502
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
        act(str): Activation type. Default: None
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
2503 2504

    Returns:
2505
        Variable: The tensor variable storing the convolution transpose result.
2506 2507

    Raises:
2508 2509
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
2510 2511 2512 2513

    Examples:
       .. code-block:: python

2514 2515
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d_transpose = fluid.layers.conv3d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
2516
    """
2517 2518
    l_type = "conv3d_transpose"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2519
    if not isinstance(input, Variable):
2520
        raise TypeError("Input of conv3d_transpose must be Variable")
Y
Yu Yang 已提交
2521 2522
    input_channel = input.shape[1]

2523 2524 2525
    padding = utils.convert_to_list(padding, 3, 'padding')
    stride = utils.convert_to_list(stride, 3, 'stride')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')
C
chengduoZH 已提交
2526

C
chengduoZH 已提交
2527 2528 2529
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

Y
Yu Yang 已提交
2530 2531 2532 2533 2534 2535
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]

2536 2537 2538
        d_in = input.shape[2]
        h_in = input.shape[3]
        w_in = input.shape[4]
C
chengduoZH 已提交
2539

2540
        filter_size_d = (output_size[0] - (d_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
2541
                         padding[0] - 1) // dilation[0] + 1
2542
        filter_size_h = (output_size[1] - (h_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
2543
                         padding[1] - 1) // dilation[1] + 1
2544
        filter_size_w = (output_size[2] - (w_in - 1) * stride[2] + 2 *
M
minqiyang 已提交
2545
                         padding[2] - 1) // dilation[2] + 1
2546
        filter_size = [filter_size_d, filter_size_h, filter_size_w]
C
chengduoZH 已提交
2547
    else:
2548 2549
        filter_size = utils.convert_to_list(filter_size, 3,
                                            'conv3d_transpose.filter_size')
Y
Yu Yang 已提交
2550

2551
    groups = 1 if groups is None else groups
M
minqiyang 已提交
2552
    filter_shape = [input_channel, num_filters // groups] + filter_size
Y
Yu Yang 已提交
2553 2554 2555
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

2556
    pre_bias = helper.create_tmp_variable(dtype=input.dtype)
Y
Yu Yang 已提交
2557
    helper.append_op(
2558
        type=l_type,
Y
Yu Yang 已提交
2559 2560
        inputs={'Input': [input],
                'Filter': [img_filter]},
2561
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
2562 2563 2564 2565
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
2566
            'groups': groups,
C
chengduoZH 已提交
2567 2568
            'use_cudnn': use_cudnn
        })
Y
Yu Yang 已提交
2569

2570 2571
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
Y
Yu Yang 已提交
2572
    return out
Y
yangyaming 已提交
2573 2574


Y
yangyaming 已提交
2575
def sequence_expand(x, y, ref_level=-1, name=None):
2576
    """Sequence Expand Layer. This layer will expand the input variable **x**
Y
yangyaming 已提交
2577 2578 2579 2580
    according to specified level lod of **y**. Please note that lod level of
    **x** is at most 1 and rank of **x** is at least 2. When rank of **x**
    is greater than 2, then it would be viewed as a 2-D tensor.
    Following examples will explain how sequence_expand works:
2581 2582 2583 2584 2585

    .. code-block:: text

        * Case 1
            x is a LoDTensor:
2586
                x.lod  = [[2,        2]]
Y
yangyaming 已提交
2587
                x.data = [[a], [b], [c], [d]]
2588 2589 2590
                x.dims = [4, 1]

            y is a LoDTensor:
2591 2592
                y.lod = [[2,    2],
                         [3, 3, 1, 1]]
2593

Y
yangyaming 已提交
2594
            ref_level: 0
2595

Y
yangyaming 已提交
2596
            then output is a 1-level LoDTensor:
2597
                out.lod =  [[2,        2,        2,        2]]
Y
yangyaming 已提交
2598
                out.data = [[a], [b], [a], [b], [c], [d], [c], [d]]
2599 2600 2601 2602
                out.dims = [8, 1]

        * Case 2
            x is a Tensor:
Y
yangyaming 已提交
2603
                x.data = [[a], [b], [c]]
2604 2605 2606
                x.dims = [3, 1]

            y is a LoDTensor:
2607
                y.lod = [[2, 0, 3]]
2608

Y
yangyaming 已提交
2609
            ref_level: -1
2610

Y
yangyaming 已提交
2611 2612 2613
            then output is a Tensor:
                out.data = [[a], [a], [c], [c], [c]]
                out.dims = [5, 1]
2614 2615 2616
    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
2617 2618
        ref_level (int): Lod level of `y` to be referred by `x`. If set to -1,
                         refer the last level of lod.
C
caoying03 已提交
2619
        name(str|None): A name for this layer(optional). If set None, the layer
Y
yangyaming 已提交
2620
                        will be named automatically.
2621 2622 2623 2624 2625 2626 2627 2628 2629 2630

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
Y
yangyaming 已提交
2631
            out = layers.sequence_expand(x=x, y=y, ref_level=0)
2632
    """
Y
yangyaming 已提交
2633
    helper = LayerHelper('sequence_expand', input=x, **locals())
2634 2635 2636
    dtype = helper.input_dtype()
    tmp = helper.create_tmp_variable(dtype)
    helper.append_op(
Y
yangyaming 已提交
2637 2638 2639 2640 2641
        type='sequence_expand',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp},
        attrs={'ref_level': ref_level})
2642
    return tmp
2643 2644


C
chengduo 已提交
2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709
def sequence_expand_as(x, y, name=None):
    """Sequence Expand As Layer. This layer will expand the input variable **x**
    according to the zeroth level lod of **y**. Current implementation requires
    the level number of Input(Y)'s lod must be 1, and the first dimension of
    Input(X) should be equal to the size of Input(Y)'s zeroth level lod, and
    lod of Input(X) is not considered.

    Following examples will explain how sequence_expand_as works:

    .. code-block:: text

        * Case 1:

            Given a 1-level LoDTensor input(X)
                X.data = [[a], [b], [c], [d]]
                X.dims = [4, 1]
            and input(Y)
                Y.lod = [[0, 3, 6, 7, 8]]
            ref_level: 0
            then we get 1-level LoDTensor
                Out.lod =  [[0,            3,              6,  7,  8]]
                Out.data = [[a], [a], [a], [b], [b], [b], [c], [d]]
                Out.dims = [8, 1]

        * Case 2:

            Given a common Tensor input(X)
                X.data = [[a, b], [c, d], [e, f]]
                X.dims = [3, 2]
            and input(Y)
                Y.lod = [[0, 2, 3, 6]]
            ref_level: 0
            then we get a common LoDTensor
                Out.lod =  [[0,             2,     3,                    6]]
                Out.data = [[a, b], [a, b] [c, d], [e, f], [e, f], [e, f]]
                Out.dims = [6, 2]

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
            out = layers.sequence_expand_as(x=x, y=y)
    """
    helper = LayerHelper('sequence_expand_as', input=x, **locals())
    dtype = helper.input_dtype()
    tmp = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='sequence_expand_as',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp})
    return tmp


F
fengjiayi 已提交
2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727
@templatedoc()
def sequence_pad(x, pad_value, maxlen=None):
    """
    ${comment}

    Args:
        x(Variable): Input variable which should contain lod information.
        pad_value(Variable): The Variable that holds values that will be fill 
            into padded steps. It can be a scalar or a tensor whose shape 
            equals to time steps in sequences. If it's a scalar, it will be 
            automatically broadcasted to the shape of time step.
        maxlen(int, default None): The length of padded sequences. It can be 
            None or any positive int. When it is None, all sequences will be 
            padded up to the length of the longest one among them; when it a 
            certain positive value, it must be greater than the length of the 
            longest original sequence."
    
    Returns:
2728 2729
        Variable: The padded sequence batch and the original lengths before 
                  padding. All sequences has the same length.
F
fengjiayi 已提交
2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744
    
    Examples:
        .. code-block:: python

            import numpy

            x = fluid.layers.data(name='y', shape=[10, 5],
                             dtype='float32', lod_level=1)
            pad_value = fluid.layers.assign(input=numpy.array([0]))
            out = fluid.layers.sequence_pad(x=x, pad_value=pad_value)
    """

    helper = LayerHelper('sequence_pad', input=x, **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
2745 2746 2747 2748 2749
    length = helper.create_tmp_variable(dtype)

    pad_value.stop_gradient = True
    length.stop_gradient = True

F
fengjiayi 已提交
2750 2751 2752 2753 2754 2755
    if maxlen is None:
        maxlen = -1
    helper.append_op(
        type='sequence_pad',
        inputs={'X': x,
                'PadValue': pad_value},
2756 2757
        outputs={'Out': out,
                 'Length': length},
F
fengjiayi 已提交
2758
        attrs={'padded_length': maxlen})
2759
    return out, length
F
fengjiayi 已提交
2760 2761


2762 2763 2764 2765 2766 2767 2768 2769 2770
def beam_search(pre_ids,
                pre_scores,
                ids,
                scores,
                beam_size,
                end_id,
                level=0,
                name=None):
    """
2771 2772
    Beam search is a classical algorithm for selecting candidate words in a
    machine translation task.
Y
Yan Chunwei 已提交
2773 2774 2775

    Refer to `Beam search <https://en.wikipedia.org/wiki/Beam_search>`_
    for more details.
M
minqiyang 已提交
2776 2777

    This layer does the search in beams for one time step. Specifically, it
2778 2779 2780 2781 2782 2783
    selects the top-K candidate word ids of current step from :attr:`ids`
    according to their :attr:`scores` for all source sentences, where K is
    :attr:`beam_size` and :attr:`ids, scores` are predicted results from the
    computation cell. Additionally, :attr:`pre_ids` and :attr:`pre_scores` are
    the output of beam_search at previous step, they are needed for special use
    to handle ended candidate translations.
M
minqiyang 已提交
2784

2785 2786 2787 2788 2789 2790 2791 2792
    Note that the :attr:`scores` passed in should be accumulated scores, and
    length penalty should be done with extra operators before calculating the
    accumulated scores if needed, also suggest finding top-K before it and
    using the top-K candidates following.

    Please see the following demo for a fully beam search usage example:

        fluid/tests/book/test_machine_translation.py
Y
Yan Chunwei 已提交
2793

2794
    Args:
2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819
        pre_ids(Variable): The LodTensor variable which is the output of
            beam_search at previous step. It should be a LodTensor with shape
            :math:`(batch_size, 1)` and lod
            :math:`[[0, 1, ... , batch_size], [0, 1, ..., batch_size]]` at the
            first step.
        pre_scores(Variable): The LodTensor variable which is the output of
            beam_search at previous step.
        ids(Variable): The LodTensor variable containing the candidates ids.
            Its shape should be :math:`(batch_size \\times beam_size, K)`,
            where :math:`K` supposed to be :attr:`beam_size`.
        scores(Variable): The LodTensor variable containing the accumulated
            scores corresponding to :attr:`ids` and its shape is the same as
            the shape of :attr:`ids`.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        level(int, default 0): It can be ignored and mustn't change currently.
            It means the source level of lod, which is explained as following.
            The lod level of :attr:`ids` should be 2. The first level is source
            level which describes how many prefixes (branchs) for each source
            sentece (beam), and the second level is sentence level which
            describes how these candidates belong to the prefix. The paths
            linking prefixes and selected candidates are organized and reserved
            in lod.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
F
fengjiayi 已提交
2820

2821
    Returns:
2822 2823
        Variable: The LodTensor pair containing the selected ids and the \
            corresponding scores.
Y
Yan Chunwei 已提交
2824 2825 2826 2827

    Examples:
        .. code-block:: python

2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844
            # Suppose `probs` contains predicted results from the computation
            # cell and `pre_ids` and `pre_scores` is the output of beam_search
            # at previous step.
            topk_scores, topk_indices = layers.topk(probs, k=beam_size)
            accu_scores = layers.elementwise_add(
                x=layers.log(x=topk_scores)),
                y=layers.reshape(
                    pre_scores, shape=[-1]),
                axis=0)
            selected_ids, selected_scores = layers.beam_search(
                pre_ids=pre_ids,
                pre_scores=pre_scores,
                ids=topk_indices,
                scores=accu_scores,
                beam_size=beam_size,
                end_id=end_id)
    """
Q
Qiao Longfei 已提交
2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855
    helper = LayerHelper('beam_search', **locals())
    score_type = scores.dtype
    id_type = ids.dtype

    selected_scores = helper.create_tmp_variable(dtype=score_type)
    selected_ids = helper.create_tmp_variable(dtype=id_type)

    helper.append_op(
        type='beam_search',
        inputs={
            'pre_ids': pre_ids,
2856
            'pre_scores': pre_scores,
Q
Qiao Longfei 已提交
2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873
            'ids': ids,
            'scores': scores,
        },
        outputs={
            'selected_ids': selected_ids,
            'selected_scores': selected_scores,
        },
        attrs={
            # TODO(ChunweiYan) to assure other value support
            'level': level,
            'beam_size': beam_size,
            'end_id': end_id,
        })

    return selected_ids, selected_scores


2874 2875 2876 2877 2878 2879 2880
def beam_search_decode(ids, scores, beam_size, end_id, name=None):
    """
    Beam Search Decode Layer. This layer constructs the full hypotheses for
    each source sentence by walking back along the LoDTensorArray :attr:`ids`
    whose lods can be used to restore the path in the beam search tree.
    Please see the following demo for a fully beam search usage example:
        fluid/tests/book/test_machine_translation.py
G
guosheng 已提交
2881

2882 2883 2884 2885 2886 2887 2888 2889 2890
    Args:
        ids(Variable): The LodTensorArray variable containing the selected ids
            of all steps.
        scores(Variable): The LodTensorArray variable containing the selected
            scores of all steps.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
G
guosheng 已提交
2891

2892 2893 2894 2895 2896 2897
    Returns:
        Variable: The LodTensor pair containing the generated id sequences \
            and the corresponding scores. The shapes and lods of the two \
            LodTensor are same. The lod level is 2 and the two levels \
            separately indicate how many hypotheses each source sentence has \
            and how many ids each hypothesis has.
G
guosheng 已提交
2898

2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923
    Examples:
        .. code-block:: python
            # Suppose `ids` and `scores` are LodTensorArray variables reserving
            # the selected ids and scores of all steps
            finished_ids, finished_scores = layers.beam_search_decode(
                ids, scores, beam_size=5, end_id=0)
    """
    helper = LayerHelper('beam_search_decode', **locals())
    sentence_ids = helper.create_tmp_variable(dtype=ids.dtype)
    sentence_scores = helper.create_tmp_variable(dtype=ids.dtype)

    helper.append_op(
        type="beam_search_decode",
        inputs={"Ids": ids,
                "Scores": scores},
        outputs={
            "SentenceIds": sentence_ids,
            "SentenceScores": sentence_scores
        },
        attrs={"beam_size": beam_size,
               "end_id": end_id})

    return sentence_ids, sentence_scores


Y
yangyaming 已提交
2924 2925 2926 2927
def lstm_unit(x_t,
              hidden_t_prev,
              cell_t_prev,
              forget_bias=0.0,
Y
yangyaming 已提交
2928
              param_attr=None,
C
caoying03 已提交
2929 2930
              bias_attr=None,
              name=None):
Y
yangyaming 已提交
2931 2932 2933 2934
    """Lstm unit layer. The equation of a lstm step is:

        .. math::

2935
            i_t & = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i)
Y
yangyaming 已提交
2936

2937
            f_t & = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + b_f)
Y
yangyaming 已提交
2938

2939
            c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t + W_{h_c}h_{t-1} + b_c)
Y
yangyaming 已提交
2940

2941
            o_t & = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + b_o)
Y
yangyaming 已提交
2942 2943 2944

            h_t & = o_t tanh(c_t)

2945 2946 2947 2948 2949 2950
    The inputs of lstm unit include :math:`x_t`, :math:`h_{t-1}` and
    :math:`c_{t-1}`. The 2nd dimensions of :math:`h_{t-1}` and :math:`c_{t-1}`
    should be same. The implementation separates the linear transformation and
    non-linear transformation apart. Here, we take :math:`i_t` as an example.
    The linear transformation is applied by calling a `fc` layer and the
    equation is:
Y
yangyaming 已提交
2951 2952 2953

        .. math::

2954
            L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i
Y
yangyaming 已提交
2955 2956 2957 2958 2959 2960 2961 2962

    The non-linear transformation is applied by calling `lstm_unit_op` and the
    equation is:

        .. math::

            i_t = \sigma(L_{i_t})

Y
yangyaming 已提交
2963
    This layer has two outputs including :math:`h_t` and :math:`o_t`.
Y
yangyaming 已提交
2964 2965

    Args:
Y
yangyaming 已提交
2966 2967 2968 2969 2970 2971
        x_t (Variable): The input value of current step, a 2-D tensor with shape
            M x N, M for batch size and N for input size.
        hidden_t_prev (Variable): The hidden value of lstm unit, a 2-D tensor
            with shape M x S, M for batch size and S for size of lstm unit.
        cell_t_prev (Variable): The cell value of lstm unit, a 2-D tensor with
            shape M x S, M for batch size and S for size of lstm unit.
Y
yangyaming 已提交
2972
        forget_bias (float): The forget bias of lstm unit.
Y
yangyaming 已提交
2973 2974
        param_attr (ParamAttr): The attributes of parameter weights, used to set
            initializer, name etc.
Y
yangyaming 已提交
2975 2976
        bias_attr (ParamAttr): The attributes of bias weights, if not False,
            bias weights will be created and be set to default value.
C
caoying03 已提交
2977 2978
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
Y
yangyaming 已提交
2979 2980

    Returns:
Y
yangyaming 已提交
2981
        tuple: The hidden value and cell value of lstm unit.
Y
yangyaming 已提交
2982 2983

    Raises:
2984 2985 2986 2987
        ValueError: The ranks of **x_t**, **hidden_t_prev** and **cell_t_prev**
                    not be 2 or the 1st dimensions of **x_t**, **hidden_t_prev**
                    and **cell_t_prev** not be the same or the 2nd dimensions of
                    **hidden_t_prev** and **cell_t_prev** not be the same.
Y
yangyaming 已提交
2988 2989 2990 2991 2992 2993

    Examples:

        .. code-block:: python

             x_t = fluid.layers.fc(input=x_t_data, size=10)
2994
             prev_hidden = fluid.layers.fc(input=prev_hidden_data, size=30)
Y
yangyaming 已提交
2995
             prev_cell = fluid.layers.fc(input=prev_cell_data, size=30)
Y
yangyaming 已提交
2996
             hidden_value, cell_value = fluid.layers.lstm_unit(x_t=x_t,
Y
yangyaming 已提交
2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012
                                                    hidden_t_prev=prev_hidden,
                                                    cell_t_prev=prev_cell)
    """
    helper = LayerHelper('lstm_unit', **locals())

    if len(x_t.shape) != 2:
        raise ValueError("Rank of x_t must be 2.")

    if len(hidden_t_prev.shape) != 2:
        raise ValueError("Rank of hidden_t_prev must be 2.")

    if len(cell_t_prev.shape) != 2:
        raise ValueError("Rank of cell_t_prev must be 2.")

    if x_t.shape[0] != hidden_t_prev.shape[0] or x_t.shape[
            0] != cell_t_prev.shape[0]:
Y
yangyaming 已提交
3013
        raise ValueError("The 1st dimensions of x_t, hidden_t_prev and "
3014 3015 3016 3017
                         "cell_t_prev must be the same.")

    if hidden_t_prev.shape[1] != cell_t_prev.shape[1]:
        raise ValueError("The 2nd dimensions of hidden_t_prev and "
Y
yangyaming 已提交
3018 3019
                         "cell_t_prev must be the same.")

