Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
8622966f
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
8622966f
编写于
3月 21, 2022
作者:
W
wangguanzhong
提交者:
GitHub
3月 21, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
update pphuman for pptracking (#5419)
上级
caa23c5e
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
103 addition
and
51 deletion
+103
-51
deploy/pphuman/config/tracker_config.yml
deploy/pphuman/config/tracker_config.yml
+21
-5
deploy/pphuman/pipeline.py
deploy/pphuman/pipeline.py
+7
-2
deploy/pptracking/python/mot_sde_infer.py
deploy/pptracking/python/mot_sde_infer.py
+39
-30
deploy/python/infer.py
deploy/python/infer.py
+36
-14
未找到文件。
deploy/pphuman/config/tracker_config.yml
浏览文件 @
8622966f
# config of tracker for MOT SDE Detector, use
ByteTracker
as default.
# The tracker of MOT JDE Detector is exported together with the model.
# config of tracker for MOT SDE Detector, use
'JDETracker'
as default.
# The tracker of MOT JDE Detector
(such as FairMOT)
is exported together with the model.
# Here 'min_box_area' and 'vertical_ratio' are set for pedestrian, you can modify for other objects tracking.
tracker
:
use_byte
:
true
type
:
JDETracker
# 'JDETracker' or 'DeepSORTTracker'
# BYTETracker
JDETracker
:
use_byte
:
True
det_thresh
:
0.3
conf_thres
:
0.6
low_conf_thres
:
0.1
match_thres
:
0.9
min_box_area
:
100
vertical_ratio
:
1.6
vertical_ratio
:
1.6
# for pedestrian
DeepSORTTracker
:
input_size
:
[
64
,
192
]
min_box_area
:
0
vertical_ratio
:
-1
budget
:
100
max_age
:
70
n_init
:
3
metric_type
:
cosine
matching_threshold
:
0.2
max_iou_distance
:
0.9
deploy/pphuman/pipeline.py
浏览文件 @
8622966f
...
...
@@ -28,7 +28,6 @@ parent_path = os.path.abspath(os.path.join(__file__, *(['..'] * 2)))
sys
.
path
.
insert
(
0
,
parent_path
)
from
python.infer
import
Detector
,
DetectorPicoDet
from
python.mot_sde_infer
import
SDE_Detector
from
python.attr_infer
import
AttrDetector
from
python.keypoint_infer
import
KeyPointDetector
from
python.keypoint_postprocess
import
translate_to_ori_images
...
...
@@ -39,6 +38,8 @@ from pipe_utils import argsparser, print_arguments, merge_cfg, PipeTimer
from
pipe_utils
import
get_test_images
,
crop_image_with_det
,
crop_image_with_mot
,
parse_mot_res
,
parse_mot_keypoint
from
python.preprocess
import
decode_image
from
python.visualize
import
visualize_box_mask
,
visualize_attr
,
visualize_pose
,
visualize_action
from
pptracking.python.mot_sde_infer
import
SDE_Detector
from
pptracking.python.visualize
import
plot_tracking
...
...
@@ -374,6 +375,8 @@ class PipePredictor(object):
# det output format: class, score, xmin, ymin, xmax, ymax
det_res
=
self
.
det_predictor
.
predict_image
(
batch_input
,
visual
=
False
)
det_res
=
self
.
det_predictor
.
filter_box
(
det_res
,
self
.
cfg
[
'crop_thresh'
])
if
i
>
self
.
warmup_frame
:
self
.
pipe_timer
.
module_time
[
'det'
].
end
()
self
.
pipeline_res
.
update
(
det_res
,
'det'
)
...
...
@@ -563,6 +566,8 @@ class PipePredictor(object):
det_res_i
,
labels
=
[
'person'
],
threshold
=
self
.
cfg
[
'crop_thresh'
])
im
=
np
.
ascontiguousarray
(
np
.
copy
(
im
))
im
=
cv2
.
cvtColor
(
im
,
cv2
.
COLOR_RGB2BGR
)
if
attr_res
is
not
None
:
attr_res_i
=
attr_res
[
'output'
][
start_idx
:
start_idx
+
boxes_num_i
]
...
...
