infer.py 46.8 KB
Newer Older
Q
qingqing01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import yaml
G
Guanghua Yu 已提交
17
import glob
18 19
import json
from pathlib import Path
Q
qingqing01 已提交
20 21 22 23
from functools import reduce

import cv2
import numpy as np
C
cnn 已提交
24
import math
Q
qingqing01 已提交
25 26 27 28
import paddle
from paddle.inference import Config
from paddle.inference import create_predictor

W
wangguanzhong 已提交
29
import sys
C
chenxujun 已提交
30
# add deploy path of PaddleDetection to sys.path
W
wangguanzhong 已提交
31 32 33
parent_path = os.path.abspath(os.path.join(__file__, *(['..'])))
sys.path.insert(0, parent_path)

34
from benchmark_utils import PaddleInferBenchmark
35
from picodet_postprocess import PicoDetPostProcess
36
from preprocess import preprocess, Resize, NormalizeImage, Permute, PadStride, LetterBoxResize, WarpAffine, Pad, decode_image, CULaneResize
W
wangguanzhong 已提交
37
from keypoint_preprocess import EvalAffine, TopDownEvalAffine, expand_crop
38 39
from clrnet_postprocess import CLRNetPostProcess
from visualize import visualize_box_mask, imshow_lanes
40
from utils import argsparser, Timer, get_current_memory_mb, multiclass_nms, coco_clsid2catid
G
Guanghua Yu 已提交
41

Q
qingqing01 已提交
42 43
# Global dictionary
SUPPORT_MODELS = {
44 45 46
    'YOLO', 'PPYOLOE', 'RCNN', 'SSD', 'Face', 'FCOS', 'SOLOv2', 'TTFNet',
    'S2ANet', 'JDE', 'FairMOT', 'DeepSORT', 'GFL', 'PicoDet', 'CenterNet',
    'TOOD', 'RetinaNet', 'StrongBaseline', 'STGCN', 'YOLOX', 'YOLOF', 'PPHGNet',
47
    'PPLCNet', 'DETR', 'CenterTrack', 'CLRNet'
Q
qingqing01 已提交
48 49 50
}


W
wangguanzhong 已提交
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
def bench_log(detector, img_list, model_info, batch_size=1, name=None):
    mems = {
        'cpu_rss_mb': detector.cpu_mem / len(img_list),
        'gpu_rss_mb': detector.gpu_mem / len(img_list),
        'gpu_util': detector.gpu_util * 100 / len(img_list)
    }
    perf_info = detector.det_times.report(average=True)
    data_info = {
        'batch_size': batch_size,
        'shape': "dynamic_shape",
        'data_num': perf_info['img_num']
    }
    log = PaddleInferBenchmark(detector.config, model_info, data_info,
                               perf_info, mems)
    log(name)


Q
qingqing01 已提交
68 69 70
class Detector(object):
    """
    Args:
71
        pred_config (object): config of model, defined by `Config(model_dir)`
Q
qingqing01 已提交
72
        model_dir (str): root path of model.pdiparams, model.pdmodel and infer_cfg.yml
G
Guanghua Yu 已提交
73
        device (str): Choose the device you want to run, it can be: CPU/GPU/XPU, default is CPU
74
        run_mode (str): mode of running(paddle/trt_fp32/trt_fp16)
75
        batch_size (int): size of pre batch in inference
76 77 78
        trt_min_shape (int): min shape for dynamic shape in trt
        trt_max_shape (int): max shape for dynamic shape in trt
        trt_opt_shape (int): opt shape for dynamic shape in trt
79 80 81 82
        trt_calib_mode (bool): If the model is produced by TRT offline quantitative
            calibration, trt_calib_mode need to set True
        cpu_threads (int): cpu threads
        enable_mkldnn (bool): whether to open MKLDNN
83
        enable_mkldnn_bfloat16 (bool): whether to turn on mkldnn bfloat16
W
wangguanzhong 已提交
84 85
        output_dir (str): The path of output
        threshold (float): The threshold of score for visualization
J
JYChen 已提交
86 87
        delete_shuffle_pass (bool): whether to remove shuffle_channel_detect_pass in TensorRT. 
                                    Used by action model.
Q
qingqing01 已提交
88 89
    """

J
JYChen 已提交
90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
    def __init__(self,
                 model_dir,
                 device='CPU',
                 run_mode='paddle',
                 batch_size=1,
                 trt_min_shape=1,
                 trt_max_shape=1280,
                 trt_opt_shape=640,
                 trt_calib_mode=False,
                 cpu_threads=1,
                 enable_mkldnn=False,
                 enable_mkldnn_bfloat16=False,
                 output_dir='output',
                 threshold=0.5,
                 delete_shuffle_pass=False):
W
wangguanzhong 已提交
105
        self.pred_config = self.set_config(model_dir)
106
        self.predictor, self.config = load_predictor(
Q
qingqing01 已提交
107
            model_dir,
108
            self.pred_config.arch,
Q
qingqing01 已提交
109
            run_mode=run_mode,
110
            batch_size=batch_size,
Q
qingqing01 已提交
111
            min_subgraph_size=self.pred_config.min_subgraph_size,
G
Guanghua Yu 已提交
112
            device=device,
113
            use_dynamic_shape=self.pred_config.use_dynamic_shape,
114 115
            trt_min_shape=trt_min_shape,
            trt_max_shape=trt_max_shape,
G
Guanghua Yu 已提交
116
            trt_opt_shape=trt_opt_shape,
117 118
            trt_calib_mode=trt_calib_mode,
            cpu_threads=cpu_threads,
119
            enable_mkldnn=enable_mkldnn,
J
JYChen 已提交
120 121
            enable_mkldnn_bfloat16=enable_mkldnn_bfloat16,
            delete_shuffle_pass=delete_shuffle_pass)
G
Guanghua Yu 已提交
122 123
        self.det_times = Timer()
        self.cpu_mem, self.gpu_mem, self.gpu_util = 0, 0, 0
W
wangguanzhong 已提交
124 125 126 127 128 129
        self.batch_size = batch_size
        self.output_dir = output_dir
        self.threshold = threshold

    def set_config(self, model_dir):
        return PredictConfig(model_dir)
Q
qingqing01 已提交
130

C
cnn 已提交
131
    def preprocess(self, image_list):
Q
qingqing01 已提交
132 133 134 135 136
        preprocess_ops = []
        for op_info in self.pred_config.preprocess_infos:
            new_op_info = op_info.copy()
            op_type = new_op_info.pop('type')
            preprocess_ops.append(eval(op_type)(**new_op_info))
C
cnn 已提交
137 138 139 140

        input_im_lst = []
        input_im_info_lst = []
        for im_path in image_list:
141
            im, im_info = preprocess(im_path, preprocess_ops)
C
cnn 已提交
142 143 144
            input_im_lst.append(im)
            input_im_info_lst.append(im_info)
        inputs = create_inputs(input_im_lst, input_im_info_lst)
W
wangguanzhong 已提交
145 146 147
        input_names = self.predictor.get_input_names()
        for i in range(len(input_names)):
            input_tensor = self.predictor.get_input_handle(input_names[i])
148 149 150 151
            if input_names[i] == 'x':
                input_tensor.copy_from_cpu(inputs['image'])
            else:
                input_tensor.copy_from_cpu(inputs[input_names[i]])
W
wangguanzhong 已提交
152

