Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
7dcc3132
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
1 年多 前同步成功
通知
696
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
7dcc3132
编写于
5月 19, 2021
作者:
P
Peihan
提交者:
GitHub
5月 19, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
unify benchmark log to new version (#3054)
* update det infer benchmark log
上级
34efe848
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
335 addition
and
100 deletion
+335
-100
deploy/python/benchmark_utils.py
deploy/python/benchmark_utils.py
+279
-0
deploy/python/infer.py
deploy/python/infer.py
+31
-17
deploy/python/utils.py
deploy/python/utils.py
+25
-83
未找到文件。
deploy/python/benchmark_utils.py
0 → 100644
浏览文件 @
7dcc3132
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
argparse
import
os
import
time
import
logging
import
paddle
import
paddle.inference
as
paddle_infer
from
pathlib
import
Path
CUR_DIR
=
os
.
path
.
dirname
(
os
.
path
.
abspath
(
__file__
))
LOG_PATH_ROOT
=
f
"
{
CUR_DIR
}
/../../output"
class
PaddleInferBenchmark
(
object
):
def
__init__
(
self
,
config
,
model_info
:
dict
=
{},
data_info
:
dict
=
{},
perf_info
:
dict
=
{},
resource_info
:
dict
=
{},
**
kwargs
):
"""
Construct PaddleInferBenchmark Class to format logs.
args:
config(paddle.inference.Config): paddle inference config
model_info(dict): basic model info
{'model_name': 'resnet50'
'precision': 'fp32'}
data_info(dict): input data info
{'batch_size': 1
'shape': '3,224,224'
'data_num': 1000}
perf_info(dict): performance result
{'preprocess_time_s': 1.0
'inference_time_s': 2.0
'postprocess_time_s': 1.0
'total_time_s': 4.0}
resource_info(dict):
cpu and gpu resources
{'cpu_rss': 100
'gpu_rss': 100
'gpu_util': 60}
"""
# PaddleInferBenchmark Log Version
self
.
log_version
=
"1.0.3"
# Paddle Version
self
.
paddle_version
=
paddle
.
__version__
self
.
paddle_commit
=
paddle
.
__git_commit__
paddle_infer_info
=
paddle_infer
.
get_version
()
self
.
paddle_branch
=
paddle_infer_info
.
strip
().
split
(
': '
)[
-
1
]
# model info
self
.
model_info
=
model_info
# data info
self
.
data_info
=
data_info
# perf info
self
.
perf_info
=
perf_info
try
:
# required value
self
.
model_name
=
model_info
[
'model_name'
]
self
.
precision
=
model_info
[
'precision'
]
self
.
batch_size
=
data_info
[
'batch_size'
]
self
.
shape
=
data_info
[
'shape'
]
self
.
data_num
=
data_info
[
'data_num'
]
self
.
inference_time_s
=
round
(
perf_info
[
'inference_time_s'
],
4
)
except
:
self
.
print_help
()
raise
ValueError
(
"Set argument wrong, please check input argument and its type"
)
self
.
preprocess_time_s
=
perf_info
.
get
(
'preprocess_time_s'
,
0
)
self
.
postprocess_time_s
=
perf_info
.
get
(
'postprocess_time_s'
,
0
)
self
.
total_time_s
=
perf_info
.
get
(
'total_time_s'
,
0
)
self
.
inference_time_s_90
=
perf_info
.
get
(
"inference_time_s_90"
,
""
)
self
.
inference_time_s_99
=
perf_info
.
get
(
"inference_time_s_99"
,
""
)
self
.
succ_rate
=
perf_info
.
get
(
"succ_rate"
,
""
)
self
.
qps
=
perf_info
.
get
(
"qps"
,
""
)
# conf info
self
.
config_status
=
self
.
parse_config
(
config
)
# mem info
if
isinstance
(
resource_info
,
dict
):
self
.
cpu_rss_mb
=
int
(
resource_info
.
get
(
'cpu_rss_mb'
,
0
))
self
.
cpu_vms_mb
=
int
(
resource_info
.
get
(
'cpu_vms_mb'
,
0
))
self
.
cpu_shared_mb
=
int
(
resource_info
.