@@ -571,7 +576,7 @@ class PipePredictor(object):
if
not
os
.
path
.
exists
(
self
.
output_dir
):
os
.
makedirs
(
self
.
output_dir
)
out_path
=
os
.
path
.
join
(
self
.
output_dir
,
img_name
)
im
.
save
(
out_path
,
quality
=
95
)
cv2
.
imwrite
(
out_path
,
im
)
print
(
"save result to: "
+
out_path
)
start_idx
+=
boxes_num_i
...
...
deploy/pptracking/python/mot_sde_infer.py
浏览文件 @
8622966f
...
...
@@ -24,8 +24,8 @@ import paddle
from
benchmark_utils
import
PaddleInferBenchmark
from
preprocess
import
decode_image
from
utils
import
argsparser
,
Timer
,
get_current_memory_mb
,
_is_valid_video
,
video2frames
from
det_infer
import
Detector
,
get_test_images
,
print_arguments
,
bench_log
,
PredictConfig
,
load_predictor
from
.
utils
import
argsparser
,
Timer
,
get_current_memory_mb
,
_is_valid_video
,
video2frames
from
.
det_infer
import
Detector
,
get_test_images
,
print_arguments
,
bench_log
,
PredictConfig
,
load_predictor
# add python path
import
sys
...
...
@@ -34,7 +34,7 @@ sys.path.insert(0, parent_path)
from
mot.tracker
import
JDETracker
,
DeepSORTTracker
from
mot.utils
import
MOTTimer
,
write_mot_results
,
flow_statistic
,
get_crops
,
clip_box
from
visualize
import
plot_tracking
,
plot_tracking_dict
from
.
visualize
import
plot_tracking
,
plot_tracking_dict
from
mot.mtmct.utils
import
parse_bias
from
mot.mtmct.postprocess
import
trajectory_fusion
,
sub_cluster
,
gen_res
,
print_mtmct_result
...
...
@@ -100,7 +100,7 @@ class SDE_Detector(Detector):
self
.
reid_predictor
,
self
.
config
=
load_predictor
(
reid_model_dir
,
run_mode
=
run_mode
,
batch_size
=
50
,
# reid_batch_size
batch_size
=
50
,
# reid_batch_size
min_subgraph_size
=
self
.
reid_pred_config
.
min_subgraph_size
,
device
=
device
,
use_dynamic_shape
=
self
.
reid_pred_config
.
use_dynamic_shape
,
...
...
@@ -113,17 +113,19 @@ class SDE_Detector(Detector):
else
:
self
.
reid_pred_config
=
None
self
.
reid_predictor
=
None
assert
tracker_config
is
not
None
,
'Note that tracker_config should be set.'
self
.
tracker_config
=
tracker_config
tracker_cfg
=
yaml
.
safe_load
(
open
(
self
.
tracker_config
))
cfg
=
tracker_cfg
[
tracker_cfg
[
'type'
]]
# tracker config
self
.
use_deepsort_tracker
=
True
if
tracker_cfg
[
'type'
]
==
'DeepSORTTracker'
else
False
self
.
use_deepsort_tracker
=
True
if
tracker_cfg
[
'type'
]
==
'DeepSORTTracker'
else
False
if
self
.
use_deepsort_tracker
:
# use DeepSORTTracker
if
self
.
reid_pred_config
is
not
None
and
hasattr
(
self
.
reid_pred_config
,
'tracker'
):
if
self
.
reid_pred_config
is
not
None
and
hasattr
(
self
.
reid_pred_config
,
'tracker'
):
cfg
=
self
.
reid_pred_config
.
tracker
budget
=
cfg
.
get
(
'budget'
,
100
)
max_age
=
cfg
.
get
(
'max_age'
,
30
)
...
...
@@ -138,8 +140,7 @@ class SDE_Detector(Detector):
max_iou_distance
=
max_iou_distance
,
matching_threshold
=
matching_threshold
,
min_box_area
=
min_box_area
,
vertical_ratio
=
vertical_ratio
,
)
vertical_ratio
=
vertical_ratio
,
)
else
:
# use ByteTracker
use_byte
=
cfg
.
get
(
'use_byte'
,
False
)
...
...
@@ -158,9 +159,8 @@ class SDE_Detector(Detector):
vertical_ratio
=
vertical_ratio
,
match_thres
=
match_thres
,
conf_thres
=
conf_thres
,
low_conf_thres
=
low_conf_thres
,
)
low_conf_thres
=
low_conf_thres
,
)
self
.
do_mtmct
=
False
if
mtmct_dir
is
None
else
True
self
.
mtmct_dir
=
mtmct_dir
...