Q
qingqing01 已提交
153 154
        return inputs

W
wangguanzhong 已提交
155
    def postprocess(self, inputs, result):
Q
qingqing01 已提交
156
        # postprocess output of predictor
W
wangguanzhong 已提交
157
        np_boxes_num = result['boxes_num']
158 159 160
        assert isinstance(np_boxes_num, np.ndarray), \
            '`np_boxes_num` should be a `numpy.ndarray`'

161 162
        result = {k: v for k, v in result.items() if v is not None}
        return result
Q
qingqing01 已提交
163

164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
    def filter_box(self, result, threshold):
        np_boxes_num = result['boxes_num']
        boxes = result['boxes']
        start_idx = 0
        filter_boxes = []
        filter_num = []
        for i in range(len(np_boxes_num)):
            boxes_num = np_boxes_num[i]
            boxes_i = boxes[start_idx:start_idx + boxes_num, :]
            idx = boxes_i[:, 1] > threshold
            filter_boxes_i = boxes_i[idx, :]
            filter_boxes.append(filter_boxes_i)
            filter_num.append(filter_boxes_i.shape[0])
            start_idx += boxes_num
        boxes = np.concatenate(filter_boxes)
        filter_num = np.array(filter_num)
        filter_res = {'boxes': boxes, 'boxes_num': filter_num}
        return filter_res

F
Feng Ni 已提交
183
    def predict(self, repeats=1, run_benchmark=False):
Q
qingqing01 已提交
184 185
        '''
        Args:
W
wangguanzhong 已提交
186
            repeats (int): repeats number for prediction
Q
qingqing01 已提交
187
        Returns:
W
wangguanzhong 已提交
188
            result (dict): include 'boxes': np.ndarray: shape:[N,6], N: number of box,
Q
qingqing01 已提交
189
                            matix element:[class, score, x_min, y_min, x_max, y_max]
W
wangguanzhong 已提交
190
                            MaskRCNN's result include 'masks': np.ndarray:
G
Guanghua Yu 已提交
191
                            shape: [N, im_h, im_w]
Q
qingqing01 已提交
192
        '''
W
wangguanzhong 已提交
193
        # model prediction
194
        np_boxes_num, np_boxes, np_masks = np.array([0]), None, None
F
Feng Ni 已提交
195 196 197 198 199 200 201 202 203

        if run_benchmark:
            for i in range(repeats):
                self.predictor.run()
                paddle.device.cuda.synchronize()
            result = dict(
                boxes=np_boxes, masks=np_masks, boxes_num=np_boxes_num)
            return result

Q
qingqing01 已提交
204 205 206 207 208
        for i in range(repeats):
            self.predictor.run()
            output_names = self.predictor.get_output_names()
            boxes_tensor = self.predictor.get_output_handle(output_names[0])
            np_boxes = boxes_tensor.copy_to_cpu()
209 210 211 212 213 214
            if len(output_names) == 1:
                # some exported model can not get tensor 'bbox_num' 
                np_boxes_num = np.array([len(np_boxes)])
            else:
                boxes_num = self.predictor.get_output_handle(output_names[1])
                np_boxes_num = boxes_num.copy_to_cpu()
G
Guanghua Yu 已提交
215
            if self.pred_config.mask:
Q
qingqing01 已提交
216 217
                masks_tensor = self.predictor.get_output_handle(output_names[2])
                np_masks = masks_tensor.copy_to_cpu()
W
wangguanzhong 已提交
218 219 220 221 222 223 224 225 226 227 228 229
        result = dict(boxes=np_boxes, masks=np_masks, boxes_num=np_boxes_num)
        return result

    def merge_batch_result(self, batch_result):
        if len(batch_result) == 1:
            return batch_result[0]
        res_key = batch_result[0].keys()
        results = {k: [] for k in res_key}
        for res in batch_result:
            for k, v in res.items():
                results[k].append(v)
        for k, v in results.items():
230
            if k not in ['masks', 'segm']:
W
wangguanzhong 已提交
231
                results[k] = np.concatenate(v)
W
wangguanzhong 已提交
232
        return results
Q
qingqing01 已提交
233

W
wangguanzhong 已提交
234 235
    def get_timer(self):
        return self.det_times
W
wangguanzhong 已提交
236

237 238 239 240 241 242
    def predict_image_slice(self,
                            img_list,
                            slice_size=[640, 640],
                            overlap_ratio=[0.25, 0.25],
                            combine_method='nms',
                            match_threshold=0.6,
F
Feng Ni 已提交
243 244 245
                            match_metric='ios',
                            run_benchmark=False,
                            repeats=1,
246
                            visual=True,
247
                            save_results=False):
248 249 250 251 252 253
        # slice infer only support bs=1
        results = []
        try:
            import sahi
            from sahi.slicing import slice_image
        except Exception as e:
F
Feng Ni 已提交
254
            print(
255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
                'sahi not found, plaese install sahi. '
                'for example: `pip install sahi`, see https://github.com/obss/sahi.'
            )
            raise e
        num_classes = len(self.pred_config.labels)
        for i in range(len(img_list)):
            ori_image = img_list[i]
            slice_image_result = sahi.slicing.slice_image(
                image=ori_image,
                slice_height=slice_size[0],
                slice_width=slice_size[1],
                overlap_height_ratio=overlap_ratio[0],
                overlap_width_ratio=overlap_ratio[1])
            sub_img_num = len(slice_image_result)
            merged_bboxs = []
270
            print('slice to {} sub_samples.', sub_img_num)
F
Feng Ni 已提交
271 272 273 274 275 276 277 278 279 280 281 282

            batch_image_list = [
                slice_image_result.images[_ind] for _ind in range(sub_img_num)
            ]
            if run_benchmark:
                # preprocess
                inputs = self.preprocess(batch_image_list)  # warmup
                self.det_times.preprocess_time_s.start()
                inputs = self.preprocess(batch_image_list)
                self.det_times.preprocess_time_s.end()

                # model prediction
F
Feng Ni 已提交
283
                result = self.predict(repeats=50, run_benchmark=True)  # warmup
F
Feng Ni 已提交
284
                self.det_times.inference_time_s.start()
F
Feng Ni 已提交
285
                result = self.predict(repeats=repeats, run_benchmark=True)
F
Feng Ni 已提交
286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
                self.det_times.inference_time_s.end(repeats=repeats)

