Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
01d57c6a
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
1 年多 前同步成功
通知
696
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
01d57c6a
编写于
2月 05, 2021
作者:
G
Guanghua Yu
提交者:
GitHub
2月 05, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix RCNN dygraph to static (#2184)
* fix RCNN dygraph to static
上级
9a4fae6d
变更
17
隐藏空白更改
内联
并排
Showing
17 changed file
with
125 addition
and
218 deletion
+125
-218
dygraph/deploy/python/infer.py
dygraph/deploy/python/infer.py
+11
-39
dygraph/deploy/python/visualize.py
dygraph/deploy/python/visualize.py
+21
-63
dygraph/ppdet/engine/export_utils.py
dygraph/ppdet/engine/export_utils.py
+2
-3
dygraph/ppdet/metrics/coco_utils.py
dygraph/ppdet/metrics/coco_utils.py
+4
-11
dygraph/ppdet/modeling/architectures/faster_rcnn.py
dygraph/ppdet/modeling/architectures/faster_rcnn.py
+1
-9
dygraph/ppdet/modeling/architectures/fcos.py
dygraph/ppdet/modeling/architectures/fcos.py
+1
-9
dygraph/ppdet/modeling/architectures/mask_rcnn.py
dygraph/ppdet/modeling/architectures/mask_rcnn.py
+1
-10
dygraph/ppdet/modeling/architectures/ttfnet.py
dygraph/ppdet/modeling/architectures/ttfnet.py
+1
-6
dygraph/ppdet/modeling/architectures/yolo.py
dygraph/ppdet/modeling/architectures/yolo.py
+1
-9
dygraph/ppdet/modeling/bbox_utils.py
dygraph/ppdet/modeling/bbox_utils.py
+6
-7
dygraph/ppdet/modeling/heads/bbox_head.py
dygraph/ppdet/modeling/heads/bbox_head.py
+1
-2
dygraph/ppdet/modeling/heads/mask_head.py
dygraph/ppdet/modeling/heads/mask_head.py
+4
-3
dygraph/ppdet/modeling/layers.py
dygraph/ppdet/modeling/layers.py
+4
-6
dygraph/ppdet/modeling/post_process.py
dygraph/ppdet/modeling/post_process.py
+19
-9
dygraph/ppdet/modeling/proposal_generator/anchor_generator.py
...aph/ppdet/modeling/proposal_generator/anchor_generator.py
+14
-9
dygraph/ppdet/modeling/proposal_generator/rpn_head.py
dygraph/ppdet/modeling/proposal_generator/rpn_head.py
+11
-5
dygraph/ppdet/py_op/post_process.py
dygraph/ppdet/py_op/post_process.py
+23
-18
未找到文件。
dygraph/deploy/python/infer.py
浏览文件 @
01d57c6a
...
...
@@ -84,16 +84,8 @@ class Detector(object):
np_boxes
[:,
3
]
*=
w
np_boxes
[:,
4
]
*=
h
np_boxes
[:,
5
]
*=
w
expect_boxes
=
(
np_boxes
[:,
1
]
>
threshold
)
&
(
np_boxes
[:,
0
]
>
-
1
)
np_boxes
=
np_boxes
[
expect_boxes
,
:]
for
box
in
np_boxes
:
print
(
'class_id:{:d}, confidence:{:.4f},'
'left_top:[{:.2f},{:.2f}],'
' right_bottom:[{:.2f},{:.2f}]'
.
format
(
int
(
box
[
0
]),
box
[
1
],
box
[
2
],
box
[
3
],
box
[
4
],
box
[
5
]))
results
[
'boxes'
]
=
np_boxes
if
np_masks
is
not
None
:
np_masks
=
np_masks
[
expect_boxes
,
:,
:,
:]
results
[
'masks'
]
=
np_masks
return
results
...
...
@@ -111,7 +103,7 @@ class Detector(object):
results (dict): include 'boxes': np.ndarray: shape:[N,6], N: number of box,
matix element:[class, score, x_min, y_min, x_max, y_max]
MaskRCNN's results include 'masks': np.ndarray:
shape:
[N, class_num, mask_resolution, mask_resolution
]
shape:
[N, im_h, im_w
]
'''
inputs
=
self
.
preprocess
(
image
)
np_boxes
,
np_masks
=
None
,
None
...
...
@@ -125,7 +117,7 @@ class Detector(object):
output_names
=
self
.
predictor
.
get_output_names
()
boxes_tensor
=
self
.
predictor
.
get_output_handle
(
output_names
[
0
])
np_boxes
=
boxes_tensor
.
copy_to_cpu
()
if
self
.
pred_config
.
mask
_resolution
is
not
None
:
if
self
.
pred_config
.
mask
:
masks_tensor
=
self
.
predictor
.
get_output_handle
(
output_names
[
2
])
np_masks
=
masks_tensor
.
copy_to_cpu
()
...
...