...
@@ -193,7 +193,7 @@ class SDE_Detector(Detector):
crops
=
get_crops
(
pred_xyxys
,
ori_image
,
w
,
h
)
# to keep fast speed, only use topk crops
crops
=
crops
[:
50
]
# reid_batch_size
crops
=
crops
[:
50
]
# reid_batch_size
det_results
[
'crops'
]
=
np
.
array
(
crops
).
astype
(
'float32'
)
det_results
[
'boxes'
]
=
pred_dets
[:
50
]
...
...
@@ -206,7 +206,8 @@ class SDE_Detector(Detector):
for
i
in
range
(
repeats
):
self
.
reid_predictor
.
run
()
output_names
=
self
.
reid_predictor
.
get_output_names
()
feature_tensor
=
self
.
reid_predictor
.
get_output_handle
(
output_names
[
0
])
feature_tensor
=
self
.
reid_predictor
.
get_output_handle
(
output_names
[
0
])
pred_embs
=
feature_tensor
.
copy_to_cpu
()
det_results
[
'embeddings'
]
=
pred_embs
...
...
@@ -249,7 +250,8 @@ class SDE_Detector(Detector):
frame_id
=
det_results
[
'frame_id'
]
tracking_outs
[
'feat_data'
]
=
{}
for
_tlbr
,
_id
,
_feat
in
zip
(
online_tlbrs
,
online_ids
,
online_feats
):
for
_tlbr
,
_id
,
_feat
in
zip
(
online_tlbrs
,
online_ids
,
online_feats
):
feat_data
=
{}
feat_data
[
'bbox'
]
=
_tlbr
feat_data
[
'frame'
]
=
f
"
{
frame_id
:
06
d
}
"
...
...
@@ -265,7 +267,8 @@ class SDE_Detector(Detector):
online_scores
=
defaultdict
(
list
)
online_ids
=
defaultdict
(
list
)
if
self
.
do_mtmct
:
online_tlbrs
,
online_feats
=
defaultdict
(
list
),
defaultdict
(
list
)
online_tlbrs
,
online_feats
=
defaultdict
(
list
),
defaultdict
(
list
)
online_targets_dict
=
self
.
tracker
.
update
(
pred_dets
,
pred_embs
)
for
cls_id
in
range
(
self
.
num_classes
):
online_targets
=
online_targets_dict
[
cls_id
]
...
...
@@ -295,7 +298,8 @@ class SDE_Detector(Detector):
seq_name
=
det_results
[
'seq_name'
]
frame_id
=
det_results
[
'frame_id'
]
tracking_outs
[
'feat_data'
]
=
{}
for
_tlbr
,
_id
,
_feat
in
zip
(
online_tlbrs
[
0
],
online_ids
[
0
],
online_feats
[
0
]):
for
_tlbr
,
_id
,
_feat
in
zip
(
online_tlbrs
[
0
],
online_ids
[
0
],
online_feats
[
0
]):
feat_data
=
{}
feat_data
[
'bbox'
]
=
_tlbr
feat_data
[
'frame'
]
=
f
"
{
frame_id
:
06
d
}
"
...
...
@@ -323,7 +327,7 @@ class SDE_Detector(Detector):
image_list
.
sort
()
ids2names
=
self
.
pred_config
.
labels
if
self
.
do_mtmct
:
mot_features_dict
=
{}
# cid_tid_fid feats
mot_features_dict
=
{}
# cid_tid_fid feats
else
:
mot_results
=
[]
for
frame_id
,
img_file
in
enumerate
(
image_list
):
...
...
@@ -429,7 +433,7 @@ class SDE_Detector(Detector):
os
.
makedirs
(
save_dir
)
cv2
.
imwrite
(
os
.
path
.
join
(
save_dir
,
'{:05d}.jpg'
.
format
(
frame_id
)),
im
)
if
self
.
do_mtmct
:
return
mot_features_dict
else
:
...
...
@@ -452,7 +456,7 @@ class SDE_Detector(Detector):
if
not
os
.
path
.
exists
(
self
.
output_dir
):
os
.
makedirs
(
self
.
output_dir
)
out_path
=
os
.
path
.
join
(
self
.
output_dir
,
video_out_name
)
fourcc
=
cv2
.
