infer.py 34.9 KB
Newer Older
Q
qingqing01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import yaml
G
Guanghua Yu 已提交
17
import glob
18 19
import json
from pathlib import Path
Q
qingqing01 已提交
20 21 22 23
from functools import reduce

import cv2
import numpy as np
C
cnn 已提交
24
import math
Q
qingqing01 已提交
25 26 27 28
import paddle
from paddle.inference import Config
from paddle.inference import create_predictor

W
wangguanzhong 已提交
29 30 31 32 33
import sys
# add deploy path of PadleDetection to sys.path
parent_path = os.path.abspath(os.path.join(__file__, *(['..'])))
sys.path.insert(0, parent_path)

34
from benchmark_utils import PaddleInferBenchmark
35
from picodet_postprocess import PicoDetPostProcess
F
Feng Ni 已提交
36
from preprocess import preprocess, Resize, NormalizeImage, Permute, PadStride, LetterBoxResize, WarpAffine, Pad, decode_image
W
wangguanzhong 已提交
37
from keypoint_preprocess import EvalAffine, TopDownEvalAffine, expand_crop
G
Guanghua Yu 已提交
38
from visualize import visualize_box_mask
39
from utils import argsparser, Timer, get_current_memory_mb
G
Guanghua Yu 已提交
40

Q
qingqing01 已提交
41 42
# Global dictionary
SUPPORT_MODELS = {
J
JYChen 已提交
43 44 45
    'YOLO', 'RCNN', 'SSD', 'Face', 'FCOS', 'SOLOv2', 'TTFNet', 'S2ANet', 'JDE',
    'FairMOT', 'DeepSORT', 'GFL', 'PicoDet', 'CenterNet', 'TOOD', 'RetinaNet',
    'StrongBaseline', 'STGCN', 'YOLOX', 'PPHGNet'
Q
qingqing01 已提交
46 47 48
}


W
wangguanzhong 已提交
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65
def bench_log(detector, img_list, model_info, batch_size=1, name=None):
    mems = {
        'cpu_rss_mb': detector.cpu_mem / len(img_list),
        'gpu_rss_mb': detector.gpu_mem / len(img_list),
        'gpu_util': detector.gpu_util * 100 / len(img_list)
    }
    perf_info = detector.det_times.report(average=True)
    data_info = {
        'batch_size': batch_size,
        'shape': "dynamic_shape",
        'data_num': perf_info['img_num']
    }
    log = PaddleInferBenchmark(detector.config, model_info, data_info,
                               perf_info, mems)
    log(name)


Q
qingqing01 已提交
66 67 68
class Detector(object):
    """
    Args:
69
        pred_config (object): config of model, defined by `Config(model_dir)`
Q
qingqing01 已提交
70
        model_dir (str): root path of model.pdiparams, model.pdmodel and infer_cfg.yml
G
Guanghua Yu 已提交
71
        device (str): Choose the device you want to run, it can be: CPU/GPU/XPU, default is CPU
72
        run_mode (str): mode of running(paddle/trt_fp32/trt_fp16)
73
        batch_size (int): size of pre batch in inference
74 75 76
        trt_min_shape (int): min shape for dynamic shape in trt
        trt_max_shape (int): max shape for dynamic shape in trt
        trt_opt_shape (int): opt shape for dynamic shape in trt
77 78 79 80
        trt_calib_mode (bool): If the model is produced by TRT offline quantitative
            calibration, trt_calib_mode need to set True
        cpu_threads (int): cpu threads
        enable_mkldnn (bool): whether to open MKLDNN
81
        enable_mkldnn_bfloat16 (bool): whether to turn on mkldnn bfloat16
W
wangguanzhong 已提交
82 83
        output_dir (str): The path of output
        threshold (float): The threshold of score for visualization
J
JYChen 已提交
84 85
        delete_shuffle_pass (bool): whether to remove shuffle_channel_detect_pass in TensorRT. 
                                    Used by action model.
Q
qingqing01 已提交
86 87
    """

J
JYChen 已提交
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
    def __init__(self,
                 model_dir,
                 device='CPU',
                 run_mode='paddle',
                 batch_size=1,
                 trt_min_shape=1,
                 trt_max_shape=1280,
                 trt_opt_shape=640,
                 trt_calib_mode=False,
                 cpu_threads=1,
                 enable_mkldnn=False,
                 enable_mkldnn_bfloat16=False,
                 output_dir='output',
                 threshold=0.5,
                 delete_shuffle_pass=False):
W
wangguanzhong 已提交
103
        self.pred_config = self.set_config(model_dir)
104
        self.predictor, self.config = load_predictor(
Q
qingqing01 已提交
105 106
            model_dir,
            run_mode=run_mode,
107
            batch_size=batch_size,
Q
qingqing01 已提交
108
            min_subgraph_size=self.pred_config.min_subgraph_size,
G
Guanghua Yu 已提交
109
            device=device,
110
            use_dynamic_shape=self.pred_config.use_dynamic_shape,
111 112
            trt_min_shape=trt_min_shape,
            trt_max_shape=trt_max_shape,
G
Guanghua Yu 已提交
113
            trt_opt_shape=trt_opt_shape,
114 115
            trt_calib_mode=trt_calib_mode,
            cpu_threads=cpu_threads,
116
            enable_mkldnn=enable_mkldnn,
J
JYChen 已提交
117 118
            enable_mkldnn_bfloat16=enable_mkldnn_bfloat16,
            delete_shuffle_pass=delete_shuffle_pass)
G
Guanghua Yu 已提交
119 120
        self.det_times = Timer()
        self.cpu_mem, self.gpu_mem, self.gpu_util = 0, 0, 0
W
wangguanzhong 已提交
121 122 123 124 125 126
        self.batch_size = batch_size
        self.output_dir = output_dir
        self.threshold = threshold

    def set_config(self, model_dir):
        return PredictConfig(model_dir)
Q
qingqing01 已提交
127