                # postprocess
                result_warmup = self.postprocess(inputs, result)  # warmup
                self.det_times.postprocess_time_s.start()
                result = self.postprocess(inputs, result)
                self.det_times.postprocess_time_s.end()
                self.det_times.img_num += 1

                cm, gm, gu = get_current_memory_mb()
                self.cpu_mem += cm
                self.gpu_mem += gm
                self.gpu_util += gu
            else:
                # preprocess
301
                self.det_times.preprocess_time_s.start()
F
Feng Ni 已提交
302
                inputs = self.preprocess(batch_image_list)
303 304 305 306 307 308 309 310 311 312 313 314 315
                self.det_times.preprocess_time_s.end()

                # model prediction
                self.det_times.inference_time_s.start()
                result = self.predict()
                self.det_times.inference_time_s.end()

                # postprocess
                self.det_times.postprocess_time_s.start()
                result = self.postprocess(inputs, result)
                self.det_times.postprocess_time_s.end()
                self.det_times.img_num += 1

F
Feng Ni 已提交
316 317 318
            st, ed = 0, result['boxes_num'][0]  # start_index, end_index
            for _ind in range(sub_img_num):
                boxes_num = result['boxes_num'][_ind]
319
                ed = st + boxes_num
320
                shift_amount = slice_image_result.starting_pixels[_ind]
F
Feng Ni 已提交
321 322 323 324 325 326
                result['boxes'][st:ed][:, 2:4] = result['boxes'][
                    st:ed][:, 2:4] + shift_amount
                result['boxes'][st:ed][:, 4:6] = result['boxes'][
                    st:ed][:, 4:6] + shift_amount
                merged_bboxs.append(result['boxes'][st:ed])
                st = ed
327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351

            merged_results = {'boxes': []}
            if combine_method == 'nms':
                final_boxes = multiclass_nms(
                    np.concatenate(merged_bboxs), num_classes, match_threshold,
                    match_metric)
                merged_results['boxes'] = np.concatenate(final_boxes)
            elif combine_method == 'concat':
                merged_results['boxes'] = np.concatenate(merged_bboxs)
            else:
                raise ValueError(
                    "Now only support 'nms' or 'concat' to fuse detection results."
                )
            merged_results['boxes_num'] = np.array(
                [len(merged_results['boxes'])], dtype=np.int32)

            if visual:
                visualize(
                    [ori_image],  # should be list
                    merged_results,
                    self.pred_config.labels,
                    output_dir=self.output_dir,
                    threshold=self.threshold)

            results.append(merged_results)
352
            print('Test iter {}'.format(i))
353 354

        results = self.merge_batch_result(results)
355 356 357 358
        if save_results:
            Path(self.output_dir).mkdir(exist_ok=True)
            self.save_coco_results(
                img_list, results, use_coco_category=FLAGS.use_coco_category)
359 360
        return results

W
wangguanzhong 已提交
361 362 363 364
    def predict_image(self,
                      image_list,
                      run_benchmark=False,
                      repeats=1,
365
                      visual=True,
366
                      save_results=False):
W
wangguanzhong 已提交
367
        batch_loop_cnt = math.ceil(float(len(image_list)) / self.batch_size)
Q
qingqing01 已提交
368
        results = []
W
wangguanzhong 已提交
369 370 371 372 373 374 375 376 377 378 379 380
        for i in range(batch_loop_cnt):
            start_index = i * self.batch_size
            end_index = min((i + 1) * self.batch_size, len(image_list))
            batch_image_list = image_list[start_index:end_index]
            if run_benchmark:
                # preprocess
                inputs = self.preprocess(batch_image_list)  # warmup
                self.det_times.preprocess_time_s.start()
                inputs = self.preprocess(batch_image_list)
                self.det_times.preprocess_time_s.end()

                # model prediction
F
Feng Ni 已提交
381
                result = self.predict(repeats=50, run_benchmark=True)  # warmup
W
wangguanzhong 已提交
382
                self.det_times.inference_time_s.start()
F
Feng Ni 已提交
383
                result = self.predict(repeats=repeats, run_benchmark=True)
W
wangguanzhong 已提交
384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421
                self.det_times.inference_time_s.end(repeats=repeats)

                # postprocess
                result_warmup = self.postprocess(inputs, result)  # warmup
                self.det_times.postprocess_time_s.start()
                result = self.postprocess(inputs, result)
                self.det_times.postprocess_time_s.end()
                self.det_times.img_num += len(batch_image_list)

                cm, gm, gu = get_current_memory_mb()
                self.cpu_mem += cm
                self.gpu_mem += gm
                self.gpu_util += gu
            else:
                # preprocess
                self.det_times.preprocess_time_s.start()
                inputs = self.preprocess(batch_image_list)
                self.det_times.preprocess_time_s.end()

                # model prediction
                self.det_times.inference_time_s.start()
                result = self.predict()
                self.det_times.inference_time_s.end()

                # postprocess
                self.det_times.postprocess_time_s.start()
                result = self.postprocess(inputs, result)
                self.det_times.postprocess_time_s.end()
                self.det_times.img_num += len(batch_image_list)

                if visual:
                    visualize(
                        batch_image_list,
                        result,
                        self.pred_config.labels,
                        output_dir=self.output_dir,
                        threshold=self.threshold)
            results.append(result)
422
            print('Test iter {}'.format(i))
W
wangguanzhong 已提交
423
        results = self.merge_batch_result(results)
424 425 426 427
        if save_results:
            Path(self.output_dir).mkdir(exist_ok=True)
            self.save_coco_results(
                image_list, results, use_coco_category=FLAGS.use_coco_category)
Q
qingqing01 已提交
428 429
        return results

W
wangguanzhong 已提交
430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446
    def predict_video(self, video_file, camera_id):
        video_out_name = 'output.mp4'
        if camera_id != -1:
            capture = cv2.VideoCapture(camera_id)
        else:
            capture = cv2.VideoCapture(video_file)
            video_out_name = os.path.split(video_file)[-1]
        # Get Video info : resolution, fps, frame count
        width = int(capture.get(cv2.CAP_PROP_FRAME_WIDTH))
        height = int(capture.get(cv2.CAP_PROP_FRAME_HEIGHT))
        fps = int(capture.get(cv2.CAP_PROP_FPS))
        frame_count = int(capture.get(cv2.CAP_PROP_FRAME_COUNT))
        print("fps: %d, frame_count: %d" % (fps, frame_count))

        if not os.path.exists(self.output_dir):
            os.makedirs(self.output_dir)
        out_path = os.path.join(self.output_dir, video_out_name)
447
        fourcc = cv2.VideoWriter_fourcc(*'mp4v')
W
wangguanzhong 已提交
448 449 450 451 452 453 454 455
        writer = cv2.VideoWriter(out_path, fourcc, fps, (width, height))
        index = 1
        while (1):
            ret, frame = capture.read()
            if not ret:
                break
            print('detect frame: %d' % (index))
            index += 1
L
lazyn1997 已提交
456
            results = self.predict_image([frame[:, :, ::-1]], visual=False)
W
wangguanzhong 已提交
457 458 459 460 461 462 463 464 465 466 467 468 469

            im = visualize_box_mask(
                frame,
                results,
                self.pred_config.labels,
                threshold=self.threshold)
            im = np.array(im)
            writer.write(im)
            if camera_id != -1:
                cv2.imshow('Mask Detection', im)
                if cv2.waitKey(1) & 0xFF == ord('q'):
                    break
        writer.release()
W
wangguanzhong 已提交
470