Y
yangyaming 已提交
3020 3021 3022
    if bias_attr is None:
        bias_attr = ParamAttr()

Y
yangyaming 已提交
3023
    size = cell_t_prev.shape[1]
3024
    concat_out = concat(input=[x_t, hidden_t_prev], axis=1)
Y
yangyaming 已提交
3025 3026
    fc_out = fc(input=concat_out,
                size=4 * size,
Y
yangyaming 已提交
3027
                param_attr=param_attr,
3028
                bias_attr=bias_attr)
Y
yangyaming 已提交
3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040
    dtype = x_t.dtype
    c = helper.create_tmp_variable(dtype)
    h = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='lstm_unit',
        inputs={"X": fc_out,
                "C_prev": cell_t_prev},
        outputs={"C": c,
                 "H": h},
        attrs={"forget_bias": forget_bias})

Y
yangyaming 已提交
3041
    return h, c
G
guosheng 已提交
3042 3043


C
caoying03 已提交
3044
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
3045
    """
Y
yangyaming 已提交
3046
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
3047 3048 3049

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3050
        dim (list|int|None): The dimensions along which the sum is performed. If
Y
yangyaming 已提交
3051 3052
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
3053 3054
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
3055
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
3056
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
3057
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3058 3059
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
3060 3061 3062

    Returns:
        Variable: The reduced Tensor variable.
F
fengjiayi 已提交
3063

G
guosheng 已提交
3064 3065 3066 3067 3068 3069
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
Q
qiaolongfei 已提交
3070
            # Each example is followed by the corresponding output tensor.
G
guosheng 已提交
3071 3072 3073 3074
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
W
whs 已提交
3075 3076 3077 3078

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
Q
qiaolongfei 已提交
3079
            # Each example is followed by the corresponding output tensor.
W
whs 已提交
3080 3081 3082
            fluid.layers.reduce_sum(x, dim=[1, 2]) # [10, 26]
            fluid.layers.reduce_sum(x, dim=[0, 1]) # [16, 20]

G
guosheng 已提交
3083 3084 3085
    """
    helper = LayerHelper('reduce_sum', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
3086 3087
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
3088 3089 3090 3091 3092
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3093
            'dim': dim if dim != None else [0],
G
guosheng 已提交
3094 3095 3096 3097
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
3098 3099


C
caoying03 已提交
3100
def reduce_mean(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
3101
    """
Y
Yibing Liu 已提交
3102
    Computes the mean of the input tensor's elements along the given dimension.
G
guosheng 已提交
3103 3104 3105

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
Y
Yibing Liu 已提交
3106 3107 3108
        dim (list|int|None): The dimension along which the mean is computed. If
            `None`, compute the mean over all elements of :attr:`input`
            and return a variable with a single element, otherwise it
Y
yangyaming 已提交
3109
            must be in the range :math:`[-rank(input), rank(input))`. If
3110
            :math:`dim[i] < 0`, the dimension to reduce is
Y
Yibing Liu 已提交
3111
            :math:`rank(input) + dim[i]`.
Y
yangyaming 已提交
3112 3113
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
3114
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
Yibing Liu 已提交
3115
        name(str|None): A name for this layer(optional). If set `None`, the layer
C
caoying03 已提交
3116
                       will be named automatically.
G
guosheng 已提交
3117 3118

    Returns:
Y
Yibing Liu 已提交
3119
        Variable: The reduced mean Variable.
F
fengjiayi 已提交
3120

G
guosheng 已提交
3121 3122 3123 3124 3125 3126 3127 3128 3129 3130
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x)  # [0.4375]
            fluid.layers.reduce_mean(x, dim=0)  # [0.15, 0.25, 0.55, 0.8]
            fluid.layers.reduce_mean(x, dim=-1)  # [0.475, 0.4]
F
stash  
fengjiayi 已提交
3131 3132
            fluid.layers.reduce_mean(
                x, dim=1, keep_dim=True)  # [[0.475], [0.4]]
W
whs 已提交
3133 3134 3135 3136 3137 3138 3139

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x, dim=[1, 2]) # [2.5, 6.5]
            fluid.layers.reduce_mean(x, dim=[0, 1]) # [4.0, 5.0]
G
guosheng 已提交
3140 3141 3142
    """
    helper = LayerHelper('reduce_mean', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
3143 3144
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
3145 3146 3147 3148 3149
    helper.append_op(
        type='reduce_mean',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3150
            'dim': dim if dim != None else [0],
G
guosheng 已提交
3151 3152 3153 3154
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
3155 3156


C
caoying03 已提交
3157
def reduce_max(input, dim=None, keep_dim=False, name=None):
3158
    """
Y
yangyaming 已提交
3159
    Computes the maximum of tensor elements over the given dimension.
3160 3161 3162

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3163
        dim (list|int|None): The dimension along which the maximum is computed.
Y
yangyaming 已提交
3164 3165 3166
            If :attr:`None`, compute the maximum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
3167
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
3168 3169
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
3170
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3171 3172
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
3173 3174 3175

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
3176

3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x)  # [0.9]
            fluid.layers.reduce_max(x, dim=0)  # [0.2, 0.3, 0.6, 0.9]
            fluid.layers.reduce_max(x, dim=-1)  # [0.9, 0.7]
            fluid.layers.reduce_max(x, dim=1, keep_dim=True)  # [[0.9], [0.7]]
W
whs 已提交
3188 3189 3190 3191 3192 3193 3194

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x, dim=[1, 2]) # [4.0, 8.0]
            fluid.layers.reduce_max(x, dim=[0, 1]) # [7.0, 8.0]
3195 3196 3197
    """
    helper = LayerHelper('reduce_max', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
3198 3199
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3200 3201 3202 3203 3204
    helper.append_op(
        type='reduce_max',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3205
            'dim': dim if dim != None else [0],
3206 3207 3208 3209 3210 3211
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
3212
def reduce_min(input, dim=None, keep_dim=False, name=None):
3213
    """
Y
yangyaming 已提交
3214
    Computes the minimum of tensor elements over the given dimension.
3215 3216 3217

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3218
        dim (list|int|None): The dimensions along which the minimum is computed.
Y
yangyaming 已提交
3219 3220 3221
            If :attr:`None`, compute the minimum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
3222
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
3223 3224
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
3225
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3226 3227
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
3228 3229 3230

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
3231

3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x)  # [0.1]
            fluid.layers.reduce_min(x, dim=0)  # [0.1, 0.2, 0.5, 0.7]
            fluid.layers.reduce_min(x, dim=-1)  # [0.2, 0.1]
            fluid.layers.reduce_min(x, dim=1, keep_dim=True)  # [[0.2], [0.1]]
W
whs 已提交
3243 3244 3245 3246 3247 3248 3249

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x, dim=[1, 2]) # [1.0, 5.0]
            fluid.layers.reduce_min(x, dim=[0, 1]) # [1.0, 2.0]
3250 3251 3252
    """
    helper = LayerHelper('reduce_min', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
3253 3254
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3255 3256 3257 3258 3259
    helper.append_op(
        type='reduce_min',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3260
            'dim': dim if dim != None else [0],
3261 3262 3263 3264
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
3265 3266


3267 3268 3269 3270 3271 3272
def reduce_prod(input, dim=None, keep_dim=False, name=None):
    """
    Computes the product of tensor elements over the given dimension.

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3273
        dim (list|int|None): The dimensions along which the product is performed. If
3274 3275
            :attr:`None`, multipy all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
3276 3277
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
3278 3279 3280
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
yangyaming 已提交
3281
        name(str|None): A name for this layer(optional). If set None, the
Z
zhouhanqing 已提交
3282
            layer will be named automatically.
3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x)  # [0.0002268]
            fluid.layers.reduce_prod(x, dim=0)  # [0.02, 0.06, 0.3, 0.63]
            fluid.layers.reduce_prod(x, dim=-1)  # [0.027, 0.0084]
Y
yangyaming 已提交
3297
            fluid.layers.reduce_prod(x, dim=1,
Z
zhouhanqing 已提交
3298
                                     keep_dim=True)  # [[0.027], [0.0084]]
W
whs 已提交
3299 3300 3301 3302 3303 3304 3305

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x, dim=[1, 2]) # [24.0, 1680.0]
            fluid.layers.reduce_prod(x, dim=[0, 1]) # [105.0, 384.0]
3306 3307 3308
    """
    helper = LayerHelper('reduce_prod', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
3309 3310
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3311 3312 3313 3314 3315
    helper.append_op(
        type='reduce_prod',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3316
            'dim': dim if dim != None else [0],
3317 3318 3319 3320 3321 3322
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
3323
def split(input, num_or_sections, dim=-1, name=None):
G
guosheng 已提交
3324
    """
C
caoying03 已提交
3325
    Split the input tensor into multiple sub-tensors.
G
guosheng 已提交
3326 3327 3328

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
C
caoying03 已提交
3329 3330 3331 3332 3333
        num_or_sections (int|list): If :attr:`num_or_sections` is an integer,
            then the integer indicates the number of equal sized sub-tensors
            that the tensor will be divided into. If :attr:`num_or_sections`
            is a list of integers, the length of list indicates the number of
            sub-tensors and the integers indicate the sizes of sub-tensors'
G
guosheng 已提交
3334
            :attr:`dim` dimension orderly.
C
caoying03 已提交
3335
        dim (int): The dimension along which to split. If :math:`dim < 0`, the
G
guosheng 已提交
3336
            dimension to split along is :math:`rank(input) + dim`.
C
caoying03 已提交
3337 3338
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
3339 3340

    Returns:
D
dzhwinter 已提交
3341
        list(Variable): The list of segmented tensor variables.
G
guosheng 已提交
3342 3343 3344 3345 3346 3347 3348 3349 3350

    Examples:
        .. code-block:: python

            # x is a Tensor variable with shape [3, 9, 5]:
            x0, x1, x2 = fluid.layers.split(x, num_or_sections=3, dim=1)
            x0.shape  # [3, 3, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 3, 5]
F
stash  
fengjiayi 已提交
3351 3352
            x0, x1, x2 = fluid.layers.split(
                x, num_or_sections=[2, 3, 4], dim=1)
G
guosheng 已提交
3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381
            x0.shape  # [3, 2, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 4, 5]
    """
    helper = LayerHelper('split', **locals())
    input_shape = input.shape
    dim = (len(input_shape) + dim) if dim < 0 else dim
    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
        num = num_or_sections
    else:
        assert len(num_or_sections) < input_shape[
            dim], 'len(num_or_sections) must not be more than input.shape[dim].'
        num = len(num_or_sections)
    outs = [
        helper.create_tmp_variable(dtype=helper.input_dtype())
        for i in range(num)
    ]
    helper.append_op(
        type='split',
        inputs={'X': input},
        outputs={'Out': outs},
        attrs={
            'num': num_or_sections if isinstance(num_or_sections, int) else 0,
            'sections': num_or_sections
            if isinstance(num_or_sections, list) else [],
            'axis': dim
        })
    return outs
C
caoying03 已提交
3382 3383 3384 3385 3386 3387 3388 3389 3390


def l2_normalize(x, axis, epsilon=1e-12, name=None):
    """
    **L2 normalize Layer**

    The l2 normalize layer normalizes `x` along dimension `axis` using an L2
    norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes

3391
    .. math::
3392 3393

        y = \\frac{x}{ \sqrt{\sum {x^2} + epsion }}
C
caoying03 已提交
3394 3395 3396 3397 3398

    For `x` with more dimensions, this layer independently normalizes each 1-D
    slice along dimension `axis`.

    Args:
3399
        x(Variable|list): The input tensor to l2_normalize layer.
3400
        axis(int): The axis on which to apply normalization. If `axis < 0`, \
3401 3402
            the dimension to normalization is rank(X) + axis. -1 is the
            last dimension.
3403
        epsilon(float): The epsilon value is used to avoid division by zero, \
3404
            the defalut value is 1e-10.
3405
        name(str|None): A name for this layer(optional). If set None, the layer \
3406
            will be named automatically.
C
caoying03 已提交
3407 3408

    Returns:
3409
        Variable: The output tensor variable is the same shape with `x`.
C
caoying03 已提交
3410 3411

    Examples:
3412

C
caoying03 已提交
3413 3414
        .. code-block:: python

3415 3416 3417 3418
            data = fluid.layers.data(name="data",
                                     shape=(3, 17, 13),
                                     dtype="float32")
            normed = fluid.layers.l2_normalize(x=data, axis=1)
C
caoying03 已提交
3419 3420
    """

F
fengjiayi 已提交
3421 3422
    if len(x.shape) == 1:
        axis = 0
C
caoying03 已提交
3423 3424
    helper = LayerHelper("l2_normalize", **locals())

3425 3426
    out = helper.create_tmp_variable(dtype=x.dtype)
    norm = helper.create_tmp_variable(dtype=x.dtype)
C
caoying03 已提交
3427
    helper.append_op(
3428 3429 3430 3431
        type="norm",
        inputs={"X": x},
        outputs={"Out": out,
                 "Norm": norm},
C
caoying03 已提交
3432
        attrs={
3433 3434
            "axis": 1 if axis is None else axis,
            "epsilon": epsilon,
C
caoying03 已提交
3435 3436
        })
    return out
3437 3438


S
sneaxiy 已提交
3439
def matmul(x, y, transpose_x=False, transpose_y=False, alpha=1.0, name=None):
G
guosheng 已提交
3440
    """
Y
ying 已提交
3441 3442 3443 3444
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.
G
guosheng 已提交
3445

C
chengduoZH 已提交
3446
    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
3447
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:
G
guosheng 已提交
3448

3449 3450 3451 3452 3453
    - If a transpose flag is specified, the last two dimensions of the tensor
      are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
      :math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
      :math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
      opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
3454
      :math:`[1, D]` in transposed form.
G
guosheng 已提交
3455

C
chengduoZH 已提交
3456
    - After transpose, the two tensors are 2-D or n-D and matrix multiplication
3457
      performs in the following way.
G
guosheng 已提交
3458

3459
      - If both are 2-D, they are multiplied like conventional matrices.
C
chengduoZH 已提交
3460
      - If either is n-D, it is treated as a stack of matrices residing in the
Y
ying 已提交
3461
        last two dimensions and a batched matrix multiply supporting broadcast
3462
        applies on the two tensors.
G
guosheng 已提交
3463

Y
ying 已提交
3464 3465
    Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
C
chengduoZH 已提交
3466
    removed after matrix multiplication.
G
guosheng 已提交
3467 3468 3469

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
3470 3471 3472
        y (Variable): The input variable which is a Tensor or LoDTensor.
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
S
sneaxiy 已提交
3473
        alpha (float): The scale of output. Default 1.0.
3474
        name(str|None): A name for this layer(optional). If set None, the layer
3475
            will be named automatically.
G
guosheng 已提交
3476 3477

    Returns:
3478
        Variable: The product Tensor variable.
G
guosheng 已提交
3479

G
guosheng 已提交
3480 3481 3482
    Examples:
        .. code-block:: python

3483
            # Examples to clarify shapes of the inputs and output
C
chengduoZH 已提交
3484 3485
            # x: [B, ..., M, K], y: [B, ..., K, N]
            fluid.layers.matmul(x, y)  # out: [B, ..., M, N]
Y
ying 已提交
3486

3487 3488
            # x: [B, M, K], y: [B, K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
3489

3490 3491
            # x: [B, M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
3492

3493 3494
            # x: [M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [M, N]
Y
ying 已提交
3495 3496 3497 3498

            # x: [B, M, K], y: [K]
            fluid.layers.matmul(x, y)  # out: [B, M]

3499 3500
            # x: [K], y: [K]
            fluid.layers.matmul(x, y)  # out: [1]
3501

Y
ying 已提交
3502
            # x: [M], y: [N]
3503
            fluid.layers.matmul(x, y, True, True)  # out: [M, N]
G
guosheng 已提交
3504
    """
Y
ying 已提交
3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516

    def __check_input(x, y):
        if len(y.shape) > len(x.shape):
            raise ValueError(
                "Invalid inputs for matmul. "
                "x's rank should be always greater than or equal to y'rank.")

        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
Y
ying 已提交
3517
            y_shape = y_shape + [1]
Y
ying 已提交
3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533

        # check the inner 2 dimensions
        if transpose_x:
            x_shape[-2], x_shape[-1] = x_shape[-1], x_shape[-2]
        if transpose_y:
            y_shape[-2], y_shape[-1] = y_shape[-1], y_shape[-2]
        if x_shape[-1] != y_shape[-2]:
            raise ValueError("Invalid inputs for matmul.")

        if len(y_shape) > 2:
            for i, dim_x in enumerate(x_shape[:-2]):
                if dim_x != y_shape[i]:
                    raise ValueError("Invalid inputs for matmul.")