@@ -135,14 +127,7 @@ class Detector(object):
output_names
=
self
.
predictor
.
get_output_names
()
boxes_tensor
=
self
.
predictor
.
get_output_handle
(
output_names
[
0
])
np_boxes
=
boxes_tensor
.
copy_to_cpu
()
score_tensor
=
self
.
predictor
.
get_output_handle
(
output_names
[
3
])
np_score
=
score_tensor
.
copy_to_cpu
()
label_tensor
=
self
.
predictor
.
get_output_handle
(
output_names
[
2
])
np_label
=
label_tensor
.
copy_to_cpu
()
np_boxes
=
np
.
concatenate
(
[
np_label
[:,
np
.
newaxis
],
np_score
[:,
np
.
newaxis
],
np_boxes
],
axis
=-
1
)
if
self
.
pred_config
.
mask_resolution
is
not
None
:
if
self
.
pred_config
.
mask
:
masks_tensor
=
self
.
predictor
.
get_output_handle
(
output_names
[
2
])
np_masks
=
masks_tensor
.
copy_to_cpu
()
t2
=
time
.
time
()
...
...
@@ -196,10 +181,9 @@ class DetectorSOLOv2(Detector):
image (str/np.ndarray): path of image/ np.ndarray read by cv2
threshold (float): threshold of predicted box' score
Returns:
results (dict): include 'boxes': np.ndarray: shape:[N,6], N: number of box,
matix element:[class, score, x_min, y_min, x_max, y_max]
MaskRCNN's results include 'masks': np.ndarray:
shape:[N, class_num, mask_resolution, mask_resolution]
results (dict): 'segm': np.ndarray,shape:[N, im_h, im_w]
'cate_label': label of segm, shape:[N]
'cate_score': confidence score of segm, shape:[N]
'''
inputs
=
self
.
preprocess
(
image
)
np_label
,
np_score
,
np_segms
=
None
,
None
,
None
...
...
@@ -273,9 +257,9 @@ class PredictConfig():
self
.
preprocess_infos
=
yml_conf
[
'Preprocess'
]
self
.
min_subgraph_size
=
yml_conf
[
'min_subgraph_size'
]
self
.
labels
=
yml_conf
[
'label_list'
]
self
.
mask
_resolution
=
Non
e
if
'mask
_resolution
'
in
yml_conf
:
self
.
mask
_resolution
=
yml_conf
[
'mask_resolution
'
]
self
.
mask
=
Fals
e
if
'mask'
in
yml_conf
:
self
.
mask
=
yml_conf
[
'mask
'
]
self
.
input_shape
=
yml_conf
[
'image_shape'
]
self
.
print_config
()
...
...
@@ -355,19 +339,9 @@ def load_predictor(model_dir,
return
predictor
def
visualize
(
image_file
,
results
,
labels
,
mask_resolution
=
14
,
output_dir
=
'output/'
,
threshold
=
0.5
):
def
visualize
(
image_file
,
results
,
labels
,
output_dir
=
'output/'
,
threshold
=
0.5
):
# visualize the predict result
im
=
visualize_box_mask
(
image_file
,
results
,
labels
,
mask_resolution
=
mask_resolution
,
threshold
=
threshold
)
im
=
visualize_box_mask
(
image_file
,
results
,
labels
,
threshold
=
threshold
)
img_name
=
os
.
path
.
split
(
image_file
)[
-
1
]
if
not
os
.
path
.
exists
(
output_dir
):
os
.
makedirs
(
output_dir
)
...
...
@@ -397,7 +371,6 @@ def predict_image(detector):
FLAGS
.
image_file
,
results
,
detector
.
pred_config
.
labels
,
mask_resolution
=
detector
.
pred_config
.
mask_resolution
,
output_dir
=
FLAGS
.
output_dir
,
threshold
=
FLAGS
.
threshold
)
...
...
@@ -431,7 +404,6 @@ def predict_video(detector, camera_id):
frame
,
results
,
detector
.
pred_config
.
labels
,
mask_resolution
=
detector
.
pred_config
.
mask_resolution
,
threshold
=
FLAGS
.
threshold
)
im
=
np
.
array
(
im
)
writer
.
write
(
im
)
...
...
dygraph/deploy/python/visualize.py
浏览文件 @
01d57c6a
...
...
@@ -21,16 +21,15 @@ from PIL import Image, ImageDraw
from
scipy
import
ndimage
def
visualize_box_mask
(
im
,
results
,
labels
,
mask_resolution
=
14
,
threshold
=
0.5
):
def
visualize_box_mask
(
im
,
results
,
labels
,
threshold
=
0.5
):
"""
Args:
im (str/np.ndarray): path of image/np.ndarray read by cv2
results (dict): include 'boxes': np.ndarray: shape:[N,6], N: number of box,
matix element:[class, score, x_min, y_min, x_max, y_max]
MaskRCNN's results include 'masks': np.ndarray:
shape:[N,
class_num, mask_resolution, mask_resolution
]
shape:[N,
im_h, im_w
]
labels (list): labels:['class1', ..., 'classn']
mask_resolution (int): shape of a mask is:[mask_resolution, mask_resolution]
threshold (float): Threshold of score.
Returns:
im (PIL.Image.Image): visualized image
...
...
