infer.py 42.3 KB
Newer Older
Q
qingqing01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import yaml
G
Guanghua Yu 已提交
17
import glob
18 19
import json
from pathlib import Path
Q
qingqing01 已提交
20 21 22 23
from functools import reduce

import cv2
import numpy as np
C
cnn 已提交
24
import math
Q
qingqing01 已提交
25 26 27 28
import paddle
from paddle.inference import Config
from paddle.inference import create_predictor

W
wangguanzhong 已提交
29
import sys
C
chenxujun 已提交
30
# add deploy path of PaddleDetection to sys.path
W
wangguanzhong 已提交
31 32 33
parent_path = os.path.abspath(os.path.join(__file__, *(['..'])))
sys.path.insert(0, parent_path)

34
from benchmark_utils import PaddleInferBenchmark
35
from picodet_postprocess import PicoDetPostProcess
F
Feng Ni 已提交
36
from preprocess import preprocess, Resize, NormalizeImage, Permute, PadStride, LetterBoxResize, WarpAffine, Pad, decode_image
W
wangguanzhong 已提交
37
from keypoint_preprocess import EvalAffine, TopDownEvalAffine, expand_crop
G
Guanghua Yu 已提交
38
from visualize import visualize_box_mask
39
from utils import argsparser, Timer, get_current_memory_mb, multiclass_nms, coco_clsid2catid
G
Guanghua Yu 已提交
40

Q
qingqing01 已提交
41 42
# Global dictionary
SUPPORT_MODELS = {
43 44 45 46
    'YOLO', 'PPYOLOE', 'RCNN', 'SSD', 'Face', 'FCOS', 'SOLOv2', 'TTFNet',
    'S2ANet', 'JDE', 'FairMOT', 'DeepSORT', 'GFL', 'PicoDet', 'CenterNet',
    'TOOD', 'RetinaNet', 'StrongBaseline', 'STGCN', 'YOLOX', 'YOLOF', 'PPHGNet',
    'PPLCNet', 'DETR', 'CenterTrack'
Q
qingqing01 已提交
47 48 49
}


W
wangguanzhong 已提交
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
def bench_log(detector, img_list, model_info, batch_size=1, name=None):
    mems = {
        'cpu_rss_mb': detector.cpu_mem / len(img_list),
        'gpu_rss_mb': detector.gpu_mem / len(img_list),
        'gpu_util': detector.gpu_util * 100 / len(img_list)
    }
    perf_info = detector.det_times.report(average=True)
    data_info = {
        'batch_size': batch_size,
        'shape': "dynamic_shape",
        'data_num': perf_info['img_num']
    }
    log = PaddleInferBenchmark(detector.config, model_info, data_info,
                               perf_info, mems)
    log(name)


Q
qingqing01 已提交
67 68 69
class Detector(object):
    """
    Args:
70
        pred_config (object): config of model, defined by `Config(model_dir)`
Q
qingqing01 已提交
71
        model_dir (str): root path of model.pdiparams, model.pdmodel and infer_cfg.yml
G
Guanghua Yu 已提交
72
        device (str): Choose the device you want to run, it can be: CPU/GPU/XPU, default is CPU
73
        run_mode (str): mode of running(paddle/trt_fp32/trt_fp16)
74
        batch_size (int): size of pre batch in inference
75 76 77
        trt_min_shape (int): min shape for dynamic shape in trt
        trt_max_shape (int): max shape for dynamic shape in trt
        trt_opt_shape (int): opt shape for dynamic shape in trt
78 79 80 81
        trt_calib_mode (bool): If the model is produced by TRT offline quantitative
            calibration, trt_calib_mode need to set True
        cpu_threads (int): cpu threads
        enable_mkldnn (bool): whether to open MKLDNN
82
        enable_mkldnn_bfloat16 (bool): whether to turn on mkldnn bfloat16
W
wangguanzhong 已提交
83 84
        output_dir (str): The path of output
        threshold (float): The threshold of score for visualization
J
JYChen 已提交
85 86
        delete_shuffle_pass (bool): whether to remove shuffle_channel_detect_pass in TensorRT. 
                                    Used by action model.
Q
qingqing01 已提交
87 88
    """

J
JYChen 已提交
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
    def __init__(self,
                 model_dir,
                 device='CPU',
                 run_mode='paddle',
                 batch_size=1,
                 trt_min_shape=1,
                 trt_max_shape=1280,
                 trt_opt_shape=640,
                 trt_calib_mode=False,
                 cpu_threads=1,
                 enable_mkldnn=False,
                 enable_mkldnn_bfloat16=False,
                 output_dir='output',
                 threshold=0.5,
                 delete_shuffle_pass=False):
W
wangguanzhong 已提交
104
        self.pred_config = self.set_config(model_dir)
105
        self.predictor, self.config = load_predictor(
Q
qingqing01 已提交
106
            model_dir,
107
            self.pred_config.arch,
Q
qingqing01 已提交
108
            run_mode=run_mode,
109
            batch_size=batch_size,
Q
qingqing01 已提交
110
            min_subgraph_size=self.pred_config.min_subgraph_size,
G
Guanghua Yu 已提交
111
            device=device,
112
            use_dynamic_shape=self.pred_config.use_dynamic_shape,
113 114
            trt_min_shape=trt_min_shape,
            trt_max_shape=trt_max_shape,
G
Guanghua Yu 已提交
115
            trt_opt_shape=trt_opt_shape,
116 117
            trt_calib_mode=trt_calib_mode,
            cpu_threads=cpu_threads,
118
            enable_mkldnn=enable_mkldnn,
J
JYChen 已提交
119 120
            enable_mkldnn_bfloat16=enable_mkldnn_bfloat16,
            delete_shuffle_pass=delete_shuffle_pass)
G
Guanghua Yu 已提交
121 122
        self.det_times = Timer()
        self.cpu_mem, self.gpu_mem, self.gpu_util = 0, 0, 0
W
wangguanzhong 已提交
123 124 125 126 127 128
        self.batch_size = batch_size
        self.output_dir = output_dir
        self.threshold = threshold

    def set_config(self, model_dir):
        return PredictConfig(model_dir)
Q
qingqing01 已提交
129