471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510
    def save_coco_results(self, image_list, results, use_coco_category=False):
        bbox_results = []
        mask_results = []
        idx = 0
        print("Start saving coco json files...")
        for i, box_num in enumerate(results['boxes_num']):
            file_name = os.path.split(image_list[i])[-1]
            if use_coco_category:
                img_id = int(os.path.splitext(file_name)[0])
            else:
                img_id = i

            if 'boxes' in results:
                boxes = results['boxes'][idx:idx + box_num].tolist()
                bbox_results.extend([{
                    'image_id': img_id,
                    'category_id': coco_clsid2catid[int(box[0])] \
                        if use_coco_category else int(box[0]),
                    'file_name': file_name,
                    'bbox': [box[2], box[3], box[4] - box[2],
                         box[5] - box[3]],  # xyxy -> xywh
                    'score': box[1]} for box in boxes])

            if 'masks' in results:
                import pycocotools.mask as mask_util

                boxes = results['boxes'][idx:idx + box_num].tolist()
                masks = results['masks'][i][:box_num].astype(np.uint8)
                seg_res = []
                for box, mask in zip(boxes, masks):
                    rle = mask_util.encode(
                        np.array(
                            mask[:, :, None], dtype=np.uint8, order="F"))[0]
                    if 'counts' in rle:
                        rle['counts'] = rle['counts'].decode("utf8")
                    seg_res.append({
                        'image_id': img_id,
                        'category_id': coco_clsid2catid[int(box[0])] \
                        if use_coco_category else int(box[0]),
                        'file_name': file_name,
511
                        'segmentation': rle,
512 513
                        'score': box[1]})
                mask_results.extend(seg_res)
514

515
            idx += box_num
516

517 518 519 520 521 522 523 524 525 526
        if bbox_results:
            bbox_file = os.path.join(self.output_dir, "bbox.json")
            with open(bbox_file, 'w') as f:
                json.dump(bbox_results, f)
            print(f"The bbox result is saved to {bbox_file}")
        if mask_results:
            mask_file = os.path.join(self.output_dir, "mask.json")
            with open(mask_file, 'w') as f:
                json.dump(mask_results, f)
            print(f"The mask result is saved to {mask_file}")
527

Q
qingqing01 已提交
528

G
Guanghua Yu 已提交
529 530 531 532
class DetectorSOLOv2(Detector):
    """
    Args:
        model_dir (str): root path of model.pdiparams, model.pdmodel and infer_cfg.yml
G
Guanghua Yu 已提交
533
        device (str): Choose the device you want to run, it can be: CPU/GPU/XPU, default is CPU
534
        run_mode (str): mode of running(paddle/trt_fp32/trt_fp16)
535
        batch_size (int): size of pre batch in inference
536 537 538
        trt_min_shape (int): min shape for dynamic shape in trt
        trt_max_shape (int): max shape for dynamic shape in trt
        trt_opt_shape (int): opt shape for dynamic shape in trt
539 540 541 542
        trt_calib_mode (bool): If the model is produced by TRT offline quantitative
            calibration, trt_calib_mode need to set True
        cpu_threads (int): cpu threads
        enable_mkldnn (bool): whether to open MKLDNN 
543
        enable_mkldnn_bfloat16 (bool): Whether to turn on mkldnn bfloat16
W
wangguanzhong 已提交
544 545 546
        output_dir (str): The path of output
        threshold (float): The threshold of score for visualization
       
G
Guanghua Yu 已提交
547 548
    """

W
wangguanzhong 已提交
549 550
    def __init__(
            self,
G
Guanghua Yu 已提交
551
            model_dir,
W
wangguanzhong 已提交
552 553 554 555 556 557 558 559 560
            device='CPU',
            run_mode='paddle',
            batch_size=1,
            trt_min_shape=1,
            trt_max_shape=1280,
            trt_opt_shape=640,
            trt_calib_mode=False,
            cpu_threads=1,
            enable_mkldnn=False,
561
            enable_mkldnn_bfloat16=False,
W
wangguanzhong 已提交
562 563 564 565 566
            output_dir='./',
            threshold=0.5, ):
        super(DetectorSOLOv2, self).__init__(
            model_dir=model_dir,
            device=device,
G
Guanghua Yu 已提交
567
            run_mode=run_mode,
568
            batch_size=batch_size,
569 570
            trt_min_shape=trt_min_shape,
            trt_max_shape=trt_max_shape,
G
Guanghua Yu 已提交
571
            trt_opt_shape=trt_opt_shape,
572 573
            trt_calib_mode=trt_calib_mode,
            cpu_threads=cpu_threads,
W
wangguanzhong 已提交
574
            enable_mkldnn=enable_mkldnn,
575
            enable_mkldnn_bfloat16=enable_mkldnn_bfloat16,
W
wangguanzhong 已提交
576 577
            output_dir=output_dir,
            threshold=threshold, )
G
Guanghua Yu 已提交
578

F
Feng Ni 已提交
579
    def predict(self, repeats=1, run_benchmark=False):
G
Guanghua Yu 已提交
580 581
        '''
        Args:
W
wangguanzhong 已提交
582
            repeats (int): repeat number for prediction
G
Guanghua Yu 已提交
583
        Returns:
W
wangguanzhong 已提交
584
            result (dict): 'segm': np.ndarray,shape:[N, im_h, im_w]
G
Guanghua Yu 已提交
585 586
                            'cate_label': label of segm, shape:[N]
                            'cate_score': confidence score of segm, shape:[N]
G
Guanghua Yu 已提交
587
        '''
F
Feng Ni 已提交
588 589 590 591 592 593 594 595 596 597 598 599 600 601
        np_segms, np_label, np_score, np_boxes_num = None, None, None, np.array(
            [0])

        if run_benchmark:
            for i in range(repeats):
                self.predictor.run()
                paddle.device.cuda.synchronize()
            result = dict(
                segm=np_segms,
                label=np_label,
                score=np_score,
                boxes_num=np_boxes_num)
            return result

G
Guanghua Yu 已提交
602 603 604
        for i in range(repeats):
            self.predictor.run()
            output_names = self.predictor.get_output_names()
W
wangguanzhong 已提交
605 606
            np_boxes_num = self.predictor.get_output_handle(output_names[
                0]).copy_to_cpu()
G
Guanghua Yu 已提交
607 608
            np_label = self.predictor.get_output_handle(output_names[
                1]).copy_to_cpu()
G
Guanghua Yu 已提交
609
            np_score = self.predictor.get_output_handle(output_names[
G
Guanghua Yu 已提交
610
                2]).copy_to_cpu()
G
Guanghua Yu 已提交
611 612
            np_segms = self.predictor.get_output_handle(output_names[
                3]).copy_to_cpu()
G
Guanghua Yu 已提交
613

