infer.py 40.3 KB
Newer Older
Q
qingqing01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import yaml
G
Guanghua Yu 已提交
17
import glob
18 19
import json
from pathlib import Path
Q
qingqing01 已提交
20 21 22 23
from functools import reduce

import cv2
import numpy as np
C
cnn 已提交
24
import math
Q
qingqing01 已提交
25 26 27 28
import paddle
from paddle.inference import Config
from paddle.inference import create_predictor

W
wangguanzhong 已提交
29 30 31 32 33
import sys
# add deploy path of PadleDetection to sys.path
parent_path = os.path.abspath(os.path.join(__file__, *(['..'])))
sys.path.insert(0, parent_path)

34
from benchmark_utils import PaddleInferBenchmark
35
from picodet_postprocess import PicoDetPostProcess
F
Feng Ni 已提交
36
from preprocess import preprocess, Resize, NormalizeImage, Permute, PadStride, LetterBoxResize, WarpAffine, Pad, decode_image
W
wangguanzhong 已提交
37
from keypoint_preprocess import EvalAffine, TopDownEvalAffine, expand_crop
G
Guanghua Yu 已提交
38
from visualize import visualize_box_mask
39
from utils import argsparser, Timer, get_current_memory_mb, multiclass_nms, coco_clsid2catid
G
Guanghua Yu 已提交
40

Q
qingqing01 已提交
41 42
# Global dictionary
SUPPORT_MODELS = {
J
JYChen 已提交
43 44
    'YOLO', 'RCNN', 'SSD', 'Face', 'FCOS', 'SOLOv2', 'TTFNet', 'S2ANet', 'JDE',
    'FairMOT', 'DeepSORT', 'GFL', 'PicoDet', 'CenterNet', 'TOOD', 'RetinaNet',
J
JYChen 已提交
45
    'StrongBaseline', 'STGCN', 'YOLOX', 'PPHGNet', 'PPLCNet'
Q
qingqing01 已提交
46 47 48
}


W
wangguanzhong 已提交
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65
def bench_log(detector, img_list, model_info, batch_size=1, name=None):
    mems = {
        'cpu_rss_mb': detector.cpu_mem / len(img_list),
        'gpu_rss_mb': detector.gpu_mem / len(img_list),
        'gpu_util': detector.gpu_util * 100 / len(img_list)
    }
    perf_info = detector.det_times.report(average=True)
    data_info = {
        'batch_size': batch_size,
        'shape': "dynamic_shape",
        'data_num': perf_info['img_num']
    }
    log = PaddleInferBenchmark(detector.config, model_info, data_info,
                               perf_info, mems)
    log(name)


Q
qingqing01 已提交
66 67 68
class Detector(object):
    """
    Args:
69
        pred_config (object): config of model, defined by `Config(model_dir)`
Q
qingqing01 已提交
70
        model_dir (str): root path of model.pdiparams, model.pdmodel and infer_cfg.yml
G
Guanghua Yu 已提交
71
        device (str): Choose the device you want to run, it can be: CPU/GPU/XPU, default is CPU
72
        run_mode (str): mode of running(paddle/trt_fp32/trt_fp16)
73
        batch_size (int): size of pre batch in inference
74 75 76
        trt_min_shape (int): min shape for dynamic shape in trt
        trt_max_shape (int): max shape for dynamic shape in trt
        trt_opt_shape (int): opt shape for dynamic shape in trt
77 78 79 80
        trt_calib_mode (bool): If the model is produced by TRT offline quantitative
            calibration, trt_calib_mode need to set True
        cpu_threads (int): cpu threads
        enable_mkldnn (bool): whether to open MKLDNN
81
        enable_mkldnn_bfloat16 (bool): whether to turn on mkldnn bfloat16
W
wangguanzhong 已提交
82 83
        output_dir (str): The path of output
        threshold (float): The threshold of score for visualization
J
JYChen 已提交
84 85
        delete_shuffle_pass (bool): whether to remove shuffle_channel_detect_pass in TensorRT. 
                                    Used by action model.
Q
qingqing01 已提交
86 87
    """

J
JYChen 已提交
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
    def __init__(self,
                 model_dir,
                 device='CPU',
                 run_mode='paddle',
                 batch_size=1,
                 trt_min_shape=1,
                 trt_max_shape=1280,
                 trt_opt_shape=640,
                 trt_calib_mode=False,
                 cpu_threads=1,
                 enable_mkldnn=False,
                 enable_mkldnn_bfloat16=False,
                 output_dir='output',
                 threshold=0.5,
                 delete_shuffle_pass=False):
W
wangguanzhong 已提交
103
        self.pred_config = self.set_config(model_dir)
104
        self.predictor, self.config = load_predictor(
Q
qingqing01 已提交
105 106
            model_dir,
            run_mode=run_mode,
107
            batch_size=batch_size,
Q
qingqing01 已提交
108
            min_subgraph_size=self.pred_config.min_subgraph_size,
G
Guanghua Yu 已提交
109
            device=device,
110
            use_dynamic_shape=self.pred_config.use_dynamic_shape,
111 112
            trt_min_shape=trt_min_shape,
            trt_max_shape=trt_max_shape,
G
Guanghua Yu 已提交
113
            trt_opt_shape=trt_opt_shape,
114 115
            trt_calib_mode=trt_calib_mode,
            cpu_threads=cpu_threads,
116
            enable_mkldnn=enable_mkldnn,
J
JYChen 已提交
117 118
            enable_mkldnn_bfloat16=enable_mkldnn_bfloat16,
            delete_shuffle_pass=delete_shuffle_pass)
G
Guanghua Yu 已提交
119 120
        self.det_times = Timer()
        self.cpu_mem, self.gpu_mem, self.gpu_util = 0, 0, 0
W
wangguanzhong 已提交
121 122 123 124 125 126
        self.batch_size = batch_size
        self.output_dir = output_dir
        self.threshold = threshold

    def set_config(self, model_dir):
        return PredictConfig(model_dir)
Q
qingqing01 已提交
127