C
cnn 已提交
128
    def preprocess(self, image_list):
Q
qingqing01 已提交
129 130 131 132 133
        preprocess_ops = []
        for op_info in self.pred_config.preprocess_infos:
            new_op_info = op_info.copy()
            op_type = new_op_info.pop('type')
            preprocess_ops.append(eval(op_type)(**new_op_info))
C
cnn 已提交
134 135 136 137

        input_im_lst = []
        input_im_info_lst = []
        for im_path in image_list:
138
            im, im_info = preprocess(im_path, preprocess_ops)
C
cnn 已提交
139 140 141
            input_im_lst.append(im)
            input_im_info_lst.append(im_info)
        inputs = create_inputs(input_im_lst, input_im_info_lst)
W
wangguanzhong 已提交
142 143 144
        input_names = self.predictor.get_input_names()
        for i in range(len(input_names)):
            input_tensor = self.predictor.get_input_handle(input_names[i])
145 146 147 148
            if input_names[i] == 'x':
                input_tensor.copy_from_cpu(inputs['image'])
            else:
                input_tensor.copy_from_cpu(inputs[input_names[i]])
W
wangguanzhong 已提交
149

Q
qingqing01 已提交
150 151
        return inputs

W
wangguanzhong 已提交
152
    def postprocess(self, inputs, result):
Q
qingqing01 已提交
153
        # postprocess output of predictor
W
wangguanzhong 已提交
154
        np_boxes_num = result['boxes_num']
S
shangliang Xu 已提交
155 156 157 158 159 160 161 162 163 164 165
        out_result = {k: [] for k, v in result.items() if v is not None}
        idx = 0
        for num_box in np_boxes_num:
            for k, v in out_result.items():
                v.append(result[k][idx:idx + num_box])
            idx += num_box
            if num_box == 0:
                print('[WARNNING] No object detected.')
        out_result = {k: np.concatenate(v) for k, v in out_result.items()}
        out_result['boxes_num'] = result['boxes_num']
        return out_result
Q
qingqing01 已提交
166

167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
    def filter_box(self, result, threshold):
        np_boxes_num = result['boxes_num']
        boxes = result['boxes']
        start_idx = 0
        filter_boxes = []
        filter_num = []
        for i in range(len(np_boxes_num)):
            boxes_num = np_boxes_num[i]
            boxes_i = boxes[start_idx:start_idx + boxes_num, :]
            idx = boxes_i[:, 1] > threshold
            filter_boxes_i = boxes_i[idx, :]
            filter_boxes.append(filter_boxes_i)
            filter_num.append(filter_boxes_i.shape[0])
            start_idx += boxes_num
        boxes = np.concatenate(filter_boxes)
        filter_num = np.array(filter_num)
        filter_res = {'boxes': boxes, 'boxes_num': filter_num}
        return filter_res

W
wangguanzhong 已提交
186
    def predict(self, repeats=1):
Q
qingqing01 已提交
187 188
        '''
        Args:
W
wangguanzhong 已提交
189
            repeats (int): repeats number for prediction
Q
qingqing01 已提交
190
        Returns:
W
wangguanzhong 已提交
191
            result (dict): include 'boxes': np.ndarray: shape:[N,6], N: number of box,
Q
qingqing01 已提交
192
                            matix element:[class, score, x_min, y_min, x_max, y_max]
W
wangguanzhong 已提交
193
                            MaskRCNN's result include 'masks': np.ndarray:
G
Guanghua Yu 已提交
194
                            shape: [N, im_h, im_w]
Q
qingqing01 已提交
195
        '''
W
wangguanzhong 已提交
196
        # model prediction
W
wangguanzhong 已提交
197
        np_boxes, np_masks = None, None
Q
qingqing01 已提交
198 199 200 201 202
        for i in range(repeats):
            self.predictor.run()
            output_names = self.predictor.get_output_names()
            boxes_tensor = self.predictor.get_output_handle(output_names[0])
            np_boxes = boxes_tensor.copy_to_cpu()
C
cnn 已提交
203 204
            boxes_num = self.predictor.get_output_handle(output_names[1])
            np_boxes_num = boxes_num.copy_to_cpu()
G
Guanghua Yu 已提交
205
            if self.pred_config.mask:
Q
qingqing01 已提交
206 207
                masks_tensor = self.predictor.get_output_handle(output_names[2])
                np_masks = masks_tensor.copy_to_cpu()
W
wangguanzhong 已提交
208 209 210 211 212 213 214 215 216 217 218 219
        result = dict(boxes=np_boxes, masks=np_masks, boxes_num=np_boxes_num)
        return result

    def merge_batch_result(self, batch_result):
        if len(batch_result) == 1:
            return batch_result[0]
        res_key = batch_result[0].keys()
        results = {k: [] for k in res_key}
        for res in batch_result:
            for k, v in res.items():
                results[k].append(v)
        for k, v in results.items():
220
            if k not in ['masks', 'segm']:
W
wangguanzhong 已提交
221
                results[k] = np.concatenate(v)
W
wangguanzhong 已提交
222
        return results
Q
qingqing01 已提交
223