    __check_input(x, y)

3534
    helper = LayerHelper('matmul', **locals())
Y
ying 已提交
3535
    out = helper.create_tmp_variable(dtype=x.dtype)
G
guosheng 已提交
3536
    helper.append_op(
3537 3538 3539 3540
        type='matmul',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
S
sneaxiy 已提交
3541 3542 3543
        attrs={
            'transpose_X': transpose_x,
            'transpose_Y': transpose_y,
S
sneaxiy 已提交
3544
            'alpha': float(alpha),
S
sneaxiy 已提交
3545
        })
3546
    return out
3547 3548


3549
def topk(input, k, name=None):
Q
qingqing01 已提交
3550 3551 3552 3553
    """
    This operator is used to find values and indices of the k largest entries
    for the last dimension.

F
fengjiayi 已提交
3554
    If the input is a vector (1-D Tensor), finds the k largest entries in the vector
Q
qingqing01 已提交
3555 3556 3557 3558 3559 3560
    and outputs their values and indices as vectors. Thus values[j] is the j-th
    largest entry in input, and its index is indices[j].

    If the input is a Tensor with higher rank, this operator computes the top k
    entries along the last dimension.

F
fengjiayi 已提交
3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581
    For example:

    .. code-block:: text

        If:
            input = [[5, 4, 2, 3],
                     [9, 7, 10, 25],
                     [6, 2, 10, 1]]
            k = 2

        Then:
            The first output:
            values = [[5, 4],
                      [10, 25],
                      [6, 10]]

            The second output:
            indices = [[0, 1],
                       [2, 3],
                       [0, 2]]

Q
qingqing01 已提交
3582 3583 3584
    Args:
        input(Variable): The input variable which can be a vector or Tensor with
            higher rank.
3585
        k(int):  The number of top elements to look for along the last dimension
F
fengjiayi 已提交
3586
                 of input.
3587
        name(str|None): A name for this layer(optional). If set None, the layer
3588
                       will be named automatically.
F
fengjiayi 已提交
3589
                       Default: None
Q
qingqing01 已提交
3590 3591

    Returns:
3592 3593 3594
        Tuple[Variable]: A tuple with two elements. Each element is a Variable.
        The first one is k largest elements along each last
        dimensional slice. The second one is indices of values
F
fengjiayi 已提交
3595
        within the last dimension of input.
Q
qingqing01 已提交
3596

F
fengjiayi 已提交
3597 3598
    Raises:
        ValueError: If k < 1 or k is not less than the last dimension of input
Q
qingqing01 已提交
3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618

    Examples:
        .. code-block:: python

            top5_values, top5_indices = layers.topk(input, k=5)
    """
    helper = LayerHelper("top_k", **locals())
    values = helper.create_tmp_variable(dtype=input.dtype)
    indices = helper.create_tmp_variable(dtype="int64")
    helper.append_op(
        type="top_k",
        inputs={"X": [input]},
        outputs={"Out": [values],
                 "Indices": [indices]},
        attrs={"k": k})
    values.stop_gradient = True
    indices.stop_gradient = True
    return values, indices


3619
def edit_distance(input, label, normalized=True, ignored_tokens=None):
3620
    """
Y
ying 已提交
3621 3622 3623 3624 3625 3626 3627 3628 3629
    EditDistance operator computes the edit distances between a batch of
    hypothesis strings and their references. Edit distance, also called
    Levenshtein distance, measures how dissimilar two strings are by counting
    the minimum number of operations to transform one string into anthor.
    Here the operations include insertion, deletion, and substitution.

    For example, given hypothesis string A = "kitten" and reference
    B = "sitting", the edit distance is 3 for A will be transformed into B
    at least after two substitutions and one insertion:
W
wanghaoshuang 已提交
3630

Y
ying 已提交
3631
    "kitten" -> "sitten" -> "sittin" -> "sitting"
W
wanghaoshuang 已提交
3632

3633
    The input is a LoDTensor consisting of all the hypothesis strings with
Y
ying 已提交
3634 3635
    the total number denoted by `batch_size`, and the separation is specified
    by the LoD information. And the `batch_size` reference strings are arranged
3636
    in order in the same way in the input LoDTensor.
W
wanghaoshuang 已提交
3637

3638
    The output contains the `batch_size` results and each stands for the edit
Y
ying 已提交
3639 3640
    distance for a pair of strings respectively. If Attr(normalized) is true,
    the edit distance will be divided by the length of reference string.
W
wanghaoshuang 已提交
3641

3642 3643 3644
    Args:
        input(Variable): The indices for hypothesis strings.
        label(Variable): The indices for reference strings.
3645
        normalized(bool, default True): Indicated whether to normalize the edit distance by
Y
ying 已提交
3646
                          the length of reference string.
3647
        ignored_tokens(list<int>, default None): Tokens that should be removed before
Y
ying 已提交
3648
                                     calculating edit distance.
3649
        name (str): The name of this layer. It is optional.
3650

W
wanghaoshuang 已提交
3651
    Returns:
W
wanghaoshuang 已提交
3652
        Variable: sequence-to-sequence edit distance in shape [batch_size, 1].
W
wanghaoshuang 已提交
3653 3654 3655 3656 3657

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
3658
            y = fluid.layers.data(name='y', shape=[7], dtype='float32')
3659
            cost = fluid.layers.edit_distance(input=x,label=y)
3660
    """
3661
    helper = LayerHelper("edit_distance", **locals())
3662

3663
    # remove some tokens from input and labels
W
wanghaoshuang 已提交
3664
    if ignored_tokens is not None and len(ignored_tokens) > 0:
3665 3666 3667 3668 3669 3670 3671
        erased_input = helper.create_tmp_variable(dtype="int64")
        erased_label = helper.create_tmp_variable(dtype="int64")

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [input]},
            outputs={"Out": [erased_input]},
W
wanghaoshuang 已提交
3672
            attrs={"tokens": ignored_tokens})
3673 3674 3675 3676 3677
        input = erased_input

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [label]},
W
whs 已提交
3678
            outputs={"Out": [erased_label]},
W
wanghaoshuang 已提交
3679
            attrs={"tokens": ignored_tokens})
3680 3681
        label = erased_label

3682 3683
    # edit distance op
    edit_distance_out = helper.create_tmp_variable(dtype="int64")
3684
    sequence_num = helper.create_tmp_variable(dtype="int64")
3685 3686 3687 3688
    helper.append_op(
        type="edit_distance",
        inputs={"Hyps": [input],
                "Refs": [label]},
3689 3690
        outputs={"Out": [edit_distance_out],
                 "SequenceNum": [sequence_num]},
3691 3692
        attrs={"normalized": normalized})

3693
    return edit_distance_out, sequence_num
3694 3695 3696 3697 3698


def ctc_greedy_decoder(input, blank, name=None):
    """
    This op is used to decode sequences by greedy policy by below steps:
Y
yi.wu 已提交
3699

Y
ying 已提交
3700 3701 3702 3703
    1. Get the indexes of max value for each row in input. a.k.a.
       numpy.argmax(input, axis=0).
    2. For each sequence in result of step1, merge repeated tokens between two
       blanks and delete all blanks.
3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720

    A simple example as below:

    .. code-block:: text

        Given:

        input.data = [[0.6, 0.1, 0.3, 0.1],
                      [0.3, 0.2, 0.4, 0.1],
                      [0.1, 0.5, 0.1, 0.3],
                      [0.5, 0.1, 0.3, 0.1],

                      [0.5, 0.1, 0.3, 0.1],
                      [0.2, 0.2, 0.2, 0.4],
                      [0.2, 0.2, 0.1, 0.5],
                      [0.5, 0.1, 0.3, 0.1]]

3721
        input.lod = [[4, 4]]
3722 3723 3724 3725 3726 3727 3728

        Then:

        output.data = [[2],
                       [1],
                       [3]]

3729
        output.lod = [[2, 1]]
3730 3731 3732

    Args:

Y
ying 已提交
3733 3734 3735 3736 3737 3738 3739 3740 3741
        input(Variable): (LoDTensor<float>), the probabilities of
                         variable-length sequences, which is a 2-D Tensor with
                         LoD information. It's shape is [Lp, num_classes + 1],
                         where Lp is the sum of all input sequences' length and
                         num_classes is the true number of classes. (not
                         including the blank label).
        blank(int): the blank label index of Connectionist Temporal
                    Classification (CTC) loss, which is in thehalf-opened
                    interval [0, num_classes + 1).
3742
        name (str): The name of this layer. It is optional.
3743 3744

    Returns:
3745
        Variable: CTC greedy decode result. If all the sequences in result were
3746
        empty, the result LoDTensor will be [-1] with LoD [[]] and dims [1, 1].
3747 3748 3749 3750 3751

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
W
wanghaoshuang 已提交
3752

3753
            cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
W
wanghaoshuang 已提交
3754
    """
3755
    helper = LayerHelper("ctc_greedy_decoder", **locals())
Q
qingqing01 已提交
3756
    _, topk_indices = topk(input, k=1)
3757 3758 3759 3760 3761 3762

    # ctc align op
    ctc_out = helper.create_tmp_variable(dtype="int64")
    helper.append_op(
        type="ctc_align",
        inputs={"Input": [topk_indices]},
W
wanghaoshuang 已提交
3763
        outputs={"Output": [ctc_out]},
3764 3765
        attrs={"merge_repeated": True,
               "blank": blank})
3766
    return ctc_out
3767 3768


F
fengjiayi 已提交
3769
def warpctc(input, label, blank=0, norm_by_times=False):
W
wanghaoshuang 已提交
3770
    """
3771 3772
    An operator integrating the open source Warp-CTC library
    (https://github.com/baidu-research/warp-ctc)
W
wanghaoshuang 已提交
3773
    to compute Connectionist Temporal Classification (CTC) loss.
3774 3775
    It can be aliased as softmax with CTC, since a native softmax activation is
    interated to the Warp-CTC library, to to normlize values for each row of the
W
wanghaoshuang 已提交
3776 3777 3778
    input tensor.

    Args:
3779
       input (Variable): The unscaled probabilities of variable-length sequences,
W
wanghaoshuang 已提交
3780 3781 3782 3783
         which is a 2-D Tensor with LoD information.
         It's shape is [Lp, num_classes + 1], where Lp is the sum of all input
         sequences' length and num_classes is the true number of classes.
         (not including the blank label).
3784
       label (Variable): The ground truth of variable-length sequence,
3785 3786 3787
         which is a 2-D Tensor with LoD information. It is of the shape [Lg, 1],
         where Lg is th sum of all labels' length.
       blank (int, default 0): The blank label index of Connectionist
W
wanghaoshuang 已提交
3788 3789
         Temporal Classification (CTC) loss, which is in the
         half-opened interval [0, num_classes + 1).
3790 3791 3792
       norm_by_times(bool, default false): Whether to normalize the gradients
         by the number of time-step, which is also the sequence's length.
         There is no need to normalize the gradients if warpctc layer was
3793
         follewed by a mean_op.
W
wanghaoshuang 已提交
3794 3795

    Returns:
3796 3797
        Variable: The Connectionist Temporal Classification (CTC) loss,
        which is a 2-D Tensor of the shape [batch_size, 1].
W
wanghaoshuang 已提交
3798 3799

    Examples:
3800

W
wanghaoshuang 已提交
3801
        .. code-block:: python
3802

3803 3804 3805
            label = fluid.layers.data(shape=[11, 8], dtype='float32', lod_level=1)
            predict = fluid.layers.data(shape=[11, 1], dtype='float32')
            cost = fluid.layers.warpctc(input=predict, label=label)
W
wanghaoshuang 已提交
3806 3807

    """
F
fengjiayi 已提交
3808
    helper = LayerHelper('warpctc', **locals())
W
wanghaoshuang 已提交
3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819
    loss_out = helper.create_tmp_variable(dtype=input.dtype)
    grad_out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
        type='warpctc',
        inputs={'Logits': [input],
                'Label': [label]},
        outputs={'WarpCTCGrad': [grad_out],
                 'Loss': [loss_out]},
        attrs={'blank': blank,
               'norm_by_times': norm_by_times})
    return loss_out
3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834


def sequence_reshape(input, new_dim):
    """
    **Sequence Reshape Layer**

    This layer will rearrange the input sequences. The new dimension is set by
    user. Length of each sequence is computed according to original length,
    original dimension and new dimension. The following example will help to
    illustrate the function of this layer:

    .. code-block:: text

        x is a LoDTensor:
            x.lod  = [[0, 2, 6]]
3835 3836 3837
            x.data = [[1,  2], [3,  4],
                      [5,  6], [7,  8],
                      [9, 10], [11, 12]]
3838 3839 3840 3841 3842
            x.dims = [6, 2]

        set new_dim = 4

        then out is a LoDTensor:
3843

3844
            out.lod  = [[0, 1, 3]]
3845 3846 3847 3848

            out.data = [[1,  2,  3,  4],
                        [5,  6,  7,  8],
                        [9, 10, 11, 12]]
3849 3850 3851 3852 3853 3854 3855
            out.dims = [3, 4]

    Currently, only 1-level LoDTensor is supported and please make sure
    (original length * original dimension) can be divided by new dimension with
    no remainder for each sequence.

    Args:
3856 3857 3858

       input (Variable): A 2-D LoDTensor with shape being [N, M] where M for dimension.
       new_dim (int): New dimension that the input LoDTensor is reshaped to.
3859 3860

    Returns:
3861

3862 3863 3864 3865 3866
        Variable: Reshaped LoDTensor according to new dimension.

    Examples:
        .. code-block:: python

3867
            x = fluid.layers.data(shape=[5, 20], dtype='float32', lod_level=1)
3868
            x_reshaped = fluid.layers.sequence_reshape(input=x, new_dim=10)
3869 3870 3871 3872 3873 3874 3875 3876 3877
    """
    helper = LayerHelper('sequence_reshape', **locals())
    out = helper.create_tmp_variable(helper.input_dtype())
    helper.append_op(
        type='sequence_reshape',
        inputs={'X': [input]},
        outputs={'Out': [out]},
        attrs={'new_dim': new_dim})
    return out
Y
ying 已提交
3878 3879


3880 3881 3882 3883
# FIXME(wuyi): let docstring_checker.py understand @autodoc.
# For now, the comments in c++ use types like Tensor, but in python side
# the type is often "Variable", and arguments may vary.
@templatedoc(op_type="nce")
Y
Yang Yu 已提交
3884 3885 3886 3887 3888 3889 3890
def nce(input,
        label,
        num_total_classes,
        sample_weight=None,
        param_attr=None,
        bias_attr=None,
        num_neg_samples=None):
3891 3892 3893 3894 3895 3896 3897
    """
    ${comment}

    Args:
        input (Variable): input variable.
        label (Variable): label.
        num_total_classes (int):${num_total_classes_comment}
3898 3899
        sample_weight (Variable|None): A Variable of shape [batch_size, 1]
            storing a weight for each sample. The default weight for each
3900
            sample is 1.0.
3901 3902 3903
        param_attr (ParamAttr|None): attributes for parameter
        bias_attr (ParamAttr|None): attributes for bias
        num_neg_samples (int): ${num_neg_samples_comment}
F
fengjiayi 已提交
3904

3905
    Returns:
Y
Yibing Liu 已提交
3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932
        Variable: The output nce loss.

    Examples:
        .. code-block:: python

            window_size = 5
            words = []
            for i in xrange(window_size):
                words.append(layers.data(
                    name='word_{0}'.format(i), shape=[1], dtype='int64'))

            dict_size = 10000
            label_word = int(window_size / 2) + 1

            embs = []
            for i in xrange(window_size):
                if i == label_word:
                    continue

                emb = layers.embedding(input=words[i], size=[dict_size, 32],
                                       param_attr='emb.w', is_sparse=True)
                embs.append(emb)

            embs = layers.concat(input=embs, axis=1)
            loss = layers.nce(input=embs, label=words[label_word],
                          num_total_classes=dict_size, param_attr='nce.w',
                          bias_attr='nce.b')
3933
    """
Y
Yang Yu 已提交
3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952
    helper = LayerHelper('nce', **locals())
    assert isinstance(input, Variable)
    dim = input.shape[1]
    assert isinstance(label, Variable)
    num_true_class = label.shape[1]
    w = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_total_classes, dim],
        is_bias=False,
        dtype=input.dtype)
    b = helper.create_parameter(
        attr=helper.bias_attr,
        shape=[num_total_classes, 1],
        is_bias=True,
        dtype=input.dtype)
    cost = helper.create_tmp_variable(dtype=input.dtype)
    sample_logits = helper.create_tmp_variable(dtype=input.dtype)
    sample_labels = helper.create_tmp_variable(dtype=label.dtype)

Y
Yang Yu 已提交
3953 3954 3955 3956 3957 3958 3959 3960 3961
    if num_neg_samples is None:
        num_neg_samples = 10
    else:
        num_neg_samples = int(num_neg_samples)

    attrs = {
        'num_total_classes': int(num_total_classes),
        'num_neg_samples': num_neg_samples
    }
Y
Yang Yu 已提交
3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977

    helper.append_op(
        type='nce',
        inputs={
            'Input': input,
            'Label': label,
            'Weight': w,
            'Bias': b,
            'SampleWeight': sample_weight if sample_weight is not None else []
        },
        outputs={
            'Cost': cost,
            'SampleLogits': sample_logits,
            'SampleLabels': sample_labels
        },
        attrs=attrs)
Y
Yang Yu 已提交
3978
    return cost / (num_neg_samples + 1)
3979 3980


G
guosheng 已提交
3981
def hsigmoid(input, label, num_classes, param_attr=None, bias_attr=None):
W
weixing02 已提交
3982 3983
    """
    The hierarchical sigmoid operator is used to accelerate the training
M
minqiyang 已提交
3984
    process of language model. This operator organizes the classes into a
G
guosheng 已提交
3985 3986 3987 3988 3989 3990 3991 3992 3993
    complete binary tree, each leaf node represents a class(a word) and each
    internal node acts as a binary classifier. For each word there's a unique
    path from root to it's leaf node, hsigmoid calculate the cost for each
    internal node on the path, and sum them to get a total cost. hsigmoid can
    achive a acceleration from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
    represents the size of word dict.