C
cnn 已提交
130
    def preprocess(self, image_list):
Q
qingqing01 已提交
131 132 133 134 135
        preprocess_ops = []
        for op_info in self.pred_config.preprocess_infos:
            new_op_info = op_info.copy()
            op_type = new_op_info.pop('type')
            preprocess_ops.append(eval(op_type)(**new_op_info))
C
cnn 已提交
136 137 138 139

        input_im_lst = []
        input_im_info_lst = []
        for im_path in image_list:
140
            im, im_info = preprocess(im_path, preprocess_ops)
C
cnn 已提交
141 142 143
            input_im_lst.append(im)
            input_im_info_lst.append(im_info)
        inputs = create_inputs(input_im_lst, input_im_info_lst)
W
wangguanzhong 已提交
144 145 146
        input_names = self.predictor.get_input_names()
        for i in range(len(input_names)):
            input_tensor = self.predictor.get_input_handle(input_names[i])
147 148 149 150
            if input_names[i] == 'x':
                input_tensor.copy_from_cpu(inputs['image'])
            else:
                input_tensor.copy_from_cpu(inputs[input_names[i]])
W
wangguanzhong 已提交
151

Q
qingqing01 已提交
152 153
        return inputs

W
wangguanzhong 已提交
154
    def postprocess(self, inputs, result):
Q
qingqing01 已提交
155
        # postprocess output of predictor
W
wangguanzhong 已提交
156
        np_boxes_num = result['boxes_num']
157 158 159
        assert isinstance(np_boxes_num, np.ndarray), \
            '`np_boxes_num` should be a `numpy.ndarray`'

160 161
        result = {k: v for k, v in result.items() if v is not None}
        return result
Q
qingqing01 已提交
162

163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
    def filter_box(self, result, threshold):
        np_boxes_num = result['boxes_num']
        boxes = result['boxes']
        start_idx = 0
        filter_boxes = []
        filter_num = []
        for i in range(len(np_boxes_num)):
            boxes_num = np_boxes_num[i]
            boxes_i = boxes[start_idx:start_idx + boxes_num, :]
            idx = boxes_i[:, 1] > threshold
            filter_boxes_i = boxes_i[idx, :]
            filter_boxes.append(filter_boxes_i)
            filter_num.append(filter_boxes_i.shape[0])
            start_idx += boxes_num
        boxes = np.concatenate(filter_boxes)
        filter_num = np.array(filter_num)
        filter_res = {'boxes': boxes, 'boxes_num': filter_num}
        return filter_res

F
Feng Ni 已提交
182
    def predict(self, repeats=1, run_benchmark=False):
Q
qingqing01 已提交
183 184
        '''
        Args:
W
wangguanzhong 已提交
185
            repeats (int): repeats number for prediction
Q
qingqing01 已提交
186
        Returns:
W
wangguanzhong 已提交
187
            result (dict): include 'boxes': np.ndarray: shape:[N,6], N: number of box,
Q
qingqing01 已提交
188
                            matix element:[class, score, x_min, y_min, x_max, y_max]
W
wangguanzhong 已提交
189
                            MaskRCNN's result include 'masks': np.ndarray:
G
Guanghua Yu 已提交
190
                            shape: [N, im_h, im_w]
Q
qingqing01 已提交
191
        '''
W
wangguanzhong 已提交
192
        # model prediction
193
        np_boxes_num, np_boxes, np_masks = np.array([0]), None, None
F
Feng Ni 已提交
194 195 196 197 198 199 200 201 202

        if run_benchmark:
            for i in range(repeats):
                self.predictor.run()
                paddle.device.cuda.synchronize()
            result = dict(
                boxes=np_boxes, masks=np_masks, boxes_num=np_boxes_num)
            return result

Q
qingqing01 已提交
203 204 205 206 207
        for i in range(repeats):
            self.predictor.run()
            output_names = self.predictor.get_output_names()
            boxes_tensor = self.predictor.get_output_handle(output_names[0])
            np_boxes = boxes_tensor.copy_to_cpu()
208 209 210 211 212 213
            if len(output_names) == 1:
                # some exported model can not get tensor 'bbox_num' 
                np_boxes_num = np.array([len(np_boxes)])
            else:
                boxes_num = self.predictor.get_output_handle(output_names[1])
                np_boxes_num = boxes_num.copy_to_cpu()
G
Guanghua Yu 已提交
214
            if self.pred_config.mask:
Q
qingqing01 已提交
215 216
                masks_tensor = self.predictor.get_output_handle(output_names[2])
                np_masks = masks_tensor.copy_to_cpu()
W
wangguanzhong 已提交
217 218 219 220 221 222 223 224 225 226 227 228
        result = dict(boxes=np_boxes, masks=np_masks, boxes_num=np_boxes_num)
        return result

    def merge_batch_result(self, batch_result):
        if len(batch_result) == 1:
            return batch_result[0]
        res_key = batch_result[0].keys()
        results = {k: [] for k in res_key}
        for res in batch_result:
            for k, v in res.items():
                results[k].append(v)
        for k, v in results.items():
229
            if k not in ['masks', 'segm']:
W
wangguanzhong 已提交
230
                results[k] = np.concatenate(v)
W
wangguanzhong 已提交
231
        return results
Q
qingqing01 已提交
232

W
wangguanzhong 已提交
233 234
    def get_timer(self):
        return self.det_times
W
wangguanzhong 已提交
235

236 237 238 239 240 241
    def predict_image_slice(self,
                            img_list,
                            slice_size=[640, 640],
                            overlap_ratio=[0.25, 0.25],
                            combine_method='nms',
                            match_threshold=0.6,
F
Feng Ni 已提交
242 243 244
                            match_metric='ios',
                            run_benchmark=False,
                            repeats=1,
245
                            visual=True,
246
                            save_results=False):
247 248 249 250 251 252
        # slice infer only support bs=1
        results = []
        try:
            import sahi
            from sahi.slicing import slice_image
        except Exception as e:
F
Feng Ni 已提交
253
            print(
254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
                'sahi not found, plaese install sahi. '
                'for example: `pip install sahi`, see https://github.com/obss/sahi.'
            )
            raise e
        num_classes = len(self.pred_config.labels)
        for i in range(len(img_list)):
            ori_image = img_list[i]
            slice_image_result = sahi.slicing.slice_image(
                image=ori_image,
                slice_height=slice_size[0],
                slice_width=slice_size[1],
                overlap_height_ratio=overlap_ratio[0],
                overlap_width_ratio=overlap_ratio[1])
            sub_img_num = len(slice_image_result)
            merged_bboxs = []
269
            print('slice to {} sub_samples.', sub_img_num)
F
Feng Ni 已提交
270 271 272 273 274 275 276 277 278 279 280 281

            batch_image_list = [
                slice_image_result.images[_ind] for _ind in range(sub_img_num)
            ]
            if run_benchmark:
                # preprocess
                inputs = self.preprocess(batch_image_list)  # warmup
                self.det_times.preprocess_time_s.start()
                inputs = self.preprocess(batch_image_list)
                self.det_times.preprocess_time_s.end()