W
wangguanzhong 已提交
614
        result = dict(
W
wangguanzhong 已提交
615 616 617 618
            segm=np_segms,
            label=np_label,
            score=np_score,
            boxes_num=np_boxes_num)
W
wangguanzhong 已提交
619
        return result
G
Guanghua Yu 已提交
620 621


622 623 624 625 626
class DetectorPicoDet(Detector):
    """
    Args:
        model_dir (str): root path of model.pdiparams, model.pdmodel and infer_cfg.yml
        device (str): Choose the device you want to run, it can be: CPU/GPU/XPU, default is CPU
627
        run_mode (str): mode of running(paddle/trt_fp32/trt_fp16)
628 629 630 631 632 633 634
        batch_size (int): size of pre batch in inference
        trt_min_shape (int): min shape for dynamic shape in trt
        trt_max_shape (int): max shape for dynamic shape in trt
        trt_opt_shape (int): opt shape for dynamic shape in trt
        trt_calib_mode (bool): If the model is produced by TRT offline quantitative
            calibration, trt_calib_mode need to set True
        cpu_threads (int): cpu threads
635 636
        enable_mkldnn (bool): whether to turn on MKLDNN
        enable_mkldnn_bfloat16 (bool): whether to turn on MKLDNN_BFLOAT16
637 638
    """

W
wangguanzhong 已提交
639 640
    def __init__(
            self,
641
            model_dir,
W
wangguanzhong 已提交
642 643 644 645 646 647 648 649 650
            device='CPU',
            run_mode='paddle',
            batch_size=1,
            trt_min_shape=1,
            trt_max_shape=1280,
            trt_opt_shape=640,
            trt_calib_mode=False,
            cpu_threads=1,
            enable_mkldnn=False,
651
            enable_mkldnn_bfloat16=False,
W
wangguanzhong 已提交
652 653 654 655 656
            output_dir='./',
            threshold=0.5, ):
        super(DetectorPicoDet, self).__init__(
            model_dir=model_dir,
            device=device,
657 658 659 660 661 662 663
            run_mode=run_mode,
            batch_size=batch_size,
            trt_min_shape=trt_min_shape,
            trt_max_shape=trt_max_shape,
            trt_opt_shape=trt_opt_shape,
            trt_calib_mode=trt_calib_mode,
            cpu_threads=cpu_threads,
W
wangguanzhong 已提交
664
            enable_mkldnn=enable_mkldnn,
665
            enable_mkldnn_bfloat16=enable_mkldnn_bfloat16,
W
wangguanzhong 已提交
666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681
            output_dir=output_dir,
            threshold=threshold, )

    def postprocess(self, inputs, result):
        # postprocess output of predictor
        np_score_list = result['boxes']
        np_boxes_list = result['boxes_num']
        postprocessor = PicoDetPostProcess(
            inputs['image'].shape[2:],
            inputs['im_shape'],
            inputs['scale_factor'],
            strides=self.pred_config.fpn_stride,
            nms_threshold=self.pred_config.nms['nms_threshold'])
        np_boxes, np_boxes_num = postprocessor(np_score_list, np_boxes_list)
        result = dict(boxes=np_boxes, boxes_num=np_boxes_num)
        return result
682

F
Feng Ni 已提交
683
    def predict(self, repeats=1, run_benchmark=False):
684 685
        '''
        Args:
W
wangguanzhong 已提交
686
            repeats (int): repeat number for prediction
687
        Returns:
W
wangguanzhong 已提交
688
            result (dict): include 'boxes': np.ndarray: shape:[N,6], N: number of box,
689 690 691
                            matix element:[class, score, x_min, y_min, x_max, y_max]
        '''
        np_score_list, np_boxes_list = [], []
F
Feng Ni 已提交
692 693 694 695 696 697 698 699

        if run_benchmark:
            for i in range(repeats):
                self.predictor.run()
                paddle.device.cuda.synchronize()
            result = dict(boxes=np_score_list, boxes_num=np_boxes_list)
            return result

700 701 702 703 704 705 706 707 708 709 710 711 712
        for i in range(repeats):
            self.predictor.run()
            np_score_list.clear()
            np_boxes_list.clear()
            output_names = self.predictor.get_output_names()
            num_outs = int(len(output_names) / 2)
            for out_idx in range(num_outs):
                np_score_list.append(
                    self.predictor.get_output_handle(output_names[out_idx])
                    .copy_to_cpu())
                np_boxes_list.append(
                    self.predictor.get_output_handle(output_names[
                        out_idx + num_outs]).copy_to_cpu())
W
wangguanzhong 已提交
713 714
        result = dict(boxes=np_score_list, boxes_num=np_boxes_list)
        return result
715 716


717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822
class DetectorCLRNet(Detector):
    """
    Args:
        model_dir (str): root path of model.pdiparams, model.pdmodel and infer_cfg.yml
        device (str): Choose the device you want to run, it can be: CPU/GPU/XPU, default is CPU
        run_mode (str): mode of running(paddle/trt_fp32/trt_fp16)
        batch_size (int): size of pre batch in inference
        trt_min_shape (int): min shape for dynamic shape in trt
        trt_max_shape (int): max shape for dynamic shape in trt
        trt_opt_shape (int): opt shape for dynamic shape in trt
        trt_calib_mode (bool): If the model is produced by TRT offline quantitative
            calibration, trt_calib_mode need to set True
        cpu_threads (int): cpu threads
        enable_mkldnn (bool): whether to turn on MKLDNN
        enable_mkldnn_bfloat16 (bool): whether to turn on MKLDNN_BFLOAT16
    """

    def __init__(
            self,
            model_dir,
            device='CPU',
            run_mode='paddle',
            batch_size=1,
            trt_min_shape=1,
            trt_max_shape=1280,
            trt_opt_shape=640,
            trt_calib_mode=False,
            cpu_threads=1,
            enable_mkldnn=False,
            enable_mkldnn_bfloat16=False,
            output_dir='./',
            threshold=0.5, ):
        super(DetectorCLRNet, self).__init__(
            model_dir=model_dir,
            device=device,
            run_mode=run_mode,
            batch_size=batch_size,
            trt_min_shape=trt_min_shape,
            trt_max_shape=trt_max_shape,
            trt_opt_shape=trt_opt_shape,
            trt_calib_mode=trt_calib_mode,
            cpu_threads=cpu_threads,
            enable_mkldnn=enable_mkldnn,
            enable_mkldnn_bfloat16=enable_mkldnn_bfloat16,
            output_dir=output_dir,
            threshold=threshold, )

        deploy_file = os.path.join(model_dir, 'infer_cfg.yml')
        with open(deploy_file) as f:
            yml_conf = yaml.safe_load(f)
        self.img_w = yml_conf['img_w']
        self.ori_img_h = yml_conf['ori_img_h']
        self.cut_height = yml_conf['cut_height']
        self.max_lanes = yml_conf['max_lanes']
        self.nms_thres = yml_conf['nms_thres']
        self.num_points = yml_conf['num_points']
        self.conf_threshold = yml_conf['conf_threshold']