VideoWriter_fourcc
(
*
'mp4v'
)
fourcc
=
cv2
.
VideoWriter_fourcc
(
*
'mp4v'
)
writer
=
cv2
.
VideoWriter
(
out_path
,
fourcc
,
fps
,
(
width
,
height
))
frame_id
=
1
...
...
@@ -469,14 +473,17 @@ class SDE_Detector(Detector):
timer
.
tic
()
seq_name
=
video_out_name
.
split
(
'.'
)[
0
]
mot_results
=
self
.
predict_image
([
frame
],
visual
=
False
,
seq_name
=
seq_name
)
mot_results
=
self
.
predict_image
(
[
frame
],
visual
=
False
,
seq_name
=
seq_name
)
timer
.
toc
()
online_tlwhs
,
online_scores
,
online_ids
=
mot_results
[
0
]
# bs=1 in MOT model
online_tlwhs
,
online_scores
,
online_ids
=
mot_results
[
0
]
# bs=1 in MOT model
fps
=
1.
/
timer
.
duration
if
num_classes
==
1
and
self
.
use_reid
:
# use DeepSORTTracker, only support singe class
results
[
0
].
append
((
frame_id
+
1
,
online_tlwhs
,
online_scores
,
online_ids
))
results
[
0
].
append
(
(
frame_id
+
1
,
online_tlwhs
,
online_scores
,
online_ids
))
im
=
plot_tracking
(
frame
,
online_tlwhs
,
...
...
@@ -488,8 +495,8 @@ class SDE_Detector(Detector):
# use ByteTracker, support multiple class
for
cls_id
in
range
(
num_classes
):
results
[
cls_id
].
append
(
(
frame_id
+
1
,
online_tlwhs
[
cls_id
],
online_scores
[
cls_id
],
online_ids
[
cls_id
]))
(
frame_id
+
1
,
online_tlwhs
[
cls_id
],
online_scores
[
cls_id
],
online_ids
[
cls_id
]))
im
=
plot_tracking_dict
(
frame
,
num_classes
,
...
...
@@ -549,13 +556,15 @@ class SDE_Detector(Detector):
continue
if
os
.
path
.
exists
(
os
.
path
.
join
(
fpath
,
'img1'
)):
fpath
=
os
.
path
.
join
(
fpath
,
'img1'
)
assert
os
.
path
.
isdir
(
fpath
),
'{} should be a directory'
.
format
(
fpath
)
assert
os
.
path
.
isdir
(
fpath
),
'{} should be a directory'
.
format
(
fpath
)
image_list
=
glob
.
glob
(
os
.
path
.
join
(
fpath
,
'*.jpg'
))
image_list
.
sort
()
assert
len
(
image_list
)
>
0
,
'{} has no images.'
.
format
(
fpath
)
print
(
'start tracking seq: {}'
.
format
(
seq
))
mot_features_dict
=
self
.
predict_image
(
image_list
,
visual
=
False
,
seq_name
=
seq
)
mot_features_dict
=
self
.
predict_image
(
image_list
,
visual
=
False
,
seq_name
=
seq
)
cid
=
int
(
re
.
sub
(
'[a-z,A-Z]'
,
""
,
seq
))
tid_data
,
mot_list_break
=
trajectory_fusion
(
...
...
@@ -627,8 +636,7 @@ def main():
threshold
=
FLAGS
.
threshold
,
output_dir
=
FLAGS
.
output_dir
,
reid_model_dir
=
FLAGS
.
reid_model_dir
,
mtmct_dir
=
FLAGS
.
mtmct_dir
,
)
mtmct_dir
=
FLAGS
.
mtmct_dir
,
)
# predict from video file or camera video stream
if
FLAGS
.
video_file
is
not
None
or
FLAGS
.
camera_id
!=
-
1
:
...
...
@@ -643,7 +651,8 @@ def main():
assert
FLAGS
.
batch_size
==
1
,
"--batch_size should be 1 in MOT models."
img_list
=
get_test_images
(
FLAGS
.
image_dir
,
FLAGS
.
image_file
)
seq_name
=
FLAGS
.
image_dir
.
split
(
'/'
)[
-
1
]
detector
.
predict_image
(
img_list
,
FLAGS
.
run_benchmark
,
repeats
=
10
,
seq_name
=
seq_name
)
detector
.
predict_image
(
img_list
,
FLAGS
.
run_benchmark
,
repeats
=
10
,
seq_name
=
seq_name
)
if
not
FLAGS
.
run_benchmark
:
detector
.
det_times
.
info
(
average
=
True
)
...