C
cnn 已提交
128
    def preprocess(self, image_list):
Q
qingqing01 已提交
129 130 131 132 133
        preprocess_ops = []
        for op_info in self.pred_config.preprocess_infos:
            new_op_info = op_info.copy()
            op_type = new_op_info.pop('type')
            preprocess_ops.append(eval(op_type)(**new_op_info))
C
cnn 已提交
134 135 136 137

        input_im_lst = []
        input_im_info_lst = []
        for im_path in image_list:
138
            im, im_info = preprocess(im_path, preprocess_ops)
C
cnn 已提交
139 140 141
            input_im_lst.append(im)
            input_im_info_lst.append(im_info)
        inputs = create_inputs(input_im_lst, input_im_info_lst)
W
wangguanzhong 已提交
142 143 144
        input_names = self.predictor.get_input_names()
        for i in range(len(input_names)):
            input_tensor = self.predictor.get_input_handle(input_names[i])
145 146 147 148
            if input_names[i] == 'x':
                input_tensor.copy_from_cpu(inputs['image'])
            else:
                input_tensor.copy_from_cpu(inputs[input_names[i]])
W
wangguanzhong 已提交
149

Q
qingqing01 已提交
150 151
        return inputs

W
wangguanzhong 已提交
152
    def postprocess(self, inputs, result):
Q
qingqing01 已提交
153
        # postprocess output of predictor
W
wangguanzhong 已提交
154
        np_boxes_num = result['boxes_num']
155 156
        if sum(np_boxes_num) <= 0:
            print('[WARNNING] No object detected.')
W
wangguanzhong 已提交
157
            result = {'boxes': np.zeros([0, 6]), 'boxes_num': np_boxes_num}
158 159
        result = {k: v for k, v in result.items() if v is not None}
        return result
Q
qingqing01 已提交
160

161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
    def filter_box(self, result, threshold):
        np_boxes_num = result['boxes_num']
        boxes = result['boxes']
        start_idx = 0
        filter_boxes = []
        filter_num = []
        for i in range(len(np_boxes_num)):
            boxes_num = np_boxes_num[i]
            boxes_i = boxes[start_idx:start_idx + boxes_num, :]
            idx = boxes_i[:, 1] > threshold
            filter_boxes_i = boxes_i[idx, :]
            filter_boxes.append(filter_boxes_i)
            filter_num.append(filter_boxes_i.shape[0])
            start_idx += boxes_num
        boxes = np.concatenate(filter_boxes)
        filter_num = np.array(filter_num)
        filter_res = {'boxes': boxes, 'boxes_num': filter_num}
        return filter_res

W
wangguanzhong 已提交
180
    def predict(self, repeats=1):
Q
qingqing01 已提交
181 182
        '''
        Args:
W
wangguanzhong 已提交
183
            repeats (int): repeats number for prediction
Q
qingqing01 已提交
184
        Returns:
W
wangguanzhong 已提交
185
            result (dict): include 'boxes': np.ndarray: shape:[N,6], N: number of box,
Q
qingqing01 已提交
186
                            matix element:[class, score, x_min, y_min, x_max, y_max]
W
wangguanzhong 已提交
187
                            MaskRCNN's result include 'masks': np.ndarray:
G
Guanghua Yu 已提交
188
                            shape: [N, im_h, im_w]
Q
qingqing01 已提交
189
        '''
W
wangguanzhong 已提交
190
        # model prediction
W
wangguanzhong 已提交
191
        np_boxes, np_masks = None, None
Q
qingqing01 已提交
192 193 194 195 196
        for i in range(repeats):
            self.predictor.run()
            output_names = self.predictor.get_output_names()
            boxes_tensor = self.predictor.get_output_handle(output_names[0])
            np_boxes = boxes_tensor.copy_to_cpu()
C
cnn 已提交
197 198
            boxes_num = self.predictor.get_output_handle(output_names[1])
            np_boxes_num = boxes_num.copy_to_cpu()
G
Guanghua Yu 已提交
199
            if self.pred_config.mask:
Q
qingqing01 已提交
200 201
                masks_tensor = self.predictor.get_output_handle(output_names[2])
                np_masks = masks_tensor.copy_to_cpu()
W
wangguanzhong 已提交
202 203 204 205 206 207 208 209 210 211 212 213
        result = dict(boxes=np_boxes, masks=np_masks, boxes_num=np_boxes_num)
        return result

    def merge_batch_result(self, batch_result):
        if len(batch_result) == 1:
            return batch_result[0]
        res_key = batch_result[0].keys()
        results = {k: [] for k in res_key}
        for res in batch_result:
            for k, v in res.items():
                results[k].append(v)
        for k, v in results.items():
214
            if k not in ['masks', 'segm']:
W
wangguanzhong 已提交
215
                results[k] = np.concatenate(v)
W
wangguanzhong 已提交
216
        return results
Q
qingqing01 已提交
217

W
wangguanzhong 已提交
218 219
    def get_timer(self):
        return self.det_times
W
wangguanzhong 已提交
220

221 222 223 224 225 226
    def predict_image_slice(self,
                            img_list,
                            slice_size=[640, 640],
                            overlap_ratio=[0.25, 0.25],
                            combine_method='nms',
                            match_threshold=0.6,
F
Feng Ni 已提交
227 228 229
                            match_metric='ios',
                            run_benchmark=False,
                            repeats=1,
230
                            visual=True,
231
                            save_results=False):
232 233 234 235 236 237
        # slice infer only support bs=1
        results = []
        try:
            import sahi
            from sahi.slicing import slice_image
        except Exception as e:
F
Feng Ni 已提交
238
            print(
239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
                'sahi not found, plaese install sahi. '
                'for example: `pip install sahi`, see https://github.com/obss/sahi.'
            )
            raise e
        num_classes = len(self.pred_config.labels)
        for i in range(len(img_list)):
            ori_image = img_list[i]
            slice_image_result = sahi.slicing.slice_image(
                image=ori_image,
                slice_height=slice_size[0],
                slice_width=slice_size[1],
                overlap_height_ratio=overlap_ratio[0],
                overlap_width_ratio=overlap_ratio[1])
            sub_img_num = len(slice_image_result)
            merged_bboxs = []
F
Feng Ni 已提交
254
            print('sub_img_num', sub_img_num)
F
Feng Ni 已提交
255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284

            batch_image_list = [
                slice_image_result.images[_ind] for _ind in range(sub_img_num)
            ]
            if run_benchmark:
                # preprocess
                inputs = self.preprocess(batch_image_list)  # warmup
                self.det_times.preprocess_time_s.start()
                inputs = self.preprocess(batch_image_list)
                self.det_times.preprocess_time_s.end()