    def postprocess(self, inputs, result):
        # postprocess output of predictor
        lanes_list = result['lanes']
        postprocessor = CLRNetPostProcess(
            img_w=self.img_w,
            ori_img_h=self.ori_img_h,
            cut_height=self.cut_height,
            conf_threshold=self.conf_threshold,
            nms_thres=self.nms_thres,
            max_lanes=self.max_lanes,
            num_points=self.num_points)
        lanes = postprocessor(lanes_list)
        result = dict(lanes=lanes)
        return result

    def predict(self, repeats=1, run_benchmark=False):
        '''
        Args:
            repeats (int): repeat number for prediction
        Returns:
            result (dict): include 'boxes': np.ndarray: shape:[N,6], N: number of box,
                            matix element:[class, score, x_min, y_min, x_max, y_max]
        '''
        lanes_list = []

        if run_benchmark:
            for i in range(repeats):
                self.predictor.run()
                paddle.device.cuda.synchronize()
            result = dict(lanes=lanes_list)
            return result

        for i in range(repeats):
            # TODO: check the output of predictor
            self.predictor.run()
            lanes_list.clear()
            output_names = self.predictor.get_output_names()
            num_outs = int(len(output_names) / 2)
            if num_outs == 0:
                lanes_list.append([])
            for out_idx in range(num_outs):
                lanes_list.append(
                    self.predictor.get_output_handle(output_names[out_idx])
                    .copy_to_cpu())
        result = dict(lanes=lanes_list)
        return result


C
cnn 已提交
823
def create_inputs(imgs, im_info):
Q
qingqing01 已提交
824 825
    """generate input for different model type
    Args:
W
wangguanzhong 已提交
826 827
        imgs (list(numpy)): list of images (np.ndarray)
        im_info (list(dict)): list of image info
Q
qingqing01 已提交
828 829 830 831 832
    Returns:
        inputs (dict): input of model
    """
    inputs = {}

C
cnn 已提交
833 834
    im_shape = []
    scale_factor = []
835 836 837 838 839 840 841 842
    if len(imgs) == 1:
        inputs['image'] = np.array((imgs[0], )).astype('float32')
        inputs['im_shape'] = np.array(
            (im_info[0]['im_shape'], )).astype('float32')
        inputs['scale_factor'] = np.array(
            (im_info[0]['scale_factor'], )).astype('float32')
        return inputs

C
cnn 已提交
843 844 845 846
    for e in im_info:
        im_shape.append(np.array((e['im_shape'], )).astype('float32'))
        scale_factor.append(np.array((e['scale_factor'], )).astype('float32'))

C
cnn 已提交
847 848
    inputs['im_shape'] = np.concatenate(im_shape, axis=0)
    inputs['scale_factor'] = np.concatenate(scale_factor, axis=0)
C
cnn 已提交
849 850 851 852 853 854 855 856 857 858 859 860

    imgs_shape = [[e.shape[1], e.shape[2]] for e in imgs]
    max_shape_h = max([e[0] for e in imgs_shape])
    max_shape_w = max([e[1] for e in imgs_shape])
    padding_imgs = []
    for img in imgs:
        im_c, im_h, im_w = img.shape[:]
        padding_im = np.zeros(
            (im_c, max_shape_h, max_shape_w), dtype=np.float32)
        padding_im[:, :im_h, :im_w] = img
        padding_imgs.append(padding_im)
    inputs['image'] = np.stack(padding_imgs, axis=0)
Q
qingqing01 已提交
861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879
    return inputs


class PredictConfig():
    """set config of preprocess, postprocess and visualize
    Args:
        model_dir (str): root path of model.yml
    """

    def __init__(self, model_dir):
        # parsing Yaml config for Preprocess
        deploy_file = os.path.join(model_dir, 'infer_cfg.yml')
        with open(deploy_file) as f:
            yml_conf = yaml.safe_load(f)
        self.check_model(yml_conf)
        self.arch = yml_conf['arch']
        self.preprocess_infos = yml_conf['Preprocess']
        self.min_subgraph_size = yml_conf['min_subgraph_size']
        self.labels = yml_conf['label_list']
G
Guanghua Yu 已提交
880
        self.mask = False
881
        self.use_dynamic_shape = yml_conf['use_dynamic_shape']
G
Guanghua Yu 已提交
882 883
        if 'mask' in yml_conf:
            self.mask = yml_conf['mask']
884 885 886
        self.tracker = None
        if 'tracker' in yml_conf:
            self.tracker = yml_conf['tracker']
887 888 889 890
        if 'NMS' in yml_conf:
            self.nms = yml_conf['NMS']
        if 'fpn_stride' in yml_conf:
            self.fpn_stride = yml_conf['fpn_stride']
891 892 893 894
        if self.arch == 'RCNN' and yml_conf.get('export_onnx', False):
            print(
                'The RCNN export model is used for ONNX and it only supports batch_size = 1'
            )
Q
qingqing01 已提交
895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917
        self.print_config()

    def check_model(self, yml_conf):
        """
        Raises:
            ValueError: loaded model not in supported model type 
        """
        for support_model in SUPPORT_MODELS:
            if support_model in yml_conf['arch']:
                return True
        raise ValueError("Unsupported arch: {}, expect {}".format(yml_conf[
            'arch'], SUPPORT_MODELS))

    def print_config(self):
        print('-----------  Model Configuration -----------')
        print('%s: %s' % ('Model Arch', self.arch))
        print('%s: ' % ('Transform Order'))
        for op_info in self.preprocess_infos:
            print('--%s: %s' % ('transform op', op_info['type']))
        print('--------------------------------------------')