    Refer to `Hierarchical Probabilistic Neural Network Language Model
    <http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>`_
M
minqiyang 已提交
3994

W
weixing02 已提交
3995
    Args:
M
minqiyang 已提交
3996
        input (Variable): The input tensor variable with shape
G
guosheng 已提交
3997 3998 3999 4000 4001
            :math:`[N \\times D]`, where :math:`N` is the size of mini-batch,
            and :math:`D` is the feature size.
        label (Variable): The tensor variable contains labels of training data.
            It's a tensor with shape is :math:`[N \\times 1]`.
        num_classes: (int), The number of classes, must not be less than 2.
W
weixing02 已提交
4002 4003
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter
             attribute for learnable parameters/weights of this layer.
M
minqiyang 已提交
4004
        bias_attr (ParamAttr|list of ParamAttr, default None):  The parameter
G
guosheng 已提交
4005 4006
             attribute for the bias of this layer. If it is set to False, no
             bias will be applied.
W
weixing02 已提交
4007 4008 4009 4010 4011 4012 4013 4014

    Returns:
        Out: (Tensor) The cost of hierarchical sigmoid operator. the shape is [N, 1]

    Examples:

        .. code-block:: python

G
guosheng 已提交
4015 4016 4017
            x = fluid.layers.data(name='x', shape=[2], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='int64')
            out = fluid.layers.hsigmoid(input=x, label=y, num_classes=6)
W
weixing02 已提交
4018 4019 4020 4021 4022 4023 4024 4025
    """

    helper = LayerHelper('hierarchical_sigmoid', **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    pre_out = helper.create_tmp_variable(dtype)
    dim = input.shape[1]
    if num_classes < 2:
G
guosheng 已提交
4026
        raise ValueError("num_classes must not be less than 2.")
W
weixing02 已提交
4027 4028 4029 4030 4031
    weights = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_classes - 1, dim],
        is_bias=False,
        dtype=input.dtype)
W
weixing02 已提交
4032 4033 4034 4035 4036 4037 4038 4039
    inputs = {"X": input, "W": weights, "Label": label}
    if helper.bias_attr:
        bias = helper.create_parameter(
            attr=helper.bias_attr,
            shape=[1, num_classes - 1],
            is_bias=True,
            dtype=input.dtype)
        inputs['Bias'] = bias
W
weixing02 已提交
4040 4041
    helper.append_op(
        type="hierarchical_sigmoid",
W
weixing02 已提交
4042
        inputs=inputs,
W
weixing02 已提交
4043 4044 4045 4046 4047 4048
        outputs={"Out": out,
                 "PreOut": pre_out},
        attrs={"num_classes": num_classes})
    return out


Y
fix ci.  
ying 已提交
4049
def transpose(x, perm, name=None):
Y
ying 已提交
4050 4051 4052 4053 4054 4055 4056
    """
    Permute the dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
4057 4058 4059
        x (Variable): The input Tensor.
        perm (list): A permutation of the dimensions of `input`.
        name (str): The name of this layer. It is optional.
Y
ying 已提交
4060 4061 4062 4063 4064 4065 4066 4067

    Returns:
        Variable: A transposed Tensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[5, 10, 15], dtype='float32')
Y
fix ci.  
ying 已提交
4068
            x_transposed = layers.transpose(x, perm=[1, 0, 2])
Y
ying 已提交
4069 4070
    """

Y
fix ci.  
ying 已提交
4071
    if len(perm) != len(x.shape):
Y
ying 已提交
4072 4073 4074
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(input). "
            "It's length shoud be equal to Input(input)'s rank.")
Y
ying 已提交
4075 4076 4077 4078 4079 4080
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
                "Each element in perm should be less than x's rank. "
                "%d-th element in perm is %d which accesses x's rank %d." %
                (idx, perm[idx], len(x.shape)))
Y
ying 已提交
4081 4082

    helper = LayerHelper('transpose', **locals())
Y
fix ci.  
ying 已提交
4083
    out = helper.create_tmp_variable(x.dtype)
4084
    x_shape = helper.create_tmp_variable(x.dtype)
Y
ying 已提交
4085
    helper.append_op(
4086
        type='transpose2',
Y
fix ci.  
ying 已提交
4087
        inputs={'X': [x]},
4088 4089
        outputs={'Out': [out],
                 'XShape': [x_shape]},
Y
ying 已提交
4090 4091
        attrs={'axis': perm})
    return out
4092 4093


4094 4095 4096 4097 4098 4099 4100
def im2sequence(input,
                filter_size=1,
                stride=1,
                padding=0,
                input_image_size=None,
                out_stride=1,
                name=None):
4101
    """
4102 4103 4104 4105 4106 4107 4108
    Extracts image patches from the input tensor to form a tensor of shape
    {input.batch_size * output_height * output_width, filter_size_H *
    filter_size_W * input.channels} which is similar with im2col.
    This op use filter / kernel to scan images and convert these images to
    sequences. After expanding, the number of time step are
    output_height * output_width for an image, in which output_height and
    output_width are calculated by below equation:
4109 4110 4111 4112 4113 4114 4115 4116 4117 4118

    .. math::

        output\_size = 1 + \
            (2 * padding + img\_size - block\_size + stride - 1) / stride

    And the dimension of each time step is block_y * block_x * input.channels.

    Args:
        input (Variable): The input should be a tensor in NCHW format.
W
wanghaoshuang 已提交
4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136

        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.

        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.

        padding(int|tuple): The padding size. If padding is a tuple, it can
            contain two integers like (padding_H, padding_W) which means
            padding_up = padding_down = padding_H and
            padding_left = padding_right = padding_W. Or it can use
            (padding_up, padding_left, padding_down, padding_right) to indicate
            paddings of four direction. Otherwise, a scalar padding means
            padding_up = padding_down = padding_left = padding_right = padding
            Default: padding = 0.

4137 4138 4139 4140 4141 4142 4143 4144 4145
        input_image_size(Variable): the input contains image real size.It's dim
            is [batchsize, 2]. It is dispensable.It is just for batch inference.

        out_stride(int|tuple): The scaling of image through CNN. It is
            dispensable. It is valid only when input_image_size is not null.
            If out_stride is tuple,  it must contain two intergers,
            (out_stride_H, out_stride_W). Otherwise,
            the out_stride_H = out_stride_W = out_stride.

4146 4147 4148
        name (int): The name of this layer. It is optional.

    Returns:
W
wanghaoshuang 已提交
4149 4150 4151 4152 4153
        output: The output is a LoDTensor with shape
        {input.batch_size * output_height * output_width,
        filter_size_H * filter_size_W * input.channels}.
        If we regard output as a matrix, each row of this matrix is
        a step of a sequence.
4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180

    Examples:

        .. code-block:: text

            Given:

            x = [[[[ 6.  2.  1.]
                   [ 8.  3.  5.]
                   [ 0.  2.  6.]]

                  [[ 2.  4.  4.]
                   [ 6.  3.  0.]
                   [ 6.  4.  7.]]]

                 [[[ 6.  7.  1.]
                   [ 5.  7.  9.]
                   [ 2.  4.  8.]]

                  [[ 1.  2.  1.]
                   [ 1.  3.  5.]
                   [ 9.  0.  8.]]]]

            x.dims = {2, 2, 3, 3}

            And:

W
wanghaoshuang 已提交
4181 4182 4183
            filter = [2, 2]
            stride = [1, 1]
            padding = [0, 0]
4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195

            Then:

            output.data = [[ 6.  2.  8.  3.  2.  4.  6.  3.]
                           [ 2.  1.  3.  5.  4.  4.  3.  0.]
                           [ 8.  3.  0.  2.  6.  3.  6.  4.]
                           [ 3.  5.  2.  6.  3.  0.  4.  7.]
                           [ 6.  7.  5.  7.  1.  2.  1.  3.]
                           [ 7.  1.  7.  9.  2.  1.  3.  5.]
                           [ 5.  7.  2.  4.  1.  3.  9.  0.]
                           [ 7.  9.  4.  8.  3.  5.  0.  8.]]

4196
            output.dims = {8, 8}
4197

4198
            output.lod = [[4, 4]]
4199

D
dzhwinter 已提交
4200
     Examples:
4201 4202 4203

        .. code-block:: python

4204 4205
            output = fluid.layers.im2sequence(
                input=layer, stride=[1, 1], filter_size=[2, 2])
4206 4207

    """
W
wanghaoshuang 已提交
4208 4209 4210 4211 4212 4213 4214 4215 4216 4217

    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]
    if len(padding) == 2:
        padding.append(padding[0])
        padding.append(padding[1])
4218 4219 4220 4221 4222 4223 4224
    inputs = {"X": input}
    attrs = {"kernels": filter_size, "strides": stride, "padding": padding}
    if input_image_size:
        if isinstance(out_stride, int):
            out_stride = [out_stride, out_stride]
        inputs["Y"] = input_image_size
        attrs["out_stride"] = out_stride
4225
    helper = LayerHelper('im2sequence', **locals())
4226 4227
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
4228
        type='im2sequence', inputs=inputs, outputs={'Out': out}, attrs=attrs)
4229
    return out
4230 4231


Y
yuyang18 已提交
4232
@templatedoc()
4233
def row_conv(input, future_context_size, param_attr=None, act=None):
Y
yuyang18 已提交
4234 4235
    """
    ${comment}
4236 4237

    Args:
Y
yuyang18 已提交
4238
        input (${x_type}): ${x_comment}.
Y
yangyaming 已提交
4239 4240
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
4241 4242 4243 4244 4245
        param_attr (ParamAttr): Attributes of parameters, including
            name, initializer etc.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
Y
yuyang18 已提交
4246
        ${out_comment}.
4247 4248

    Examples:
Y
yuyang18 已提交
4249 4250 4251 4252
        >>> import paddle.fluid as fluid
        >>> x = fluid.layers.data(name='x', shape=[16],
        >>>                        dtype='float32', lod_level=1)
        >>> out = fluid.layers.row_conv(input=x, future_context_size=2)
4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264
    """
    helper = LayerHelper('row_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [future_context_size + 1, input.shape[1]]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='row_conv',
        inputs={'X': [input],
                'Filter': [filter_param]},
        outputs={'Out': [out]})
Y
yangyaming 已提交
4265
    return helper.append_activation(out)
4266 4267


Y
yuyang18 已提交
4268
@templatedoc()
4269 4270
def multiplex(inputs, index):
    """
Y
yuyang18 已提交
4271 4272 4273 4274 4275 4276 4277
    ${comment}

    >>> import paddle.fluid as fluid
    >>> x1 = fluid.layers.data(name='x1', shape=[4], dtype='float32')
    >>> x2 = fluid.layers.data(name='x2', shape=[4], dtype='float32')
    >>> index = fluid.layers.data(name='index', shape=[1], dtype='int32')
    >>> out = fluid.layers.multiplex(inputs=[x1, x2], index=index)
4278 4279

    Args:
Y
yuyang18 已提交
4280 4281
       inputs (list): ${x_comment}.
       index (${ids_type}): ${ids_comment}.
4282 4283

    Returns:
Y
yuyang18 已提交
4284
        ${out_comment}.
4285 4286
    """
    helper = LayerHelper('multiplex', **locals())
Y
yangyaming 已提交
4287 4288 4289 4290 4291 4292

    if not isinstance(inputs, list) and len(inputs) < 2:
        raise ValueError("inputs should be a list object and contains at least "
                         "2 elements.")

    out = helper.create_tmp_variable(inputs[0].dtype)
4293 4294 4295 4296 4297 4298
    helper.append_op(
        type='multiplex',
        inputs={'X': inputs,
                'Ids': index},
        outputs={'Out': [out]})
    return out
4299 4300


4301 4302 4303 4304
def softmax_with_cross_entropy(logits,
                               label,
                               soft_label=False,
                               ignore_index=-100):
4305 4306
    """
    **Softmax With Cross Entropy Operator.**
4307

4308 4309 4310 4311
    Cross entropy loss with softmax is used as the output layer extensively. This
    operator computes the softmax normalized values for each row of the input
    tensor, after which cross-entropy loss is computed. This provides a more
    numerically stable gradient.
4312

4313 4314 4315
    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
4316

4317 4318 4319
    When the attribute soft_label is set false, this operators expects mutually
    exclusive hard labels, each sample in a batch is in exactly one class with a
    probability of 1.0. Each sample in the batch will have a single label.
4320

4321
    The equation is as follows:
4322

4323
    1) Hard label (one-hot label, so every sample has exactly one class)
4324

4325 4326 4327 4328
    .. math::

        loss_j =  -\\text{logit}_{label_j} +
        \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{logit}_i)\\right), j = 1,..., K
4329

4330 4331 4332
    2) Soft label (each sample can have a distribution over all classes)

    .. math::
4333

4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345
        loss_j =  -\\sum_{i=0}^{K}\\text{label}_i
        \\left(\\text{logit}_i - \\log\\left(\\sum_{i=0}^{K}
        \\exp(\\text{logit}_i)\\right)\\right), j = 1,...,K

    Args:
        logits (Variable): The unscaled log probabilities, which is a 2-D tensor
            with shape [N x K]. N is the batch_size, and K is the class number.
        label (Variable): The ground truth which is a 2-D tensor. If soft_label
            is set to false, Label is a Tensor<int64> with shape [N x 1]. If
            soft_label is set to true, Label is a Tensor<float/double> with
        soft_label (bool): A flag to indicate whether to interpretate the given
            labels as soft labels. By default, `soft_label` is set to False.
4346 4347 4348 4349
        ignore_index (int): Specifies a target value that is ignored and does 
                            not contribute to the input gradient. Only valid 
                            if soft_label is set to False. Default: -100

4350 4351 4352 4353 4354 4355 4356 4357 4358
    Returns:
        Variable: The cross entropy loss is a 2-D tensor with shape [N x 1].

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
F
stash  
fengjiayi 已提交
4359 4360
            out = fluid.layers.softmax_with_cross_entropy(
                logits=fc, label=label)
4361 4362 4363 4364 4365 4366 4367 4368 4369 4370
    """
    helper = LayerHelper('softmax_with_cross_entropy', **locals())
    softmax = helper.create_tmp_variable(dtype=logits.dtype)
    loss = helper.create_tmp_variable(dtype=logits.dtype)
    helper.append_op(
        type='softmax_with_cross_entropy',
        inputs={'Logits': logits,
                'Label': label},
        outputs={'Softmax': softmax,
                 'Loss': loss},
4371 4372
        attrs={'soft_label': soft_label,
               'ignore_index': ignore_index})
4373 4374 4375 4376 4377
    return loss


def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
    """
Y
Yibing Liu 已提交
4378 4379
    This layer computes the smooth L1 loss for Variable :attr:`x` and :attr:`y`.
    It takes the first dimension of :attr:`x` and :attr:`y` as batch size.
Q
qingqing01 已提交
4380
    For each instance, it computes the smooth L1 loss element by element first
4381
    and then sums all the losses. So the shape of ouput Variable is
4382
    [batch_size, 1].
4383

4384 4385
    Args:
        x (Variable): A tensor with rank at least 2. The input value of smooth
Q
qingqing01 已提交
4386
            L1 loss op with shape [batch_size, dim1, ..., dimN].
4387
        y (Variable): A tensor with rank at least 2. The target value of smooth
Y
Yibing Liu 已提交
4388
            L1 loss op with same shape as :attr:`x`.
4389
        inside_weight (Variable|None):  A tensor with rank at least 2. This
4390 4391
            input is optional and should have same shape with :attr:`x`. If
            provided, the result of (:attr:`x` - :attr:`y`) will be multiplied
Y
Yibing Liu 已提交
4392
            by this tensor element by element.
4393
        outside_weight (Variable|None): A tensor with rank at least 2. This
4394 4395
            input is optional and should have same shape with :attr:`x`. If
            provided, the out smooth L1 loss will be multiplied by this tensor
Y
Yibing Liu 已提交
4396
            element by element.
4397
        sigma (float|None): Hyper parameter of smooth L1 loss layer. A float
4398 4399
           scalar with default value 1.0.

4400
    Returns:
4401
        Variable: The output smooth L1 loss with shape [batch_size, 1].
4402 4403 4404 4405 4406

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
F
stash  
fengjiayi 已提交
4407 4408
            label = fluid.layers.data(
                name='label', shape=[100], dtype='float32')
4409
            fc = fluid.layers.fc(input=data, size=100)
F
fengjiayi 已提交
4410
            out = fluid.layers.smooth_l1(x=fc, y=label)
4411
    """
4412

4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427
    helper = LayerHelper('smooth_l1_loss', **locals())
    diff = helper.create_tmp_variable(dtype=x.dtype)
    loss = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='smooth_l1_loss',
        inputs={
            'X': x,
            'Y': y,
            'InsideWeight': inside_weight,
            'OutsideWeight': outside_weight
        },
        outputs={'Diff': diff,
                 'Out': loss},
        attrs={'sigma': sigma})
    return loss
4428 4429 4430 4431


def one_hot(input, depth):
    """
Y
Yibing Liu 已提交
4432
    This layer creates the one-hot representations for input indices.
4433 4434

    Args:
Y
Yibing Liu 已提交
4435 4436
        input(Variable): Input indices, last dimension must be 1.
        depth(scalar): An interger defining the depth of the one-hot dimension.
4437 4438

    Returns:
Y
Yibing Liu 已提交
4439
        Variable: The one-hot representations of input.
4440 4441

    Examples:
C
caoying03 已提交
4442
        .. code-block:: python
4443

Y
Yibing Liu 已提交
4444 4445
            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
4446 4447 4448 4449 4450 4451 4452 4453 4454
    """
    helper = LayerHelper("one_hot", **locals())
    one_hot_out = helper.create_tmp_variable(dtype='float32')
    helper.append_op(
        type="one_hot",
        inputs={'X': input},
        attrs={'depth': depth},
        outputs={'Out': one_hot_out})
    return one_hot_out
Y
Yu Yang 已提交
4455 4456


Y
Yu Yang 已提交
4457
def autoincreased_step_counter(counter_name=None, begin=1, step=1):
Y
Yu Yang 已提交
4458
    """
Y
yi.wu 已提交
4459 4460 4461
    Create an auto-increase variable
    which will be automatically increased by 1 every mini-batch
    Return the run counter of the main program, default is started from 1.
Y
Yu Yang 已提交
4462 4463 4464 4465 4466 4467

    Args:
        counter_name(str): The counter name, default is '@STEP_COUNTER@'.
        begin(int): The first value of this counter.
        step(int): The increment step between each execution.