                # model prediction
                result = self.predict(repeats=50)  # warmup
                self.det_times.inference_time_s.start()
                result = self.predict(repeats=repeats)
                self.det_times.inference_time_s.end(repeats=repeats)

                # postprocess
                result_warmup = self.postprocess(inputs, result)  # warmup
                self.det_times.postprocess_time_s.start()
                result = self.postprocess(inputs, result)
                self.det_times.postprocess_time_s.end()
                self.det_times.img_num += 1

                cm, gm, gu = get_current_memory_mb()
                self.cpu_mem += cm
                self.gpu_mem += gm
                self.gpu_util += gu
            else:
                # preprocess
285
                self.det_times.preprocess_time_s.start()
F
Feng Ni 已提交
286
                inputs = self.preprocess(batch_image_list)
287 288 289 290 291 292 293 294 295 296 297 298 299
                self.det_times.preprocess_time_s.end()

                # model prediction
                self.det_times.inference_time_s.start()
                result = self.predict()
                self.det_times.inference_time_s.end()

                # postprocess
                self.det_times.postprocess_time_s.start()
                result = self.postprocess(inputs, result)
                self.det_times.postprocess_time_s.end()
                self.det_times.img_num += 1

F
Feng Ni 已提交
300 301 302 303
            st, ed = 0, result['boxes_num'][0]  # start_index, end_index
            for _ind in range(sub_img_num):
                boxes_num = result['boxes_num'][_ind]
                ed = boxes_num
304
                shift_amount = slice_image_result.starting_pixels[_ind]
F
Feng Ni 已提交
305 306 307 308 309 310
                result['boxes'][st:ed][:, 2:4] = result['boxes'][
                    st:ed][:, 2:4] + shift_amount
                result['boxes'][st:ed][:, 4:6] = result['boxes'][
                    st:ed][:, 4:6] + shift_amount
                merged_bboxs.append(result['boxes'][st:ed])
                st = ed
311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335

            merged_results = {'boxes': []}
            if combine_method == 'nms':
                final_boxes = multiclass_nms(
                    np.concatenate(merged_bboxs), num_classes, match_threshold,
                    match_metric)
                merged_results['boxes'] = np.concatenate(final_boxes)
            elif combine_method == 'concat':
                merged_results['boxes'] = np.concatenate(merged_bboxs)
            else:
                raise ValueError(
                    "Now only support 'nms' or 'concat' to fuse detection results."
                )
            merged_results['boxes_num'] = np.array(
                [len(merged_results['boxes'])], dtype=np.int32)

            if visual:
                visualize(
                    [ori_image],  # should be list
                    merged_results,
                    self.pred_config.labels,
                    output_dir=self.output_dir,
                    threshold=self.threshold)

            results.append(merged_results)
336
            print('Test iter {}'.format(i))
337 338

        results = self.merge_batch_result(results)
339 340 341 342
        if save_results:
            Path(self.output_dir).mkdir(exist_ok=True)
            self.save_coco_results(
                img_list, results, use_coco_category=FLAGS.use_coco_category)
343 344
        return results

W
wangguanzhong 已提交
345 346 347 348
    def predict_image(self,
                      image_list,
                      run_benchmark=False,
                      repeats=1,
349
                      visual=True,
350
                      save_results=False):
W
wangguanzhong 已提交
351
        batch_loop_cnt = math.ceil(float(len(image_list)) / self.batch_size)
Q
qingqing01 已提交
352
        results = []
W
wangguanzhong 已提交
353 354 355 356 357 358 359 360 361 362 363 364
        for i in range(batch_loop_cnt):
            start_index = i * self.batch_size
            end_index = min((i + 1) * self.batch_size, len(image_list))
            batch_image_list = image_list[start_index:end_index]
            if run_benchmark:
                # preprocess
                inputs = self.preprocess(batch_image_list)  # warmup
                self.det_times.preprocess_time_s.start()
                inputs = self.preprocess(batch_image_list)
                self.det_times.preprocess_time_s.end()

                # model prediction
365
                result = self.predict(repeats=50)  # warmup
W
wangguanzhong 已提交
366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405
                self.det_times.inference_time_s.start()
                result = self.predict(repeats=repeats)
                self.det_times.inference_time_s.end(repeats=repeats)

                # postprocess
                result_warmup = self.postprocess(inputs, result)  # warmup
                self.det_times.postprocess_time_s.start()
                result = self.postprocess(inputs, result)
                self.det_times.postprocess_time_s.end()
                self.det_times.img_num += len(batch_image_list)

                cm, gm, gu = get_current_memory_mb()
                self.cpu_mem += cm
                self.gpu_mem += gm
                self.gpu_util += gu
            else:
                # preprocess
                self.det_times.preprocess_time_s.start()
                inputs = self.preprocess(batch_image_list)
                self.det_times.preprocess_time_s.end()

                # model prediction
                self.det_times.inference_time_s.start()
                result = self.predict()
                self.det_times.inference_time_s.end()

                # postprocess
                self.det_times.postprocess_time_s.start()
                result = self.postprocess(inputs, result)
                self.det_times.postprocess_time_s.end()
                self.det_times.img_num += len(batch_image_list)

                if visual:
                    visualize(
                        batch_image_list,
                        result,
                        self.pred_config.labels,
                        output_dir=self.output_dir,
                        threshold=self.threshold)
            results.append(result)
406
            print('Test iter {}'.format(i))
W
wangguanzhong 已提交
407
        results = self.merge_batch_result(results)
408 409 410 411
        if save_results:
            Path(self.output_dir).mkdir(exist_ok=True)
            self.save_coco_results(
                image_list, results, use_coco_category=FLAGS.use_coco_category)
Q
qingqing01 已提交
412 413
        return results