W
wangguanzhong 已提交
224 225
    def get_timer(self):
        return self.det_times
W
wangguanzhong 已提交
226

W
wangguanzhong 已提交
227 228 229 230
    def predict_image(self,
                      image_list,
                      run_benchmark=False,
                      repeats=1,
231 232
                      visual=True,
                      save_file=None):
W
wangguanzhong 已提交
233
        batch_loop_cnt = math.ceil(float(len(image_list)) / self.batch_size)
Q
qingqing01 已提交
234
        results = []
W
wangguanzhong 已提交
235 236 237 238 239 240 241 242 243 244 245 246
        for i in range(batch_loop_cnt):
            start_index = i * self.batch_size
            end_index = min((i + 1) * self.batch_size, len(image_list))
            batch_image_list = image_list[start_index:end_index]
            if run_benchmark:
                # preprocess
                inputs = self.preprocess(batch_image_list)  # warmup
                self.det_times.preprocess_time_s.start()
                inputs = self.preprocess(batch_image_list)
                self.det_times.preprocess_time_s.end()

                # model prediction
247
                result = self.predict(repeats=50)  # warmup
W
wangguanzhong 已提交
248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
                self.det_times.inference_time_s.start()
                result = self.predict(repeats=repeats)
                self.det_times.inference_time_s.end(repeats=repeats)

                # postprocess
                result_warmup = self.postprocess(inputs, result)  # warmup
                self.det_times.postprocess_time_s.start()
                result = self.postprocess(inputs, result)
                self.det_times.postprocess_time_s.end()
                self.det_times.img_num += len(batch_image_list)

                cm, gm, gu = get_current_memory_mb()
                self.cpu_mem += cm
                self.gpu_mem += gm
                self.gpu_util += gu
            else:
                # preprocess
                self.det_times.preprocess_time_s.start()
                inputs = self.preprocess(batch_image_list)
                self.det_times.preprocess_time_s.end()

                # model prediction
                self.det_times.inference_time_s.start()
                result = self.predict()
                self.det_times.inference_time_s.end()

                # postprocess
                self.det_times.postprocess_time_s.start()
                result = self.postprocess(inputs, result)
                self.det_times.postprocess_time_s.end()
                self.det_times.img_num += len(batch_image_list)

                if visual:
                    visualize(
                        batch_image_list,
                        result,
                        self.pred_config.labels,
                        output_dir=self.output_dir,
                        threshold=self.threshold)

            results.append(result)
            if visual:
                print('Test iter {}'.format(i))

292 293 294 295
        if save_file is not None:
            Path(self.output_dir).mkdir(exist_ok=True)
            self.format_coco_results(image_list, results, save_file=save_file)

W
wangguanzhong 已提交
296
        results = self.merge_batch_result(results)
Q
qingqing01 已提交
297 298
        return results

W
wangguanzhong 已提交
299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
    def predict_video(self, video_file, camera_id):
        video_out_name = 'output.mp4'
        if camera_id != -1:
            capture = cv2.VideoCapture(camera_id)
        else:
            capture = cv2.VideoCapture(video_file)
            video_out_name = os.path.split(video_file)[-1]
        # Get Video info : resolution, fps, frame count
        width = int(capture.get(cv2.CAP_PROP_FRAME_WIDTH))
        height = int(capture.get(cv2.CAP_PROP_FRAME_HEIGHT))
        fps = int(capture.get(cv2.CAP_PROP_FPS))
        frame_count = int(capture.get(cv2.CAP_PROP_FRAME_COUNT))
        print("fps: %d, frame_count: %d" % (fps, frame_count))

        if not os.path.exists(self.output_dir):
            os.makedirs(self.output_dir)
        out_path = os.path.join(self.output_dir, video_out_name)
S
shangliang Xu 已提交
316
        fourcc = cv2.VideoWriter_fourcc(*'mp4v')
W
wangguanzhong 已提交
317 318 319 320 321 322 323 324
        writer = cv2.VideoWriter(out_path, fourcc, fps, (width, height))
        index = 1
        while (1):
            ret, frame = capture.read()
            if not ret:
                break
            print('detect frame: %d' % (index))
            index += 1
L
lazyn1997 已提交
325
            results = self.predict_image([frame[:, :, ::-1]], visual=False)
W
wangguanzhong 已提交
326 327 328 329 330 331 332 333 334 335 336 337 338

            im = visualize_box_mask(
                frame,
                results,
                self.pred_config.labels,
                threshold=self.threshold)
            im = np.array(im)
            writer.write(im)
            if camera_id != -1:
                cv2.imshow('Mask Detection', im)
                if cv2.waitKey(1) & 0xFF == ord('q'):
                    break
        writer.release()
W
wangguanzhong 已提交
339