get
(
'cpu_shared_mb'
,
0
))
self
.
cpu_dirty_mb
=
int
(
resource_info
.
get
(
'cpu_dirty_mb'
,
0
))
self
.
cpu_util
=
round
(
resource_info
.
get
(
'cpu_util'
,
0
),
2
)
self
.
gpu_rss_mb
=
int
(
resource_info
.
get
(
'gpu_rss_mb'
,
0
))
self
.
gpu_util
=
round
(
resource_info
.
get
(
'gpu_util'
,
0
),
2
)
self
.
gpu_mem_util
=
round
(
resource_info
.
get
(
'gpu_mem_util'
,
0
),
2
)
else
:
self
.
cpu_rss_mb
=
0
self
.
cpu_vms_mb
=
0
self
.
cpu_shared_mb
=
0
self
.
cpu_dirty_mb
=
0
self
.
cpu_util
=
0
self
.
gpu_rss_mb
=
0
self
.
gpu_util
=
0
self
.
gpu_mem_util
=
0
# init benchmark logger
self
.
benchmark_logger
()
def
benchmark_logger
(
self
):
"""
benchmark logger
"""
# remove other logging handler
for
handler
in
logging
.
root
.
handlers
[:]:
logging
.
root
.
removeHandler
(
handler
)
# Init logger
FORMAT
=
'%(asctime)s - %(name)s - %(levelname)s - %(message)s'
log_output
=
f
"
{
LOG_PATH_ROOT
}
/
{
self
.
model_name
}
.log"
Path
(
f
"
{
LOG_PATH_ROOT
}
"
).
mkdir
(
parents
=
True
,
exist_ok
=
True
)
logging
.
basicConfig
(
level
=
logging
.
INFO
,
format
=
FORMAT
,
handlers
=
[
logging
.
FileHandler
(
filename
=
log_output
,
mode
=
'w'
),
logging
.
StreamHandler
(),
])
self
.
logger
=
logging
.
getLogger
(
__name__
)
self
.
logger
.
info
(
f
"Paddle Inference benchmark log will be saved to
{
log_output
}
"
)
def
parse_config
(
self
,
config
)
->
dict
:
"""
parse paddle predictor config
args:
config(paddle.inference.Config): paddle inference config
return:
config_status(dict): dict style config info
"""
if
isinstance
(
config
,
paddle_infer
.
Config
):
config_status
=
{}
config_status
[
'runtime_device'
]
=
"gpu"
if
config
.
use_gpu
(
)
else
"cpu"
config_status
[
'ir_optim'
]
=
config
.
ir_optim
()
config_status
[
'enable_tensorrt'
]
=
config
.
tensorrt_engine_enabled
()
config_status
[
'precision'
]
=
self
.
precision
config_status
[
'enable_mkldnn'
]
=
config
.
mkldnn_enabled
()
config_status
[
'cpu_math_library_num_threads'
]
=
config
.
cpu_math_library_num_threads
(
)
elif
isinstance
(
config
,
dict
):
config_status
[
'runtime_device'
]
=
config
.
get
(
'runtime_device'
,
""
)
config_status
[
'ir_optim'
]
=
config
.
get
(
'ir_optim'
,
""
)
config_status
[
'enable_tensorrt'
]
=
config
.
get
(
'enable_tensorrt'
,
""
)
config_status
[
'precision'
]
=
config
.
get
(
'precision'
,
""
)
config_status
[
'enable_mkldnn'
]
=
config
.
get
(
'enable_mkldnn'
,
""
)
config_status
[
'cpu_math_library_num_threads'
]
=
config
.
get
(
'cpu_math_library_num_threads'
,
""
)
else
:
self
.
print_help
()
raise
ValueError
(
"Set argument config wrong, please check input argument and its type"
)
return
config_status
def
report
(
self
,
identifier
=
None
):
"""
print log report
args:
identifier(string): identify log
"""
if
identifier
:
identifier
=
f
"[
{
identifier
}
]"
else
:
identifier
=
""
self
.
logger
.
info
(
"
\n
"
)
self
.
logger
.
info
(
"---------------------- Paddle info ----------------------"
)
self
.
logger
.