4468 4469
    Returns:
        Variable: The global run counter.
Y
yi.wu 已提交
4470 4471 4472 4473 4474 4475

    Examples:
        .. code-block:: python

           global_step = fluid.layers.autoincreased_step_counter(
               counter_name='@LR_DECAY_COUNTER@', begin=begin, step=1)
Y
Yu Yang 已提交
4476 4477
    """
    helper = LayerHelper('global_step_counter')
Y
Yu Yang 已提交
4478 4479
    if counter_name is None:
        counter_name = '@STEP_COUNTER@'
Y
Yu Yang 已提交
4480 4481 4482 4483 4484
    counter, is_new_var = helper.create_or_get_global_variable(
        name=counter_name, dtype='int64', shape=[1], persistable=True)
    if is_new_var:
        helper.set_variable_initializer(
            counter, initializer=Constant(
Y
Yu Yang 已提交
4485
                value=begin - 1, force_cpu=True))
W
Wu Yi 已提交
4486
        helper.main_program.global_block()._prepend_op(
Y
Yu Yang 已提交
4487 4488
            type='increment',
            inputs={'X': [counter]},
Y
Yu Yang 已提交
4489 4490
            outputs={'Out': [counter]},
            attrs={'step': float(step)})
Y
Yu Yang 已提交
4491 4492 4493
        counter.stop_gradient = True

    return counter
Y
yangyaming 已提交
4494 4495


4496
def reshape(x, shape, actual_shape=None, act=None, inplace=True, name=None):
C
caoying03 已提交
4497
    """
C
caoying03 已提交
4498 4499
    Gives a new shape to the input Tensor without changing its data.

4500 4501 4502 4503 4504
    The target shape can be given by :attr:`shape` or :attr:`actual_shape`.
    :attr:`shape` is a list of integer while :attr:`actual_shape` is a tensor
    variable. :attr:`actual_shape` has a higher priority than :attr:`shape`
    if it is provided, while :attr:`shape` still should be set correctly to
    gurantee shape inference in compile-time.
C
caoying03 已提交
4505

4506
    Some tricks exist when specifying the target shape.
C
caoying03 已提交
4507

4508 4509 4510 4511
    1. -1 means the value of this dimension is inferred from the total element
    number of x and remaining dimensions. Thus one and only one dimension can
    be set -1.

4512
    2. 0 means the actual dimension value is going to be copied from the
4513 4514 4515 4516
    corresponding dimension of x. The indice of 0s in shape can not exceed
    Rank(X).

    Here are some examples to explain it.
C
caoying03 已提交
4517 4518

    1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
W
wanghaoshuang 已提交
4519
    is [6, 8], the reshape operator will transform x into a 2-D tensor with
4520
    shape [6, 8] and leaving x's data unchanged.
C
caoying03 已提交
4521

4522
    2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
4523 4524
    specified is [2, 3, -1, 2], the reshape operator will transform x into a
    4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this
W
wanghaoshuang 已提交
4525 4526
    case, one dimension of the target shape is set to -1, the value of this
    dimension is inferred from the total element number of x and remaining
4527
    dimensions.
C
caoying03 已提交
4528

4529
    3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
4530 4531 4532 4533
    is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor
    with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case,
    besides -1, 0 means the actual dimension value is going to be copied from
    the corresponding dimension of x.
C
caoying03 已提交
4534 4535

    Args:
4536
        x(variable): The input tensor.
C
caoying03 已提交
4537 4538
        shape(list): The new shape. At most one dimension of the new shape can
                     be -1.
4539 4540 4541 4542 4543
        actual_shape(variable): An optional input. If provided, reshape
                                according to this given shape rather than
                                :attr:`shape` specifying shape. That is to
                                say :attr:`actual_shape` has a higher priority
                                than :attr:`shape`.
C
caoying03 已提交
4544
        act (str): The non-linear activation to be applied to output variable.
X
Xin Pan 已提交
4545 4546 4547 4548
        inplace(bool): If this flag is set true, the output
                       shares data with input without copying, otherwise
                       a new output tensor is created
                       whose data is copied from input x.
4549
        name (str): The name of this layer. It is optional.
C
caoying03 已提交
4550

4551 4552
    Returns:
        Variable: The output tensor.
C
caoying03 已提交
4553

X
Xin Pan 已提交
4554 4555 4556
    Raises:
        TypeError: if actual_shape is neither Variable nor None.

C
caoying03 已提交
4557 4558
    Examples:
        .. code-block:: python
G
guosheng 已提交
4559

4560
            data = fluid.layers.data(
4561
                name='data', shape=[2, 4, 6], dtype='float32')
C
caoying03 已提交
4562
            reshaped = fluid.layers.reshape(
4563
                x=data, shape=[-1, 0, 3, 2], act='tanh', inplace=True)
C
caoying03 已提交
4564 4565 4566
    """

    if not (isinstance(shape, list) or isinstance(shape, tuple)):
L
luotao1 已提交
4567
        raise ValueError("Input shape must be a python list or tuple.")
X
Xin Pan 已提交
4568 4569 4570 4571 4572
    inputs = {"X": x}
    if isinstance(actual_shape, Variable):
        inputs["Shape"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None")
C
caoying03 已提交
4573

4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588
    # Validate the shape
    unk_dim_idx = -1
    for dim_idx, dim_size in enumerate(shape):
        if dim_size == -1:
            assert unk_dim_idx == -1, (
                "Only one dimension in shape can be unknown.")
            unk_dim_idx = dim_idx
        elif dim_size == 0:
            assert dim_idx < len(x.shape), (
                "The indice of 0s in shape can not exceed Rank(X).")
        else:
            assert dim_size > 0, (
                "Each dimension size given in shape must not be negtive "
                "except one unknown dimension.")

4589
    helper = LayerHelper("reshape2", **locals())
D
dzhwinter 已提交
4590
    out = helper.create_tmp_variable(dtype=x.dtype)
4591
    x_shape = helper.create_tmp_variable(dtype=x.dtype)
C
caoying03 已提交
4592
    helper.append_op(
4593
        type="reshape2",
X
Xin Pan 已提交
4594
        inputs=inputs,
D
dzhwinter 已提交
4595
        attrs={"shape": shape},
4596 4597
        outputs={"Out": out,
                 "XShape": x_shape})
C
caoying03 已提交
4598

D
dzhwinter 已提交
4599
    return helper.append_activation(out)
4600

4601

4602
def squeeze(input, axes, name=None):
Y
Yibing Liu 已提交
4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625
    """
    Remove single-dimensional entries from the shape of a tensor. Takes a 
    parameter axes with a list of axes to squeeze. If axes is not provided, all 
    the single dimensions will be removed from the shape. If an axis is 
    selected with shape entry not equal to one, an error is raised.
        
    Examples:
    Case 1:
      Given 
        X.shape = (1, 3, 1, 5)
      and
        axes = [0]
      we get:
        Out.shape = (3, 1, 5)
      Case 2:
        Given
          X.shape = (1, 3, 1, 5)
        and 
          axes = []
        we get:
          Out.shape = (3, 5)
    
    Args:
4626
        input (Variable): The input variable to be squeezed.
Y
Yibing Liu 已提交
4627
        axes (list): List of integers, indicating the dimensions to be squeezed.
4628
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
4629 4630 4631 4632 4633 4634 4635 4636

    Returns:
        Variable: Output squeezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 1, 10])
4637
            y = layers.sequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
4638 4639
    """
    helper = LayerHelper("squeeze", **locals())
4640
    out = helper.create_tmp_variable(dtype=input.dtype)
4641
    x_shape = helper.create_tmp_variable(dtype=input.dtype)
Y
Yibing Liu 已提交
4642
    helper.append_op(
4643
        type="squeeze2",
4644
        inputs={"X": input},
Y
Yibing Liu 已提交
4645
        attrs={"axes": axes},
4646 4647
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
4648

4649 4650 4651
    return out


4652
def unsqueeze(input, axes, name=None):
Y
Yibing Liu 已提交
4653 4654 4655 4656 4657 4658 4659 4660 4661 4662
    """
    Insert single-dimensional entries to the shape of a tensor. Takes one 
    required argument axes, a list of dimensions that will be inserted. 
    Dimension indices in axes are as seen in the output tensor. 

    For example: 
      Given a tensor such that tensor with shape [3, 4, 5], 
      then Unsqueezed tensor with axes=[0, 4] has shape [1, 3, 4, 5, 1].
    
    Args:
4663
        input (Variable): The input variable to be unsqueezed.
Y
Yibing Liu 已提交
4664
        axes (list): List of integers, indicating the dimensions to be inserted.
4665
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
4666 4667 4668 4669 4670 4671 4672 4673

    Returns:
        Variable: Output unsqueezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 10])
4674
            y = layers.unsequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
4675 4676
    """
    helper = LayerHelper("unsqueeze", **locals())
4677
    out = helper.create_tmp_variable(dtype=input.dtype)
4678
    x_shape = helper.create_tmp_variable(dtype=input.dtype)
Y
Yibing Liu 已提交
4679
    helper.append_op(
4680
        type="unsqueeze2",
4681
        inputs={"X": input},
Y
Yibing Liu 已提交
4682
        attrs={"axes": axes},
4683 4684
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
4685

4686 4687
    return out

4688

Y
yangyaming 已提交
4689
def lod_reset(x, y=None, target_lod=None):
Y
yangyaming 已提交
4690
    """
Y
Yibing Liu 已提交
4691
    Set LoD of :attr:`x` to a new one specified by :attr:`y` or
4692 4693 4694 4695
    :attr:`target_lod`. When :attr:`y` provided, :attr:`y.lod` would be
    considered as target LoD first, otherwise :attr:`y.data` would be
    considered as target LoD. If :attr:`y` is not provided, target LoD should
    be specified by :attr:`target_lod`. If target LoD is specified by
Y
Yibing Liu 已提交
4696
    :attr:`Y.data` or :attr:`target_lod`, only one level LoD is supported.
Y
yangyaming 已提交
4697 4698 4699 4700 4701 4702

    .. code-block:: text

        * Example 1:

            Given a 1-level LoDTensor x:
4703
                x.lod =  [[ 2,           3,                   1 ]]
Y
yangyaming 已提交
4704 4705 4706
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

4707
            target_lod: [4, 2]
Y
yangyaming 已提交
4708 4709

            then we get a 1-level LoDTensor:
4710
                out.lod =  [[4,                          2]]
Y
yangyaming 已提交
4711 4712 4713 4714 4715 4716
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 2:

            Given a 1-level LoDTensor x:
4717
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
4718 4719 4720 4721
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a Tensor:
4722
                y.data = [[2, 4]]
Y
yangyaming 已提交
4723 4724 4725
                y.dims = [1, 3]

            then we get a 1-level LoDTensor:
4726
                out.lod =  [[2,            4]]
Y
yangyaming 已提交
4727 4728 4729 4730 4731 4732
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 3:

            Given a 1-level LoDTensor x:
4733
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
4734 4735 4736 4737
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a 2-level LoDTensor:
4738
                y.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
4739 4740 4741 4742
                y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
                y.dims = [6, 1]

            then we get a 2-level LoDTensor:
4743
                out.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
4744 4745 4746 4747 4748
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

    Args:
        x (Variable): Input variable which could be a Tensor or LodTensor.
4749
        y (Variable|None): If provided, output's LoD would be derived
Y
Yibing Liu 已提交
4750
                           from :attr:`y`.
Y
yangyaming 已提交
4751
        target_lod (list|tuple|None): One level LoD which should be considered
Y
Yibing Liu 已提交
4752
                                      as target LoD when :attr:`y` not provided.
Y
yangyaming 已提交
4753 4754

    Returns:
Y
Yibing Liu 已提交
4755
        Variable: Output variable with LoD specified by this layer.
Y
yangyaming 已提交
4756 4757

    Raises:
Y
Yibing Liu 已提交
4758
        ValueError: If :attr:`y` and :attr:`target_lod` are both None.
Y
yangyaming 已提交
4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[10])
            y = layers.data(name='y', shape=[10, 20], lod_level=2)
            out = layers.lod_reset(x=x, y=y)
    """
    helper = LayerHelper("lod_reset", **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    if y is not None:
        helper.append_op(
            type="lod_reset", inputs={'X': x,
                                      'Y': y}, outputs={'Out': out})
    elif target_lod is not None:
        helper.append_op(
            type="lod_reset",
            inputs={'X': x},
            attrs={'target_lod': target_lod},
            outputs={'Out': out})
    else:
        raise ValueError("y and target_lod should not be both None.")

    return out
D
dragonwarrior 已提交
4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793


def lrn(input, n=5, k=1.0, alpha=1e-4, beta=0.75, name=None):
    """
    Local Response Normalization Layer. This layer performs a type of
    "lateral inhibition" by normalizing over local input regions.

    The formula is as follows:

    .. math::

D
dzhwinter 已提交
4794
      Output(i, x, y) = Input(i, x, y) / \\left(k + \\alpha \\sum\\limits^{\\min(C, c + n/2)}_{j = \\max(0, c - n/2)}(Input(j, x, y))^2\\right)^{\\beta}
D
dragonwarrior 已提交
4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822

    In the above equation:

    * :math:`n`: The number of channels to sum over.
    * :math:`k`: The offset (avoid being divided by 0).
    * :math:`alpha`: The scaling parameter.
    * :math:`beta`: The exponent parameter.

    Refer to `ImageNet Classification with Deep Convolutional Neural Networks
    <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_

    Args:
        input (Variable): The input tensor of this layer, and the dimension of input tensor must be 4.
        n (int, default 5): The number of channels to sum over.
        k (float, default 1.0): An offset (usually positive to avoid dividing by 0).
        alpha (float, default 1e-4): The scaling parameter.
        beta (float, default 0.75): The exponent.
        name (str, default None): A name for this operation.

    Raises:
        ValueError: If rank of the input tensor is not 4.

    Returns:
        A tensor variable storing the transformation result.

    Examples:
        .. code-block:: python

F
stash  
fengjiayi 已提交
4823 4824
          data = fluid.layers.data(
              name="data", shape=[3, 112, 112], dtype="float32")
D
dragonwarrior 已提交
4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851
          lrn = fluid.layers.lrn(input=data)
    """
    helper = LayerHelper('lrn', **locals())
    dtype = helper.input_dtype()
    input_shape = input.shape
    dims = len(input_shape)

    if dims != 4:
        raise ValueError(
            "dims of input must be 4(not %d), and it's order must be NCHW" %
            (dims))

    mid_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    lrn_out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="lrn",
        inputs={"X": input},
        outputs={
            "Out": lrn_out,
            "MidOut": mid_out,
        },
        attrs={"n": n,
               "k": k,
               "alpha": alpha,
               "beta": beta})

    return lrn_out
G
guosheng 已提交
4852 4853 4854 4855


def pad(x, paddings, pad_value=0., name=None):
    """
G
guosheng 已提交
4856
    Pads a tensor with a constant value given by :attr:`pad_value`, and the
W
wanghaoshuang 已提交
4857
    padded width is specified by :attr:`paddings`.
G
guosheng 已提交
4858

G
guosheng 已提交
4859 4860 4861 4862
    Specifically, the number of values padded before the contents of :attr:`x`
    in dimension :attr:`i` is indicated by :attr:`paddings[i]`, and the number
    of values padded after the contents of :attr:`x` in dimension :attr:`i` is
    indicated by :attr:`paddings[i+1]`.
G
guosheng 已提交
4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884

    See below for an example.

    .. code-block:: text

        Given:
            x = [[1, 2], [3, 4]]

            paddings = [0, 1, 1, 2]

            pad_value = 0

        Return:

            out = [[0, 1, 2, 0, 0]
                   [0, 3, 4, 0, 0]
                   [0, 0, 0, 0, 0]]

    Args:
        x (Variable): The input tensor variable.
        paddings (list): A list of integers. Its elements specify the padded
                         width before and after for each dimension in turn.
W
wanghaoshuang 已提交
4885
                         The length of :attr:paddings must be
G
guosheng 已提交
4886 4887 4888 4889 4890 4891 4892 4893 4894 4895
                         :math:`rank(x) \\times 2`.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python
G
guosheng 已提交
4896

G
guosheng 已提交
4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910
            # x is a rank 2 tensor variable.
            out = fluid.layers.pad(
                x=x, paddings=[0, 1, 1, 2], pad_value=0.)
    """
    helper = LayerHelper('pad', input=x, **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='pad',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'paddings': paddings,
               'pad_value': float(pad_value)})
    return out
4911 4912


C
chengduo 已提交
4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992
def pad_constant_like(x, y, pad_value=0., name=None):
    """
    Pad input(Y) with :attr:`pad_value`, the number of values padded to
    the edges of each axis is specified by the difference of the shape
    of X and Y. ((0, shape_x_0 - shape_y_0), ... (0, shape_x_n - shape_y_n))
    unique pad widths for each axis. The input should be a k-D
    tensor(k > 0 and k < 7).

    See below for an example.