340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401
    @staticmethod
    def format_coco_results(image_list, results, save_file=None):
        coco_results = []
        image_id = 0

        for result in results:
            start_idx = 0
            for box_num in result['boxes_num']:
                idx_slice = slice(start_idx, start_idx + box_num)
                start_idx += box_num

                image_file = image_list[image_id]
                image_id += 1

                if 'boxes' in result:
                    boxes = result['boxes'][idx_slice, :]
                    per_result = [
                        {
                            'image_file': image_file,
                            'bbox':
                            [box[2], box[3], box[4] - box[2],
                             box[5] - box[3]],  # xyxy -> xywh
                            'score': box[1],
                            'category_id': int(box[0]),
                        } for k, box in enumerate(boxes.tolist())
                    ]

                elif 'segm' in result:
                    import pycocotools.mask as mask_util

                    scores = result['score'][idx_slice].tolist()
                    category_ids = result['label'][idx_slice].tolist()
                    segms = result['segm'][idx_slice, :]
                    rles = [
                        mask_util.encode(
                            np.array(
                                mask[:, :, np.newaxis],
                                dtype=np.uint8,
                                order='F'))[0] for mask in segms
                    ]
                    for rle in rles:
                        rle['counts'] = rle['counts'].decode('utf-8')

                    per_result = [{
                        'image_file': image_file,
                        'segmentation': rle,
                        'score': scores[k],
                        'category_id': category_ids[k],
                    } for k, rle in enumerate(rles)]

                else:
                    raise RuntimeError('')

                # per_result = [item for item in per_result if item['score'] > threshold]
                coco_results.extend(per_result)

        if save_file:
            with open(os.path.join(save_file), 'w') as f:
                json.dump(coco_results, f)

        return coco_results

Q
qingqing01 已提交
402

G
Guanghua Yu 已提交
403 404 405 406
class DetectorSOLOv2(Detector):
    """
    Args:
        model_dir (str): root path of model.pdiparams, model.pdmodel and infer_cfg.yml
G
Guanghua Yu 已提交
407
        device (str): Choose the device you want to run, it can be: CPU/GPU/XPU, default is CPU
408
        run_mode (str): mode of running(paddle/trt_fp32/trt_fp16)
409
        batch_size (int): size of pre batch in inference
410 411 412
        trt_min_shape (int): min shape for dynamic shape in trt
        trt_max_shape (int): max shape for dynamic shape in trt
        trt_opt_shape (int): opt shape for dynamic shape in trt
413 414 415 416
        trt_calib_mode (bool): If the model is produced by TRT offline quantitative
            calibration, trt_calib_mode need to set True
        cpu_threads (int): cpu threads
        enable_mkldnn (bool): whether to open MKLDNN 
417
        enable_mkldnn_bfloat16 (bool): Whether to turn on mkldnn bfloat16
W
wangguanzhong 已提交
418 419 420
        output_dir (str): The path of output
        threshold (float): The threshold of score for visualization
       
G
Guanghua Yu 已提交
421 422
    """

W
wangguanzhong 已提交
423 424
    def __init__(
            self,
G
Guanghua Yu 已提交
425
            model_dir,
W
wangguanzhong 已提交
426 427 428 429 430 431 432 433 434
            device='CPU',
            run_mode='paddle',
            batch_size=1,
            trt_min_shape=1,
            trt_max_shape=1280,
            trt_opt_shape=640,
            trt_calib_mode=False,
            cpu_threads=1,
            enable_mkldnn=False,
435
            enable_mkldnn_bfloat16=False,
W
wangguanzhong 已提交
436 437 438 439 440
            output_dir='./',
            threshold=0.5, ):
        super(DetectorSOLOv2, self).__init__(
            model_dir=model_dir,
            device=device,
G
Guanghua Yu 已提交
441
            run_mode=run_mode,
442
            batch_size=batch_size,
443 444
            trt_min_shape=trt_min_shape,
            trt_max_shape=trt_max_shape,
G
Guanghua Yu 已提交
445
            trt_opt_shape=trt_opt_shape,
446 447
            trt_calib_mode=trt_calib_mode,
            cpu_threads=cpu_threads,
W
wangguanzhong 已提交
448
            enable_mkldnn=enable_mkldnn,
449
            enable_mkldnn_bfloat16=enable_mkldnn_bfloat16,
W
wangguanzhong 已提交
450 451
            output_dir=output_dir,
            threshold=threshold, )
G
Guanghua Yu 已提交
452

W
wangguanzhong 已提交
453
    def predict(self, repeats=1):
G
Guanghua Yu 已提交
454 455
        '''
        Args:
W
wangguanzhong 已提交
456
            repeats (int): repeat number for prediction
G
Guanghua Yu 已提交
457
        Returns:
W
wangguanzhong 已提交
458
            result (dict): 'segm': np.ndarray,shape:[N, im_h, im_w]
G
Guanghua Yu 已提交
459 460
                            'cate_label': label of segm, shape:[N]
                            'cate_score': confidence score of segm, shape:[N]
G
Guanghua Yu 已提交
461 462 463 464 465
        '''
        np_label, np_score, np_segms = None, None, None
        for i in range(repeats):
            self.predictor.run()
            output_names = self.predictor.get_output_names()
W
wangguanzhong 已提交
466 467
            np_boxes_num = self.predictor.get_output_handle(output_names[
                0]).copy_to_cpu()
G
Guanghua Yu 已提交
468 469
            np_label = self.predictor.get_output_handle(output_names[
                1]).copy_to_cpu()
G
Guanghua Yu 已提交
470
            np_score = self.predictor.get_output_handle(output_names[
G
Guanghua Yu 已提交
471
                2]).copy_to_cpu()
G
Guanghua Yu 已提交
472 473
            np_segms = self.predictor.get_output_handle(output_names[
                3]).copy_to_cpu()
G
Guanghua Yu 已提交
474