W
wangguanzhong 已提交
414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430
    def predict_video(self, video_file, camera_id):
        video_out_name = 'output.mp4'
        if camera_id != -1:
            capture = cv2.VideoCapture(camera_id)
        else:
            capture = cv2.VideoCapture(video_file)
            video_out_name = os.path.split(video_file)[-1]
        # Get Video info : resolution, fps, frame count
        width = int(capture.get(cv2.CAP_PROP_FRAME_WIDTH))
        height = int(capture.get(cv2.CAP_PROP_FRAME_HEIGHT))
        fps = int(capture.get(cv2.CAP_PROP_FPS))
        frame_count = int(capture.get(cv2.CAP_PROP_FRAME_COUNT))
        print("fps: %d, frame_count: %d" % (fps, frame_count))

        if not os.path.exists(self.output_dir):
            os.makedirs(self.output_dir)
        out_path = os.path.join(self.output_dir, video_out_name)
F
Feng Ni 已提交
431
        fourcc = cv2.VideoWriter_fourcc(* 'mp4v')
W
wangguanzhong 已提交
432 433 434 435 436 437 438 439
        writer = cv2.VideoWriter(out_path, fourcc, fps, (width, height))
        index = 1
        while (1):
            ret, frame = capture.read()
            if not ret:
                break
            print('detect frame: %d' % (index))
            index += 1
L
lazyn1997 已提交
440
            results = self.predict_image([frame[:, :, ::-1]], visual=False)
W
wangguanzhong 已提交
441 442 443 444 445 446 447 448 449 450 451 452 453

            im = visualize_box_mask(
                frame,
                results,
                self.pred_config.labels,
                threshold=self.threshold)
            im = np.array(im)
            writer.write(im)
            if camera_id != -1:
                cv2.imshow('Mask Detection', im)
                if cv2.waitKey(1) & 0xFF == ord('q'):
                    break
        writer.release()
W
wangguanzhong 已提交
454

455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494
    def save_coco_results(self, image_list, results, use_coco_category=False):
        bbox_results = []
        mask_results = []
        idx = 0
        print("Start saving coco json files...")
        for i, box_num in enumerate(results['boxes_num']):
            file_name = os.path.split(image_list[i])[-1]
            if use_coco_category:
                img_id = int(os.path.splitext(file_name)[0])
            else:
                img_id = i

            if 'boxes' in results:
                boxes = results['boxes'][idx:idx + box_num].tolist()
                bbox_results.extend([{
                    'image_id': img_id,
                    'category_id': coco_clsid2catid[int(box[0])] \
                        if use_coco_category else int(box[0]),
                    'file_name': file_name,
                    'bbox': [box[2], box[3], box[4] - box[2],
                         box[5] - box[3]],  # xyxy -> xywh
                    'score': box[1]} for box in boxes])

            if 'masks' in results:
                import pycocotools.mask as mask_util

                boxes = results['boxes'][idx:idx + box_num].tolist()
                masks = results['masks'][i][:box_num].astype(np.uint8)
                seg_res = []
                for box, mask in zip(boxes, masks):
                    rle = mask_util.encode(
                        np.array(
                            mask[:, :, None], dtype=np.uint8, order="F"))[0]
                    if 'counts' in rle:
                        rle['counts'] = rle['counts'].decode("utf8")
                    seg_res.append({
                        'image_id': img_id,
                        'category_id': coco_clsid2catid[int(box[0])] \
                        if use_coco_category else int(box[0]),
                        'file_name': file_name,
495
                        'segmentation': rle,
496 497
                        'score': box[1]})
                mask_results.extend(seg_res)
498

499
            idx += box_num
500

501 502 503 504 505 506 507 508 509 510
        if bbox_results:
            bbox_file = os.path.join(self.output_dir, "bbox.json")
            with open(bbox_file, 'w') as f:
                json.dump(bbox_results, f)
            print(f"The bbox result is saved to {bbox_file}")
        if mask_results:
            mask_file = os.path.join(self.output_dir, "mask.json")
            with open(mask_file, 'w') as f:
                json.dump(mask_results, f)
            print(f"The mask result is saved to {mask_file}")
511

Q
qingqing01 已提交
512

G
Guanghua Yu 已提交
513 514 515 516
class DetectorSOLOv2(Detector):
    """
    Args:
        model_dir (str): root path of model.pdiparams, model.pdmodel and infer_cfg.yml
G
Guanghua Yu 已提交
517
        device (str): Choose the device you want to run, it can be: CPU/GPU/XPU, default is CPU
518
        run_mode (str): mode of running(paddle/trt_fp32/trt_fp16)
519
        batch_size (int): size of pre batch in inference
520 521 522
        trt_min_shape (int): min shape for dynamic shape in trt
        trt_max_shape (int): max shape for dynamic shape in trt
        trt_opt_shape (int): opt shape for dynamic shape in trt
523 524 525 526
        trt_calib_mode (bool): If the model is produced by TRT offline quantitative
            calibration, trt_calib_mode need to set True
        cpu_threads (int): cpu threads
        enable_mkldnn (bool): whether to open MKLDNN 
527
        enable_mkldnn_bfloat16 (bool): Whether to turn on mkldnn bfloat16
W
wangguanzhong 已提交
528 529 530
        output_dir (str): The path of output
        threshold (float): The threshold of score for visualization
       
G
Guanghua Yu 已提交
531 532
    """