@@ -41,13 +40,9 @@ def visualize_box_mask(im, results, labels, mask_resolution=14, threshold=0.5):
im
=
Image
.
fromarray
(
im
)
if
'masks'
in
results
and
'boxes'
in
results
:
im
=
draw_mask
(
im
,
results
[
'boxes'
],
results
[
'masks'
],
labels
,
resolution
=
mask_resolution
)
im
,
results
[
'boxes'
],
results
[
'masks'
],
labels
,
threshold
=
threshold
)
if
'boxes'
in
results
:
im
=
draw_box
(
im
,
results
[
'boxes'
],
labels
)
im
=
draw_box
(
im
,
results
[
'boxes'
],
labels
,
threshold
=
threshold
)
if
'segm'
in
results
:
im
=
draw_segm
(
im
,
...
...
@@ -80,91 +75,49 @@ def get_color_map_list(num_classes):
return
color_map
def
expand_boxes
(
boxes
,
scale
=
0.0
):
"""
Args:
boxes (np.ndarray): shape:[N,4], N:number of box,
matix element:[x_min, y_min, x_max, y_max]
scale (float): scale of boxes
Returns:
boxes_exp (np.ndarray): expanded boxes
"""
w_half
=
(
boxes
[:,
2
]
-
boxes
[:,
0
])
*
.
5
h_half
=
(
boxes
[:,
3
]
-
boxes
[:,
1
])
*
.
5
x_c
=
(
boxes
[:,
2
]
+
boxes
[:,
0
])
*
.
5
y_c
=
(
boxes
[:,
3
]
+
boxes
[:,
1
])
*
.
5
w_half
*=
scale
h_half
*=
scale
boxes_exp
=
np
.
zeros
(
boxes
.
shape
)
boxes_exp
[:,
0
]
=
x_c
-
w_half
boxes_exp
[:,
2
]
=
x_c
+
w_half
boxes_exp
[:,
1
]
=
y_c
-
h_half
boxes_exp
[:,
3
]
=
y_c
+
h_half
return
boxes_exp
def
draw_mask
(
im
,
np_boxes
,
np_masks
,
labels
,
resolution
=
14
,
threshold
=
0.5
):
def
draw_mask
(
im
,
np_boxes
,
np_masks
,
labels
,
threshold
=
0.5
):
"""
Args:
im (PIL.Image.Image): PIL image
np_boxes (np.ndarray): shape:[N,6], N: number of box,
matix element:[class, score, x_min, y_min, x_max, y_max]
np_masks (np.ndarray): shape:[N,
class_num, resolution, resolution
]
matix element:[class, score, x_min, y_min, x_max, y_max]
np_masks (np.ndarray): shape:[N,
im_h, im_w
]
labels (list): labels:['class1', ..., 'classn']
resolution (int): shape of a mask is:[resolution, resolution]
threshold (float): threshold of mask
Returns:
im (PIL.Image.Image): visualized image
"""
color_list
=
get_color_map_list
(
len
(
labels
))
scale
=
(
resolution
+
2.0
)
/
resolution
im_w
,
im_h
=
im
.
size
w_ratio
=
0.4
alpha
=
0.7
im
=
np
.
array
(
im
).
astype
(
'float32'
)
rects
=
np_boxes
[:,
2
:]
expand_rects
=
expand_boxes
(
rects
,
scale
)
expand_rects
=
expand_rects
.
astype
(
np
.
int32
)
clsid_scores
=
np_boxes
[:,
0
:
2
]
padded_mask
=
np
.
zeros
((
resolution
+
2
,
resolution
+
2
),
dtype
=
np
.
float32
)
clsid2color
=
{}
for
idx
in
range
(
len
(
np_boxes
)):
clsid
,
score
=
clsid_scores
[
idx
].
tolist
()
clsid
=
int
(
clsid
)
xmin
,
ymin
,
xmax
,
ymax
=
expand_rects
[
idx
].
tolist
()
w
=
xmax
-
xmin
+
1
h
=
ymax
-
ymin
+
1
w
=
np
.
maximum
(
w
,
1
)
h
=
np
.
maximum
(
h
,
1
)
padded_mask
[
1
:
-
1
,
1
:
-
1
]
=
np_masks
[
idx
,
int
(
clsid
),
:,
:]
resized_mask
=
cv2
.
resize
(
padded_mask
,
(
w
,
h
))
resized_mask
=
np
.
array
(
resized_mask
>
threshold
,
dtype
=
np
.
uint8
)
x0
=
min
(
max
(
xmin
,
0
),
im_w
)
x1
=
min
(
max
(
xmax
+
1
,
0
),
im_w
)
y0
=
min
(
max
(
ymin
,
0
),
im_h
)
y1
=
min
(
max
(
ymax
+
1
,
0
),
im_h
)
im_mask
=
np
.
zeros
((
im_h
,
im_w
),
dtype
=
np
.
uint8
)
im_mask
[
y0
:
y1
,
x0
:
x1
]
=
resized_mask
[(
y0
-
ymin
):(
y1
-
ymin
),
(
x0
-
xmin
):(
x1
-
xmin
)]
expect_boxes
=
(
np_boxes
[:,
1
]
>
threshold
)
&
(
np_boxes
[:,
0
]
>
-
1
)
np_boxes
=
np_boxes
[
expect_boxes
,
:]
np_masks
=
np_masks
[
expect_boxes
,
:,
:]
for
i
in
range
(
len
(
np_masks
)):
clsid
,
score
=
int
(
np_boxes
[
i
][
0
]),
np_boxes
[
i
][
1
]
mask
=
np_masks
[
i
]
if
clsid
not
in
clsid2color
:
clsid2color
[
clsid
]
=
color_list
[
clsid
]
color_mask
=
clsid2color
[
clsid
]
for
c
in
range
(
3
):
color_mask
[
c
]
=
color_mask
[
c
]
*
(
1
-
w_ratio
)
+
w_ratio
*
255
idx
=
np
.