W
wangguanzhong 已提交
475
        result = dict(
W
wangguanzhong 已提交
476 477 478 479
            segm=np_segms,
            label=np_label,
            score=np_score,
            boxes_num=np_boxes_num)
W
wangguanzhong 已提交
480
        return result
G
Guanghua Yu 已提交
481 482


483 484 485 486 487
class DetectorPicoDet(Detector):
    """
    Args:
        model_dir (str): root path of model.pdiparams, model.pdmodel and infer_cfg.yml
        device (str): Choose the device you want to run, it can be: CPU/GPU/XPU, default is CPU
488
        run_mode (str): mode of running(paddle/trt_fp32/trt_fp16)
489 490 491 492 493 494 495
        batch_size (int): size of pre batch in inference
        trt_min_shape (int): min shape for dynamic shape in trt
        trt_max_shape (int): max shape for dynamic shape in trt
        trt_opt_shape (int): opt shape for dynamic shape in trt
        trt_calib_mode (bool): If the model is produced by TRT offline quantitative
            calibration, trt_calib_mode need to set True
        cpu_threads (int): cpu threads
496 497
        enable_mkldnn (bool): whether to turn on MKLDNN
        enable_mkldnn_bfloat16 (bool): whether to turn on MKLDNN_BFLOAT16
498 499
    """

W
wangguanzhong 已提交
500 501
    def __init__(
            self,
502
            model_dir,
W
wangguanzhong 已提交
503 504 505 506 507 508 509 510 511
            device='CPU',
            run_mode='paddle',
            batch_size=1,
            trt_min_shape=1,
            trt_max_shape=1280,
            trt_opt_shape=640,
            trt_calib_mode=False,
            cpu_threads=1,
            enable_mkldnn=False,
512
            enable_mkldnn_bfloat16=False,
W
wangguanzhong 已提交
513 514 515 516 517
            output_dir='./',
            threshold=0.5, ):
        super(DetectorPicoDet, self).__init__(
            model_dir=model_dir,
            device=device,
518 519 520 521 522 523 524
            run_mode=run_mode,
            batch_size=batch_size,
            trt_min_shape=trt_min_shape,
            trt_max_shape=trt_max_shape,
            trt_opt_shape=trt_opt_shape,
            trt_calib_mode=trt_calib_mode,
            cpu_threads=cpu_threads,
W
wangguanzhong 已提交
525
            enable_mkldnn=enable_mkldnn,
526
            enable_mkldnn_bfloat16=enable_mkldnn_bfloat16,
W
wangguanzhong 已提交
527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542
            output_dir=output_dir,
            threshold=threshold, )

    def postprocess(self, inputs, result):
        # postprocess output of predictor
        np_score_list = result['boxes']
        np_boxes_list = result['boxes_num']
        postprocessor = PicoDetPostProcess(
            inputs['image'].shape[2:],
            inputs['im_shape'],
            inputs['scale_factor'],
            strides=self.pred_config.fpn_stride,
            nms_threshold=self.pred_config.nms['nms_threshold'])
        np_boxes, np_boxes_num = postprocessor(np_score_list, np_boxes_list)
        result = dict(boxes=np_boxes, boxes_num=np_boxes_num)
        return result
543

W
wangguanzhong 已提交
544
    def predict(self, repeats=1):
545 546
        '''
        Args:
W
wangguanzhong 已提交
547
            repeats (int): repeat number for prediction
548
        Returns:
W
wangguanzhong 已提交
549
            result (dict): include 'boxes': np.ndarray: shape:[N,6], N: number of box,
550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565
                            matix element:[class, score, x_min, y_min, x_max, y_max]
        '''
        np_score_list, np_boxes_list = [], []
        for i in range(repeats):
            self.predictor.run()
            np_score_list.clear()
            np_boxes_list.clear()
            output_names = self.predictor.get_output_names()
            num_outs = int(len(output_names) / 2)
            for out_idx in range(num_outs):
                np_score_list.append(
                    self.predictor.get_output_handle(output_names[out_idx])
                    .copy_to_cpu())
                np_boxes_list.append(
                    self.predictor.get_output_handle(output_names[
                        out_idx + num_outs]).copy_to_cpu())
W
wangguanzhong 已提交
566 567
        result = dict(boxes=np_score_list, boxes_num=np_boxes_list)
        return result
568 569


C
cnn 已提交
570
def create_inputs(imgs, im_info):
Q
qingqing01 已提交
571 572
    """generate input for different model type
    Args:
W
wangguanzhong 已提交
573 574
        imgs (list(numpy)): list of images (np.ndarray)
        im_info (list(dict)): list of image info
Q
qingqing01 已提交
575 576 577 578 579
    Returns:
        inputs (dict): input of model
    """
    inputs = {}

C
cnn 已提交
580 581
    im_shape = []
    scale_factor = []
582 583 584 585 586 587 588 589
    if len(imgs) == 1:
        inputs['image'] = np.array((imgs[0], )).astype('float32')
        inputs['im_shape'] = np.array(
            (im_info[0]['im_shape'], )).astype('float32')
        inputs['scale_factor'] = np.array(
            (im_info[0]['scale_factor'], )).astype('float32')
        return inputs