info
(
f
"
{
identifier
}
paddle_version:
{
self
.
paddle_version
}
"
)
self
.
logger
.
info
(
f
"
{
identifier
}
paddle_commit:
{
self
.
paddle_commit
}
"
)
self
.
logger
.
info
(
f
"
{
identifier
}
paddle_branch:
{
self
.
paddle_branch
}
"
)
self
.
logger
.
info
(
f
"
{
identifier
}
log_api_version:
{
self
.
log_version
}
"
)
self
.
logger
.
info
(
"----------------------- Conf info -----------------------"
)
self
.
logger
.
info
(
f
"
{
identifier
}
runtime_device:
{
self
.
config_status
[
'runtime_device'
]
}
"
)
self
.
logger
.
info
(
f
"
{
identifier
}
ir_optim:
{
self
.
config_status
[
'ir_optim'
]
}
"
)
self
.
logger
.
info
(
f
"
{
identifier
}
enable_memory_optim:
{
True
}
"
)
self
.
logger
.
info
(
f
"
{
identifier
}
enable_tensorrt:
{
self
.
config_status
[
'enable_tensorrt'
]
}
"
)
self
.
logger
.
info
(
f
"
{
identifier
}
enable_mkldnn:
{
self
.
config_status
[
'enable_mkldnn'
]
}
"
)
self
.
logger
.
info
(
f
"
{
identifier
}
cpu_math_library_num_threads:
{
self
.
config_status
[
'cpu_math_library_num_threads'
]
}
"
)
self
.
logger
.
info
(
"----------------------- Model info ----------------------"
)
self
.
logger
.
info
(
f
"
{
identifier
}
model_name:
{
self
.
model_name
}
"
)
self
.
logger
.
info
(
f
"
{
identifier
}
precision:
{
self
.
precision
}
"
)
self
.
logger
.
info
(
"----------------------- Data info -----------------------"
)
self
.
logger
.
info
(
f
"
{
identifier
}
batch_size:
{
self
.
batch_size
}
"
)
self
.
logger
.
info
(
f
"
{
identifier
}
input_shape:
{
self
.
shape
}
"
)
self
.
logger
.
info
(
f
"
{
identifier
}
data_num:
{
self
.
data_num
}
"
)
self
.
logger
.
info
(
"----------------------- Perf info -----------------------"
)
self
.
logger
.
info
(
f
"
{
identifier
}
cpu_rss(MB):
{
self
.
cpu_rss_mb
}
, cpu_vms:
{
self
.
cpu_vms_mb
}
, cpu_shared_mb:
{
self
.
cpu_shared_mb
}
, cpu_dirty_mb:
{
self
.
cpu_dirty_mb
}
, cpu_util:
{
self
.
cpu_util
}
%"
)
self
.
logger
.
info
(
f
"
{
identifier
}
gpu_rss(MB):
{
self
.
gpu_rss_mb
}
, gpu_util:
{
self
.
gpu_util
}
%, gpu_mem_util:
{
self
.
gpu_mem_util
}
%"
)
self
.
logger
.
info
(
f
"
{
identifier
}
total time spent(s):
{
self
.
total_time_s
}
"
)
self
.
logger
.
info
(
f
"
{
identifier
}
preprocess_time(ms):
{
round
(
self
.
preprocess_time_s
*
1000
,
1
)
}
, inference_time(ms):
{
round
(
self
.
inference_time_s
*
1000
,
1
)
}
, postprocess_time(ms):
{
round
(
self
.
postprocess_time_s
*
1000
,
1
)
}
"
)
if
self
.
inference_time_s_90
:
self
.
looger
.
info
(
f
"
{
identifier
}
90%_cost:
{
self
.
inference_time_s_90
}
, 99%_cost:
{
self
.
inference_time_s_99
}
, succ_rate:
{
self
.
succ_rate
}
"
)
if
self
.
qps
:
self
.
logger
.
info
(
f
"
{
identifier
}
QPS:
{
self
.