    .. code-block:: text

        Given:
            X = [[[[ 0,  1,  2],
                   [ 3,  4,  5]],
                  [[ 6,  7,  8],
                   [ 9, 10, 11]],
                  [[12, 13, 14],
                   [15, 16, 17]]],
                 [[[18, 19, 20],
                   [21, 22, 23]],
                  [[24, 25, 26],
                   [27, 28, 29]],
                  [[30, 31, 32],
                   [33, 34, 35]]]]
            X.shape = (2, 3, 2, 3)

            Y = [[[[35, 36, 37]],
                  [[38, 39, 40]],
                  [[41, 42, 43]]]]
            Y.shape = (1, 3, 1, 3)

    And
        pad_value = -1,

    Return:
        Out = [[[[35, 36, 37],
                  [-1, -1, -1]],
                [[38, 39, 40],
                  [-1, -1, -1]],
                 [[41, 42, 43],
                  [-1, -1, -1]]],
                [[[-1, -1, -1],
                  [-1, -1, -1]],
                 [[-1, -1, -1],
                  [-1, -1, -1]],
                 [[-1, -1, -1],
                  [-1, -1, -1]]]]
        Out.shape = (2, 3, 2, 3)

    Args:
        x (Variable): The input tensor variable.
        y (Variable): The input tensor variable.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python

            # x is a rank 4 tensor variable, x.shape = (2, 3, 2, 3)
            # y is a rank 4 tensor variable, y.shape = (1, 3, 1, 3)
            out = fluid.layers.pad_constant_like(x=x, y=y, pad_value=0.)
            # out is a rank 4 tensor variable, and out.shape = [2, 3 ,2 , 3]
    """
    helper = LayerHelper('pad_constant_like', input=x, **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='pad_constant_like',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'pad_value': float(pad_value)})
    return out


4993 4994 4995 4996 4997 4998 4999
def label_smooth(label,
                 prior_dist=None,
                 epsilon=0.1,
                 dtype="float32",
                 name=None):
    """
    Label smoothing is a mechanism to regularize the classifier layer and is
5000 5001
    called label-smoothing regularization (LSR).

5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024
    Label smoothing is proposed to encourage the model to be less confident,
    since optimizing the log-likelihood of the correct label directly may
    cause overfitting and reduce the ability of the model to adapt. Label
    smoothing replaces the ground-truth label :math:`y` with the weighted sum
    of itself and some fixed distribution :math:`\mu`. For class :math:`k`,
    i.e.

    .. math::

        \\tilde{y_k} = (1 - \epsilon) * y_k + \epsilon * \mu_k,

    where :math:`1 - \epsilon` and :math:`\epsilon` are the weights
    respectively, and :math:`\\tilde{y}_k` is the smoothed label. Usually
    uniform distribution is used for :math:`\mu`.

    See more details about label smoothing in https://arxiv.org/abs/1512.00567.

    Args:
        label(Variable): The input variable containing the label data. The
                          label data should use one-hot representation.
        prior_dist(Variable): The prior distribution to be used to smooth
                              labels. If not provided, an uniform distribution
                              is used. The shape of :attr:`prior_dist` should
5025
                              be :math:`(1, class\_num)`.
5026 5027
        epsilon(float): The weight used to mix up the original ground-truth
                        distribution and the fixed distribution.
5028
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32,
5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055
                                                  float_64, int etc.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The tensor variable containing the smoothed labels.

    Examples:
        .. code-block:: python

            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
            smooth_label = layers.label_smooth(
                label=one_hot_label, epsilon=0.1, dtype="float32")
    """
    if epsilon > 1. or epsilon < 0.:
        raise ValueError("The value of epsilon must be between 0 and 1.")
    helper = LayerHelper("label_smooth", **locals())
    label.stop_gradient = True
    smooth_label = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="label_smooth",
        inputs={"X": label,
                "PriorDist": prior_dist} if prior_dist else {"X": label},
        outputs={"Out": smooth_label},
        attrs={"epsilon": float(epsilon)})
    return smooth_label
5056 5057


Y
yi.wu 已提交
5058
@templatedoc()
5059 5060
def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0):
    """
Y
yi.wu 已提交
5061
    ${comment}
5062 5063

    Args:
Y
yi.wu 已提交
5064 5065
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
Y
yi.wu 已提交
5066 5067 5068
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
5069 5070

    Returns:
Y
update  
yi.wu 已提交
5071
        Variable: ${out_comment}.
5072 5073

    Examples:
5074 5075
        .. code-block:: python

5076
            pool_out = fluid.layers.roi_pool(input=x, rois=rois, 7, 7, 1.0)
5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093
    """
    helper = LayerHelper('roi_pool', **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)
    argmaxes = helper.create_tmp_variable(dtype='int32')
    helper.append_op(
        type="roi_pool",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": pool_out,
                 "Argmax": argmaxes},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale
        })
    return pool_out
W
whs 已提交
5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121


def dice_loss(input, label, epsilon=0.00001):
    """
    Dice loss for comparing the similarity of two batch of data,
    usually is used for binary image segmentation i.e. labels are binary.
    The dice loss can be defined as below equation:

    .. math::

        dice\_loss &= 1 - \\frac{2 * intersection\_area}{total\_area} \\\\
                  &= \\frac{(total\_area - intersection\_area) - intersection\_area}{total\_area} \\\\
                  &= \\frac{(union\_area - intersection\_area)}{total\_area}


    Args:
        input (Variable): The predictions with rank>=2. The first dimension is batch size,
                          and the last dimension is class number.
        label (Variable): The groud truth with the same rank with input. The first dimension
                          is batch size, and the last dimension is 1.
        epsilon (float): The epsilon will be added to the numerator and denominator.
                         If both input and label are empty, it makes sure dice is 1.
                         Default: 0.00001

    Returns:
        dice_loss (Variable): The dice loss with shape [1].

    Examples:
5122 5123
        .. code-block:: python

W
whs 已提交
5124 5125 5126 5127
            predictions = fluid.layers.softmax(x)
            loss = fluid.layers.dice_loss(input=predictions, label=label, 2)
    """
    label = one_hot(label, depth=input.shape[-1])
5128
    reduce_dim = list(range(1, len(input.shape)))
W
whs 已提交
5129 5130 5131 5132 5133 5134
    inse = reduce_sum(input * label, dim=reduce_dim)
    dice_denominator = reduce_sum(
        input, dim=reduce_dim) + reduce_sum(
            label, dim=reduce_dim)
    dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
    return reduce_mean(dice_score)
5135 5136


5137 5138 5139 5140 5141
def image_resize(input,
                 out_shape=None,
                 scale=None,
                 name=None,
                 resample='BILINEAR'):
5142
    """
Q
qiaolongfei 已提交
5143
    **Resize a Batch of Images**
F
stash  
fengjiayi 已提交
5144

5145
    The input must be a tensor of the shape (num_batches, channels, in_h, in_w),
5146 5147 5148
    and the resizing only applies on the last two dimensions(hight and width).

    Supporting resample methods:
Q
update  
qiaolongfei 已提交
5149

5150
        'BILINEAR' : Bilinear interpolation
F
stash  
fengjiayi 已提交
5151

5152
    Args:
5153
        input (Variable): The input tensor of image resize layer,
5154 5155
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
5156
        out_shape(list|tuple|Variable|None): Output shape of image resize
5157 5158
                                    layer, the shape is (out_h, out_w).
                                    Default: None
B
baiyf 已提交
5159
        scale(float|None): The multiplier for the input height or width.
5160 5161 5162
                         At least one of out_shape or scale must be set.
                         And out_shape has a higher priority than scale.
                         Default: None
5163 5164
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
5165 5166
        resample(str): The resample method. It can only be 'BILINEAR' currently.
                       Default: 'BILINEAR'
5167 5168

    Returns:
Q
update  
qiaolongfei 已提交
5169 5170
        Variable: The output is a 4-D tensor of the shape
        (num_batches, channls, out_h, out_w).
F
stash  
fengjiayi 已提交
5171

5172 5173 5174
    Examples:
        .. code-block:: python

5175
            out = fluid.layers.image_resize(input, out_shape=[12, 12])
5176
    """
5177 5178 5179 5180
    resample_methods = {'BILINEAR': 'bilinear_interp'}
    if resample not in resample_methods:
        raise ValueError(
            "The 'resample' of image_resize can only be 'BILINEAR' currently.")
5181 5182
    if out_shape is None and scale is None:
        raise ValueError("One of out_shape and scale must not be None")
5183 5184
    helper = LayerHelper('bilinear_interp', **locals())
    dtype = helper.input_dtype()
5185 5186 5187 5188

    def _is_list_or_turple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

5189 5190 5191
    out_h = 0
    out_w = 0
    inputs = {"X": input}
5192
    if out_shape is not None:
B
baiyf 已提交
5193 5194 5195
        if not (_is_list_or_turple_(out_shape) and
                len(out_shape) == 2) and not isinstance(out_shape, Variable):
            raise ValueError('out_shape should be a list or tuple or variable')
5196 5197 5198 5199 5200 5201
        if _is_list_or_turple_(out_shape):
            out_shape = list(map(int, out_shape))
            out_h = out_shape[0]
            out_w = out_shape[1]
        else:
            inputs['OutSize'] = out_shape
5202 5203 5204 5205
    else:
        out_h = int(input.shape[2] * scale)
        out_w = int(input.shape[3] * scale)

5206 5207
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
5208
        type=resample_methods[resample],
5209
        inputs=inputs,
5210 5211 5212 5213
        outputs={"Out": out},
        attrs={"out_h": out_h,
               "out_w": out_w})
    return out
F
stash  
fengjiayi 已提交
5214 5215


Y
yuyang18 已提交
5216
@templatedoc(op_type="bilinear_interp")
5217 5218
def resize_bilinear(input, out_shape=None, scale=None, name=None):
    """
Y
yuyang18 已提交
5219 5220 5221 5222 5223 5224
    ${comment}

    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
5225

Y
yuyang18 已提交
5226 5227 5228 5229 5230 5231 5232 5233
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.

    Returns:
        ${out_comment}.
5234 5235 5236 5237 5238 5239 5240
    """

    return image_resize(input, out_shape, scale, name, 'BILINEAR')


def image_resize_short(input, out_short_len, resample='BILINEAR'):
    """
5241 5242 5243
    Resize a batch of images. The short edge of input images will be
    resized to the given 'out_short_len'. The long edge of input images
    will be resized proportionately to make images' length-width ratio
5244 5245 5246 5247 5248 5249 5250
    constant.

    Args:
        input (Variable): The input tensor of image resize layer,
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
        out_short_len(int): The length of output images' short edge.
5251
        resample (str): resample method, default: BILINEAR.
F
fengjiayi 已提交
5252

5253
    Returns:
Q
update  
qiaolongfei 已提交
5254
        Variable: The output is a 4-D tensor of the shape
5255
        (num_batches, channls, out_h, out_w).
5256 5257 5258 5259 5260 5261 5262 5263 5264 5265
    """
    in_shape = input.shape
    if len(in_shape) != 4:
        raise ValueError(
            "The rank of input must be 4 (num_batches, channels, in_h, in_w).")
    hw = in_shape[2:4]
    short_idx = hw.index(min(hw))
    long_idx = 1 - short_idx
    out_shape = list(hw)
    out_shape[short_idx] = out_short_len
F
fengjiayi 已提交
5266 5267 5268
    out_shape[long_idx] = int(
        float(out_shape[long_idx]) * (float(out_short_len) / float(hw[
            short_idx])) + 0.5)
5269 5270 5271
    return image_resize(input=input, out_shape=out_shape, resample=resample)


W
whs 已提交
5272 5273
def gather(input, index):
    """
Q
qiaolongfei 已提交
5274 5275
    **Gather Layer**

5276
    Output is obtained by gathering entries of the outer-most dimension
W
whs 已提交
5277 5278 5279 5280
    of X indexed by `index` and concatenate them together.

    .. math::

5281
        Out = X[Index]
W
whs 已提交
5282 5283 5284 5285 5286 5287 5288


    .. code-block:: text


                Given:

5289 5290
                X = [[1, 2],
                     [3, 4],
W
whs 已提交
5291 5292 5293 5294 5295 5296 5297 5298 5299 5300
                     [5, 6]]

                Index = [1, 2]

                Then:

                Out = [[3, 4],
                       [5, 6]]

    Args:
5301
        input (Variable): The source input with rank>=1.
W
whs 已提交
5302 5303 5304 5305 5306 5307
        index (Variable): The index input with rank=1.

    Returns:
        output (Variable): The output is a tensor with the same rank as input.

    Examples:
W
whs 已提交
5308

W
whs 已提交
5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323
        .. code-block:: python

            output = fluid.layers.gather(x, index)
    """
    helper = LayerHelper('gather', **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="gather",
        inputs={"X": input,
                "Index": index},
        outputs={"Out": out})
    return out


5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364
def scatter(input, index, updates, name=None):
    """
    **Scatter Layer**

    Output is obtained by updating the input on selected indices on the first
    axis.

    .. math::

        Out = X
        Out[Ids] = Updates

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): The index input with rank=1. Its dtype should be
                          int32 or int64 as it is used as indexes.
        updates (Variable): The updated value of scatter op.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.scatter(input, index, updates)

    """
    helper = LayerHelper('scatter', **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Q
Qingsheng Li 已提交
5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424
def sequence_scatter(input, index, updates, name=None):
    """
    **Sequence Scatter Layer**

    This operator scatters the Updates tensor to the input X. It uses the LoD
    information of Ids to select the rows to update, and use the values in Ids as
    the columns to update in each row of X.

    Here is an example:
    Given the following input:
    .. code-block:: text
        input.data = [[1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0]]
        input.dims = [3, 6]

        index.data = [[0], [1], [2], [5], [4], [3], [2], [1], [3], [2], [5], [4]]
        index.lod =  [[0,        3,                       8,                 12]]

        updates.data = [[0.3], [0.3], [0.4], [0.1], [0.2], [0.3], [0.4], [0.0], [0.2], [0.3], [0.1], [0.4]]
        updates.lod =  [[  0,            3,                                 8,                         12]]

    Then we have the output:
    .. code-block:: text
        out.data = [[1.3, 1.3, 1.4, 1.0, 1.0, 1.0],
                    [1.0, 1.0, 1.4, 1.3, 1.2, 1.1],
                    [1.0, 1.0, 1.3, 1.2, 1.4, 1.1]]
        out.dims = X.dims = [3, 6]

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): A LoD Tensor. The index input of sequence scatter op
            where input will be  updated. The index input with rank=1. Its dtype
            should be int32 or int64 as it is used as indexes.
        updates (Variable): A LoD Tensor. The values to scatter to the input
            tensor X, must be a LoDTensor with the same LoD information as index.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.sequence_scatter(input, index, updates)

    """
    helper = LayerHelper('sequence_scatter', **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="sequence_scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Y
yuyang18 已提交
5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437
@templatedoc()
def random_crop(x, shape, seed=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        shape(${shape_type}): ${shape_comment}
        seed(int|${seed_type}|None): ${seed_comment} By default, the seed will
            get from `random.randint(-65536, 65535)`.

    Returns:
        ${out_comment}
5438

5439 5440 5441
    Examples:
        >>> img = fluid.layers.data("img", [3, 256, 256])
        >>> cropped_img = fluid.layers.random_crop(img, shape=[3, 224, 224])
Y
yuyang18 已提交
5442
    """
F
stash  
fengjiayi 已提交
5443
    helper = LayerHelper("random_crop", **locals())
F
fengjiayi 已提交
5444
    dtype = x.dtype
F
stash  
fengjiayi 已提交
5445
    out = helper.create_tmp_variable(dtype)
Y
yuyang18 已提交
5446
    if seed is None:
5447
        seed = np.random.randint(-65536, 65536)
F
fengjiayi 已提交
5448
    op_attrs = {"shape": shape}
F
stash  
fengjiayi 已提交
5449
    if isinstance(seed, int):
F
fengjiayi 已提交
5450 5451 5452 5453 5454
        op_attrs["startup_seed"] = seed
        seed = helper.create_variable(
            name=unique_name.generate("random_crop_seed"),
            dtype="int64",
            persistable=True)
F
stash  
fengjiayi 已提交
5455 5456 5457 5458
    elif not isinstance(seed, Variable):
        raise ValueError("'seed' must be a Variable or an int.")
    helper.append_op(
        type="random_crop",
F
fix  
fengjiayi 已提交
5459
        inputs={"X": x,
F
stash  
fengjiayi 已提交
5460 5461
                "Seed": seed},
        outputs={"Out": out,
F
fengjiayi 已提交
5462 5463
                 "SeedOut": seed},
        attrs=op_attrs)
F
stash  
fengjiayi 已提交
5464
    return out
W
whs 已提交
5465 5466


5467
def log(x, name=None):
W
wanghaoshuang 已提交
5468 5469 5470 5471 5472
    """
    Calculates the natural log of the given input tensor, element-wise.

    .. math::

5473
        Out = \\ln(x)
W
wanghaoshuang 已提交
5474 5475

    Args:
5476
        x (Variable): Input tensor.
5477 5478
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
5479 5480 5481 5482 5483 5484 5485 5486

    Returns:
        Variable: The natural log of the input tensor computed element-wise.

    Examples:

        .. code-block:: python

5487
            output = fluid.layers.log(x)
W
wanghaoshuang 已提交
5488 5489
    """
    helper = LayerHelper('log', **locals())
W
wanghaoshuang 已提交
5490
    dtype = helper.input_dtype(input_param_name='x')
W
wanghaoshuang 已提交
5491
    out = helper.create_tmp_variable(dtype)
W
wanghaoshuang 已提交
5492
    helper.append_op(type="log", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
5493 5494 5495
    return out


5496
def relu(x, name=None):
W
wanghaoshuang 已提交
5497 5498
    """
    Relu takes one input data (Tensor) and produces one output data (Tensor)
5499
    where the rectified linear function, y = max(0, x), is applied to
W
wanghaoshuang 已提交
5500 5501 5502 5503
    the tensor elementwise.

    .. math::

5504
        Out = \\max(0, x)
W
wanghaoshuang 已提交
5505 5506

    Args:
5507
        x (Variable): The input tensor.
5508 5509
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
5510 5511 5512 5513 5514 5515 5516 5517

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

5518
            output = fluid.layers.relu(x)
W
wanghaoshuang 已提交
5519 5520
    """
    helper = LayerHelper('relu', **locals())
W
wanghaoshuang 已提交
5521
    dtype = helper.input_dtype(input_param_name='x')
W
wanghaoshuang 已提交
5522
    out = helper.create_tmp_variable(dtype)
W
wanghaoshuang 已提交
5523
    helper.append_op(type="relu", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
5524
    return out
5525 5526


W
whs 已提交
5527 5528 5529
def mean_iou(input, label, num_classes):
    """
    Mean Intersection-Over-Union is a common evaluation metric for
5530 5531 5532 5533
    semantic image segmentation, which first computes the IOU for each
    semantic class and then computes the average over classes.
    IOU is defined as follows:

W
whs 已提交
5534
    .. math::
5535 5536

        IOU = \\frac{true\_positiv}{(true\_positive + false\_positive + false\_negative)}.
W
whs 已提交
5537

5538
    The predictions are accumulated in a confusion matrix and mean-IOU
W
whs 已提交
5539 5540 5541 5542 5543
    is then calculated from it.