                # model prediction
F
Feng Ni 已提交
282
                result = self.predict(repeats=50, run_benchmark=True)  # warmup
F
Feng Ni 已提交
283
                self.det_times.inference_time_s.start()
F
Feng Ni 已提交
284
                result = self.predict(repeats=repeats, run_benchmark=True)
F
Feng Ni 已提交
285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
                self.det_times.inference_time_s.end(repeats=repeats)

                # postprocess
                result_warmup = self.postprocess(inputs, result)  # warmup
                self.det_times.postprocess_time_s.start()
                result = self.postprocess(inputs, result)
                self.det_times.postprocess_time_s.end()
                self.det_times.img_num += 1

                cm, gm, gu = get_current_memory_mb()
                self.cpu_mem += cm
                self.gpu_mem += gm
                self.gpu_util += gu
            else:
                # preprocess
300
                self.det_times.preprocess_time_s.start()
F
Feng Ni 已提交
301
                inputs = self.preprocess(batch_image_list)
302 303 304 305 306 307 308 309 310 311 312 313 314
                self.det_times.preprocess_time_s.end()

                # model prediction
                self.det_times.inference_time_s.start()
                result = self.predict()
                self.det_times.inference_time_s.end()

                # postprocess
                self.det_times.postprocess_time_s.start()
                result = self.postprocess(inputs, result)
                self.det_times.postprocess_time_s.end()
                self.det_times.img_num += 1

F
Feng Ni 已提交
315 316 317
            st, ed = 0, result['boxes_num'][0]  # start_index, end_index
            for _ind in range(sub_img_num):
                boxes_num = result['boxes_num'][_ind]
318
                ed = st + boxes_num
319
                shift_amount = slice_image_result.starting_pixels[_ind]
F
Feng Ni 已提交
320 321 322 323 324 325
                result['boxes'][st:ed][:, 2:4] = result['boxes'][
                    st:ed][:, 2:4] + shift_amount
                result['boxes'][st:ed][:, 4:6] = result['boxes'][
                    st:ed][:, 4:6] + shift_amount
                merged_bboxs.append(result['boxes'][st:ed])
                st = ed
326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350

            merged_results = {'boxes': []}
            if combine_method == 'nms':
                final_boxes = multiclass_nms(
                    np.concatenate(merged_bboxs), num_classes, match_threshold,
                    match_metric)
                merged_results['boxes'] = np.concatenate(final_boxes)
            elif combine_method == 'concat':
                merged_results['boxes'] = np.concatenate(merged_bboxs)
            else:
                raise ValueError(
                    "Now only support 'nms' or 'concat' to fuse detection results."
                )
            merged_results['boxes_num'] = np.array(
                [len(merged_results['boxes'])], dtype=np.int32)

            if visual:
                visualize(
                    [ori_image],  # should be list
                    merged_results,
                    self.pred_config.labels,
                    output_dir=self.output_dir,
                    threshold=self.threshold)

            results.append(merged_results)
351
            print('Test iter {}'.format(i))
352 353

        results = self.merge_batch_result(results)
354 355 356 357
        if save_results:
            Path(self.output_dir).mkdir(exist_ok=True)
            self.save_coco_results(
                img_list, results, use_coco_category=FLAGS.use_coco_category)
358 359
        return results

W
wangguanzhong 已提交
360 361 362 363
    def predict_image(self,
                      image_list,
                      run_benchmark=False,
                      repeats=1,
364
                      visual=True,
365
                      save_results=False):
W
wangguanzhong 已提交
366
        batch_loop_cnt = math.ceil(float(len(image_list)) / self.batch_size)
Q
qingqing01 已提交
367
        results = []
W
wangguanzhong 已提交
368 369 370 371 372 373 374 375 376 377 378 379
        for i in range(batch_loop_cnt):
            start_index = i * self.batch_size
            end_index = min((i + 1) * self.batch_size, len(image_list))
            batch_image_list = image_list[start_index:end_index]
            if run_benchmark:
                # preprocess
                inputs = self.preprocess(batch_image_list)  # warmup
                self.det_times.preprocess_time_s.start()
                inputs = self.preprocess(batch_image_list)
                self.det_times.preprocess_time_s.end()

                # model prediction
F
Feng Ni 已提交
380
                result = self.predict(repeats=50, run_benchmark=True)  # warmup
W
wangguanzhong 已提交
381
                self.det_times.inference_time_s.start()
F
Feng Ni 已提交
382
                result = self.predict(repeats=repeats, run_benchmark=True)
W
wangguanzhong 已提交
383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420
                self.det_times.inference_time_s.end(repeats=repeats)

                # postprocess
                result_warmup = self.postprocess(inputs, result)  # warmup
                self.det_times.postprocess_time_s.start()
                result = self.postprocess(inputs, result)
                self.det_times.postprocess_time_s.end()
                self.det_times.img_num += len(batch_image_list)

                cm, gm, gu = get_current_memory_mb()
                self.cpu_mem += cm
                self.gpu_mem += gm
                self.gpu_util += gu
            else:
                # preprocess
                self.det_times.preprocess_time_s.start()
                inputs = self.preprocess(batch_image_list)
                self.det_times.preprocess_time_s.end()

                # model prediction
                self.det_times.inference_time_s.start()
                result = self.predict()
                self.det_times.inference_time_s.end()

                # postprocess
                self.det_times.postprocess_time_s.start()
                result = self.postprocess(inputs, result)
                self.det_times.postprocess_time_s.end()
                self.det_times.img_num += len(batch_image_list)

                if visual:
                    visualize(
                        batch_image_list,
                        result,
                        self.pred_config.labels,
                        output_dir=self.output_dir,
                        threshold=self.threshold)
            results.append(result)
421
            print('Test iter {}'.format(i))
W
wangguanzhong 已提交
422
        results = self.merge_batch_result(results)
423 424 425 426
        if save_results:
            Path(self.output_dir).mkdir(exist_ok=True)
            self.save_coco_results(
                image_list, results, use_coco_category=FLAGS.use_coco_category)
Q
qingqing01 已提交
427 428
        return results