qps
}
"
)
def
print_help
(
self
):
"""
print function help
"""
print
(
"""Usage:
==== Print inference benchmark logs. ====
config = paddle.inference.Config()
model_info = {'model_name': 'resnet50'
'precision': 'fp32'}
data_info = {'batch_size': 1
'shape': '3,224,224'
'data_num': 1000}
perf_info = {'preprocess_time_s': 1.0
'inference_time_s': 2.0
'postprocess_time_s': 1.0
'total_time_s': 4.0}
resource_info = {'cpu_rss_mb': 100
'gpu_rss_mb': 100
'gpu_util': 60}
log = PaddleInferBenchmark(config, model_info, data_info, perf_info, resource_info)
log('Test')
"""
)
def
__call__
(
self
,
identifier
=
None
):
"""
__call__
args:
identifier(string): identify log
"""
self
.
report
(
identifier
)
deploy/python/infer.py
浏览文件 @
7dcc3132
...
...
@@ -25,9 +25,10 @@ import paddle
from
paddle.inference
import
Config
from
paddle.inference
import
create_predictor
from
benchmark_utils
import
PaddleInferBenchmark
from
preprocess
import
preprocess
,
Resize
,
NormalizeImage
,
Permute
,
PadStride
from
visualize
import
visualize_box_mask
from
utils
import
argsparser
,
Timer
,
get_current_memory_mb
,
LoggerHelper
from
utils
import
argsparser
,
Timer
,
get_current_memory_mb
# Global dictionary
SUPPORT_MODELS
=
{
...
...
@@ -69,7 +70,7 @@ class Detector(object):
cpu_threads
=
1
,
enable_mkldnn
=
False
):
self
.
pred_config
=
pred_config
self
.
predictor
=
load_predictor
(
self
.
predictor
,
self
.
config
=
load_predictor
(
model_dir
,
run_mode
=
run_mode
,
min_subgraph_size
=
self
.
pred_config
.
min_subgraph_size
,
...
...
@@ -122,14 +123,14 @@ class Detector(object):
MaskRCNN's results include 'masks': np.ndarray:
shape: [N, im_h, im_w]
'''
self
.
det_times
.
p
reprocess_time
.
start
()
self
.
det_times
.
p
ostprocess_time_s
.
start
()
inputs
=
self
.
preprocess
(
image
)
np_boxes
,
np_masks
=
None
,
None
input_names
=
self
.
predictor
.
get_input_names
()
for
i
in
range
(
len
(
input_names
)):
input_tensor
=
self
.
predictor
.
get_input_handle
(
input_names
[
i
])
input_tensor
.
copy_from_cpu
(
inputs
[
input_names
[
i
]])
self
.
det_times
.
p
reprocess_time
.
end
()
self
.
det_times
.
p
ostprocess_time_s
.
end
()
for
i
in
range
(
warmup
):
self
.
predictor
.
run
()
output_names
=
self
.
predictor
.
get_output_names
()
...
...
@@ -139,7 +140,7 @@ class Detector(object):
masks_tensor
=
self
.
predictor
.
get_output_handle
(
output_names
[
2
])
np_masks
=
masks_tensor
.
copy_to_cpu
()
self
.
det_times
.
inference_time
.
start
()
self
.
det_times
.
inference_time
_s
.
start
()
for
i
in
range
(
repeats
):
self
.
predictor
.
run
()
output_names
=
self
.
predictor
.
get_output_names
()
...
...
@@ -148,9 +149,9 @@ class Detector(object):
if
self
.
pred_config
.
mask
:
masks_tensor
=
self
.
predictor
.
get_output_handle
(
output_names
[
2
])
np_masks
=
masks_tensor
.
copy_to_cpu
()
self
.
det_times
.
inference_time
.
end
(
repeats
=
repeats
)
self
.
det_times
.
inference_time
_s
.
end
(
repeats
=
repeats
)
self
.
det_times
.
postprocess_time
.
start
()
self
.
det_times
.
postprocess_time
_s
.
start
()
results
=
[]
if
reduce
(
lambda
x
,
y
:
x
*
y
,
np_boxes
.
shape
)
<
6
:
print
(
'[WARNNING] No object detected.'
)
...
...