W
wangguanzhong 已提交
533 534
    def __init__(
            self,
G
Guanghua Yu 已提交
535
            model_dir,
W
wangguanzhong 已提交
536 537 538 539 540 541 542 543 544
            device='CPU',
            run_mode='paddle',
            batch_size=1,
            trt_min_shape=1,
            trt_max_shape=1280,
            trt_opt_shape=640,
            trt_calib_mode=False,
            cpu_threads=1,
            enable_mkldnn=False,
545
            enable_mkldnn_bfloat16=False,
W
wangguanzhong 已提交
546 547 548 549 550
            output_dir='./',
            threshold=0.5, ):
        super(DetectorSOLOv2, self).__init__(
            model_dir=model_dir,
            device=device,
G
Guanghua Yu 已提交
551
            run_mode=run_mode,
552
            batch_size=batch_size,
553 554
            trt_min_shape=trt_min_shape,
            trt_max_shape=trt_max_shape,
G
Guanghua Yu 已提交
555
            trt_opt_shape=trt_opt_shape,
556 557
            trt_calib_mode=trt_calib_mode,
            cpu_threads=cpu_threads,
W
wangguanzhong 已提交
558
            enable_mkldnn=enable_mkldnn,
559
            enable_mkldnn_bfloat16=enable_mkldnn_bfloat16,
W
wangguanzhong 已提交
560 561
            output_dir=output_dir,
            threshold=threshold, )
G
Guanghua Yu 已提交
562

W
wangguanzhong 已提交
563
    def predict(self, repeats=1):
G
Guanghua Yu 已提交
564 565
        '''
        Args:
W
wangguanzhong 已提交
566
            repeats (int): repeat number for prediction
G
Guanghua Yu 已提交
567
        Returns:
W
wangguanzhong 已提交
568
            result (dict): 'segm': np.ndarray,shape:[N, im_h, im_w]
G
Guanghua Yu 已提交
569 570
                            'cate_label': label of segm, shape:[N]
                            'cate_score': confidence score of segm, shape:[N]
G
Guanghua Yu 已提交
571 572 573 574 575
        '''
        np_label, np_score, np_segms = None, None, None
        for i in range(repeats):
            self.predictor.run()
            output_names = self.predictor.get_output_names()
W
wangguanzhong 已提交
576 577
            np_boxes_num = self.predictor.get_output_handle(output_names[
                0]).copy_to_cpu()
G
Guanghua Yu 已提交
578 579
            np_label = self.predictor.get_output_handle(output_names[
                1]).copy_to_cpu()
G
Guanghua Yu 已提交
580
            np_score = self.predictor.get_output_handle(output_names[
G
Guanghua Yu 已提交
581
                2]).copy_to_cpu()
G
Guanghua Yu 已提交
582 583
            np_segms = self.predictor.get_output_handle(output_names[
                3]).copy_to_cpu()
G
Guanghua Yu 已提交
584

W
wangguanzhong 已提交
585
        result = dict(
W
wangguanzhong 已提交
586 587 588 589
            segm=np_segms,
            label=np_label,
            score=np_score,
            boxes_num=np_boxes_num)
W
wangguanzhong 已提交
590
        return result
G
Guanghua Yu 已提交
591 592


593 594 595 596 597
class DetectorPicoDet(Detector):
    """
    Args:
        model_dir (str): root path of model.pdiparams, model.pdmodel and infer_cfg.yml
        device (str): Choose the device you want to run, it can be: CPU/GPU/XPU, default is CPU
598
        run_mode (str): mode of running(paddle/trt_fp32/trt_fp16)
599 600 601 602 603 604 605
        batch_size (int): size of pre batch in inference
        trt_min_shape (int): min shape for dynamic shape in trt
        trt_max_shape (int): max shape for dynamic shape in trt
        trt_opt_shape (int): opt shape for dynamic shape in trt
        trt_calib_mode (bool): If the model is produced by TRT offline quantitative
            calibration, trt_calib_mode need to set True
        cpu_threads (int): cpu threads
606 607
        enable_mkldnn (bool): whether to turn on MKLDNN
        enable_mkldnn_bfloat16 (bool): whether to turn on MKLDNN_BFLOAT16
608 609
    """

W
wangguanzhong 已提交
610 611
    def __init__(
            self,
612
            model_dir,
W
wangguanzhong 已提交
613 614 615 616 617 618 619 620 621
            device='CPU',
            run_mode='paddle',
            batch_size=1,
            trt_min_shape=1,
            trt_max_shape=1280,
            trt_opt_shape=640,
            trt_calib_mode=False,
            cpu_threads=1,
            enable_mkldnn=False,
622
            enable_mkldnn_bfloat16=False,
W
wangguanzhong 已提交
623 624 625 626 627
            output_dir='./',
            threshold=0.5, ):
        super(DetectorPicoDet, self).__init__(
            model_dir=model_dir,
            device=device,
628 629 630 631 632 633 634
            run_mode=run_mode,
            batch_size=batch_size,
            trt_min_shape=trt_min_shape,
            trt_max_shape=trt_max_shape,
            trt_opt_shape=trt_opt_shape,
            trt_calib_mode=trt_calib_mode,
            cpu_threads=cpu_threads,
W
wangguanzhong 已提交
635
            enable_mkldnn=enable_mkldnn,
636
            enable_mkldnn_bfloat16=enable_mkldnn_bfloat16,
W
wangguanzhong 已提交
637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652
            output_dir=output_dir,
            threshold=threshold, )

    def postprocess(self, inputs, result):
        # postprocess output of predictor
        np_score_list = result['boxes']
        np_boxes_list = result['boxes_num']
        postprocessor = PicoDetPostProcess(
            inputs['image'].shape[2:],
            inputs['im_shape'],
            inputs['scale_factor'],
            strides=self.pred_config.fpn_stride,
            nms_threshold=self.pred_config.nms['nms_threshold'])
        np_boxes, np_boxes_num = postprocessor(np_score_list, np_boxes_list)
        result = dict(boxes=np_boxes, boxes_num=np_boxes_num)
        return result
653

