Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
10e7fe23
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
1 年多 前同步成功
通知
696
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
10e7fe23
编写于
8月 22, 2022
作者:
S
shangliang Xu
提交者:
GitHub
8月 22, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[deploy] alter save coco format json in deploy/python/infer.py (#6705)
上级
1d867e82
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
184 addition
and
96 deletion
+184
-96
deploy/python/README.md
deploy/python/README.md
+19
-17
deploy/python/infer.py
deploy/python/infer.py
+74
-78
deploy/python/utils.py
deploy/python/utils.py
+91
-1
未找到文件。
deploy/python/README.md
浏览文件 @
10e7fe23
...
...
@@ -75,23 +75,24 @@ python deploy/python/mot_keypoint_unite_infer.py --mot_model_dir=output_inferenc
参数说明如下:
| 参数 | 是否必须|含义 |
|-------|-------|----------|
| --model_dir | Yes| 上述导出的模型路径 |
| --image_file | Option | 需要预测的图片 |
| --image_dir | Option | 要预测的图片文件夹路径 |
| --video_file | Option | 需要预测的视频 |
| --camera_id | Option | 用来预测的摄像头ID,默认为-1(表示不使用摄像头预测,可设置为:0 - (摄像头数目-1) ),预测过程中在可视化界面按
`q`
退出输出预测结果到:output/output.mp4|
| --device | Option | 运行时的设备,可选择
`CPU/GPU/XPU`
,默认为
`CPU`
|
| --run_mode | Option |使用GPU时,默认为paddle, 可选(paddle/trt_fp32/trt_fp16/trt_int8)|
| --batch_size | Option |预测时的batch size,在指定
`image_dir`
时有效,默认为1 |
| --threshold | Option|预测得分的阈值,默认为0.5|
| --output_dir | Option|可视化结果保存的根目录,默认为output/|
| --run_benchmark | Option| 是否运行benchmark,同时需指定
`--image_file`
或
`--image_dir`
,默认为False |
| --enable_mkldnn | Option | CPU预测中是否开启MKLDNN加速,默认为False |
| --cpu_threads | Option| 设置cpu线程数,默认为1 |
| --trt_calib_mode | Option| TensorRT是否使用校准功能,默认为False。使用TensorRT的int8功能时,需设置为True,使用PaddleSlim量化后的模型时需要设置为False |
| --save_results | Option| 是否在文件夹下将图片的预测结果以JSON的形式保存 |
| 参数 | 是否必须| 含义 |
|-------|-------|---------------------------------------------------------------------------------------------|
| --model_dir | Yes| 上述导出的模型路径 |
| --image_file | Option | 需要预测的图片 |
| --image_dir | Option | 要预测的图片文件夹路径 |
| --video_file | Option | 需要预测的视频 |
| --camera_id | Option | 用来预测的摄像头ID,默认为-1(表示不使用摄像头预测,可设置为:0 - (摄像头数目-1) ),预测过程中在可视化界面按
`q`
退出输出预测结果到:output/output.mp4 |
| --device | Option | 运行时的设备,可选择
`CPU/GPU/XPU`
,默认为
`CPU`
|
| --run_mode | Option | 使用GPU时,默认为paddle, 可选(paddle/trt_fp32/trt_fp16/trt_int8) |
| --batch_size | Option | 预测时的batch size,在指定
`image_dir`
时有效,默认为1 |
| --threshold | Option| 预测得分的阈值,默认为0.5 |
| --output_dir | Option| 可视化结果保存的根目录,默认为output/ |
| --run_benchmark | Option| 是否运行benchmark,同时需指定
`--image_file`
或
`--image_dir`
,默认为False |
| --enable_mkldnn | Option | CPU预测中是否开启MKLDNN加速,默认为False |
| --cpu_threads | Option| 设置cpu线程数,默认为1 |
| --trt_calib_mode | Option| TensorRT是否使用校准功能,默认为False。使用TensorRT的int8功能时,需设置为True,使用PaddleSlim量化后的模型时需要设置为False |
| --save_images | Option| 是否保存可视化结果 |
| --save_results | Option| 是否在文件夹下将图片的预测结果以JSON的形式保存 |
说明:
...