@@ -158,7 +159,7 @@ class Detector(object):
else
:
results
=
self
.
postprocess
(
np_boxes
,
np_masks
,
inputs
,
threshold
=
threshold
)
self
.
det_times
.
postprocess_time
.
end
()
self
.
det_times
.
postprocess_time
_s
.
end
()
self
.
det_times
.
img_num
+=
1
return
results
...
...
@@ -190,7 +191,7 @@ class DetectorSOLOv2(Detector):
cpu_threads
=
1
,
enable_mkldnn
=
False
):
self
.
pred_config
=
pred_config
self
.
predictor
=
load_predictor
(
self
.
predictor
,
self
.
config
=
load_predictor
(
model_dir
,
run_mode
=
run_mode
,
min_subgraph_size
=
self
.
pred_config
.
min_subgraph_size
,
...
...
@@ -214,14 +215,14 @@ class DetectorSOLOv2(Detector):
'cate_label': label of segm, shape:[N]
'cate_score': confidence score of segm, shape:[N]
'''
self
.
det_times
.
p
reprocess_time
.
start
()
self
.
det_times
.
p
ostprocess_time_s
.
start
()
inputs
=
self
.
preprocess
(
image
)
np_label
,
np_score
,
np_segms
=
None
,
None
,
None
input_names
=
self
.
predictor
.
get_input_names
()
for
i
in
range
(
len
(
input_names
)):
input_tensor
=
self
.
predictor
.
get_input_handle
(
input_names
[
i
])
input_tensor
.
copy_from_cpu
(
inputs
[
input_names
[
i
]])
self
.
det_times
.
p
reprocess_time
.
end
()
self
.
det_times
.
p
ostprocess_time_s
.
end
()
for
i
in
range
(
warmup
):
self
.
predictor
.
run
()
output_names
=
self
.
predictor
.
get_output_names
()
...
...
@@ -232,7 +233,7 @@ class DetectorSOLOv2(Detector):
np_segms
=
self
.
predictor
.
get_output_handle
(
output_names
[
3
]).
copy_to_cpu
()
self
.
det_times
.
inference_time
.
start
()
self
.
det_times
.
inference_time
_s
.
start
()
for
i
in
range
(
repeats
):
self
.
predictor
.
run
()
output_names
=
self
.
predictor
.
get_output_names
()
...
...
@@ -242,7 +243,7 @@ class DetectorSOLOv2(Detector):
2
]).
copy_to_cpu
()
np_segms
=
self
.
predictor
.
get_output_handle
(
output_names
[
3
]).
copy_to_cpu
()
self
.
det_times
.
inference_time
.
end
(
repeats
=
repeats
)
self
.
det_times
.
inference_time
_s
.
end
(
repeats
=
repeats
)
self
.
det_times
.
img_num
+=
1
return
dict
(
segm
=
np_segms
,
label
=
np_label
,
score
=
np_score
)
...
...
@@ -391,7 +392,7 @@ def load_predictor(model_dir,
# disable feed, fetch OP, needed by zero_copy_run
config
.
switch_use_feed_fetch_ops
(
False
)
predictor
=
create_predictor
(
config
)
return
predictor
return
predictor
,
config
def
get_test_images
(
infer_dir
,
infer_img
):
...
...
@@ -544,9 +545,22 @@ def main():
'gpu_rss'
:
detector
.
gpu_mem
/
len
(
img_list
),
'gpu_util'
:
detector
.
gpu_util
*
100
/
len
(
img_list
)
}
det_logger
=
LoggerHelper
(
FLAGS
,
detector
.
det_times
.
report
(
average
=
True
),
mems
)
det_logger
.
report
()
perf_info
=
detector
.
det_times
.
report
(
average
=
True
)
model_dir
=
FLAGS
.
model_dir
mode
=
FLAGS
.
run_mode
model_info
=
{
'model_name'
:
model_dir
.
strip
(
'/'
).
split
(
'/'
)[
-
1
],
'precision'
:
mode
.
split
(
'_'
)[
-
1
]
}
data_info
=
{
'batch_size'
:
1
,
'shape'
:
"dynamic_shape"
,
'data_num'
:
perf_info
[
'img_num'
]
}
det_log
=
PaddleInferBenchmark
(
detector
.
config
,
model_info
,
data_info
,
perf_info
,
mems
)
det_log
(
'Det'
)
if
__name__
==
'__main__'
:
...