def load_predictor(model_dir,
918
                   arch,
919
                   run_mode='paddle',
Q
qingqing01 已提交
920
                   batch_size=1,
G
Guanghua Yu 已提交
921
                   device='CPU',
922 923 924 925
                   min_subgraph_size=3,
                   use_dynamic_shape=False,
                   trt_min_shape=1,
                   trt_max_shape=1280,
G
Guanghua Yu 已提交
926
                   trt_opt_shape=640,
927 928
                   trt_calib_mode=False,
                   cpu_threads=1,
929
                   enable_mkldnn=False,
J
JYChen 已提交
930
                   enable_mkldnn_bfloat16=False,
931
                   delete_shuffle_pass=False):
Q
qingqing01 已提交
932 933 934
    """set AnalysisConfig, generate AnalysisPredictor
    Args:
        model_dir (str): root path of __model__ and __params__
G
Guanghua Yu 已提交
935
        device (str): Choose the device you want to run, it can be: CPU/GPU/XPU, default is CPU
936
        run_mode (str): mode of running(paddle/trt_fp32/trt_fp16/trt_int8)
937 938 939 940
        use_dynamic_shape (bool): use dynamic shape or not
        trt_min_shape (int): min shape for dynamic shape in trt
        trt_max_shape (int): max shape for dynamic shape in trt
        trt_opt_shape (int): opt shape for dynamic shape in trt
G
Guanghua Yu 已提交
941 942
        trt_calib_mode (bool): If the model is produced by TRT offline quantitative
            calibration, trt_calib_mode need to set True
J
JYChen 已提交
943 944
        delete_shuffle_pass (bool): whether to remove shuffle_channel_detect_pass in TensorRT. 
                                    Used by action model.
Q
qingqing01 已提交
945 946 947
    Returns:
        predictor (PaddlePredictor): AnalysisPredictor
    Raises:
G
Guanghua Yu 已提交
948
        ValueError: predict by TensorRT need device == 'GPU'.
Q
qingqing01 已提交
949
    """
950
    if device != 'GPU' and run_mode != 'paddle':
Q
qingqing01 已提交
951
        raise ValueError(
G
Guanghua Yu 已提交
952 953
            "Predict by TensorRT mode: {}, expect device=='GPU', but device == {}"
            .format(run_mode, device))
954 955 956 957 958 959 960 961 962
    infer_model = os.path.join(model_dir, 'model.pdmodel')
    infer_params = os.path.join(model_dir, 'model.pdiparams')
    if not os.path.exists(infer_model):
        infer_model = os.path.join(model_dir, 'inference.pdmodel')
        infer_params = os.path.join(model_dir, 'inference.pdiparams')
        if not os.path.exists(infer_model):
            raise ValueError(
                "Cannot find any inference model in dir: {},".format(model_dir))
    config = Config(infer_model, infer_params)
G
Guanghua Yu 已提交
963
    if device == 'GPU':
Q
qingqing01 已提交
964 965 966
        # initial GPU memory(M), device ID
        config.enable_use_gpu(200, 0)
        # optimize graph and fuse op
967
        config.switch_ir_optim(True)
G
Guanghua Yu 已提交
968
    elif device == 'XPU':
969 970
        if config.lite_engine_enabled():
            config.enable_lite_engine()
G
Guanghua Yu 已提交
971
        config.enable_xpu(10 * 1024 * 1024)
972 973 974
    elif device == 'NPU':
        if config.lite_engine_enabled():
            config.enable_lite_engine()
D
duanyanhui 已提交
975
        config.enable_custom_device('npu')
Q
qingqing01 已提交
976 977
    else:
        config.disable_gpu()
978 979
        config.set_cpu_math_library_num_threads(cpu_threads)
        if enable_mkldnn:
G
Guanghua Yu 已提交
980 981 982 983
            try:
                # cache 10 different shapes for mkldnn to avoid memory leak
                config.set_mkldnn_cache_capacity(10)
                config.enable_mkldnn()
984 985
                if enable_mkldnn_bfloat16:
                    config.enable_mkldnn_bfloat16()
G
Guanghua Yu 已提交
986 987 988 989 990
            except Exception as e:
                print(
                    "The current environment does not support `mkldnn`, so disable mkldnn."
                )
                pass
Q
qingqing01 已提交
991

G
Guanghua Yu 已提交
992 993 994 995 996
    precision_map = {
        'trt_int8': Config.Precision.Int8,
        'trt_fp32': Config.Precision.Float32,
        'trt_fp16': Config.Precision.Half
    }
Q
qingqing01 已提交
997 998
    if run_mode in precision_map.keys():
        config.enable_tensorrt_engine(
W
wangxinxin08 已提交
999
            workspace_size=(1 << 25) * batch_size,
Q
qingqing01 已提交
1000 1001 1002 1003
            max_batch_size=batch_size,
            min_subgraph_size=min_subgraph_size,
            precision_mode=precision_map[run_mode],
            use_static=False,
G
Guanghua Yu 已提交
1004
            use_calib_mode=trt_calib_mode)
1005 1006 1007 1008 1009 1010 1011
        if FLAGS.collect_trt_shape_info:
            config.collect_shape_range_info(FLAGS.tuned_trt_shape_file)
        elif os.path.exists(FLAGS.tuned_trt_shape_file):
            print(f'Use dynamic shape file: '
                  f'{FLAGS.tuned_trt_shape_file} for TRT...')
            config.enable_tuned_tensorrt_dynamic_shape(
                FLAGS.tuned_trt_shape_file, True)
1012 1013

        if use_dynamic_shape:
1014
            min_input_shape = {
W
wangxinxin08 已提交
1015 1016
                'image': [batch_size, 3, trt_min_shape, trt_min_shape],
                'scale_factor': [batch_size, 2]
1017 1018
            }
            max_input_shape = {
W
wangxinxin08 已提交
1019 1020
                'image': [batch_size, 3, trt_max_shape, trt_max_shape],
                'scale_factor': [batch_size, 2]
1021 1022
            }
            opt_input_shape = {
W
wangxinxin08 已提交
1023 1024
                'image': [batch_size, 3, trt_opt_shape, trt_opt_shape],
                'scale_factor': [batch_size, 2]
1025
            }
1026 1027 1028
            config.set_trt_dynamic_shape_info(min_input_shape, max_input_shape,
                                              opt_input_shape)
            print('trt set dynamic shape done!')
Q
qingqing01 已提交
1029 1030 1031 1032 1033 1034 1035

    # disable print log when predict
    config.disable_glog_info()
    # enable shared memory
    config.enable_memory_optim()
    # disable feed, fetch OP, needed by zero_copy_run
    config.switch_use_feed_fetch_ops(False)
J
JYChen 已提交
1036 1037
    if delete_shuffle_pass:
        config.delete_pass("shuffle_channel_detect_pass")
Q
qingqing01 已提交
1038
    predictor = create_predictor(config)
1039
    return predictor, config
Q
qingqing01 已提交
1040 1041


G
Guanghua Yu 已提交
1042 1043 1044 1045 1046
def get_test_images(infer_dir, infer_img):
    """
    Get image path list in TEST mode
    """
    assert infer_img is not None or infer_dir is not None, \
J
JYChen 已提交
1047
        "--image_file or --image_dir should be set"
G
Guanghua Yu 已提交
1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072
    assert infer_img is None or os.path.isfile(infer_img), \
            "{} is not a file".format(infer_img)
    assert infer_dir is None or os.path.isdir(infer_dir), \
            "{} is not a directory".format(infer_dir)