W
wangguanzhong 已提交
429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445
    def predict_video(self, video_file, camera_id):
        video_out_name = 'output.mp4'
        if camera_id != -1:
            capture = cv2.VideoCapture(camera_id)
        else:
            capture = cv2.VideoCapture(video_file)
            video_out_name = os.path.split(video_file)[-1]
        # Get Video info : resolution, fps, frame count
        width = int(capture.get(cv2.CAP_PROP_FRAME_WIDTH))
        height = int(capture.get(cv2.CAP_PROP_FRAME_HEIGHT))
        fps = int(capture.get(cv2.CAP_PROP_FPS))
        frame_count = int(capture.get(cv2.CAP_PROP_FRAME_COUNT))
        print("fps: %d, frame_count: %d" % (fps, frame_count))

        if not os.path.exists(self.output_dir):
            os.makedirs(self.output_dir)
        out_path = os.path.join(self.output_dir, video_out_name)
446
        fourcc = cv2.VideoWriter_fourcc(*'mp4v')
W
wangguanzhong 已提交
447 448 449 450 451 452 453 454
        writer = cv2.VideoWriter(out_path, fourcc, fps, (width, height))
        index = 1
        while (1):
            ret, frame = capture.read()
            if not ret:
                break
            print('detect frame: %d' % (index))
            index += 1
L
lazyn1997 已提交
455
            results = self.predict_image([frame[:, :, ::-1]], visual=False)
W
wangguanzhong 已提交
456 457 458 459 460 461 462 463 464 465 466 467 468

            im = visualize_box_mask(
                frame,
                results,
                self.pred_config.labels,
                threshold=self.threshold)
            im = np.array(im)
            writer.write(im)
            if camera_id != -1:
                cv2.imshow('Mask Detection', im)
                if cv2.waitKey(1) & 0xFF == ord('q'):
                    break
        writer.release()
W
wangguanzhong 已提交
469

470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509
    def save_coco_results(self, image_list, results, use_coco_category=False):
        bbox_results = []
        mask_results = []
        idx = 0
        print("Start saving coco json files...")
        for i, box_num in enumerate(results['boxes_num']):
            file_name = os.path.split(image_list[i])[-1]
            if use_coco_category:
                img_id = int(os.path.splitext(file_name)[0])
            else:
                img_id = i

            if 'boxes' in results:
                boxes = results['boxes'][idx:idx + box_num].tolist()
                bbox_results.extend([{
                    'image_id': img_id,
                    'category_id': coco_clsid2catid[int(box[0])] \
                        if use_coco_category else int(box[0]),
                    'file_name': file_name,
                    'bbox': [box[2], box[3], box[4] - box[2],
                         box[5] - box[3]],  # xyxy -> xywh
                    'score': box[1]} for box in boxes])

            if 'masks' in results:
                import pycocotools.mask as mask_util

                boxes = results['boxes'][idx:idx + box_num].tolist()
                masks = results['masks'][i][:box_num].astype(np.uint8)
                seg_res = []
                for box, mask in zip(boxes, masks):
                    rle = mask_util.encode(
                        np.array(
                            mask[:, :, None], dtype=np.uint8, order="F"))[0]
                    if 'counts' in rle:
                        rle['counts'] = rle['counts'].decode("utf8")
                    seg_res.append({
                        'image_id': img_id,
                        'category_id': coco_clsid2catid[int(box[0])] \
                        if use_coco_category else int(box[0]),
                        'file_name': file_name,
510
                        'segmentation': rle,
511 512
                        'score': box[1]})
                mask_results.extend(seg_res)
513

514
            idx += box_num
515

516 517 518 519 520 521 522 523 524 525
        if bbox_results:
            bbox_file = os.path.join(self.output_dir, "bbox.json")
            with open(bbox_file, 'w') as f:
                json.dump(bbox_results, f)
            print(f"The bbox result is saved to {bbox_file}")
        if mask_results:
            mask_file = os.path.join(self.output_dir, "mask.json")
            with open(mask_file, 'w') as f:
                json.dump(mask_results, f)
            print(f"The mask result is saved to {mask_file}")
526

Q
qingqing01 已提交
527

G
Guanghua Yu 已提交
528 529 530 531
class DetectorSOLOv2(Detector):
    """
    Args:
        model_dir (str): root path of model.pdiparams, model.pdmodel and infer_cfg.yml
G
Guanghua Yu 已提交
532
        device (str): Choose the device you want to run, it can be: CPU/GPU/XPU, default is CPU
533
        run_mode (str): mode of running(paddle/trt_fp32/trt_fp16)
534
        batch_size (int): size of pre batch in inference
535 536 537
        trt_min_shape (int): min shape for dynamic shape in trt
        trt_max_shape (int): max shape for dynamic shape in trt
        trt_opt_shape (int): opt shape for dynamic shape in trt
538 539 540 541
        trt_calib_mode (bool): If the model is produced by TRT offline quantitative
            calibration, trt_calib_mode need to set True
        cpu_threads (int): cpu threads
        enable_mkldnn (bool): whether to open MKLDNN 
542
        enable_mkldnn_bfloat16 (bool): Whether to turn on mkldnn bfloat16
W
wangguanzhong 已提交
543 544 545
        output_dir (str): The path of output
        threshold (float): The threshold of score for visualization
       
G
Guanghua Yu 已提交
546 547
    """

W
wangguanzhong 已提交
548 549
    def __init__(
            self,
G
Guanghua Yu 已提交
550
            model_dir,
W
wangguanzhong 已提交
551 552 553 554 555 556 557 558 559
            device='CPU',
            run_mode='paddle',
            batch_size=1,
            trt_min_shape=1,
            trt_max_shape=1280,
            trt_opt_shape=640,
            trt_calib_mode=False,
            cpu_threads=1,
            enable_mkldnn=False,
560
            enable_mkldnn_bfloat16=False,
W
wangguanzhong 已提交
561 562 563 564 565
            output_dir='./',
            threshold=0.5, ):
        super(DetectorSOLOv2, self).__init__(
            model_dir=model_dir,
            device=device,
G
Guanghua Yu 已提交
566
            run_mode=run_mode,
567
            batch_size=batch_size,
568 569
            trt_min_shape=trt_min_shape,
            trt_max_shape=trt_max_shape,
G
Guanghua Yu 已提交
570
            trt_opt_shape=trt_opt_shape,
571 572
            trt_calib_mode=trt_calib_mode,
            cpu_threads=cpu_threads,
W
wangguanzhong 已提交
573
            enable_mkldnn=enable_mkldnn,
574
            enable_mkldnn_bfloat16=enable_mkldnn_bfloat16,
W
wangguanzhong 已提交
575 576
            output_dir=output_dir,
            threshold=threshold, )
G
Guanghua Yu 已提交
577