C
cnn 已提交
590 591 592 593
    for e in im_info:
        im_shape.append(np.array((e['im_shape'], )).astype('float32'))
        scale_factor.append(np.array((e['scale_factor'], )).astype('float32'))

C
cnn 已提交
594 595
    inputs['im_shape'] = np.concatenate(im_shape, axis=0)
    inputs['scale_factor'] = np.concatenate(scale_factor, axis=0)
C
cnn 已提交
596 597 598 599 600 601 602 603 604 605 606 607

    imgs_shape = [[e.shape[1], e.shape[2]] for e in imgs]
    max_shape_h = max([e[0] for e in imgs_shape])
    max_shape_w = max([e[1] for e in imgs_shape])
    padding_imgs = []
    for img in imgs:
        im_c, im_h, im_w = img.shape[:]
        padding_im = np.zeros(
            (im_c, max_shape_h, max_shape_w), dtype=np.float32)
        padding_im[:, :im_h, :im_w] = img
        padding_imgs.append(padding_im)
    inputs['image'] = np.stack(padding_imgs, axis=0)
Q
qingqing01 已提交
608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626
    return inputs


class PredictConfig():
    """set config of preprocess, postprocess and visualize
    Args:
        model_dir (str): root path of model.yml
    """

    def __init__(self, model_dir):
        # parsing Yaml config for Preprocess
        deploy_file = os.path.join(model_dir, 'infer_cfg.yml')
        with open(deploy_file) as f:
            yml_conf = yaml.safe_load(f)
        self.check_model(yml_conf)
        self.arch = yml_conf['arch']
        self.preprocess_infos = yml_conf['Preprocess']
        self.min_subgraph_size = yml_conf['min_subgraph_size']
        self.labels = yml_conf['label_list']
G
Guanghua Yu 已提交
627
        self.mask = False
628
        self.use_dynamic_shape = yml_conf['use_dynamic_shape']
G
Guanghua Yu 已提交
629 630
        if 'mask' in yml_conf:
            self.mask = yml_conf['mask']
631 632 633
        self.tracker = None
        if 'tracker' in yml_conf:
            self.tracker = yml_conf['tracker']
634 635 636 637
        if 'NMS' in yml_conf:
            self.nms = yml_conf['NMS']
        if 'fpn_stride' in yml_conf:
            self.fpn_stride = yml_conf['fpn_stride']
638 639 640 641
        if self.arch == 'RCNN' and yml_conf.get('export_onnx', False):
            print(
                'The RCNN export model is used for ONNX and it only supports batch_size = 1'
            )
Q
qingqing01 已提交
642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664
        self.print_config()

    def check_model(self, yml_conf):
        """
        Raises:
            ValueError: loaded model not in supported model type 
        """
        for support_model in SUPPORT_MODELS:
            if support_model in yml_conf['arch']:
                return True
        raise ValueError("Unsupported arch: {}, expect {}".format(yml_conf[
            'arch'], SUPPORT_MODELS))

    def print_config(self):
        print('-----------  Model Configuration -----------')
        print('%s: %s' % ('Model Arch', self.arch))
        print('%s: ' % ('Transform Order'))
        for op_info in self.preprocess_infos:
            print('--%s: %s' % ('transform op', op_info['type']))
        print('--------------------------------------------')


def load_predictor(model_dir,
665
                   run_mode='paddle',
Q
qingqing01 已提交
666
                   batch_size=1,
G
Guanghua Yu 已提交
667
                   device='CPU',
668 669 670 671
                   min_subgraph_size=3,
                   use_dynamic_shape=False,
                   trt_min_shape=1,
                   trt_max_shape=1280,
G
Guanghua Yu 已提交
672
                   trt_opt_shape=640,
673 674
                   trt_calib_mode=False,
                   cpu_threads=1,
675
                   enable_mkldnn=False,
J
JYChen 已提交
676 677
                   enable_mkldnn_bfloat16=False,
                   delete_shuffle_pass=False):
Q
qingqing01 已提交
678 679 680
    """set AnalysisConfig, generate AnalysisPredictor
    Args:
        model_dir (str): root path of __model__ and __params__
G
Guanghua Yu 已提交
681
        device (str): Choose the device you want to run, it can be: CPU/GPU/XPU, default is CPU
682
        run_mode (str): mode of running(paddle/trt_fp32/trt_fp16/trt_int8)
683 684 685 686
        use_dynamic_shape (bool): use dynamic shape or not
        trt_min_shape (int): min shape for dynamic shape in trt
        trt_max_shape (int): max shape for dynamic shape in trt
        trt_opt_shape (int): opt shape for dynamic shape in trt
G
Guanghua Yu 已提交
687 688
        trt_calib_mode (bool): If the model is produced by TRT offline quantitative
            calibration, trt_calib_mode need to set True
J
JYChen 已提交
689 690
        delete_shuffle_pass (bool): whether to remove shuffle_channel_detect_pass in TensorRT. 
                                    Used by action model.
Q
qingqing01 已提交
691 692 693
    Returns:
        predictor (PaddlePredictor): AnalysisPredictor
    Raises:
G
Guanghua Yu 已提交
694
        ValueError: predict by TensorRT need device == 'GPU'.
Q
qingqing01 已提交
695
    """
696
    if device != 'GPU' and run_mode != 'paddle':
Q
qingqing01 已提交
697
        raise ValueError(
G
Guanghua Yu 已提交
698 699
            "Predict by TensorRT mode: {}, expect device=='GPU', but device == {}"
            .format(run_mode, device))
700 701 702 703 704 705 706 707 708
    infer_model = os.path.join(model_dir, 'model.pdmodel')
    infer_params = os.path.join(model_dir, 'model.pdiparams')
    if not os.path.exists(infer_model):
        infer_model = os.path.join(model_dir, 'inference.pdmodel')
        infer_params = os.path.join(model_dir, 'inference.pdiparams')
        if not os.path.exists(infer_model):
            raise ValueError(
                "Cannot find any inference model in dir: {},".format(model_dir))
    config = Config(infer_model, infer_params)
G
Guanghua Yu 已提交
709
    if device == 'GPU':
Q
qingqing01 已提交
710 711 712
        # initial GPU memory(M), device ID
        config.enable_use_gpu(200, 0)
        # optimize graph and fuse op
713
        config.switch_ir_optim(True)
G
Guanghua Yu 已提交
714
    elif device == 'XPU':
715
        config.enable_lite_engine()
G
Guanghua Yu 已提交
716
        config.enable_xpu(10 * 1024 * 1024)
Q
qingqing01 已提交
717 718
    else:
        config.disable_gpu()
719 720
        config.set_cpu_math_library_num_threads(cpu_threads)
        if enable_mkldnn:
G
Guanghua Yu 已提交
721 722 723 724
            try:
                # cache 10 different shapes for mkldnn to avoid memory leak
                config.set_mkldnn_cache_capacity(10)
                config.enable_mkldnn()
725 726
                if enable_mkldnn_bfloat16:
                    config.enable_mkldnn_bfloat16()
G
Guanghua Yu 已提交
727 728 729 730 731
            except Exception as e:
                print(
                    "The current environment does not support `mkldnn`, so disable mkldnn."
                )
                pass
Q
qingqing01 已提交
732