W
wangguanzhong 已提交
654
    def predict(self, repeats=1):
655 656
        '''
        Args:
W
wangguanzhong 已提交
657
            repeats (int): repeat number for prediction
658
        Returns:
W
wangguanzhong 已提交
659
            result (dict): include 'boxes': np.ndarray: shape:[N,6], N: number of box,
660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675
                            matix element:[class, score, x_min, y_min, x_max, y_max]
        '''
        np_score_list, np_boxes_list = [], []
        for i in range(repeats):
            self.predictor.run()
            np_score_list.clear()
            np_boxes_list.clear()
            output_names = self.predictor.get_output_names()
            num_outs = int(len(output_names) / 2)
            for out_idx in range(num_outs):
                np_score_list.append(
                    self.predictor.get_output_handle(output_names[out_idx])
                    .copy_to_cpu())
                np_boxes_list.append(
                    self.predictor.get_output_handle(output_names[
                        out_idx + num_outs]).copy_to_cpu())
W
wangguanzhong 已提交
676 677
        result = dict(boxes=np_score_list, boxes_num=np_boxes_list)
        return result
678 679


C
cnn 已提交
680
def create_inputs(imgs, im_info):
Q
qingqing01 已提交
681 682
    """generate input for different model type
    Args:
W
wangguanzhong 已提交
683 684
        imgs (list(numpy)): list of images (np.ndarray)
        im_info (list(dict)): list of image info
Q
qingqing01 已提交
685 686 687 688 689
    Returns:
        inputs (dict): input of model
    """
    inputs = {}

C
cnn 已提交
690 691
    im_shape = []
    scale_factor = []
692 693 694 695 696 697 698 699
    if len(imgs) == 1:
        inputs['image'] = np.array((imgs[0], )).astype('float32')
        inputs['im_shape'] = np.array(
            (im_info[0]['im_shape'], )).astype('float32')
        inputs['scale_factor'] = np.array(
            (im_info[0]['scale_factor'], )).astype('float32')
        return inputs

C
cnn 已提交
700 701 702 703
    for e in im_info:
        im_shape.append(np.array((e['im_shape'], )).astype('float32'))
        scale_factor.append(np.array((e['scale_factor'], )).astype('float32'))

C
cnn 已提交
704 705
    inputs['im_shape'] = np.concatenate(im_shape, axis=0)
    inputs['scale_factor'] = np.concatenate(scale_factor, axis=0)
C
cnn 已提交
706 707 708 709 710 711 712 713 714 715 716 717

    imgs_shape = [[e.shape[1], e.shape[2]] for e in imgs]
    max_shape_h = max([e[0] for e in imgs_shape])
    max_shape_w = max([e[1] for e in imgs_shape])
    padding_imgs = []
    for img in imgs:
        im_c, im_h, im_w = img.shape[:]
        padding_im = np.zeros(
            (im_c, max_shape_h, max_shape_w), dtype=np.float32)
        padding_im[:, :im_h, :im_w] = img
        padding_imgs.append(padding_im)
    inputs['image'] = np.stack(padding_imgs, axis=0)
Q
qingqing01 已提交
718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736
    return inputs


class PredictConfig():
    """set config of preprocess, postprocess and visualize
    Args:
        model_dir (str): root path of model.yml
    """

    def __init__(self, model_dir):
        # parsing Yaml config for Preprocess
        deploy_file = os.path.join(model_dir, 'infer_cfg.yml')
        with open(deploy_file) as f:
            yml_conf = yaml.safe_load(f)
        self.check_model(yml_conf)
        self.arch = yml_conf['arch']
        self.preprocess_infos = yml_conf['Preprocess']
        self.min_subgraph_size = yml_conf['min_subgraph_size']
        self.labels = yml_conf['label_list']
G
Guanghua Yu 已提交
737
        self.mask = False
738
        self.use_dynamic_shape = yml_conf['use_dynamic_shape']
G
Guanghua Yu 已提交
739 740
        if 'mask' in yml_conf:
            self.mask = yml_conf['mask']
741 742 743
        self.tracker = None
        if 'tracker' in yml_conf:
            self.tracker = yml_conf['tracker']
744 745 746 747
        if 'NMS' in yml_conf:
            self.nms = yml_conf['NMS']
        if 'fpn_stride' in yml_conf:
            self.fpn_stride = yml_conf['fpn_stride']
748 749 750 751
        if self.arch == 'RCNN' and yml_conf.get('export_onnx', False):
            print(
                'The RCNN export model is used for ONNX and it only supports batch_size = 1'
            )
Q
qingqing01 已提交
752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774
        self.print_config()

    def check_model(self, yml_conf):
        """
        Raises:
            ValueError: loaded model not in supported model type 
        """
        for support_model in SUPPORT_MODELS:
            if support_model in yml_conf['arch']:
                return True
        raise ValueError("Unsupported arch: {}, expect {}".format(yml_conf[
            'arch'], SUPPORT_MODELS))

    def print_config(self):
        print('-----------  Model Configuration -----------')
        print('%s: %s' % ('Model Arch', self.arch))
        print('%s: ' % ('Transform Order'))
        for op_info in self.preprocess_infos:
            print('--%s: %s' % ('transform op', op_info['type']))
        print('--------------------------------------------')