F
Feng Ni 已提交
578
    def predict(self, repeats=1, run_benchmark=False):
G
Guanghua Yu 已提交
579 580
        '''
        Args:
W
wangguanzhong 已提交
581
            repeats (int): repeat number for prediction
G
Guanghua Yu 已提交
582
        Returns:
W
wangguanzhong 已提交
583
            result (dict): 'segm': np.ndarray,shape:[N, im_h, im_w]
G
Guanghua Yu 已提交
584 585
                            'cate_label': label of segm, shape:[N]
                            'cate_score': confidence score of segm, shape:[N]
G
Guanghua Yu 已提交
586
        '''
F
Feng Ni 已提交
587 588 589 590 591 592 593 594 595 596 597 598 599 600
        np_segms, np_label, np_score, np_boxes_num = None, None, None, np.array(
            [0])

        if run_benchmark:
            for i in range(repeats):
                self.predictor.run()
                paddle.device.cuda.synchronize()
            result = dict(
                segm=np_segms,
                label=np_label,
                score=np_score,
                boxes_num=np_boxes_num)
            return result

G
Guanghua Yu 已提交
601 602 603
        for i in range(repeats):
            self.predictor.run()
            output_names = self.predictor.get_output_names()
W
wangguanzhong 已提交
604 605
            np_boxes_num = self.predictor.get_output_handle(output_names[
                0]).copy_to_cpu()
G
Guanghua Yu 已提交
606 607
            np_label = self.predictor.get_output_handle(output_names[
                1]).copy_to_cpu()
G
Guanghua Yu 已提交
608
            np_score = self.predictor.get_output_handle(output_names[
G
Guanghua Yu 已提交
609
                2]).copy_to_cpu()
G
Guanghua Yu 已提交
610 611
            np_segms = self.predictor.get_output_handle(output_names[
                3]).copy_to_cpu()
G
Guanghua Yu 已提交
612

W
wangguanzhong 已提交
613
        result = dict(
W
wangguanzhong 已提交
614 615 616 617
            segm=np_segms,
            label=np_label,
            score=np_score,
            boxes_num=np_boxes_num)
W
wangguanzhong 已提交
618
        return result
G
Guanghua Yu 已提交
619 620


621 622 623 624 625
class DetectorPicoDet(Detector):
    """
    Args:
        model_dir (str): root path of model.pdiparams, model.pdmodel and infer_cfg.yml
        device (str): Choose the device you want to run, it can be: CPU/GPU/XPU, default is CPU
626
        run_mode (str): mode of running(paddle/trt_fp32/trt_fp16)
627 628 629 630 631 632 633
        batch_size (int): size of pre batch in inference
        trt_min_shape (int): min shape for dynamic shape in trt
        trt_max_shape (int): max shape for dynamic shape in trt
        trt_opt_shape (int): opt shape for dynamic shape in trt
        trt_calib_mode (bool): If the model is produced by TRT offline quantitative
            calibration, trt_calib_mode need to set True
        cpu_threads (int): cpu threads
634 635
        enable_mkldnn (bool): whether to turn on MKLDNN
        enable_mkldnn_bfloat16 (bool): whether to turn on MKLDNN_BFLOAT16
636 637
    """

W
wangguanzhong 已提交
638 639
    def __init__(
            self,
640
            model_dir,
W
wangguanzhong 已提交
641 642 643 644 645 646 647 648 649
            device='CPU',
            run_mode='paddle',
            batch_size=1,
            trt_min_shape=1,
            trt_max_shape=1280,
            trt_opt_shape=640,
            trt_calib_mode=False,
            cpu_threads=1,
            enable_mkldnn=False,
650
            enable_mkldnn_bfloat16=False,
W
wangguanzhong 已提交
651 652 653 654 655
            output_dir='./',
            threshold=0.5, ):
        super(DetectorPicoDet, self).__init__(
            model_dir=model_dir,
            device=device,
656 657 658 659 660 661 662
            run_mode=run_mode,
            batch_size=batch_size,
            trt_min_shape=trt_min_shape,
            trt_max_shape=trt_max_shape,
            trt_opt_shape=trt_opt_shape,
            trt_calib_mode=trt_calib_mode,
            cpu_threads=cpu_threads,
W
wangguanzhong 已提交
663
            enable_mkldnn=enable_mkldnn,
664
            enable_mkldnn_bfloat16=enable_mkldnn_bfloat16,
W
wangguanzhong 已提交
665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680
            output_dir=output_dir,
            threshold=threshold, )

    def postprocess(self, inputs, result):
        # postprocess output of predictor
        np_score_list = result['boxes']
        np_boxes_list = result['boxes_num']
        postprocessor = PicoDetPostProcess(
            inputs['image'].shape[2:],
            inputs['im_shape'],
            inputs['scale_factor'],
            strides=self.pred_config.fpn_stride,
            nms_threshold=self.pred_config.nms['nms_threshold'])
        np_boxes, np_boxes_num = postprocessor(np_score_list, np_boxes_list)
        result = dict(boxes=np_boxes, boxes_num=np_boxes_num)
        return result
681

F
Feng Ni 已提交
682
    def predict(self, repeats=1, run_benchmark=False):
683 684
        '''
        Args:
W
wangguanzhong 已提交
685
            repeats (int): repeat number for prediction
686
        Returns:
W
wangguanzhong 已提交
687
            result (dict): include 'boxes': np.ndarray: shape:[N,6], N: number of box,
688 689 690
                            matix element:[class, score, x_min, y_min, x_max, y_max]
        '''
        np_score_list, np_boxes_list = [], []
F
Feng Ni 已提交
691 692 693 694 695 696 697 698

        if run_benchmark:
            for i in range(repeats):
                self.predictor.run()
                paddle.device.cuda.synchronize()
            result = dict(boxes=np_score_list, boxes_num=np_boxes_list)
            return result