...
@@ -100,3 +101,4 @@ python deploy/python/mot_keypoint_unite_infer.py --mot_model_dir=output_inferenc
-
run_mode:paddle代表使用AnalysisPredictor,精度float32来推理,其他参数指用AnalysisPredictor,TensorRT不同精度来推理。
-
如果安装的PaddlePaddle不支持基于TensorRT进行预测,需要自行编译,详细可参考
[
预测库编译教程
](
https://paddleinference.paddlepaddle.org.cn/user_guides/source_compile.html
)
。
-
--run_benchmark如果设置为True,则需要安装依赖
`pip install pynvml psutil GPUtil`
。
-
如果需要使用导出模型在coco数据集上进行评估,请在推理时添加
`--save_results`
和
`--use_coco_category`
参数用以保存coco评估所需要的json文件
deploy/python/infer.py
浏览文件 @
10e7fe23
...
...
@@ -36,7 +36,7 @@ from picodet_postprocess import PicoDetPostProcess
from
preprocess
import
preprocess
,
Resize
,
NormalizeImage
,
Permute
,
PadStride
,
LetterBoxResize
,
WarpAffine
,
Pad
,
decode_image
from
keypoint_preprocess
import
EvalAffine
,
TopDownEvalAffine
,
expand_crop
from
visualize
import
visualize_box_mask
from
utils
import
argsparser
,
Timer
,
get_current_memory_mb
,
multiclass_nms
from
utils
import
argsparser
,
Timer
,
get_current_memory_mb
,
multiclass_nms
,
coco_clsid2catid
# Global dictionary
SUPPORT_MODELS
=
{
...
...
@@ -226,7 +226,7 @@ class Detector(object):
match_threshold
=
0.6
,
match_metric
=
'iou'
,
visual
=
True
,
save_
file
=
Non
e
):
save_
results
=
Fals
e
):
# slice infer only support bs=1
results
=
[]
try
:
...
...
@@ -295,14 +295,13 @@ class Detector(object):
threshold
=
self
.
threshold
)
results
.
append
(
merged_results
)
if
visual
:
print
(
'Test iter {}'
.
format
(
i
))
if
save_file
is
not
None
:
Path
(
self
.
output_dir
).
mkdir
(
exist_ok
=
True
)
self
.
format_coco_results
(
image_list
,
results
,
save_file
=
save_file
)
print
(
'Test iter {}'
.
format
(
i
))
results
=
self
.
merge_batch_result
(
results
)
if
save_results
:
Path
(
self
.
output_dir
).
mkdir
(
exist_ok
=
True
)
self
.
save_coco_results
(
img_list
,
results
,
use_coco_category
=
FLAGS
.
use_coco_category
)
return
results
def
predict_image
(
self
,
...
...
@@ -310,7 +309,7 @@ class Detector(object):
run_benchmark
=
False
,
repeats
=
1
,
visual
=
True
,
save_
file
=
Non
e
):
save_
results
=
Fals
e
):
batch_loop_cnt
=
math
.
ceil
(
float
(
len
(
image_list
))
/
self
.
batch_size
)
results
=
[]
for
i
in
range
(
batch_loop_cnt
):
...
...
@@ -367,14 +366,13 @@ class Detector(object):
threshold
=
self
.
threshold
)
results
.
append
(
result
)
if
visual
:
print
(
'Test iter {}'
.
format
(
i
))
if
save_file
is
not
None
:
Path
(
self
.
output_dir
).
mkdir
(
exist_ok
=
True
)
self
.
format_coco_results
(
image_list
,
results
,
save_file
=
save_file
)
print
(
'Test iter {}'
.
format
(
i
))
results
=
self
.
merge_batch_result
(
results
)
if
save_results
:
Path
(
self
.
output_dir
).
mkdir
(
exist_ok
=
True
)
self
.
save_coco_results
(
image_list
,
results
,
use_coco_category
=
FLAGS
.
use_coco_category
)
return
results
def
predict_video
(
self
,
video_file
,
camera_id
):
...