nonzero
(
im_
mask
)
idx
=
np
.
nonzero
(
mask
)
color_mask
=
np
.
array
(
color_mask
)
im
[
idx
[
0
],
idx
[
1
],
:]
*=
1.0
-
alpha
im
[
idx
[
0
],
idx
[
1
],
:]
+=
alpha
*
color_mask
return
Image
.
fromarray
(
im
.
astype
(
'uint8'
))
def
draw_box
(
im
,
np_boxes
,
labels
):
def
draw_box
(
im
,
np_boxes
,
labels
,
threshold
=
0.5
):
"""
Args:
im (PIL.Image.Image): PIL image
np_boxes (np.ndarray): shape:[N,6], N: number of box,
matix element:[class, score, x_min, y_min, x_max, y_max]
labels (list): labels:['class1', ..., 'classn']
threshold (float): threshold of box
Returns:
im (PIL.Image.Image): visualized image
"""
...
...
@@ -172,10 +125,15 @@ def draw_box(im, np_boxes, labels):
draw
=
ImageDraw
.
Draw
(
im
)
clsid2color
=
{}
color_list
=
get_color_map_list
(
len
(
labels
))
expect_boxes
=
(
np_boxes
[:,
1
]
>
threshold
)
&
(
np_boxes
[:,
0
]
>
-
1
)
np_boxes
=
np_boxes
[
expect_boxes
,
:]
for
dt
in
np_boxes
:
clsid
,
bbox
,
score
=
int
(
dt
[
0
]),
dt
[
2
:],
dt
[
1
]
xmin
,
ymin
,
xmax
,
ymax
=
bbox
print
(
'class_id:{:d}, confidence:{:.4f}, left_top:[{:.2f},{:.2f}],'
'right_bottom:[{:.2f},{:.2f}]'
.
format
(
int
(
clsid
),
score
,
xmin
,
ymin
,
xmax
,
ymax
))
w
=
xmax
-
xmin
h
=
ymax
-
ymin
if
clsid
not
in
clsid2color
:
...
...
dygraph/ppdet/engine/export_utils.py
浏览文件 @
01d57c6a
...
...
@@ -98,9 +98,8 @@ def _dump_infer_config(config, path, image_shape, model):
'Architecture: {} is not supported for exporting model now'
.
format
(
infer_arch
))
os
.
_exit
(
0
)
if
'mask_post_process'
in
model
.
__dict__
and
model
.
__dict__
[
'mask_post_process'
]:
infer_cfg
[
'mask_resolution'
]
=
model
.
mask_post_process
.
mask_resolution
if
'Mask'
in
infer_arch
:
infer_cfg
[
'mask'
]
=
True
infer_cfg
[
'Preprocess'
],
infer_cfg
[
'label_list'
],
image_shape
=
_parse_reader
(
config
[
'TestReader'
],
config
[
'TestDataset'
],
config
[
'metric'
],
...
...
dygraph/ppdet/metrics/coco_utils.py
浏览文件 @
01d57c6a
...
...
@@ -30,7 +30,7 @@ def get_infer_results(outs, catid, bias=0):
The output format is dictionary containing bbox or mask result.
For example, bbox result is a list and each element contains
image_id, category_id, bbox and score.
image_id, category_id, bbox and score.
"""
if
outs
is
None
or
len
(
outs
)
==
0
:
raise
ValueError
(
...
...
@@ -42,19 +42,12 @@ def get_infer_results(outs, catid, bias=0):
infer_res
=
{}
if
'bbox'
in
outs
:
infer_res
[
'bbox'
]
=
get_det_res
(
outs
[
'bbox'
],
outs
[
'score'
],
outs
[
'label'
],
outs
[
'bbox_num'
],
im_id
,
catid
,
bias
=
bias
)
outs
[
'bbox'
],
outs
[
'bbox_num'
],
im_id
,
catid
,
bias
=
bias
)
if
'mask'
in
outs
:
# mask post process
infer_res
[
'mask'
]
=
get_seg_res
(
outs
[
'mask'
],
outs
[
'score'
],
outs
[
'label'
],
outs
[
'bbox_num'
],
im_id
,
catid
)
infer_res
[
'mask'
]
=
get_seg_res
(
outs
[
'mask'
],
outs
[
'bbox'
],
outs
[
'bbox_num'
],
im_id
,
catid
)
if
'segm'
in
outs
:
infer_res
[
'segm'
]
=
get_solov2_segm_res
(
outs
,
im_id
,
catid
)
...
...
dygraph/ppdet/modeling/architectures/faster_rcnn.py
浏览文件 @
01d57c6a
...
...
@@ -99,13 +99,5 @@ class FasterRCNN(BaseArch):
def
get_pred
(
self
):
bbox_pred
,
bbox_num
=
self
.