699 700 701 702 703 704 705 706 707 708 709 710 711
        for i in range(repeats):
            self.predictor.run()
            np_score_list.clear()
            np_boxes_list.clear()
            output_names = self.predictor.get_output_names()
            num_outs = int(len(output_names) / 2)
            for out_idx in range(num_outs):
                np_score_list.append(
                    self.predictor.get_output_handle(output_names[out_idx])
                    .copy_to_cpu())
                np_boxes_list.append(
                    self.predictor.get_output_handle(output_names[
                        out_idx + num_outs]).copy_to_cpu())
W
wangguanzhong 已提交
712 713
        result = dict(boxes=np_score_list, boxes_num=np_boxes_list)
        return result
714 715


C
cnn 已提交
716
def create_inputs(imgs, im_info):
Q
qingqing01 已提交
717 718
    """generate input for different model type
    Args:
W
wangguanzhong 已提交
719 720
        imgs (list(numpy)): list of images (np.ndarray)
        im_info (list(dict)): list of image info
Q
qingqing01 已提交
721 722 723 724 725
    Returns:
        inputs (dict): input of model
    """
    inputs = {}

C
cnn 已提交
726 727
    im_shape = []
    scale_factor = []
728 729 730 731 732 733 734 735
    if len(imgs) == 1:
        inputs['image'] = np.array((imgs[0], )).astype('float32')
        inputs['im_shape'] = np.array(
            (im_info[0]['im_shape'], )).astype('float32')
        inputs['scale_factor'] = np.array(
            (im_info[0]['scale_factor'], )).astype('float32')
        return inputs

C
cnn 已提交
736 737 738 739
    for e in im_info:
        im_shape.append(np.array((e['im_shape'], )).astype('float32'))
        scale_factor.append(np.array((e['scale_factor'], )).astype('float32'))

C
cnn 已提交
740 741
    inputs['im_shape'] = np.concatenate(im_shape, axis=0)
    inputs['scale_factor'] = np.concatenate(scale_factor, axis=0)
C
cnn 已提交
742 743 744 745 746 747 748 749 750 751 752 753

    imgs_shape = [[e.shape[1], e.shape[2]] for e in imgs]
    max_shape_h = max([e[0] for e in imgs_shape])
    max_shape_w = max([e[1] for e in imgs_shape])
    padding_imgs = []
    for img in imgs:
        im_c, im_h, im_w = img.shape[:]
        padding_im = np.zeros(
            (im_c, max_shape_h, max_shape_w), dtype=np.float32)
        padding_im[:, :im_h, :im_w] = img
        padding_imgs.append(padding_im)
    inputs['image'] = np.stack(padding_imgs, axis=0)
Q
qingqing01 已提交
754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772
    return inputs


class PredictConfig():
    """set config of preprocess, postprocess and visualize
    Args:
        model_dir (str): root path of model.yml
    """

    def __init__(self, model_dir):
        # parsing Yaml config for Preprocess
        deploy_file = os.path.join(model_dir, 'infer_cfg.yml')
        with open(deploy_file) as f:
            yml_conf = yaml.safe_load(f)
        self.check_model(yml_conf)
        self.arch = yml_conf['arch']
        self.preprocess_infos = yml_conf['Preprocess']
        self.min_subgraph_size = yml_conf['min_subgraph_size']
        self.labels = yml_conf['label_list']
G
Guanghua Yu 已提交
773
        self.mask = False
774
        self.use_dynamic_shape = yml_conf['use_dynamic_shape']
G
Guanghua Yu 已提交
775 776
        if 'mask' in yml_conf:
            self.mask = yml_conf['mask']
777 778 779
        self.tracker = None
        if 'tracker' in yml_conf:
            self.tracker = yml_conf['tracker']
780 781 782 783
        if 'NMS' in yml_conf:
            self.nms = yml_conf['NMS']
        if 'fpn_stride' in yml_conf:
            self.fpn_stride = yml_conf['fpn_stride']
784 785 786 787
        if self.arch == 'RCNN' and yml_conf.get('export_onnx', False):
            print(
                'The RCNN export model is used for ONNX and it only supports batch_size = 1'
            )
Q
qingqing01 已提交
788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810
        self.print_config()

    def check_model(self, yml_conf):
        """
        Raises:
            ValueError: loaded model not in supported model type 
        """
        for support_model in SUPPORT_MODELS:
            if support_model in yml_conf['arch']:
                return True
        raise ValueError("Unsupported arch: {}, expect {}".format(yml_conf[
            'arch'], SUPPORT_MODELS))

    def print_config(self):
        print('-----------  Model Configuration -----------')
        print('%s: %s' % ('Model Arch', self.arch))
        print('%s: ' % ('Transform Order'))
        for op_info in self.preprocess_infos:
            print('--%s: %s' % ('transform op', op_info['type']))
        print('--------------------------------------------')