...
deploy/python/utils.py
浏览文件 @
7dcc3132
...
...
@@ -131,25 +131,26 @@ class Times(object):
class
Timer
(
Times
):
def
__init__
(
self
):
super
(
Timer
,
self
).
__init__
()
self
.
preprocess_time
=
Times
()
self
.
inference_time
=
Times
()
self
.
postprocess_time
=
Times
()
self
.
preprocess_time
_s
=
Times
()
self
.
inference_time
_s
=
Times
()
self
.
postprocess_time
_s
=
Times
()
self
.
img_num
=
0
def
info
(
self
,
average
=
False
):
total_time
=
self
.
preprocess_time
.
value
()
+
self
.
inference_time
.
value
(
)
+
self
.
postprocess_time
.
value
()
total_time
=
self
.
preprocess_time
_s
.
value
(
)
+
self
.
inference_time_s
.
value
()
+
self
.
postprocess_time_s
.
value
()
total_time
=
round
(
total_time
,
4
)
print
(
"------------------ Inference Time Info ----------------------"
)
print
(
"total_time(ms): {}, img_num: {}"
.
format
(
total_time
*
1000
,
self
.
img_num
))
preprocess_time
=
round
(
self
.
preprocess_time
.
value
()
/
self
.
img_num
,
4
)
if
average
else
self
.
preprocess_time
.
value
()
preprocess_time
=
round
(
self
.
preprocess_time_s
.
value
()
/
self
.
img_num
,
4
)
if
average
else
self
.
preprocess_time_s
.
value
()
postprocess_time
=
round
(
self
.
postprocess_time
.
value
()
/
self
.
img_num
,
4
)
if
average
else
self
.
postprocess_time
.
value
()
inference_time
=
round
(
self
.
inference_time
.
value
()
/
self
.
img_num
,
4
)
if
average
else
self
.
inference_time
.
value
()
self
.
postprocess_time
_s
.
value
()
/
self
.
img_num
,
4
)
if
average
else
self
.
postprocess_time
_s
.
value
()
inference_time
=
round
(
self
.
inference_time
_s
.
value
()
/
self
.
img_num
,
4
)
if
average
else
self
.
inference_time
_s
.
value
()
average_latency
=
total_time
/
self
.
img_num
print
(
"average latency time(ms): {:.2f}, QPS: {:2f}"
.
format
(
...
...
@@ -161,19 +162,19 @@ class Timer(Times):
def
report
(
self
,
average
=
False
):
dic
=
{}
dic
[
'preprocess_time'
]
=
round
(
self
.
preprocess_time
.
value
()
/
self
.
img_num
,
4
)
if
average
else
self
.
preprocess_time
.
value
()
dic
[
'postprocess_time'
]
=
round
(
self
.
postprocess_time
.
value
()
/
self
.
img_num
,
4
)
if
average
else
self
.
postprocess_time
.
value
()
dic
[
'inference_time'
]
=
round
(
self
.
inference_time
.
value
()
/
self
.
img_num
,
4
)
if
average
else
self
.
inference_time
.
value
()
dic
[
'preprocess_time
_s
'
]
=
round
(
self
.
preprocess_time
_s
.
value
()
/
self
.
img_num
,
4
)
if
average
else
self
.
preprocess_time
_s
.
value
()
dic
[
'postprocess_time
_s
'
]
=
round
(
self
.
postprocess_time
_s
.
value
()
/
self
.
img_num
,
4
)
if
average
else
self
.
postprocess_time
_s
.
value
()
dic
[
'inference_time
_s
'
]
=
round
(
self
.
inference_time
_s
.
value
()
/
self
.
img_num
,
4
)
if
average
else
self
.
inference_time
_s
.
value
()
dic
[
'img_num'
]
=
self
.
img_num
total_time
=
self
.
preprocess_time
.
value
()
+
self
.
inference_time
.
value
(
)
+
self
.
postprocess_time
.
value
()
dic
[
'total_time'
]
=
round
(
total_time
,
4
)
total_time
=
self
.
preprocess_time
_s
.
value
(
)
+
self
.
inference_time_s
.
value
()
+
self
.
postprocess_time_s
.
value
()
dic
[
'total_time
_s
'
]
=
round
(
total_time
,
4
)
return
dic
...