def load_predictor(model_dir,
775
                   run_mode='paddle',
Q
qingqing01 已提交
776
                   batch_size=1,
G
Guanghua Yu 已提交
777
                   device='CPU',
778 779 780 781
                   min_subgraph_size=3,
                   use_dynamic_shape=False,
                   trt_min_shape=1,
                   trt_max_shape=1280,
G
Guanghua Yu 已提交
782
                   trt_opt_shape=640,
783 784
                   trt_calib_mode=False,
                   cpu_threads=1,
785
                   enable_mkldnn=False,
J
JYChen 已提交
786 787
                   enable_mkldnn_bfloat16=False,
                   delete_shuffle_pass=False):
Q
qingqing01 已提交
788 789 790
    """set AnalysisConfig, generate AnalysisPredictor
    Args:
        model_dir (str): root path of __model__ and __params__
G
Guanghua Yu 已提交
791
        device (str): Choose the device you want to run, it can be: CPU/GPU/XPU, default is CPU
792
        run_mode (str): mode of running(paddle/trt_fp32/trt_fp16/trt_int8)
793 794 795 796
        use_dynamic_shape (bool): use dynamic shape or not
        trt_min_shape (int): min shape for dynamic shape in trt
        trt_max_shape (int): max shape for dynamic shape in trt
        trt_opt_shape (int): opt shape for dynamic shape in trt
G
Guanghua Yu 已提交
797 798
        trt_calib_mode (bool): If the model is produced by TRT offline quantitative
            calibration, trt_calib_mode need to set True
J
JYChen 已提交
799 800
        delete_shuffle_pass (bool): whether to remove shuffle_channel_detect_pass in TensorRT. 
                                    Used by action model.
Q
qingqing01 已提交
801 802 803
    Returns:
        predictor (PaddlePredictor): AnalysisPredictor
    Raises:
G
Guanghua Yu 已提交
804
        ValueError: predict by TensorRT need device == 'GPU'.
Q
qingqing01 已提交
805
    """
806
    if device != 'GPU' and run_mode != 'paddle':
Q
qingqing01 已提交
807
        raise ValueError(
G
Guanghua Yu 已提交
808 809
            "Predict by TensorRT mode: {}, expect device=='GPU', but device == {}"
            .format(run_mode, device))
810 811 812 813 814 815 816 817 818
    infer_model = os.path.join(model_dir, 'model.pdmodel')
    infer_params = os.path.join(model_dir, 'model.pdiparams')
    if not os.path.exists(infer_model):
        infer_model = os.path.join(model_dir, 'inference.pdmodel')
        infer_params = os.path.join(model_dir, 'inference.pdiparams')
        if not os.path.exists(infer_model):
            raise ValueError(
                "Cannot find any inference model in dir: {},".format(model_dir))
    config = Config(infer_model, infer_params)
G
Guanghua Yu 已提交
819
    if device == 'GPU':
Q
qingqing01 已提交
820 821 822
        # initial GPU memory(M), device ID
        config.enable_use_gpu(200, 0)
        # optimize graph and fuse op
823
        config.switch_ir_optim(True)
G
Guanghua Yu 已提交
824
    elif device == 'XPU':
825
        config.enable_lite_engine()
G
Guanghua Yu 已提交
826
        config.enable_xpu(10 * 1024 * 1024)
Q
qingqing01 已提交
827 828
    else:
        config.disable_gpu()
829 830
        config.set_cpu_math_library_num_threads(cpu_threads)
        if enable_mkldnn:
G
Guanghua Yu 已提交
831 832 833 834
            try:
                # cache 10 different shapes for mkldnn to avoid memory leak
                config.set_mkldnn_cache_capacity(10)
                config.enable_mkldnn()
835 836
                if enable_mkldnn_bfloat16:
                    config.enable_mkldnn_bfloat16()
G
Guanghua Yu 已提交
837 838 839 840 841
            except Exception as e:
                print(
                    "The current environment does not support `mkldnn`, so disable mkldnn."
                )
                pass
Q
qingqing01 已提交
842

G
Guanghua Yu 已提交
843 844 845 846 847
    precision_map = {
        'trt_int8': Config.Precision.Int8,
        'trt_fp32': Config.Precision.Float32,
        'trt_fp16': Config.Precision.Half
    }
Q
qingqing01 已提交
848 849
    if run_mode in precision_map.keys():
        config.enable_tensorrt_engine(
W
wangxinxin08 已提交
850
            workspace_size=(1 << 25) * batch_size,
Q
qingqing01 已提交
851 852 853 854
            max_batch_size=batch_size,
            min_subgraph_size=min_subgraph_size,
            precision_mode=precision_map[run_mode],
            use_static=False,
G
Guanghua Yu 已提交
855
            use_calib_mode=trt_calib_mode)
856 857

        if use_dynamic_shape:
858 859 860 861 862 863 864 865 866
            min_input_shape = {
                'image': [batch_size, 3, trt_min_shape, trt_min_shape]
            }
            max_input_shape = {
                'image': [batch_size, 3, trt_max_shape, trt_max_shape]
            }
            opt_input_shape = {
                'image': [batch_size, 3, trt_opt_shape, trt_opt_shape]
            }
867 868 869
            config.set_trt_dynamic_shape_info(min_input_shape, max_input_shape,
                                              opt_input_shape)
            print('trt set dynamic shape done!')
Q
qingqing01 已提交
870 871 872 873 874 875 876

    # disable print log when predict
    config.disable_glog_info()
    # enable shared memory
    config.enable_memory_optim()
    # disable feed, fetch OP, needed by zero_copy_run
    config.switch_use_feed_fetch_ops(False)
J
JYChen 已提交
877 878
    if delete_shuffle_pass:
        config.delete_pass("shuffle_channel_detect_pass")
Q
qingqing01 已提交
879
    predictor = create_predictor(config)
880
    return predictor, config
Q
qingqing01 已提交
881 882


G
Guanghua Yu 已提交
883 884 885 886 887
def get_test_images(infer_dir, infer_img):
    """
    Get image path list in TEST mode
    """
    assert infer_img is not None or infer_dir is not None, \
J
JYChen 已提交
888
        "--image_file or --image_dir should be set"
G
Guanghua Yu 已提交
889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913
    assert infer_img is None or os.path.isfile(infer_img), \
            "{} is not a file".format(infer_img)
    assert infer_dir is None or os.path.isdir(infer_dir), \
            "{} is not a directory".format(infer_dir)