def load_predictor(model_dir,
811
                   arch,
812
                   run_mode='paddle',
Q
qingqing01 已提交
813
                   batch_size=1,
G
Guanghua Yu 已提交
814
                   device='CPU',
815 816 817 818
                   min_subgraph_size=3,
                   use_dynamic_shape=False,
                   trt_min_shape=1,
                   trt_max_shape=1280,
G
Guanghua Yu 已提交
819
                   trt_opt_shape=640,
820 821
                   trt_calib_mode=False,
                   cpu_threads=1,
822
                   enable_mkldnn=False,
J
JYChen 已提交
823
                   enable_mkldnn_bfloat16=False,
824
                   delete_shuffle_pass=False):
Q
qingqing01 已提交
825 826 827
    """set AnalysisConfig, generate AnalysisPredictor
    Args:
        model_dir (str): root path of __model__ and __params__
G
Guanghua Yu 已提交
828
        device (str): Choose the device you want to run, it can be: CPU/GPU/XPU, default is CPU
829
        run_mode (str): mode of running(paddle/trt_fp32/trt_fp16/trt_int8)
830 831 832 833
        use_dynamic_shape (bool): use dynamic shape or not
        trt_min_shape (int): min shape for dynamic shape in trt
        trt_max_shape (int): max shape for dynamic shape in trt
        trt_opt_shape (int): opt shape for dynamic shape in trt
G
Guanghua Yu 已提交
834 835
        trt_calib_mode (bool): If the model is produced by TRT offline quantitative
            calibration, trt_calib_mode need to set True
J
JYChen 已提交
836 837
        delete_shuffle_pass (bool): whether to remove shuffle_channel_detect_pass in TensorRT. 
                                    Used by action model.
Q
qingqing01 已提交
838 839 840
    Returns:
        predictor (PaddlePredictor): AnalysisPredictor
    Raises:
G
Guanghua Yu 已提交
841
        ValueError: predict by TensorRT need device == 'GPU'.
Q
qingqing01 已提交
842
    """
843
    if device != 'GPU' and run_mode != 'paddle':
Q
qingqing01 已提交
844
        raise ValueError(
G
Guanghua Yu 已提交
845 846
            "Predict by TensorRT mode: {}, expect device=='GPU', but device == {}"
            .format(run_mode, device))
847 848 849 850 851 852 853 854 855
    infer_model = os.path.join(model_dir, 'model.pdmodel')
    infer_params = os.path.join(model_dir, 'model.pdiparams')
    if not os.path.exists(infer_model):
        infer_model = os.path.join(model_dir, 'inference.pdmodel')
        infer_params = os.path.join(model_dir, 'inference.pdiparams')
        if not os.path.exists(infer_model):
            raise ValueError(
                "Cannot find any inference model in dir: {},".format(model_dir))
    config = Config(infer_model, infer_params)
G
Guanghua Yu 已提交
856
    if device == 'GPU':
Q
qingqing01 已提交
857 858 859
        # initial GPU memory(M), device ID
        config.enable_use_gpu(200, 0)
        # optimize graph and fuse op
860
        config.switch_ir_optim(True)
G
Guanghua Yu 已提交
861
    elif device == 'XPU':
862 863
        if config.lite_engine_enabled():
            config.enable_lite_engine()
G
Guanghua Yu 已提交
864
        config.enable_xpu(10 * 1024 * 1024)
865 866 867
    elif device == 'NPU':
        if config.lite_engine_enabled():
            config.enable_lite_engine()
D
duanyanhui 已提交
868
        config.enable_custom_device('npu')
Q
qingqing01 已提交
869 870
    else:
        config.disable_gpu()
871 872
        config.set_cpu_math_library_num_threads(cpu_threads)
        if enable_mkldnn:
G
Guanghua Yu 已提交
873 874 875 876
            try:
                # cache 10 different shapes for mkldnn to avoid memory leak
                config.set_mkldnn_cache_capacity(10)
                config.enable_mkldnn()
877 878
                if enable_mkldnn_bfloat16:
                    config.enable_mkldnn_bfloat16()
G
Guanghua Yu 已提交
879 880 881 882 883
            except Exception as e:
                print(
                    "The current environment does not support `mkldnn`, so disable mkldnn."
                )
                pass
Q
qingqing01 已提交
884

G
Guanghua Yu 已提交
885 886 887 888 889
    precision_map = {
        'trt_int8': Config.Precision.Int8,
        'trt_fp32': Config.Precision.Float32,
        'trt_fp16': Config.Precision.Half
    }
Q
qingqing01 已提交
890 891
    if run_mode in precision_map.keys():
        config.enable_tensorrt_engine(
W
wangxinxin08 已提交
892
            workspace_size=(1 << 25) * batch_size,
Q
qingqing01 已提交
893 894 895 896
            max_batch_size=batch_size,
            min_subgraph_size=min_subgraph_size,
            precision_mode=precision_map[run_mode],
            use_static=False,
G
Guanghua Yu 已提交
897
            use_calib_mode=trt_calib_mode)
898 899 900 901 902 903 904
        if FLAGS.collect_trt_shape_info:
            config.collect_shape_range_info(FLAGS.tuned_trt_shape_file)
        elif os.path.exists(FLAGS.tuned_trt_shape_file):
            print(f'Use dynamic shape file: '
                  f'{FLAGS.tuned_trt_shape_file} for TRT...')
            config.enable_tuned_tensorrt_dynamic_shape(
                FLAGS.tuned_trt_shape_file, True)
905 906

        if use_dynamic_shape:
907
            min_input_shape = {
W
wangxinxin08 已提交
908 909
                'image': [batch_size, 3, trt_min_shape, trt_min_shape],
                'scale_factor': [batch_size, 2]
910 911
            }
            max_input_shape = {
W
wangxinxin08 已提交
912 913
                'image': [batch_size, 3, trt_max_shape, trt_max_shape],
                'scale_factor': [batch_size, 2]
914 915
            }
            opt_input_shape = {
W
wangxinxin08 已提交
916 917
                'image': [batch_size, 3, trt_opt_shape, trt_opt_shape],
                'scale_factor': [batch_size, 2]
918
            }
919 920 921
            config.set_trt_dynamic_shape_info(min_input_shape, max_input_shape,
                                              opt_input_shape)
            print('trt set dynamic shape done!')
Q
qingqing01 已提交
922 923 924 925 926 927 928

    # disable print log when predict
    config.disable_glog_info()
    # enable shared memory
    config.enable_memory_optim()
    # disable feed, fetch OP, needed by zero_copy_run
    config.switch_use_feed_fetch_ops(False)
J
JYChen 已提交
929 930
    if delete_shuffle_pass:
        config.delete_pass("shuffle_channel_detect_pass")
Q
qingqing01 已提交
931
    predictor = create_predictor(config)
932
    return predictor, config
Q
qingqing01 已提交
933 934


G
Guanghua Yu 已提交
935 936 937 938 939
def get_test_images(infer_dir, infer_img):
    """
    Get image path list in TEST mode
    """
    assert infer_img is not None or infer_dir is not None, \
J
JYChen 已提交
940
        "--image_file or --image_dir should be set"
G
Guanghua Yu 已提交
941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965
    assert infer_img is None or os.path.isfile(infer_img), \
            "{} is not a file".format(infer_img)
    assert infer_dir is None or os.path.isdir(infer_dir), \
            "{} is not a directory".format(infer_dir)