_forward
()
label
=
bbox_pred
[:,
0
]
score
=
bbox_pred
[:,
1
]
bbox
=
bbox_pred
[:,
2
:]
output
=
{
'bbox'
:
bbox
,
'score'
:
score
,
'label'
:
label
,
'bbox_num'
:
bbox_num
}
output
=
{
'bbox'
:
bbox_pred
,
'bbox_num'
:
bbox_num
}
return
output
dygraph/ppdet/modeling/architectures/fcos.py
浏览文件 @
01d57c6a
...
...
@@ -91,13 +91,5 @@ class FCOS(BaseArch):
def
get_pred
(
self
):
bboxes
,
bbox_num
=
self
.
_forward
()
label
=
bboxes
[:,
0
]
score
=
bboxes
[:,
1
]
bbox
=
bboxes
[:,
2
:]
output
=
{
'bbox'
:
bbox
,
'score'
:
score
,
'label'
:
label
,
'bbox_num'
:
bbox_num
}
output
=
{
'bbox'
:
bboxes
,
'bbox_num'
:
bbox_num
}
return
output
dygraph/ppdet/modeling/architectures/mask_rcnn.py
浏览文件 @
01d57c6a
...
...
@@ -124,14 +124,5 @@ class MaskRCNN(BaseArch):
def
get_pred
(
self
):
bbox_pred
,
bbox_num
,
mask_pred
=
self
.
_forward
()
label
=
bbox_pred
[:,
0
]
score
=
bbox_pred
[:,
1
]
bbox
=
bbox_pred
[:,
2
:]
output
=
{
'label'
:
label
,
'score'
:
score
,
'bbox'
:
bbox
,
'bbox_num'
:
bbox_num
,
'mask'
:
mask_pred
,
}
output
=
{
'bbox'
:
bbox_pred
,
'bbox_num'
:
bbox_num
,
'mask'
:
mask_pred
}
return
output
dygraph/ppdet/modeling/architectures/ttfnet.py
浏览文件 @
01d57c6a
...
...
@@ -91,13 +91,8 @@ class TTFNet(BaseArch):
def
get_pred
(
self
):
bbox_pred
,
bbox_num
=
self
.
_forward
()
label
=
bbox_pred
[:,
0
]
score
=
bbox_pred
[:,
1
]
bbox
=
bbox_pred
[:,
2
:]
output
=
{
"bbox"
:
bbox
,
'score'
:
score
,
'label'
:
label
,
"bbox"
:
bbox_pred
,
"bbox_num"
:
bbox_num
,
}
return
output
dygraph/ppdet/modeling/architectures/yolo.py
浏览文件 @
01d57c6a
...
...
@@ -61,13 +61,5 @@ class YOLOv3(BaseArch):
def
get_pred
(
self
):
bbox_pred
,
bbox_num
=
self
.
_forward
()
label
=
bbox_pred
[:,
0
]
score
=
bbox_pred
[:,
1
]
bbox
=
bbox_pred
[:,
2
:]
output
=
{
'bbox'
:
bbox
,
'score'
:
score
,
'label'
:
label
,
'bbox_num'
:
bbox_num
}
output
=
{
'bbox'
:
bbox_pred
,
'bbox_num'
:
bbox_num
}
return
output
dygraph/ppdet/modeling/bbox_utils.py
浏览文件 @
01d57c6a
...
...
@@ -39,8 +39,6 @@ def bbox2delta(src_boxes, tgt_boxes, weights):
def
delta2bbox
(
deltas
,
boxes
,
weights
):
clip_scale
=
math
.
log
(
1000.0
/
16
)
if
boxes
.
shape
[
0
]
==
0
:
return
paddle
.
zeros
((
0
,
deltas
.
shape
[
1
]),
dtype
=
'float32'
)
widths
=
boxes
[:,
2
]
-
boxes
[:,
0
]
heights
=
boxes
[:,
3
]
-
boxes
[:,
1
]
...
...
@@ -61,12 +59,13 @@ def delta2bbox(deltas, boxes, weights):
pred_w
=
paddle
.
exp
(
dw
)
*
widths
.
unsqueeze
(
1
)
pred_h
=
paddle
.
exp
(
dh
)
*
heights
.
unsqueeze
(
1
)
pred_boxes
=
paddle
.
zeros_like
(
deltas
)
pred_boxes
=
[]
pred_boxes
.
append
(
pred_ctr_x
-
0.5
*
pred_w
)
pred_boxes
.
append
(
pred_ctr_y
-
0.5
*
pred_h
)
pred_boxes
.
append
(
pred_ctr_x
+
0.5
*
pred_w
)
pred_boxes
.
append
(
pred_ctr_y
+
0.5
*
pred_h
)
pred_boxes
=
paddle
.
stack
(
pred_boxes
,
axis
=-
1
)
pred_boxes
[:,
0
::
4
]
=
pred_ctr_x
-
0.5
*
pred_w
pred_boxes
[:,
1
::
4
]
=
pred_ctr_y
-
0.5
*
pred_h
pred_boxes
[:,
2
::
4
]
=
pred_ctr_x
+
0.5
*
pred_w
pred_boxes
[:,
3
::
4
]
=
pred_ctr_y
+
0.5
*
pred_h
return
pred_boxes
...