G
Guanghua Yu 已提交
733 734 735 736 737
    precision_map = {
        'trt_int8': Config.Precision.Int8,
        'trt_fp32': Config.Precision.Float32,
        'trt_fp16': Config.Precision.Half
    }
Q
qingqing01 已提交
738 739
    if run_mode in precision_map.keys():
        config.enable_tensorrt_engine(
W
wangxinxin08 已提交
740
            workspace_size=(1 << 25) * batch_size,
Q
qingqing01 已提交
741 742 743 744
            max_batch_size=batch_size,
            min_subgraph_size=min_subgraph_size,
            precision_mode=precision_map[run_mode],
            use_static=False,
G
Guanghua Yu 已提交
745
            use_calib_mode=trt_calib_mode)
746 747

        if use_dynamic_shape:
748 749 750 751 752 753 754 755 756
            min_input_shape = {
                'image': [batch_size, 3, trt_min_shape, trt_min_shape]
            }
            max_input_shape = {
                'image': [batch_size, 3, trt_max_shape, trt_max_shape]
            }
            opt_input_shape = {
                'image': [batch_size, 3, trt_opt_shape, trt_opt_shape]
            }
757 758 759
            config.set_trt_dynamic_shape_info(min_input_shape, max_input_shape,
                                              opt_input_shape)
            print('trt set dynamic shape done!')
Q
qingqing01 已提交
760 761 762 763 764 765 766

    # disable print log when predict
    config.disable_glog_info()
    # enable shared memory
    config.enable_memory_optim()
    # disable feed, fetch OP, needed by zero_copy_run
    config.switch_use_feed_fetch_ops(False)
J
JYChen 已提交
767 768
    if delete_shuffle_pass:
        config.delete_pass("shuffle_channel_detect_pass")
Q
qingqing01 已提交
769
    predictor = create_predictor(config)
770
    return predictor, config
Q
qingqing01 已提交
771 772


G
Guanghua Yu 已提交
773 774 775 776 777
def get_test_images(infer_dir, infer_img):
    """
    Get image path list in TEST mode
    """
    assert infer_img is not None or infer_dir is not None, \
J
JYChen 已提交
778
        "--image_file or --image_dir should be set"
G
Guanghua Yu 已提交
779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803
    assert infer_img is None or os.path.isfile(infer_img), \
            "{} is not a file".format(infer_img)
    assert infer_dir is None or os.path.isdir(infer_dir), \
            "{} is not a directory".format(infer_dir)

    # infer_img has a higher priority
    if infer_img and os.path.isfile(infer_img):
        return [infer_img]

    images = set()
    infer_dir = os.path.abspath(infer_dir)
    assert os.path.isdir(infer_dir), \
        "infer_dir {} is not a directory".format(infer_dir)
    exts = ['jpg', 'jpeg', 'png', 'bmp']
    exts += [ext.upper() for ext in exts]
    for ext in exts:
        images.update(glob.glob('{}/*.{}'.format(infer_dir, ext)))
    images = list(images)

    assert len(images) > 0, "no image found in {}".format(infer_dir)
    print("Found {} inference images in total.".format(len(images)))

    return images


W
wangguanzhong 已提交
804
def visualize(image_list, result, labels, output_dir='output/', threshold=0.5):
Q
qingqing01 已提交
805
    # visualize the predict result
C
cnn 已提交
806 807
    start_idx = 0
    for idx, image_file in enumerate(image_list):
W
wangguanzhong 已提交
808
        im_bboxes_num = result['boxes_num'][idx]
C
cnn 已提交
809
        im_results = {}
W
wangguanzhong 已提交
810 811 812 813 814 815 816 817 818 819 820 821 822 823 824
        if 'boxes' in result:
            im_results['boxes'] = result['boxes'][start_idx:start_idx +
                                                  im_bboxes_num, :]
        if 'masks' in result:
            im_results['masks'] = result['masks'][start_idx:start_idx +
                                                  im_bboxes_num, :]
        if 'segm' in result:
            im_results['segm'] = result['segm'][start_idx:start_idx +
                                                im_bboxes_num, :]
        if 'label' in result:
            im_results['label'] = result['label'][start_idx:start_idx +
                                                  im_bboxes_num]
        if 'score' in result:
            im_results['score'] = result['score'][start_idx:start_idx +
                                                  im_bboxes_num]
W
wangguanzhong 已提交
825