    Args:
        input (Variable): A Tensor of prediction results for semantic labels with type int32 or int64.
5544
        label (Variable): A Tensor of ground truth labels with type int32 or int64.
W
whs 已提交
5545
                           Its shape should be the same as input.
5546
        num_classes (int): The possible number of labels.
W
whs 已提交
5547 5548 5549 5550

    Returns:
        mean_iou (Variable): A Tensor representing the mean intersection-over-union with shape [1].
        out_wrong(Variable): A Tensor with shape [num_classes]. The wrong numbers of each class.
5551
        out_correct(Variable): A Tensor with shape [num_classes]. The correct numbers of each class.
W
whs 已提交
5552 5553 5554 5555

    Examples:

        .. code-block:: python
5556

W
whs 已提交
5557 5558 5559 5560 5561 5562 5563 5564 5565
            iou, wrongs, corrects = fluid.layers.mean_iou(predict, label, num_classes)
    """
    helper = LayerHelper('mean_iou', **locals())
    dtype = helper.input_dtype()
    out_mean_iou = helper.create_tmp_variable(dtype='float32')
    out_wrong = helper.create_tmp_variable(dtype='int32')
    out_correct = helper.create_tmp_variable(dtype='int32')
    helper.append_op(
        type="mean_iou",
W
whs 已提交
5566 5567
        inputs={"Predictions": input,
                "Labels": label},
W
whs 已提交
5568
        outputs={
W
whs 已提交
5569 5570 5571
            "OutMeanIou": out_mean_iou,
            "OutWrong": out_wrong,
            "OutCorrect": out_correct
W
whs 已提交
5572 5573 5574
        },
        attrs={"num_classes": num_classes})
    return out_mean_iou, out_wrong, out_correct
5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648


def crop(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

    .. code-block:: text

        * Case 1:
            Given
                X = [[0, 1, 2, 0, 0]
                     [0, 3, 4, 0, 0]
                     [0, 0, 0, 0, 0]],
            and
                shape = [2, 2],
                offsets = [0, 1],
            output is:
                Out = [[1, 2],
                       [3, 4]].
        * Case 2:
            Given
                X = [[0, 1, 2, 5, 0]
                     [0, 3, 4, 6, 0]
                     [0, 0, 0, 0, 0]],
            and shape is tensor
                shape = [[0, 0, 0]
                         [0, 0, 0]]
            and
                offsets = [0, 1],

            output is:
                Out = [[1, 2, 5],
                       [3, 4, 6]].

    Args:
        x (Variable): The input tensor variable.
        shape (Variable|list/tuple of integer): The output shape is specified
            by `shape`, which can a Variable or a list/tupe of integer.
            If a tensor Variable, it's rank must be the same as `x`. This way
            is suitable for the case that the output shape may be changed each
            iteration. If a list/tupe of integer, it's length must be the same
            as the rank of `x`
        offsets (Variable|list/tuple of integer|None): Specifies the copping
            offsets at each dimension. It can be a Variable or or a list/tupe
            of integer. If a tensor Variable, it's rank must be the same as `x`.
            This way is suitable for the case that the offsets may be changed
            each iteration. If a list/tupe of integer, it's length must be the
            same as the rank of `x`. If None, the offsets are 0 at each
            dimension.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The cropped tensor variable.

    Raises:
        ValueError: If shape is not a list, tuple or Variable.

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[3, 5], dtype="float32")
            y = fluid.layers.data(name="y", shape=[2, 3], dtype="float32")
            crop = fluid.layers.crop(x, shape=y)

            # or
            z = fluid.layers.data(name="z", shape=[3, 5], dtype="float32")
            crop = fluid.layers.crop(z, shape=[2, 3])

    """
    helper = LayerHelper('crop', **locals())

    if not (isinstance(shape, list) or isinstance(shape, tuple) or \
C
chengduo 已提交
5649
                    isinstance(shape, Variable)):
5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672
        raise ValueError("The shape should be a list, tuple or Variable.")

    if offsets is None:
        offsets = [0] * len(x.shape)

    out = helper.create_tmp_variable(x.dtype)
    ipts = {'X': x}
    attrs = {}
    if isinstance(shape, Variable):
        ipts['Y'] = shape
    else:
        attrs['shape'] = shape
    if isinstance(offsets, Variable):
        ipts['Offsets'] = offsets
    else:
        attrs['offsets'] = offsets

    helper.append_op(
        type='crop',
        inputs=ipts,
        outputs={'Out': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out
5673 5674 5675 5676 5677 5678 5679 5680 5681 5682


def rank_loss(label, left, right, name=None):
    """
    **Rank loss layer for RankNet**

    RankNet(http://icml.cc/2015/wp-content/uploads/2015/06/icml_ranking.pdf)
    is a pairwise ranking model with a training sample consisting of a pair
    of documents, A and B. Label P indicates whether A is ranked higher than B
    or not:
M
minqiyang 已提交
5683

5684 5685
    P = {0, 1} or {0, 0.5, 1}, where 0.5 means that there is no information
    about the rank of the input pair.
M
minqiyang 已提交
5686

5687 5688 5689 5690
    Rank loss layer takes three inputs: left (o_i), right (o_j) and
    label (P_{i,j}). The inputs respectively represent RankNet's output scores
    for documents A and B and the value of label P. The following equation
    computes rank loss C_{i,j} from the inputs:
M
minqiyang 已提交
5691

5692 5693 5694 5695 5696
    $$
      C_{i,j} = -\tilde{P_{ij}} * o_{i,j} + \log(1 + e^{o_{i,j}}) \\
      o_{i,j} =  o_i - o_j  \\
      \tilde{P_{i,j}} = \left \{0, 0.5, 1 \right \} \ or \ \left \{0, 1 \right \}
    $$
M
minqiyang 已提交
5697 5698 5699

    Rank loss layer takes batch inputs with size batch_size (batch_size >= 1).

5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743
    Args:
        label (Variable): Indicats whether A ranked higher than B or not.
        left (Variable): RankNet's output score for doc A.
        right (Variable): RankNet's output score for doc B.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        list: The value of rank loss.

    Raises:
        ValueError: Any of label, left, and right is not a variable.

    Examples:

        .. code-block:: python

            label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
            left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
            right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
            out = fluid.layers.rank_loss(label, left, right)


    """
    helper = LayerHelper('rank_loss', **locals())

    if not (isinstance(label, Variable)):
        raise ValueError("The label should be a Variable")

    if not (isinstance(left, Variable)):
        raise ValueError("The left should be a Variable")

    if not (isinstance(right, Variable)):
        raise ValueError("The right should be a Variable")

    out = helper.create_tmp_variable("float32")

    helper.append_op(
        type='rank_loss',
        inputs={"Label": label,
                "Left": left,
                "Right": right},
        outputs={'Out': out})
    return out
5744 5745


W
whs 已提交
5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833
def pad2d(input,
          paddings=[0, 0, 0, 0],
          mode='constant',
          pad_value=0.0,
          data_format="NCHW",
          name=None):
    """
    Pad 2-d images accordding to 'paddings' and 'mode'.
    If mode is 'reflect', paddings[0] and paddings[1] must be no greater
    than height-1. And the width dimension has the same condition.

    Example:

      Given that X is a channel of image from input:
      
      X = [[1, 2, 3],
           [4, 5, 6]]
      
      Case 0:
      
        paddings = [0, 1, 2, 3],
        mode = 'constant'
        pad_value = 0
        
        Out = [[0, 0, 1, 2, 3, 0, 0, 0]
               [0, 0, 4, 5, 6, 0, 0, 0]
               [0, 0, 0, 0, 0, 0, 0, 0]]
      
      Case 1:
      
        paddings = [0, 1, 2, 1],
        mode = 'reflect'
        
        Out = [[3, 2, 1, 2, 3, 2]
               [6, 5, 4, 5, 6, 5]
               [3, 2, 1, 2, 3, 2]]
        
      Case 2:
      
        paddings = [0, 1, 2, 1],
        mode = 'edge'
        
        Out = [[1, 1, 1, 2, 3, 3]
               [4, 4, 4, 5, 6, 6]
               [4, 4, 4, 5, 6, 6]]
    
  
    Args:
        input (Variable): The input image with [N, C, H, W] format or [N, H, W, C] format.
        paddings (tuple|list): The padding size. If padding is a tuple, it must
            contain four integers, (padding_top, padding_bottom, padding_left, padding_right).
            Default: padding = [0, 0, 0, 0].
        mode (str): Three modes: constant(default), reflect, edge. Default: constant
        pad_value (float32): The value to fill the padded areas in constant mode. Default: 0
        data_format (str): An optional string from: "NHWC", "NCHW". Specify the data format of
                           the input data.
                           Default: "NCHW"
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: The tensor variable padded accordding to paddings and mode.


    Examples:
        .. code-block:: python

          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          result = fluid.layers.pad2d(input=data, padding=[1,2,3,4], mode='reflect')
    """

    helper = LayerHelper('pad2d', **locals())
    dtype = helper.input_dtype(input_param_name='input')
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='pad2d',
        inputs={'X': input},
        outputs={"Out": out},
        attrs={
            'paddings': paddings,
            'mode': mode,
            'pad_value': pad_value,
            'data_frmat': data_format
        })

    return out


5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975
@templatedoc()
def elu(x, alpha=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|1.0): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('elu', **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='elu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def relu6(x, threshold=6.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|6.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('relu6', **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='relu6',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


@templatedoc()
def pow(x, factor=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        factor(${factor_type}|1.0): ${factor_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('pow', **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='pow',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'factor': factor})
    return out


@templatedoc()
def stanh(x, scale_a=2.0 / 3.0, scale_b=1.7159, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        scale_a(${scale_a_type}|2.0 / 3.0): ${scale_a_comment}
        scale_b(${scale_b_type}|1.7159): ${scale_b_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('stanh', **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='stanh',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'scale_a': scale_a,
               'scale_b': scale_b})
    return out


@templatedoc()
def hard_sigmoid(x, slope=0.2, offset=0.5, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        slope(${slope_type}|0.2): ${slope_comment}
        offset(${offset_type}|0.5): ${offset_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('hard_sigmoid', **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='hard_sigmoid',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': slope,
               'offset': offset})
    return out


@templatedoc()
def swish(x, beta=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        beta(${beta_type}|1.0): ${beta_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('swish', **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='swish',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': beta})
    return out


J
jerrywgz 已提交
5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989
def prelu(x, mode, param_attr=None, name=None):
    """
    Equation:

        y = \max(0, x) + alpha \min(0, x)

    Args:
        x (Variable): The input tensor.
	  param_attr(ParamAttr|None): The parameter attribute for the learnable
                                    weight (alpha).
        mode (string): The mode for weight sharing
		       all: all elements share same weight
 		       channel:elements in a channel share same weight
 		       element:each element has a weight
W
whs 已提交
5990 5991
	name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically. 
J
jerrywgz 已提交
5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

         x = fluid.layers.data(name="x", shape=[10,10], dtype="float32")
            mode = 'channel'
            output = fluid.layers.prelu(x,mode)
    """
    helper = LayerHelper('prelu', **locals())
    if mode not in ['all', 'channel', 'element']:
        raise ValueError('mode should be one of all, channel, element.')
    alpha_shape = [1]
    if mode == 'channel':
        alpha_shape = [1, x.shape[1], 1, 1]
    elif mode == 'element':
        alpha_shape = x.shape
    dtype = helper.input_dtype(input_param_name='x')
    alpha = helper.create_parameter(
        attr=param_attr,
        shape=alpha_shape,
        dtype='float32',
        is_bias=False,
        default_initializer=Constant(1.0))
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="prelu",
        inputs={"X": x,
                'Alpha': alpha},
        attrs={"mode": mode},
        outputs={"Out": out})
    return out


6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096
@templatedoc()
def brelu(x, t_min=0.0, t_max=24.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        t_min(${t_min_type}|0.0): ${t_min_comment}
        t_max(${t_max_type}|24.0): ${t_max_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
     Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('brelu', **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='brelu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'t_min': t_min,
               't_max': t_max})
    return out


@templatedoc()
def leaky_relu(x, alpha=0.02, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|0.02): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
     Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('leaky_relu', **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='leaky_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def soft_relu(x, threshold=40.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|40.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
     Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('soft_relu', **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='soft_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109
def flatten(x, axis=1, name=None):
    """
    **Flatten layer**
    Flattens the input tensor into a 2D matrix.

    Examples:
    Case 1:
      Given
        X.shape = (3, 100, 100, 4)
      and
        axis = 2
      We get:
        Out.shape = (3 * 100, 4 * 100)
6110

6111 6112 6113 6114 6115 6116 6117 6118 6119 6120
    Case 2:
      Given
        X.shape = (3, 100, 100, 4)
      and
        axis = 0
      We get:
        Out.shape = (1, 3 * 100 * 100 * 4)

    Args:
        x (Variable): A tensor of rank >= axis.
6121 6122
        axis (int): Indicate up to which input dimensions (exclusive) should
                    be flattened to the outer dimension of the output.
6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137
                    The value for axis must be in the range [0, R], where R
                    is the rank of the input tensor. When axis = 0, the shape
                    of the output tensor is (1, (d_0 X d_1 ... d_n), where the
                    shape of the input tensor is (d_0, d_1, ... d_n).
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: A 2D tensor with the contents of the input tensor, with input
                  dimensions up to axis flattened to the outer dimension of
                  the output and remaining input dimensions flattened into the
                  inner dimension of the output.

    Raises:
        ValueError: If x is not a variable.
6138
        ValueError: If axis is not in range [0, rank(x)].
6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[4, 4, 3], dtype="float32")
            out = fluid.layers.flatten(x=x, axis=2)
    """
    helper = LayerHelper('flatten', **locals())

    if not (isinstance(x, Variable)):
        raise ValueError("The input x should be a Variable")

    if not (isinstance(axis, int)) or axis > len(x.shape) or axis < 0:
        raise ValueError("The axis should be a int, and in range [0, rank(x)]")

    out = helper.create_tmp_variable(x.dtype)
6156
    x_shape = helper.create_tmp_variable(x.dtype)
6157
    helper.append_op(
6158
        type='flatten2',
6159
        inputs={"X": x},
6160 6161
        outputs={'Out': out,
                 'XShape': x_shape},
6162 6163
        attrs={"axis": axis})
    return out
X
Xin Pan 已提交
6164 6165


C
chenweihang 已提交
6166
def sequence_enumerate(input, win_size, pad_value=0, name=None):
C
chenweihang 已提交
6167
    """
C
chenweihang 已提交
6168
    Generate a new sequence for the input index sequence, which enumerates all the
C
chenweihang 已提交
6169 6170 6171
    sub-sequences with length `win_size` of the input. 
    The enumerated sequence has the same 1st dimension with variable `input`, and
    the 2nd dimension is `win_size`, padded by `pad_value` if necessary in generation.
C
chenweihang 已提交
6172 6173 6174 6175 6176
    
    Examples:
    Case 1:
      Input:
        X.lod = [[0, 3, 5]]
6177
        X.data = [[1], [2], [3], [4], [5]]
C
chenweihang 已提交
6178 6179 6180 6181 6182 6183
        X.dims = [5, 1]
      Attrs:
        win_size = 2
        pad_value = 0
      Output:
        Out.lod = [[0, 3, 5]]
6184
        Out.data = [[1, 2], [2, 3], [3, 0], [4, 5], [5, 0]]
C
chenweihang 已提交
6185 6186 6187
        Out.dims = [5, 2]

    Args:
C
chenweihang 已提交
6188 6189 6190
        input (Variable): The input variable which is a index sequence.
        win_size (int): The window size for enumerating all sub-sequences.
        pad_value (int): The padding value, default 0.
C
chenweihang 已提交
6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201

    Returns:
        Variable: The enumerate sequence variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(shape[30, 1], dtype='int32', lod_level=1)
            out = fluid.layers.sequence_enumerate(input=x, win_size=3, pad_value=0)
    """
    helper = LayerHelper('sequence_enumerate', **locals())
C
chenweihang 已提交
6202
    out = helper.create_tmp_variable(helper.input_dtype(), stop_gradient=True)
C
chenweihang 已提交
6203 6204 6205 6206 6207 6208
    helper.append_op(
        type='sequence_enumerate',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'win_size': win_size,
               'pad_value': pad_value})
6209

6210

S
sneaxiy 已提交
6211 6212 6213 6214 6215 6216 6217 6218 6219
def sequence_mask(x, maxlen=None, dtype='int64', name=None):
    """
    **SequenceMask Layer**

    This layer outputs a mask according to the input :code:`x` and
    :code:`maxlen` with data type of :code:`dtype`.

    Supposing :code:`x` is a Tensor with shape [d_1, d_2, ..., d_n], the
    :code:`y` is a mask with shape [d_1, d_2, ..., d_n, maxlen], where:
6220

S
sneaxiy 已提交
6221
    .. math::
6222

S
sneaxiy 已提交
6223 6224 6225
        y(i_1, i_2,..., i_n, j) = (j < x(i_1, i_2,..., i_n))

    Args:
6226
        x (Variable): Input tensor of sequence_mask layer,
S
sneaxiy 已提交
6227 6228 6229 6230
                      whose elements are integers less than :code:`maxlen`.
        maxlen (int|None): Maximum length of the sequence. If :code:`maxlen`
                           is None, it would be replace with :math:`max(x)`.
        dtype (np.dtype|core.VarDesc.VarType|str): Data type of the output.
6231 6232 6233
        name (str|None): A name for this layer(optional). If set None, the
                         layer will be named automatically.