...
dygraph/ppdet/modeling/heads/bbox_head.py
浏览文件 @
01d57c6a
...
...
@@ -141,8 +141,7 @@ class BBoxHead(nn.Layer):
rois_feat
=
self
.
roi_extractor
(
body_feats
,
rois
,
rois_num
)
bbox_feat
=
self
.
head
(
rois_feat
)
#if self.with_pool:
if
len
(
bbox_feat
.
shape
)
>
2
and
bbox_feat
.
shape
[
-
1
]
>
1
:
if
self
.
with_pool
:
feat
=
F
.
adaptive_avg_pool2d
(
bbox_feat
,
output_size
=
1
)
feat
=
paddle
.
squeeze
(
feat
,
axis
=
[
2
,
3
])
else
:
...
...
dygraph/ppdet/modeling/heads/mask_head.py
浏览文件 @
01d57c6a
...
...
@@ -182,11 +182,12 @@ class MaskHead(nn.Layer):
mask_out
=
F
.
sigmoid
(
mask_logit
)
else
:
num_masks
=
mask_logit
.
shape
[
0
]
pred_masks
=
paddle
.
split
(
mask_logit
,
num_masks
)
mask_out
=
[]
# TODO: need to optimize gather
for
i
,
pred_mask
in
enumerate
(
pred_masks
):
mask
=
paddle
.
gather
(
pred_mask
,
labels
[
i
],
axis
=
1
)
for
i
in
range
(
mask_logit
.
shape
[
0
]):
pred_masks
=
paddle
.
unsqueeze
(
mask_logit
[
i
,
:,
:,
:],
axis
=
0
)
mask
=
paddle
.
gather
(
pred_masks
,
labels
[
i
],
axis
=
1
)
mask_out
.
append
(
mask
)
mask_out
=
F
.
sigmoid
(
paddle
.
concat
(
mask_out
))
return
mask_out
...
...
dygraph/ppdet/modeling/layers.py
浏览文件 @
01d57c6a
...
...
@@ -316,14 +316,12 @@ class RCNNBox(object):
# [N, C*4]
bbox
=
paddle
.
concat
(
roi
)
bbox
=
delta2bbox
(
bbox_pred
,
bbox
,
self
.
prior_box_var
)
if
bbox
.
shape
[
0
]
==
0
:
bbox
=
paddle
.
zeros
([
0
,
bbox_pred
.
shape
[
1
]],
dtype
=
'float32'
)
else
:
bbox
=
delta2bbox
(
bbox_pred
,
bbox
,
self
.
prior_box_var
)
scores
=
cls_prob
[:,
:
-
1
]
# [N*C, 4]
bbox_num_class
=
bbox
.
shape
[
1
]
//
4
bbox
=
paddle
.
reshape
(
bbox
,
[
-
1
,
bbox_num_class
,
4
])
origin_h
=
paddle
.
unsqueeze
(
origin_shape
[:,
0
],
axis
=
1
)
origin_w
=
paddle
.
unsqueeze
(
origin_shape
[:,
1
],
axis
=
1
)
zeros
=
paddle
.
zeros_like
(
origin_h
)
...
...
dygraph/ppdet/modeling/post_process.py
浏览文件 @
01d57c6a
...
...
@@ -54,8 +54,6 @@ class BBoxPostProcess(object):
including labels, scores and bboxes. The size of
bboxes are corresponding to the original image.
"""
if
bboxes
.
shape
[
0
]
==
0
:
return
paddle
.
zeros
(
shape
=
[
1
,
6
])
origin_shape
=
paddle
.
floor
(
im_shape
/
scale_factor
+
0.5
)
...
...
@@ -65,9 +63,12 @@ class BBoxPostProcess(object):
for
i
in
range
(
bbox_num
.
shape
[
0
]):
expand_shape
=
paddle
.
expand
(
origin_shape
[
i
:
i
+
1
,
:],
[
bbox_num
[
i
],
2
])
scale_y
,
scale_x
=
scale_factor
[
i
]
scale_y
,
scale_x
=
scale_factor
[
i
]
[
0
],
scale_factor
[
i
][
1
]
scale
=
paddle
.
concat
([
scale_x
,
scale_y
,
scale_x
,
scale_y
])
expand_scale
=
paddle
.
expand
(
scale
,
[
bbox_num
[
i
],
4
])
# TODO: Because paddle.expand transform error when dygraph
# to static, use reshape to avoid mistakes.
expand_scale
=
paddle
.
reshape
(
expand_scale
,
[
bbox_num
[
i
],
4
])
origin_shape_list
.
append
(
expand_shape
)
scale_factor_list
.
append
(
expand_scale
)
...
...