...
@@ -394,7 +392,7 @@ class Detector(object):
if
not
os
.
path
.
exists
(
self
.
output_dir
):
os
.
makedirs
(
self
.
output_dir
)
out_path
=
os
.
path
.
join
(
self
.
output_dir
,
video_out_name
)
fourcc
=
cv2
.
VideoWriter_fourcc
(
*
'mp4v'
)
fourcc
=
cv2
.
VideoWriter_fourcc
(
*
'mp4v'
)
writer
=
cv2
.
VideoWriter
(
out_path
,
fourcc
,
fps
,
(
width
,
height
))
index
=
1
while
(
1
):
...
...
@@ -418,67 +416,62 @@ class Detector(object):
break
writer
.
release
()
@
staticmethod
def
format_coco_results
(
image_list
,
results
,
save_file
=
None
):
coco_results
=
[]
image_id
=
0
for
result
in
results
:
start_idx
=
0
for
box_num
in
result
[
'boxes_num'
]:
idx_slice
=
slice
(
start_idx
,
start_idx
+
box_num
)
start_idx
+=
box_num
image_file
=
image_list
[
image_id
]
image_id
+=
1
if
'boxes'
in
result
:
boxes
=
result
[
'boxes'
][
idx_slice
,
:]
per_result
=
[
{
'image_file'
:
image_file
,
'bbox'
:
[
box
[
2
],
box
[
3
],
box
[
4
]
-
box
[
2
],
box
[
5
]
-
box
[
3
]],
# xyxy -> xywh
'score'
:
box
[
1
],
'category_id'
:
int
(
box
[
0
]),
}
for
k
,
box
in
enumerate
(
boxes
.
tolist
())
]
elif
'segm'
in
result
:
import
pycocotools.mask
as
mask_util
scores
=
result
[
'score'
][
idx_slice
].
tolist
()
category_ids
=
result
[
'label'
][
idx_slice
].
tolist
()
segms
=
result
[
'segm'
][
idx_slice
,
:]
rles
=
[
mask_util
.
encode
(
np
.
array
(
mask
[:,
:,
np
.
newaxis
],
dtype
=
np
.
uint8
,
order
=
'F'
))[
0
]
for
mask
in
segms
]
for
rle
in
rles
:
rle
[
'counts'
]
=
rle
[
'counts'
].
decode
(
'utf-8'
)
per_result
=
[{
'image_file'
:
image_file
,
def
save_coco_results
(
self
,
image_list
,
results
,
use_coco_category
=
False
):
bbox_results
=
[]
mask_results
=
[]
idx
=
0
print
(
"Start saving coco json files..."
)
for
i
,
box_num
in
enumerate
(
results
[
'boxes_num'
]):
file_name
=
os
.
path
.
split
(
image_list
[
i
])[
-
1
]
if
use_coco_category
:
img_id
=
int
(
os
.
path
.
splitext
(
file_name
)[
0
])
else
:
img_id
=
i
if
'boxes'
in
results
:
boxes
=
results
[
'boxes'
][
idx
:
idx
+
box_num
].
tolist
()
bbox_results
.
extend
([{
'image_id'
:
img_id
,
'category_id'
:
coco_clsid2catid
[
int
(
box
[
0
])]
\
if
use_coco_category
else
int
(
box
[
0
]),
'file_name'
:
file_name
,
'bbox'
:
[
box
[
2
],
box
[
3
],
box
[
4
]
-
box
[
2
],
box
[
5
]
-
box
[
3
]],
# xyxy -> xywh
'score'
:
box
[
1
]}
for
box
in
boxes
])
if
'masks'
in
results
:
import
pycocotools.mask
as
mask_util
boxes
=
results
[
'boxes'
][
idx
:
idx
+
box_num
].
