未验证 提交 c7c59112 编写于 作者: W Wenyu 提交者: GitHub

save detection results to file using coco format (#5782)

* save detection results to file using coco format

* update save docs
上级 20cfa77c
......@@ -91,6 +91,8 @@ python deploy/python/mot_keypoint_unite_infer.py --mot_model_dir=output_inferenc
| --enable_mkldnn | Option | CPU预测中是否开启MKLDNN加速,默认为False |
| --cpu_threads | Option| 设置cpu线程数,默认为1 |
| --trt_calib_mode | Option| TensorRT是否使用校准功能,默认为False。使用TensorRT的int8功能时,需设置为True,使用PaddleSlim量化后的模型时需要设置为False |
| --save_results | Option| 是否在文件夹下将图片的预测结果以JSON的形式保存 |
说明:
......
......@@ -15,6 +15,8 @@
import os
import yaml
import glob
import json
from pathlib import Path
from functools import reduce
import cv2
......@@ -233,7 +235,8 @@ class Detector(object):
image_list,
run_benchmark=False,
repeats=1,
visual=True):
visual=True,
save_file=None):
batch_loop_cnt = math.ceil(float(len(image_list)) / self.batch_size)
results = []
for i in range(batch_loop_cnt):
......@@ -293,6 +296,10 @@ class Detector(object):
if visual:
print('Test iter {}'.format(i))
if save_file is not None:
Path(self.output_dir).mkdir(exist_ok=True)
self.format_coco_results(image_list, results, save_file=save_file)
results = self.merge_batch_result(results)
return results
......@@ -313,7 +320,7 @@ class Detector(object):
if not os.path.exists(self.output_dir):
os.makedirs(self.output_dir)
out_path = os.path.join(self.output_dir, video_out_name)
fourcc = cv2.VideoWriter_fourcc(* 'mp4v')
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
writer = cv2.VideoWriter(out_path, fourcc, fps, (width, height))
index = 1
while (1):
......@@ -337,6 +344,68 @@ class Detector(object):
break
writer.release()
@staticmethod
def format_coco_results(image_list, results, save_file=None):
coco_results = []
image_id = 0
for result in results:
start_idx = 0
for box_num in result['boxes_num']:
idx_slice = slice(start_idx, start_idx + box_num)
start_idx += box_num
image_file = image_list[image_id]
image_id += 1
if 'boxes' in result:
boxes = result['boxes'][idx_slice, :]
per_result = [
{
'image_file': image_file,
'bbox':
[box[2], box[3], box[4] - box[2],
box[5] - box[3]], # xyxy -> xywh
'score': box[1],
'category_id': int(box[0]),
} for k, box in enumerate(boxes.tolist())
]
elif 'segm' in result:
import pycocotools.mask as mask_util
scores = result['score'][idx_slice].tolist()
category_ids = result['label'][idx_slice].tolist()
segms = result['segm'][idx_slice, :]
rles = [
mask_util.encode(
np.array(
mask[:, :, np.newaxis],
dtype=np.uint8,
order='F'))[0] for mask in segms
]
for rle in rles:
rle['counts'] = rle['counts'].decode('utf-8')
per_result = [{
'image_file': image_file,
'segmentation': rle,
'score': scores[k],
'category_id': category_ids[k],
} for k, rle in enumerate(rles)]
else:
raise RuntimeError('')
# per_result = [item for item in per_result if item['score'] > threshold]
coco_results.extend(per_result)
if save_file:
with open(os.path.join(save_file), 'w') as f:
json.dump(coco_results, f)
return coco_results
class DetectorSOLOv2(Detector):
"""
......@@ -807,7 +876,10 @@ def main():
if FLAGS.image_dir is None and FLAGS.image_file is not None:
assert FLAGS.batch_size == 1, "batch_size should be 1, when image_file is not None"
img_list = get_test_images(FLAGS.image_dir, FLAGS.image_file)
detector.predict_image(img_list, FLAGS.run_benchmark, repeats=100)
save_file = os.path.join(FLAGS.output_dir,
'results.json') if FLAGS.save_results else None
detector.predict_image(
img_list, FLAGS.run_benchmark, repeats=100, save_file=save_file)
if not FLAGS.run_benchmark:
detector.det_times.info(average=True)
else:
......
......@@ -156,6 +156,12 @@ def argsparser():
type=ast.literal_eval,
default=False,
help="Whether do random padding for action recognition.")
parser.add_argument(
"--save_results",
type=bool,
default=False,
help="Whether save detection result to file using coco format")
return parser
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册