    # infer_img has a higher priority
    if infer_img and os.path.isfile(infer_img):
        return [infer_img]

    images = set()
    infer_dir = os.path.abspath(infer_dir)
    assert os.path.isdir(infer_dir), \
        "infer_dir {} is not a directory".format(infer_dir)
    exts = ['jpg', 'jpeg', 'png', 'bmp']
    exts += [ext.upper() for ext in exts]
    for ext in exts:
        images.update(glob.glob('{}/*.{}'.format(infer_dir, ext)))
    images = list(images)

    assert len(images) > 0, "no image found in {}".format(infer_dir)
    print("Found {} inference images in total.".format(len(images)))

    return images


W
wangguanzhong 已提交
966
def visualize(image_list, result, labels, output_dir='output/', threshold=0.5):
Q
qingqing01 已提交
967
    # visualize the predict result
C
cnn 已提交
968 969
    start_idx = 0
    for idx, image_file in enumerate(image_list):
W
wangguanzhong 已提交
970
        im_bboxes_num = result['boxes_num'][idx]
C
cnn 已提交
971
        im_results = {}
W
wangguanzhong 已提交
972 973 974 975 976 977 978 979 980 981 982 983 984 985 986
        if 'boxes' in result:
            im_results['boxes'] = result['boxes'][start_idx:start_idx +
                                                  im_bboxes_num, :]
        if 'masks' in result:
            im_results['masks'] = result['masks'][start_idx:start_idx +
                                                  im_bboxes_num, :]
        if 'segm' in result:
            im_results['segm'] = result['segm'][start_idx:start_idx +
                                                im_bboxes_num, :]
        if 'label' in result:
            im_results['label'] = result['label'][start_idx:start_idx +
                                                  im_bboxes_num]
        if 'score' in result:
            im_results['score'] = result['score'][start_idx:start_idx +
                                                  im_bboxes_num]
W
wangguanzhong 已提交
987

C
cnn 已提交
988 989 990 991 992 993 994 995 996
        start_idx += im_bboxes_num
        im = visualize_box_mask(
            image_file, im_results, labels, threshold=threshold)
        img_name = os.path.split(image_file)[-1]
        if not os.path.exists(output_dir):
            os.makedirs(output_dir)
        out_path = os.path.join(output_dir, img_name)
        im.save(out_path, quality=95)
        print("save result to: " + out_path)
Q
qingqing01 已提交
997 998 999 1000 1001 1002 1003 1004 1005 1006


def print_arguments(args):
    print('-----------  Running Arguments -----------')
    for arg, value in sorted(vars(args).items()):
        print('%s: %s' % (arg, value))
    print('------------------------------------------')


def main():
W
wangguanzhong 已提交
1007 1008 1009 1010
    deploy_file = os.path.join(FLAGS.model_dir, 'infer_cfg.yml')
    with open(deploy_file) as f:
        yml_conf = yaml.safe_load(f)
    arch = yml_conf['arch']
1011
    detector_func = 'Detector'
W
wangguanzhong 已提交
1012
    if arch == 'SOLOv2':
1013
        detector_func = 'DetectorSOLOv2'
W
wangguanzhong 已提交
1014
    elif arch == 'PicoDet':
1015 1016
        detector_func = 'DetectorPicoDet'

1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030
    detector = eval(detector_func)(
        FLAGS.model_dir,
        device=FLAGS.device,
        run_mode=FLAGS.run_mode,
        batch_size=FLAGS.batch_size,
        trt_min_shape=FLAGS.trt_min_shape,
        trt_max_shape=FLAGS.trt_max_shape,
        trt_opt_shape=FLAGS.trt_opt_shape,
        trt_calib_mode=FLAGS.trt_calib_mode,
        cpu_threads=FLAGS.cpu_threads,
        enable_mkldnn=FLAGS.enable_mkldnn,
        enable_mkldnn_bfloat16=FLAGS.enable_mkldnn_bfloat16,
        threshold=FLAGS.threshold,
        output_dir=FLAGS.output_dir)
G
Guanghua Yu 已提交
1031

Q
qingqing01 已提交
1032
    # predict from video file or camera video stream
G
Guanghua Yu 已提交
1033
    if FLAGS.video_file is not None or FLAGS.camera_id != -1:
W
wangguanzhong 已提交
1034
        detector.predict_video(FLAGS.video_file, FLAGS.camera_id)
G
Guanghua Yu 已提交
1035 1036
    else:
        # predict from image
C
cnn 已提交
1037 1038
        if FLAGS.image_dir is None and FLAGS.image_file is not None:
            assert FLAGS.batch_size == 1, "batch_size should be 1, when image_file is not None"
G
Guanghua Yu 已提交
1039
        img_list = get_test_images(FLAGS.image_dir, FLAGS.image_file)
1040 1041 1042 1043 1044 1045 1046 1047
        if FLAGS.slice_infer:
            detector.predict_image_slice(
                img_list,
                FLAGS.slice_size,
                FLAGS.overlap_ratio,
                FLAGS.combine_method,
                FLAGS.match_threshold,
                FLAGS.match_metric,
1048 1049
                visual=FLAGS.save_images,
                save_results=FLAGS.save_results)
1050 1051
        else:
            detector.predict_image(
1052 1053 1054 1055 1056
                img_list,
                FLAGS.run_benchmark,
                repeats=100,
                visual=FLAGS.save_images,
                save_results=FLAGS.save_results)
G
Guanghua Yu 已提交
1057 1058 1059
        if not FLAGS.run_benchmark:
            detector.det_times.info(average=True)
        else:
1060
            mode = FLAGS.run_mode
W
wangguanzhong 已提交
1061
            model_dir = FLAGS.model_dir
1062
            model_info = {
1063 1064
                'model_name': model_dir.strip('/').split('/')[-1],
                'precision': mode.split('_')[-1]
1065
            }
W
wangguanzhong 已提交
1066
            bench_log(detector, img_list, model_info, name='DET')
Q
qingqing01 已提交
1067 1068 1069 1070


if __name__ == '__main__':
    paddle.enable_static()
G
Guanghua Yu 已提交
1071
    parser = argsparser()
Q
qingqing01 已提交
1072 1073
    FLAGS = parser.parse_args()
    print_arguments(FLAGS)
G
Guanghua Yu 已提交
1074
    FLAGS.device = FLAGS.device.upper()
1075 1076
    assert FLAGS.device in ['CPU', 'GPU', 'XPU', 'NPU'
                            ], "device should be CPU, GPU, XPU or NPU"
G
Guanghua Yu 已提交
1077
    assert not FLAGS.use_gpu, "use_gpu has been deprecated, please use --device"
Q
qingqing01 已提交
1078

1079 1080 1081
    assert not (
        FLAGS.enable_mkldnn == False and FLAGS.enable_mkldnn_bfloat16 == True
    ), 'To enable mkldnn bfloat, please turn on both enable_mkldnn and enable_mkldnn_bfloat16'
1082

Q
qingqing01 已提交
1083
    main()