@@ -121,6 +122,10 @@ class MaskPostProcess(object):
gx
=
paddle
.
expand
(
img_x
,
[
N
,
img_y
.
shape
[
1
],
img_x
.
shape
[
2
]])
gy
=
paddle
.
expand
(
img_y
,
[
N
,
img_y
.
shape
[
1
],
img_x
.
shape
[
2
]])
# TODO: Because paddle.expand transform error when dygraph
# to static, use reshape to avoid mistakes.
gx
=
paddle
.
reshape
(
gx
,
[
N
,
img_y
.
shape
[
1
],
img_x
.
shape
[
2
]])
gy
=
paddle
.
reshape
(
gy
,
[
N
,
img_y
.
shape
[
1
],
img_x
.
shape
[
2
]])
grid
=
paddle
.
stack
([
gx
,
gy
],
axis
=
3
)
img_masks
=
F
.
grid_sample
(
masks
,
grid
,
align_corners
=
False
)
return
img_masks
[:,
0
]
...
...
@@ -129,19 +134,24 @@ class MaskPostProcess(object):
"""
Paste the mask prediction to the original image.
"""
assert
bboxes
.
shape
[
0
]
>
0
,
'There is no detection output'
num_mask
=
mask_out
.
shape
[
0
]
# TODO: support bs > 1
origin_shape
=
paddle
.
cast
(
origin_shape
,
'int32'
)
# TODO: support bs > 1 and mask output dtype is bool
pred_result
=
paddle
.
zeros
(
[
num_mask
,
origin_shape
[
0
][
0
],
origin_shape
[
0
][
1
]],
dtype
=
'bool'
)
[
num_mask
,
origin_shape
[
0
][
0
],
origin_shape
[
0
][
1
]],
dtype
=
'int32'
)
if
bboxes
.
shape
[
0
]
==
0
:
return
pred_result
# TODO: optimize chunk paste
pred_result
=
[]
for
i
in
range
(
bboxes
.
shape
[
0
]):
im_h
,
im_w
=
origin_shape
[
i
]
im_h
,
im_w
=
origin_shape
[
i
]
[
0
],
origin_shape
[
i
][
1
]
pred_mask
=
self
.
paste_mask
(
mask_out
[
i
],
bboxes
[
i
:
i
+
1
,
2
:],
im_h
,
im_w
)
pred_mask
=
pred_mask
>=
self
.
binary_thresh
pred_result
[
i
]
=
pred_mask
pred_mask
=
paddle
.
cast
(
pred_mask
,
'int32'
)
pred_result
.
append
(
pred_mask
)
pred_result
=
paddle
.
concat
(
pred_result
)
return
pred_result
...
...
dygraph/ppdet/modeling/proposal_generator/anchor_generator.py
浏览文件 @
01d57c6a
...
...
@@ -24,7 +24,7 @@ from .. import ops
@
register
class
AnchorGenerator
(
object
):
class
AnchorGenerator
(
nn
.
Layer
):
def
__init__
(
self
,
anchor_sizes
=
[
32
,
64
,
128
,
256
,
512
],
aspect_ratios
=
[
0.5
,
1.0
,
2.0
],
...
...
@@ -64,17 +64,21 @@ class AnchorGenerator(object):
self
.
generate_cell_anchors
(
s
,
a
)
for
s
,
a
in
zip
(
sizes
,
aspect_ratios
)
]
[
self
.
register_buffer
(
t
.
name
,
t
,
persistable
=
False
)
for
t
in
cell_anchors
]
return
cell_anchors
def
_create_grid_offsets
(
self
,
size
,
stride
,
offset
):
grid_height
,
grid_width
=
size
grid_height
,
grid_width
=
size
[
0
],
size
[
1
]
shifts_x
=
paddle
.
arange
(
offset
*
stride
,
grid_width
*
stride
,
step
=
stride
,
dtype
=
'float32'
)
shifts_y
=
paddle
.
arange
(
offset
*
stride
,
grid_height
*
stride
,
step
=
stride
,
dtype
=
'float32'
)
shift_y
,
shift_x
=
paddle
.
meshgrid
(
shifts_y
,
shifts_x
)
shift_x
=
shift_x
.
reshape
(
[
-
1
])
shift_y
=
shift_y
.
reshape
(
[
-
1
])
shift_x
=
paddle
.
reshape
(
shift_x
,
[
-
1
])
shift_y
=
paddle
.
reshape
(
shift_y
,
[
-
1
])
return
shift_x
,
shift_y
def
_grid_anchors
(
self
,
grid_sizes
):
...
...
@@ -84,14 +88,15 @@ class AnchorGenerator(object):
shift_x
,
shift_y
=
self
.
_create_grid_offsets
(
size
,
stride
,
self
.
offset
)
shifts
=
paddle
.
stack
((
shift_x
,
shift_y
,
shift_x
,
shift_y
),
axis
=
1
)
shifts
=
paddle
.
reshape
(
shifts
,
[
-
1
,
1
,
4
])
base_anchors
=
paddle
.
reshape
(
base_anchors
,
[
1
,
-
1
,
4
])
anchors
.
append
((
shifts
.
reshape
([
-
1
,
1
,
4
])
+
base_anchors
.
reshape
(
[
1
,
-
1
,
4
])).
reshape
([
-
1
,
4
]))
anchors
.
append
(
paddle
.
reshape
(
shifts
+
base_anchors
,
[
-
1
,
4
]))
return
anchors
def
__call__
(
self
,
input
):
grid_sizes
=
[
feature_map
.
shape
[
-
2
:]
for
feature_map
in
input
]
def
forward
(
self
,
input
):
grid_sizes
=
[
paddle
.
shape
(
feature_map
)
[
-
2
:]
for
feature_map
in
input
]
anchors_over_all_feature_maps
=
self
.