    # infer_img has a higher priority
    if infer_img and os.path.isfile(infer_img):
        return [infer_img]

    images = set()
    infer_dir = os.path.abspath(infer_dir)
    assert os.path.isdir(infer_dir), \
        "infer_dir {} is not a directory".format(infer_dir)
    exts = ['jpg', 'jpeg', 'png', 'bmp']
    exts += [ext.upper() for ext in exts]
    for ext in exts:
        images.update(glob.glob('{}/*.{}'.format(infer_dir, ext)))
    images = list(images)

    assert len(images) > 0, "no image found in {}".format(infer_dir)
    print("Found {} inference images in total.".format(len(images)))

    return images


W
wangguanzhong 已提交
1073
def visualize(image_list, result, labels, output_dir='output/', threshold=0.5):
Q
qingqing01 已提交
1074
    # visualize the predict result
1075 1076 1077 1078 1079 1080 1081 1082 1083 1084
    if 'lanes' in result:
        print(image_list)
        for idx, image_file in enumerate(image_list):
            lanes = result['lanes'][idx]
            img = cv2.imread(image_file)
            out_file = os.path.join(output_dir, os.path.basename(image_file))
            # hard code
            lanes = [lane.to_array([], ) for lane in lanes]
            imshow_lanes(img, lanes, out_file=out_file)
            return
C
cnn 已提交
1085 1086
    start_idx = 0
    for idx, image_file in enumerate(image_list):
W
wangguanzhong 已提交
1087
        im_bboxes_num = result['boxes_num'][idx]
C
cnn 已提交
1088
        im_results = {}
W
wangguanzhong 已提交
1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103
        if 'boxes' in result:
            im_results['boxes'] = result['boxes'][start_idx:start_idx +
                                                  im_bboxes_num, :]
        if 'masks' in result:
            im_results['masks'] = result['masks'][start_idx:start_idx +
                                                  im_bboxes_num, :]
        if 'segm' in result:
            im_results['segm'] = result['segm'][start_idx:start_idx +
                                                im_bboxes_num, :]
        if 'label' in result:
            im_results['label'] = result['label'][start_idx:start_idx +
                                                  im_bboxes_num]
        if 'score' in result:
            im_results['score'] = result['score'][start_idx:start_idx +
                                                  im_bboxes_num]
W
wangguanzhong 已提交
1104

C
cnn 已提交
1105 1106 1107 1108 1109 1110 1111 1112 1113
        start_idx += im_bboxes_num
        im = visualize_box_mask(
            image_file, im_results, labels, threshold=threshold)
        img_name = os.path.split(image_file)[-1]
        if not os.path.exists(output_dir):
            os.makedirs(output_dir)
        out_path = os.path.join(output_dir, img_name)
        im.save(out_path, quality=95)
        print("save result to: " + out_path)
Q
qingqing01 已提交
1114 1115 1116 1117 1118 1119 1120 1121 1122 1123


def print_arguments(args):
    print('-----------  Running Arguments -----------')
    for arg, value in sorted(vars(args).items()):
        print('%s: %s' % (arg, value))
    print('------------------------------------------')


def main():
W
wangguanzhong 已提交
1124 1125 1126 1127
    deploy_file = os.path.join(FLAGS.model_dir, 'infer_cfg.yml')
    with open(deploy_file) as f:
        yml_conf = yaml.safe_load(f)
    arch = yml_conf['arch']
1128
    detector_func = 'Detector'
W
wangguanzhong 已提交
1129
    if arch == 'SOLOv2':
1130
        detector_func = 'DetectorSOLOv2'
W
wangguanzhong 已提交
1131
    elif arch == 'PicoDet':
1132
        detector_func = 'DetectorPicoDet'
1133 1134
    elif arch == "CLRNet":
        detector_func = 'DetectorCLRNet'
1135

1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149
    detector = eval(detector_func)(
        FLAGS.model_dir,
        device=FLAGS.device,
        run_mode=FLAGS.run_mode,
        batch_size=FLAGS.batch_size,
        trt_min_shape=FLAGS.trt_min_shape,
        trt_max_shape=FLAGS.trt_max_shape,
        trt_opt_shape=FLAGS.trt_opt_shape,
        trt_calib_mode=FLAGS.trt_calib_mode,
        cpu_threads=FLAGS.cpu_threads,
        enable_mkldnn=FLAGS.enable_mkldnn,
        enable_mkldnn_bfloat16=FLAGS.enable_mkldnn_bfloat16,
        threshold=FLAGS.threshold,
        output_dir=FLAGS.output_dir)
G
Guanghua Yu 已提交
1150

Q
qingqing01 已提交
1151
    # predict from video file or camera video stream
G
Guanghua Yu 已提交
1152
    if FLAGS.video_file is not None or FLAGS.camera_id != -1:
W
wangguanzhong 已提交
1153
        detector.predict_video(FLAGS.video_file, FLAGS.camera_id)
G
Guanghua Yu 已提交
1154 1155
    else:
        # predict from image
C
cnn 已提交
1156 1157
        if FLAGS.image_dir is None and FLAGS.image_file is not None:
            assert FLAGS.batch_size == 1, "batch_size should be 1, when image_file is not None"
G
Guanghua Yu 已提交
1158
        img_list = get_test_images(FLAGS.image_dir, FLAGS.image_file)
1159 1160 1161 1162 1163 1164 1165 1166
        if FLAGS.slice_infer:
            detector.predict_image_slice(
                img_list,
                FLAGS.slice_size,
                FLAGS.overlap_ratio,
                FLAGS.combine_method,
                FLAGS.match_threshold,
                FLAGS.match_metric,
1167 1168
                visual=FLAGS.save_images,
                save_results=FLAGS.save_results)
1169 1170
        else:
            detector.predict_image(
1171 1172 1173 1174 1175
                img_list,
                FLAGS.run_benchmark,
                repeats=100,
                visual=FLAGS.save_images,
                save_results=FLAGS.save_results)
G
Guanghua Yu 已提交
1176 1177 1178
        if not FLAGS.run_benchmark:
            detector.det_times.info(average=True)
        else:
1179
            mode = FLAGS.run_mode
W
wangguanzhong 已提交
1180
            model_dir = FLAGS.model_dir
1181
            model_info = {
1182 1183
                'model_name': model_dir.strip('/').split('/')[-1],
                'precision': mode.split('_')[-1]
1184
            }
W
wangguanzhong 已提交
1185
            bench_log(detector, img_list, model_info, name='DET')
Q
qingqing01 已提交
1186 1187 1188 1189


if __name__ == '__main__':
    paddle.enable_static()
G
Guanghua Yu 已提交
1190
    parser = argsparser()
Q
qingqing01 已提交
1191 1192
    FLAGS = parser.parse_args()
    print_arguments(FLAGS)
G
Guanghua Yu 已提交
1193
    FLAGS.device = FLAGS.device.upper()
1194 1195
    assert FLAGS.device in ['CPU', 'GPU', 'XPU', 'NPU'
                            ], "device should be CPU, GPU, XPU or NPU"
G
Guanghua Yu 已提交
1196
    assert not FLAGS.use_gpu, "use_gpu has been deprecated, please use --device"
Q
qingqing01 已提交
1197

1198 1199 1200
    assert not (
        FLAGS.enable_mkldnn == False and FLAGS.enable_mkldnn_bfloat16 == True
    ), 'To enable mkldnn bfloat, please turn on both enable_mkldnn and enable_mkldnn_bfloat16'
1201

Q
qingqing01 已提交
1202
    main()