...
@@ -185,7 +186,7 @@ def get_current_memory_mb():
import
pynvml
import
psutil
import
GPUtil
gpu_id
=
os
.
environ
.
get
(
'CUDA_VISIBLE_DEVICES'
,
0
)
gpu_id
=
int
(
os
.
environ
.
get
(
'CUDA_VISIBLE_DEVICES'
,
0
)
)
pid
=
os
.
getpid
()
p
=
psutil
.
Process
(
pid
)
...
...
@@ -201,62 +202,3 @@ def get_current_memory_mb():
meminfo
=
pynvml
.
nvmlDeviceGetMemoryInfo
(
handle
)
gpu_mem
=
meminfo
.
used
/
1024.
/
1024.
return
round
(
cpu_mem
,
4
),
round
(
gpu_mem
,
4
),
round
(
gpu_percent
,
4
)
class
LoggerHelper
(
object
):
def
__init__
(
self
,
args
,
times
,
mem_info
=
None
):
"""
args: utility.parse_args()
times: The Timer class
"""
self
.
args
=
args
self
.
times
=
times
self
.
model_name
=
args
.
model_dir
.
strip
(
'/'
).
split
(
'/'
)[
-
1
]
self
.
batch_size
=
1
self
.
shape
=
"dynamic shape"
if
args
.
run_mode
==
'fluid'
:
self
.
precision
=
"fp32"
self
.
use_tensorrt
=
False
else
:
self
.
precision
=
args
.
run_mode
.
split
(
'_'
)[
-
1
]
self
.
use_tensorrt
=
True
self
.
device
=
"gpu"
if
args
.
use_gpu
else
"cpu"
self
.
preprocess_time
=
round
(
times
[
'preprocess_time'
],
4
)
self
.
inference_time
=
round
(
times
[
'inference_time'
],
4
)
self
.
postprocess_time
=
round
(
times
[
'postprocess_time'
],
4
)
self
.
data_num
=
times
[
'img_num'
]
self
.
total_time
=
round
(
times
[
'total_time'
],
4
)
self
.
mem_info
=
{
"cpu_rss"
:
0
,
"gpu_rss"
:
0
,
"gpu_util"
:
0
}
if
mem_info
is
not
None
:
self
.
mem_info
=
mem_info
def
report
(
self
):
print
(
"
\n
"
)
print
(
"----------------------- Config info -----------------------"
)
print
(
"runtime_device:"
,
self
.
device
)
print
(
"ir_optim:"
,
True
)
print
(
"enable_memory_optim:"
,
True
)
print
(
"enable_tensorrt:"
,
self
.
use_tensorrt
)
print
(
"precision:"
,
self
.
precision
)
print
(
"enable_mkldnn:"
,
self
.
args
.
enable_mkldnn
)
print
(
"cpu_math_library_num_threads:"
,
self
.
args
.
cpu_threads
)
print
(
"----------------------- Model info ----------------------"
)
print
(
"model_name:"
,
self
.
model_name
)
print
(
"------------------------ Data info ----------------------"
)
print
(
"batch_size:"
,
self
.
batch_size
)
print
(
"input_shape:"
,
self
.
shape
)
print
(
"----------------------- Perf info -----------------------"
)
print
(
"[cpu_rss(MB): {} gpu_rss(MB): {}, gpu_util: {}%"
.
format
(
round
(
self
.
mem_info
[
'cpu_rss'
],
4
),
round
(
self
.
mem_info
[
'gpu_rss'
],
4
),
round
(
self
.
mem_info
[
'gpu_util'
],
2
)))
print
(
"total number of predicted data: {} and total time spent(s): {}"
.
format
(
self
.
data_num
,
self
.
total_time
))
print
(
"preproce_time(ms): {}, inference_time(ms): {}, postprocess_time(ms): {}"
.
format
(
self
.
preprocess_time
*
1000
,
self
.
inference_time
*
1000
,
self
.
postprocess_time
*
1000
))
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录