    # infer_img has a higher priority
    if infer_img and os.path.isfile(infer_img):
        return [infer_img]

    images = set()
    infer_dir = os.path.abspath(infer_dir)
    assert os.path.isdir(infer_dir), \
        "infer_dir {} is not a directory".format(infer_dir)
    exts = ['jpg', 'jpeg', 'png', 'bmp']
    exts += [ext.upper() for ext in exts]
    for ext in exts:
        images.update(glob.glob('{}/*.{}'.format(infer_dir, ext)))
    images = list(images)

    assert len(images) > 0, "no image found in {}".format(infer_dir)
    print("Found {} inference images in total.".format(len(images)))

    return images


W
wangguanzhong 已提交
914
def visualize(image_list, result, labels, output_dir='output/', threshold=0.5):
Q
qingqing01 已提交
915
    # visualize the predict result
C
cnn 已提交
916 917
    start_idx = 0
    for idx, image_file in enumerate(image_list):
W
wangguanzhong 已提交
918
        im_bboxes_num = result['boxes_num'][idx]
C
cnn 已提交
919
        im_results = {}
W
wangguanzhong 已提交
920 921 922 923 924 925 926 927 928 929 930 931 932 933 934
        if 'boxes' in result:
            im_results['boxes'] = result['boxes'][start_idx:start_idx +
                                                  im_bboxes_num, :]
        if 'masks' in result:
            im_results['masks'] = result['masks'][start_idx:start_idx +
                                                  im_bboxes_num, :]
        if 'segm' in result:
            im_results['segm'] = result['segm'][start_idx:start_idx +
                                                im_bboxes_num, :]
        if 'label' in result:
            im_results['label'] = result['label'][start_idx:start_idx +
                                                  im_bboxes_num]
        if 'score' in result:
            im_results['score'] = result['score'][start_idx:start_idx +
                                                  im_bboxes_num]
W
wangguanzhong 已提交
935

C
cnn 已提交
936 937 938 939 940 941 942 943 944
        start_idx += im_bboxes_num
        im = visualize_box_mask(
            image_file, im_results, labels, threshold=threshold)
        img_name = os.path.split(image_file)[-1]
        if not os.path.exists(output_dir):
            os.makedirs(output_dir)
        out_path = os.path.join(output_dir, img_name)
        im.save(out_path, quality=95)
        print("save result to: " + out_path)
Q
qingqing01 已提交
945 946 947 948 949 950 951 952 953 954


def print_arguments(args):
    print('-----------  Running Arguments -----------')
    for arg, value in sorted(vars(args).items()):
        print('%s: %s' % (arg, value))
    print('------------------------------------------')


def main():
W
wangguanzhong 已提交
955 956 957 958
    deploy_file = os.path.join(FLAGS.model_dir, 'infer_cfg.yml')
    with open(deploy_file) as f:
        yml_conf = yaml.safe_load(f)
    arch = yml_conf['arch']
959
    detector_func = 'Detector'
W
wangguanzhong 已提交
960
    if arch == 'SOLOv2':
961
        detector_func = 'DetectorSOLOv2'
W
wangguanzhong 已提交
962
    elif arch == 'PicoDet':
963 964
        detector_func = 'DetectorPicoDet'

965 966 967 968 969 970 971 972 973 974 975 976 977 978
    detector = eval(detector_func)(
        FLAGS.model_dir,
        device=FLAGS.device,
        run_mode=FLAGS.run_mode,
        batch_size=FLAGS.batch_size,
        trt_min_shape=FLAGS.trt_min_shape,
        trt_max_shape=FLAGS.trt_max_shape,
        trt_opt_shape=FLAGS.trt_opt_shape,
        trt_calib_mode=FLAGS.trt_calib_mode,
        cpu_threads=FLAGS.cpu_threads,
        enable_mkldnn=FLAGS.enable_mkldnn,
        enable_mkldnn_bfloat16=FLAGS.enable_mkldnn_bfloat16,
        threshold=FLAGS.threshold,
        output_dir=FLAGS.output_dir)
G
Guanghua Yu 已提交
979

Q
qingqing01 已提交
980
    # predict from video file or camera video stream
G
Guanghua Yu 已提交
981
    if FLAGS.video_file is not None or FLAGS.camera_id != -1:
W
wangguanzhong 已提交
982
        detector.predict_video(FLAGS.video_file, FLAGS.camera_id)
G
Guanghua Yu 已提交
983 984
    else:
        # predict from image
C
cnn 已提交
985 986
        if FLAGS.image_dir is None and FLAGS.image_file is not None:
            assert FLAGS.batch_size == 1, "batch_size should be 1, when image_file is not None"
G
Guanghua Yu 已提交
987
        img_list = get_test_images(FLAGS.image_dir, FLAGS.image_file)
988 989 990 991 992 993 994 995
        if FLAGS.slice_infer:
            detector.predict_image_slice(
                img_list,
                FLAGS.slice_size,
                FLAGS.overlap_ratio,
                FLAGS.combine_method,
                FLAGS.match_threshold,
                FLAGS.match_metric,
996 997
                visual=FLAGS.save_images,
                save_results=FLAGS.save_results)
998 999
        else:
            detector.predict_image(
1000 1001 1002 1003 1004
                img_list,
                FLAGS.run_benchmark,
                repeats=100,
                visual=FLAGS.save_images,
                save_results=FLAGS.save_results)
G
Guanghua Yu 已提交
1005 1006 1007
        if not FLAGS.run_benchmark:
            detector.det_times.info(average=True)
        else:
1008
            mode = FLAGS.run_mode
W
wangguanzhong 已提交
1009
            model_dir = FLAGS.model_dir
1010
            model_info = {
1011 1012
                'model_name': model_dir.strip('/').split('/')[-1],
                'precision': mode.split('_')[-1]
1013
            }
W
wangguanzhong 已提交
1014
            bench_log(detector, img_list, model_info, name='DET')
Q
qingqing01 已提交
1015 1016 1017 1018


if __name__ == '__main__':
    paddle.enable_static()
G
Guanghua Yu 已提交
1019
    parser = argsparser()
Q
qingqing01 已提交
1020 1021
    FLAGS = parser.parse_args()
    print_arguments(FLAGS)
G
Guanghua Yu 已提交
1022 1023 1024 1025
    FLAGS.device = FLAGS.device.upper()
    assert FLAGS.device in ['CPU', 'GPU', 'XPU'
                            ], "device should be CPU, GPU or XPU"
    assert not FLAGS.use_gpu, "use_gpu has been deprecated, please use --device"
Q
qingqing01 已提交
1026

1027 1028 1029
    assert not (
        FLAGS.enable_mkldnn == False and FLAGS.enable_mkldnn_bfloat16 == True
    ), 'To enable mkldnn bfloat, please turn on both enable_mkldnn and enable_mkldnn_bfloat16'
1030

Q
qingqing01 已提交
1031
    main()