...
deploy/python/infer.py
浏览文件 @
8622966f
...
...
@@ -150,6 +150,25 @@ class Detector(object):
result
=
{
k
:
v
for
k
,
v
in
result
.
items
()
if
v
is
not
None
}
return
result
def
filter_box
(
self
,
result
,
threshold
):
np_boxes_num
=
result
[
'boxes_num'
]
boxes
=
result
[
'boxes'
]
start_idx
=
0
filter_boxes
=
[]
filter_num
=
[]
for
i
in
range
(
len
(
np_boxes_num
)):
boxes_num
=
np_boxes_num
[
i
]
boxes_i
=
boxes
[
start_idx
:
start_idx
+
boxes_num
,
:]
idx
=
boxes_i
[:,
1
]
>
threshold
filter_boxes_i
=
boxes_i
[
idx
,
:]
filter_boxes
.
append
(
filter_boxes_i
)
filter_num
.
append
(
filter_boxes_i
.
shape
[
0
])
start_idx
+=
boxes_num
boxes
=
np
.
concatenate
(
filter_boxes
)
filter_num
=
np
.
array
(
filter_num
)
filter_res
=
{
'boxes'
:
boxes
,
'boxes_num'
:
filter_num
}
return
filter_res
def
predict
(
self
,
repeats
=
1
):
'''
Args:
...
...
@@ -736,19 +755,20 @@ def main():
elif
arch
==
'PicoDet'
:
detector_func
=
'DetectorPicoDet'
detector
=
eval
(
detector_func
)(
FLAGS
.
model_dir
,
device
=
FLAGS
.
device
,
run_mode
=
FLAGS
.
run_mode
,
batch_size
=
FLAGS
.
batch_size
,
trt_min_shape
=
FLAGS
.
trt_min_shape
,
trt_max_shape
=
FLAGS
.
trt_max_shape
,
trt_opt_shape
=
FLAGS
.
trt_opt_shape
,
trt_calib_mode
=
FLAGS
.
trt_calib_mode
,
cpu_threads
=
FLAGS
.
cpu_threads
,
enable_mkldnn
=
FLAGS
.
enable_mkldnn
,
enable_mkldnn_bfloat16
=
FLAGS
.
enable_mkldnn_bfloat16
,
threshold
=
FLAGS
.
threshold
,
output_dir
=
FLAGS
.
output_dir
)
detector
=
eval
(
detector_func
)(
FLAGS
.
model_dir
,
device
=
FLAGS
.
device
,
run_mode
=
FLAGS
.
run_mode
,
batch_size
=
FLAGS
.
batch_size
,
trt_min_shape
=
FLAGS
.
trt_min_shape
,
trt_max_shape
=
FLAGS
.
trt_max_shape
,
trt_opt_shape
=
FLAGS
.
trt_opt_shape
,
trt_calib_mode
=
FLAGS
.
trt_calib_mode
,
cpu_threads
=
FLAGS
.
cpu_threads
,
enable_mkldnn
=
FLAGS
.
enable_mkldnn
,
enable_mkldnn_bfloat16
=
FLAGS
.
enable_mkldnn_bfloat16
,
threshold
=
FLAGS
.
threshold
,
output_dir
=
FLAGS
.
output_dir
)
# predict from video file or camera video stream
if
FLAGS
.
video_file
is
not
None
or
FLAGS
.
camera_id
!=
-
1
:
...
...
@@ -781,6 +801,8 @@ if __name__ == '__main__':
],
"device should be CPU, GPU or XPU"
assert
not
FLAGS
.
use_gpu
,
"use_gpu has been deprecated, please use --device"
assert
not
(
FLAGS
.
enable_mkldnn
==
False
and
FLAGS
.
enable_mkldnn_bfloat16
==
True
),
'To enable mkldnn bfloat, please turn on both enable_mkldnn and enable_mkldnn_bfloat16'
assert
not
(
FLAGS
.
enable_mkldnn
==
False
and
FLAGS
.
enable_mkldnn_bfloat16
==
True
),
'To enable mkldnn bfloat, please turn on both enable_mkldnn and enable_mkldnn_bfloat16'
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录