S
sneaxiy 已提交
6234 6235
    Returns:
        Variable: The output sequence mask.
6236

S
sneaxiy 已提交
6237 6238
    """

Q
qingqing01 已提交
6239
    helper = LayerHelper('sequence_mask', **locals())
S
sneaxiy 已提交
6240 6241 6242 6243 6244
    if name is None:
        out = helper.create_tmp_variable(dtype=dtype)
    else:
        out = helper.create_tmp_variable(dtype=dtype, name=name)

Q
qingqing01 已提交
6245 6246 6247
    helper.append_op(
        type='sequence_mask',
        inputs={'X': [x]},
S
sneaxiy 已提交
6248 6249
        outputs={'Y': out},
        attrs={
6250
            'maxlen': maxlen if maxlen is not None else -1,
S
sneaxiy 已提交
6251 6252 6253
            'out_dtype': out.dtype
        })
    return out
S
sneaxiy 已提交
6254 6255


X
Xin Pan 已提交
6256
def stack(x, axis=0):
S
sneaxiy 已提交
6257 6258 6259 6260
    """
    **Stack Layer**

    This layer stacks all of the input :code:`x` along axis.
6261 6262 6263 6264 6265 6266 6267

    Input :code:`x` can be a single variable, a :code:`list` of variables,
    or a :code:`tuple` of variables. If :code:`x` is a :code:`list` or
    :code:`tuple`, the shapes of all these variables must be the same.
    Supposing the shape of each input is :math:`[d_0, d_1, ..., d_{n-1}]`,
    the shape of the output variable would be
    :math:`[d_0, d_1, ..., d_{axis}=len(x), ..., d_{n-1}]`.
S
sneaxiy 已提交
6268
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x[0])+1`.
6269
    If :code:`axis` is None, it would be replaced with 0.
S
sneaxiy 已提交
6270 6271

    Args:
6272
        x (Variable|list(Variable)|tuple(Variable)): Input variables.
S
sneaxiy 已提交
6273
        axis (int|None): The axis along which all inputs are stacked.
6274

S
sneaxiy 已提交
6275 6276
    Returns:
        Variable: The stacked variable.
6277

S
sneaxiy 已提交
6278 6279
    """

X
Xin Pan 已提交
6280 6281 6282 6283 6284 6285 6286 6287
    helper = LayerHelper('stack', **locals())
    axis = 0 if axis is None else axis

    if not isinstance(x, list) and not isinstance(x, tuple):
        x = [x]

    out = helper.create_tmp_variable(x[0].dtype)
    helper.append_op(
S
sneaxiy 已提交
6288 6289
        type='stack', inputs={'X': x}, outputs={'Y': out},
        attrs={'axis': axis})
6290

X
Xin Pan 已提交
6291
    return out
D
dzhwinter 已提交
6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332


def unstack(x, axis=0, num=None):
    """
    **UnStack Layer**

    This layer unstacks input :code:`x` into several tensors along axis.
   
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x)`.
    If :code:`num` is None, it would be inferred from :code:`x.shape[axis]`,
    and if :code:`x.shape[axis]` <= 0 or is unknown, :code:`ValueError` is
    raised. 

    Args:
        x (Variable): Input variable. 
        axis (int): The axis along which the input is unstacked.
        num (int|None): The number of output variables.
    
    Returns:
        list(Variable): The unstacked variables.
    
    """

    helper = LayerHelper('unstack', **locals())
    if num is None:
        if axis is None or x.shape[axis] <= 0:
            raise ValueError('unknown unstack number')
        else:
            num = x.shape[axis]

    outs = []
    for _ in num:
        outs.append(helper.create_tmp_variable(x.dtype))

    helper.append_op(
        type='unstack',
        inputs={'X': [x]},
        outputs={'Y': outs},
        attrs={'axis': axis,
               'num': num})
    return outs
W
whs 已提交
6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382


def expand(x, expand_times, name=None):
    """Expand operator tiles the input by given times number. You should set times
    number for each dimension by providing attribute 'expand_times'. The rank of X
    should be in [1, 6]. Please note that size of 'expand_times' must be the same
    with X's rank. Following is a using case:


    .. code-block:: text

        Input(X) is a 3-D tensor with shape [2, 3, 1]:
        
                [
                   [[1], [2], [3]],
                   [[4], [5], [6]]
                ]
        
        Attr(expand_times):  [1, 2, 2]
        
        Output(Out) is a 3-D tensor with shape [2, 6, 2]:
        
                [
                    [[1, 1], [2, 2], [3, 3], [1, 1], [2, 2], [3, 3]],
                    [[4, 4], [5, 5], [6, 6], [4, 4], [5, 5], [6, 6]]
                ]
        
    Args:
        x (Variable): A tensor with rank in [1, 6].
        expand_times (list|tuple): Expand times number for each dimension.

    Returns:
        Variable: The expanded variable which is a LoDTensor. After expanding, size of each dimension of Output(Out) is equal to ithe size of the corresponding dimension of Input(X) multiplying the corresponding value given by expand_times.


    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            out = fluid.layers.expand(x=x, expand_times=[1, 2, 2])
    """
    helper = LayerHelper('expand', input=x, **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='expand',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'expand_times': expand_times})
    return out
G
fix  
gongweibao 已提交
6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411


from paddle.fluid.framework import convert_np_dtype_to_dtype_


def uniform_random_batch_size_like(input,
                                   shape,
                                   dtype='float32',
                                   input_dim_idx=0,
                                   output_dim_idx=0,
                                   min=-1.0,
                                   max=1.0,
                                   seed=0):
    """
    UniformRandomBatchSizeLike operator.
    This operator initializes a tensor with the same batch_size as the Input tensor with random values sampled from a uniform distribution.


    Args:
        input (Variable): Tensor whose input_dim_idx'th dimension specifies the batch_size.
        shape (tuple|list): the shape of the output.
        input_dim_idx (Int): The index of input's batch size dimension.
        output_dim_idx (Int): The index of output's batch size dimension.
        min (Float): Minimum value of uniform random.
        max (Float): Maximum value of uniform random.
        seed (Int): Random seed used for generating samples. 0 means use a seed generated by the system.
            Note that if seed is not 0, this operator will always generate the same random numbers every time.
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
    Returns:
G
fix  
gongweibao 已提交
6412
        out (Variable): Output of this operator.
G
fix  
gongweibao 已提交
6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433

    """

    helper = LayerHelper('uniform_random_batch_size_like', **locals())
    out = helper.create_tmp_variable(dtype)
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='uniform_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'min': min,
            'max': max,
            'seed': seed,
            'dtype': c_dtype
        })

    return out
G
fix  
gongweibao 已提交
6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478


def gaussian_random(shape,
                    mean=0.0,
                    std=1.0,
                    seed=0,
                    dtype='float32',
                    use_mkldnn=False):
    """
    GaussianRandom Operator.

    Used to initialize tensors with gaussian random generator.

    Args:
        shape (tuple|list): The dimension of random tensor.
        mean (Float): Mean of random tensor.
        std (Float): Std of random tensor.
        seed (Int): Random seed of generator.0 means use system wide seed.
            Note that if seed is not 0, this operator will always generate the same random numbers every time.
        dtype(np.dtype|core.VarDesc.VarType|str): Output data type.
        use_mkldnn (Bool): Only used in mkldnn kernel.

    Returns:
        out (Variable): Output of this operator.

    """

    helper = LayerHelper('gaussian_random', **locals())
    out = helper.create_tmp_variable(dtype)
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random',
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype,
            'use_mkldnn': use_mkldnn
        })

    return out


G
fix  
gongweibao 已提交
6479
def sampling_id(x, min=0.0, max=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491
    """
    SamplingId Operator.

    A layer for sampling id from multinomial distribution from the input.
    Sampling one id for one sample.

    Args:
        x (Variable): The input tensor of softmax. 2-D with shape [batch_size, input_feature_dimensions].
        min (Float): Minimum value of random.
        max (Float): Maximun value of random.
        seed (Float): random seed used for the random number engine.0 means use a seed generated by the system.
            Note that if seed is not 0, this operator will always generate the same random numbers every time.
G
fix  
gongweibao 已提交
6492
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
6493 6494 6495 6496 6497 6498 6499

    Returns:
        out (Variable): Output of this operator.

    """

    helper = LayerHelper('sampling_id', **locals())
G
fix  
gongweibao 已提交
6500
    out = helper.create_tmp_variable(dtype)
G
fix  
gongweibao 已提交
6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530
    helper.append_op(
        type='sampling_id',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'min': min,
               'max': max,
               'seed': seed})

    return out


def gaussian_random_batch_size_like(input,
                                    shape,
                                    input_dim_idx=0,
                                    output_dim_idx=0,
                                    mean=0.0,
                                    std=1.0,
                                    seed=0,
                                    dtype='float32'):
    """
    Used to initialize tensors with gaussian random generator. The defalut mean of the distribution is 0. and defalut standard deviation (std) of the distribution is 1.. Uers can set mean and std by input arguments.

    Args:
        input (Variable): Tensor whose input_dim_idx'th dimension specifies the batch_size.
        shape (tuple|list): the shape of the output.
        input_dim_idx (Int): The index of input's batch size dimension
        output_dim_idx (Int): The index of output's batch size dimension
        mean (Float): The mean (or center) of the gaussian distribution.
        std (Float): The standard deviation (std, or spread) of the gaussian distribution.
        seed (Int): Random seed of generator.0 means use system wide seed._note that if seed is not 0, this operator will always generate the same random numbers every time.
G
fix  
gongweibao 已提交
6531
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573

    Returns:
        out (Variable): Output of this operator
    """

    helper = LayerHelper('gaussian_random_batch_size_like', **locals())
    out = helper.create_tmp_variable(dtype)
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype
        })

    return out


def sum(x, use_mkldnn=False):
    """
    Sum operator.
    This operators sums the input tensors. All the inputs can carry
    the LoD (Level of Details) information. However, the output only
    shares the LoD information with the first input.

    Args:
        x (Variable): The input tensors of sum operator.
        use_mkldnn (Bool): Only used in mkldnn kernel

    Returns:
        out (Variable): Output of this operator

    """

    helper = LayerHelper('sum', **locals())
G
fix  
gongweibao 已提交
6574
    out = helper.create_tmp_variable(dtype=helper.input_dtype('x'))
G
fix  
gongweibao 已提交
6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630
    helper.append_op(
        type='sum',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'use_mkldnn': use_mkldnn})

    return out


def slice(input, axes, starts, ends):
    """
    Slice Operator.

    Produces a slice of the input tensor along multiple axes. Similar to numpy:
    https://docs.scipy.org/doc/numpy/reference/arrays.indexing.html
    Slice uses `axes`, `starts` and `ends` attributes to specify the start and
    end dimension for each axis in the list of axes, it uses this information
    to slice the input data tensor. If a negative value is passed for any of
    the start or end indices, it represents number of elements before the end
    of that dimension. If the value passed to start or end is larger than
    the n (the number of elements in this dimension), it represents n.
    For slicing to the end of a dimension with unknown size, it is recommended
    to pass in INT_MAX. If axes are omitted, they are set to [0, ..., ndim-1].
    Following examples will explain how slice works:

    .. code-block:: text

        Cast1:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
                starts = [1, 0]
                ends = [2, 3]
            Then:
                result = [ [5, 6, 7], ]

        Cast2:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                starts = [0, 1]
                ends = [-1, 1000]
            Then:
                result = [ [2, 3, 4], ]

    Args:
        input (Variable): Tensor of data to extract slices from.
        axes (List): Axes that `starts` and `ends` apply to. It's optional._if not present, will be treated as [0, 1, ..., len(`starts`) - 1].
        starts (List): Starting indices of corresponding axis in `axes`.
        ends (List): Starting indices of corresponding axis in `axes`.

    Returns:
        out (Variable): The output of this operator.

    """

    helper = LayerHelper('slice', **locals())
G
fix  
gongweibao 已提交
6631
    out = helper.create_tmp_variable(dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656
    helper.append_op(
        type='slice',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={'axes': axes,
               'starts': starts,
               'ends': ends})

    return out


def shape(input):
    """
    Shape Operator
    Get the shape of input tensor. Only support CPU input Tensor now.

    Args:
        input (Variable): The input tensor.

    Returns:
        out (Variable): The output of this operator.

    """

    helper = LayerHelper('shape', **locals())
G
fix  
gongweibao 已提交
6657
    out = helper.create_tmp_variable(dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
6658
    helper.append_op(
G
fix  
gongweibao 已提交
6659
        type='shape', inputs={'Input': input}, outputs={'Out': out})
G
fix  
gongweibao 已提交
6660 6661

    return out
G
merge  
gongweibao 已提交
6662 6663


S
sneaxiy 已提交
6664 6665 6666 6667 6668 6669 6670 6671
def _elementwise_op(helper):
    op_type = helper.layer_type
    x = helper.kwargs.get('x', None)
    y = helper.kwargs.get('y', None)
    assert x is not None, 'x cannot be None in {}'.format(op_type)
    assert y is not None, 'y cannot be None in {}'.format(op_type)
    axis = helper.kwargs.get('axis', -1)
    use_mkldnn = helper.kwargs.get('use_mkldnn', False)
S
sneaxiy 已提交
6672 6673 6674 6675 6676 6677 6678 6679
    out = helper.kwargs.get('out', None)
    if out is None:
        name = helper.kwargs.get('name', None)
        if name is None:
            out = helper.create_tmp_variable(dtype=x.dtype)
        else:
            out = helper.create_variable(
                name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
6680

S
sneaxiy 已提交
6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691
    helper.append_op(
        type=op_type,
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'axis': axis,
               'use_mkldnn': use_mkldnn})
    return helper.append_activation(out)


@templatedoc()
S
sneaxiy 已提交
6692 6693 6694 6695 6696 6697 6698
def scale(x,
          scale=1.0,
          bias=0.0,
          bias_after_scale=True,
          out=None,
          act=None,
          name=None):
S
sneaxiy 已提交
6699 6700 6701 6702 6703 6704 6705 6706
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        scale(${scale_type}): ${scale_comment}
        bias(${bias_type}): ${bias_comment}
        bias_after_scale(${bias_after_scale_type}): ${bias_after_scale_comment}
S
sneaxiy 已提交
6707
        out(Tensor): Output tensor.
S
sneaxiy 已提交
6708
        act(basestring|None): Activation applied to the output.
S
sneaxiy 已提交
6709 6710 6711 6712 6713 6714 6715
        name(basestring|None): Name of the output. 

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper('scale', **locals())
S
sneaxiy 已提交
6716 6717 6718 6719 6720 6721
    if out is None:
        if name is None:
            out = helper.create_tmp_variable(dtype=x.dtype)
        else:
            out = helper.create_variable(
                name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
6722 6723 6724 6725 6726 6727 6728 6729 6730 6731

    helper.append_op(
        type='scale',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={
            'scale': float(scale),
            'bias': float(bias),
            'bias_after_scale': bias_after_scale
        })
S
sneaxiy 已提交
6732
    return helper.append_activation(out)
S
sneaxiy 已提交
6733 6734


S
sneaxiy 已提交
6735 6736 6737 6738 6739 6740 6741
def elementwise_add(x,
                    y,
                    out=None,
                    axis=-1,
                    use_mkldnn=False,
                    act=None,
                    name=None):
S
sneaxiy 已提交
6742 6743 6744
    return _elementwise_op(LayerHelper('elementwise_add', **locals()))


S
sneaxiy 已提交
6745 6746 6747 6748 6749 6750 6751
def elementwise_div(x,
                    y,
                    out=None,
                    axis=-1,
                    use_mkldnn=False,
                    act=None,
                    name=None):
S
sneaxiy 已提交
6752 6753 6754
    return _elementwise_op(LayerHelper('elementwise_div', **locals()))


S
sneaxiy 已提交
6755 6756 6757 6758 6759 6760 6761
def elementwise_sub(x,
                    y,
                    out=None,
                    axis=-1,
                    use_mkldnn=False,
                    act=None,
                    name=None):
S
sneaxiy 已提交
6762 6763 6764
    return _elementwise_op(LayerHelper('elementwise_sub', **locals()))


S
sneaxiy 已提交
6765 6766 6767 6768 6769 6770 6771
def elementwise_mul(x,
                    y,
                    out=None,
                    axis=-1,
                    use_mkldnn=False,
                    act=None,
                    name=None):
S
sneaxiy 已提交
6772 6773 6774
    return _elementwise_op(LayerHelper('elementwise_mul', **locals()))


S
sneaxiy 已提交
6775 6776 6777 6778 6779 6780 6781
def elementwise_max(x,
                    y,
                    out=None,
                    axis=-1,
                    use_mkldnn=False,
                    act=None,
                    name=None):
S
sneaxiy 已提交
6782 6783 6784
    return _elementwise_op(LayerHelper('elementwise_max', **locals()))


S
sneaxiy 已提交
6785 6786 6787 6788 6789 6790 6791
def elementwise_min(x,
                    y,
                    out=None,
                    axis=-1,
                    use_mkldnn=False,
                    act=None,
                    name=None):
S
sneaxiy 已提交
6792 6793 6794
    return _elementwise_op(LayerHelper('elementwise_min', **locals()))


S
sneaxiy 已提交
6795 6796 6797 6798 6799 6800 6801
def elementwise_pow(x,
                    y,
                    out=None,
                    axis=-1,
                    use_mkldnn=False,
                    act=None,
                    name=None):
S
sneaxiy 已提交
6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812
    return _elementwise_op(LayerHelper('elementwise_pow', **locals()))


for func in [
        elementwise_add, elementwise_div, elementwise_sub, elementwise_mul,
        elementwise_max, elementwise_min, elementwise_pow
]:
    op_proto = OpProtoHolder.instance().get_op_proto(func.__name__)
    func.__doc__ = _generate_doc_string_(
        op_proto,
        additional_args_lines=[
S
sneaxiy 已提交
6813
            "out (Tensor): The output tensor of elementwise op.",
S
sneaxiy 已提交
6814 6815
            "act (basestring|None): Activation applied to the output.",
            "name (basestring|None): Name of the output."
S
sneaxiy 已提交
6816
        ])