_grid_anchors
(
grid_sizes
)
return
anchors_over_all_feature_maps
...
...
@@ -105,4 +110,4 @@ class AnchorGenerator(object):
ratios and 5 sizes, the number of anchors is 15.
For FPN models, `num_anchors` on every feature map is the same.
"""
return
self
.
cell_anchors
[
0
].
shape
[
0
]
return
len
(
self
.
cell_anchors
[
0
])
dygraph/ppdet/modeling/proposal_generator/rpn_head.py
浏览文件 @
01d57c6a
...
...
@@ -108,7 +108,14 @@ class RPNHead(nn.Layer):
anchors
=
self
.
anchor_generator
(
rpn_feats
)
rois
,
rois_num
=
self
.
_gen_proposal
(
scores
,
deltas
,
anchors
,
inputs
)
# TODO: Fix batch_size > 1 when testing.
if
self
.
training
:
batch_size
=
im_shape
.
shape
[
0
]
else
:
batch_size
=
1
rois
,
rois_num
=
self
.
_gen_proposal
(
scores
,
deltas
,
anchors
,
inputs
,
batch_size
)
if
self
.
training
:
loss
=
self
.
get_loss
(
scores
,
deltas
,
anchors
,
inputs
)
...
...
@@ -116,16 +123,15 @@ class RPNHead(nn.Layer):
else
:
return
rois
,
rois_num
,
None
def
_gen_proposal
(
self
,
scores
,
bbox_deltas
,
anchors
,
inputs
):
def
_gen_proposal
(
self
,
scores
,
bbox_deltas
,
anchors
,
inputs
,
batch_size
):
"""
scores (list[Tensor]): Multi-level scores prediction
scores (list[Tensor]): Multi-level scores prediction
bbox_deltas (list[Tensor]): Multi-level deltas prediction
anchors (list[Tensor]): Multi-level anchors
anchors (list[Tensor]): Multi-level anchors
inputs (dict): ground truth info
"""
prop_gen
=
self
.
train_proposal
if
self
.
training
else
self
.
test_proposal
im_shape
=
inputs
[
'im_shape'
]
batch_size
=
im_shape
.
shape
[
0
]
rpn_rois_list
=
[[]
for
i
in
range
(
batch_size
)]
rpn_prob_list
=
[[]
for
i
in
range
(
batch_size
)]
rpn_rois_num_list
=
[[]
for
i
in
range
(
batch_size
)]
...
...
dygraph/ppdet/py_op/post_process.py
浏览文件 @
01d57c6a
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
six
import
os
import
numpy
as
np
import
cv2
def
get_det_res
(
bboxes
,
scores
,
labels
,
bbox_nums
,
image_id
,
label_to_cat_id_map
,
bias
=
0
):
def
get_det_res
(
bboxes
,
bbox_nums
,
image_id
,
label_to_cat_id_map
,
bias
=
0
):
det_res
=
[]
k
=
0
for
i
in
range
(
len
(
bbox_nums
)):
cur_image_id
=
int
(
image_id
[
i
][
0
])
det_nums
=
bbox_nums
[
i
]
for
j
in
range
(
det_nums
):
box
=
bboxes
[
k
]
score
=
float
(
scores
[
k
])
label
=
int
(
labels
[
k
])
if
label
<
0
:
continue
dt
=
bboxes
[
k
]
k
=
k
+
1
xmin
,
ymin
,
xmax
,
ymax
=
box
.
tolist
()
category_id
=
label_to_cat_id_map
[
label
]
num_id
,
score
,
xmin
,
ymin
,
xmax
,
ymax
=
dt
.
tolist
()
if
int
(
num_id
)
<
0
:
continue
category_id
=
label_to_cat_id_map
[
int
(
num_id
)]
w
=
xmax
-
xmin
+
bias
h
=
ymax
-
ymin
+
bias
bbox
=
[
xmin
,
ymin
,
w
,
h
]
...
...
@@ -37,8 +43,7 @@ def get_det_res(bboxes,
return
det_res
def
get_seg_res
(
masks
,
scores
,
labels
,
mask_nums
,
image_id
,
label_to_cat_id_map
):
def
get_seg_res
(
masks
,
bboxes
,
mask_nums
,
image_id
,
label_to_cat_id_map
):
import
pycocotools.mask
as
mask_util
seg_res
=
[]
k
=
0
...
...
@@ -46,9 +51,9 @@ def get_seg_res(masks, scores, labels, mask_nums, image_id,
cur_image_id
=
int
(
image_id
[
i
][
0
])
det_nums
=
mask_nums
[
i
]
for
j
in
range
(
det_nums
):
mask
=
masks
[
k
]
score
=
float
(
scores
[
k
])
label
=
int
(
labels
[
k
])
mask
=
masks
[
k
]
.
astype
(
np
.
uint8
)
score
=
float
(
bboxes
[
k
][
1
])
label
=
int
(
bboxes
[
k
][
0
])
k
=
k
+
1
cat_id
=
label_to_cat_id_map
[
label
]
rle
=
mask_util
.
encode
(
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录