C
cnn 已提交
826 827 828 829 830 831 832 833 834
        start_idx += im_bboxes_num
        im = visualize_box_mask(
            image_file, im_results, labels, threshold=threshold)
        img_name = os.path.split(image_file)[-1]
        if not os.path.exists(output_dir):
            os.makedirs(output_dir)
        out_path = os.path.join(output_dir, img_name)
        im.save(out_path, quality=95)
        print("save result to: " + out_path)
Q
qingqing01 已提交
835 836 837 838 839 840 841 842 843 844


def print_arguments(args):
    print('-----------  Running Arguments -----------')
    for arg, value in sorted(vars(args).items()):
        print('%s: %s' % (arg, value))
    print('------------------------------------------')


def main():
W
wangguanzhong 已提交
845 846 847 848
    deploy_file = os.path.join(FLAGS.model_dir, 'infer_cfg.yml')
    with open(deploy_file) as f:
        yml_conf = yaml.safe_load(f)
    arch = yml_conf['arch']
849
    detector_func = 'Detector'
W
wangguanzhong 已提交
850
    if arch == 'SOLOv2':
851
        detector_func = 'DetectorSOLOv2'
W
wangguanzhong 已提交
852
    elif arch == 'PicoDet':
853 854
        detector_func = 'DetectorPicoDet'

855 856 857 858 859 860 861 862 863 864 865 866 867 868
    detector = eval(detector_func)(
        FLAGS.model_dir,
        device=FLAGS.device,
        run_mode=FLAGS.run_mode,
        batch_size=FLAGS.batch_size,
        trt_min_shape=FLAGS.trt_min_shape,
        trt_max_shape=FLAGS.trt_max_shape,
        trt_opt_shape=FLAGS.trt_opt_shape,
        trt_calib_mode=FLAGS.trt_calib_mode,
        cpu_threads=FLAGS.cpu_threads,
        enable_mkldnn=FLAGS.enable_mkldnn,
        enable_mkldnn_bfloat16=FLAGS.enable_mkldnn_bfloat16,
        threshold=FLAGS.threshold,
        output_dir=FLAGS.output_dir)
G
Guanghua Yu 已提交
869

Q
qingqing01 已提交
870
    # predict from video file or camera video stream
G
Guanghua Yu 已提交
871
    if FLAGS.video_file is not None or FLAGS.camera_id != -1:
W
wangguanzhong 已提交
872
        detector.predict_video(FLAGS.video_file, FLAGS.camera_id)
G
Guanghua Yu 已提交
873 874
    else:
        # predict from image
C
cnn 已提交
875 876
        if FLAGS.image_dir is None and FLAGS.image_file is not None:
            assert FLAGS.batch_size == 1, "batch_size should be 1, when image_file is not None"
G
Guanghua Yu 已提交
877
        img_list = get_test_images(FLAGS.image_dir, FLAGS.image_file)
878 879 880 881
        save_file = os.path.join(FLAGS.output_dir,
                                 'results.json') if FLAGS.save_results else None
        detector.predict_image(
            img_list, FLAGS.run_benchmark, repeats=100, save_file=save_file)
G
Guanghua Yu 已提交
882 883 884
        if not FLAGS.run_benchmark:
            detector.det_times.info(average=True)
        else:
885
            mode = FLAGS.run_mode
W
wangguanzhong 已提交
886
            model_dir = FLAGS.model_dir
887
            model_info = {
888 889
                'model_name': model_dir.strip('/').split('/')[-1],
                'precision': mode.split('_')[-1]
890
            }
W
wangguanzhong 已提交
891
            bench_log(detector, img_list, model_info, name='DET')
Q
qingqing01 已提交
892 893 894 895


if __name__ == '__main__':
    paddle.enable_static()
G
Guanghua Yu 已提交
896
    parser = argsparser()
Q
qingqing01 已提交
897 898
    FLAGS = parser.parse_args()
    print_arguments(FLAGS)
G
Guanghua Yu 已提交
899 900 901 902
    FLAGS.device = FLAGS.device.upper()
    assert FLAGS.device in ['CPU', 'GPU', 'XPU'
                            ], "device should be CPU, GPU or XPU"
    assert not FLAGS.use_gpu, "use_gpu has been deprecated, please use --device"
Q
qingqing01 已提交
903

904 905 906
    assert not (
        FLAGS.enable_mkldnn == False and FLAGS.enable_mkldnn_bfloat16 == True
    ), 'To enable mkldnn bfloat, please turn on both enable_mkldnn and enable_mkldnn_bfloat16'
907

Q
qingqing01 已提交
908
    main()