tolist
()
masks
=
results
[
'masks'
][
i
][:
box_num
].
astype
(
np
.
uint8
)
seg_res
=
[]
for
box
,
mask
in
zip
(
boxes
,
masks
):
rle
=
mask_util
.
encode
(
np
.
array
(
mask
[:,
:,
None
],
dtype
=
np
.
uint8
,
order
=
"F"
))[
0
]
if
'counts'
in
rle
:
rle
[
'counts'
]
=
rle
[
'counts'
].
decode
(
"utf8"
)
seg_res
.
append
({
'image_id'
:
img_id
,
'category_id'
:
coco_clsid2catid
[
int
(
box
[
0
])]
\
if
use_coco_category
else
int
(
box
[
0
]),
'file_name'
:
file_name
,
'segmentation'
:
rle
,
'score'
:
scores
[
k
],
'category_id'
:
category_ids
[
k
],
}
for
k
,
rle
in
enumerate
(
rles
)]
'score'
:
box
[
1
]})
mask_results
.
extend
(
seg_res
)
else
:
raise
RuntimeError
(
''
)
idx
+=
box_num
# per_result = [item for item in per_result if item['score'] > threshold]
coco_results
.
extend
(
per_result
)
if
save_file
:
with
open
(
os
.
path
.
join
(
save_file
),
'w'
)
as
f
:
json
.
dump
(
coco_results
,
f
)
return
coco_results
if
bbox_results
:
bbox_file
=
os
.
path
.
join
(
self
.
output_dir
,
"bbox.json"
)
with
open
(
bbox_file
,
'w'
)
as
f
:
json
.
dump
(
bbox_results
,
f
)
print
(
f
"The bbox result is saved to
{
bbox_file
}
"
)
if
mask_results
:
mask_file
=
os
.
path
.
join
(
self
.
output_dir
,
"mask.json"
)
with
open
(
mask_file
,
'w'
)
as
f
:
json
.
dump
(
mask_results
,
f
)
print
(
f
"The mask result is saved to
{
mask_file
}
"
)
class
DetectorSOLOv2
(
Detector
):
...
...
@@ -956,8 +949,6 @@ def main():
if
FLAGS
.
image_dir
is
None
and
FLAGS
.
image_file
is
not
None
:
assert
FLAGS
.
batch_size
==
1
,
"batch_size should be 1, when image_file is not None"
img_list
=
get_test_images
(
FLAGS
.
image_dir
,
FLAGS
.
image_file
)
save_file
=
os
.
path
.
join
(
FLAGS
.
output_dir
,
'results.json'
)
if
FLAGS
.
save_results
else
None
if
FLAGS
.
slice_infer
:
detector
.
predict_image_slice
(
img_list
,
...
...
@@ -966,10 +957,15 @@ def main():
FLAGS
.
combine_method
,
FLAGS
.
match_threshold
,
FLAGS
.
match_metric
,
save_file
=
save_file
)
visual
=
FLAGS
.
save_images
,
save_results
=
FLAGS
.
save_results
)
else
:
detector
.
predict_image
(
img_list
,
FLAGS
.
run_benchmark
,
repeats
=
100
,
save_file
=
save_file
)
img_list
,
FLAGS
.
run_benchmark
,
repeats
=
100
,
visual
=
FLAGS
.
save_images
,
save_results
=
FLAGS
.
save_results
)
if
not
FLAGS
.
run_benchmark
:
detector
.
det_times
.
info
(
average
=
True
)
else
:
...
...
deploy/python/utils.py
浏览文件 @
10e7fe23
...
...
@@ -109,6 +109,7 @@ def argsparser():
parser
.
add_argument
(
'--save_images'
,
action
=
'store_true'
,
default
=
False
,
help
=
'Save visualization image results.'
)
parser
.
add_argument
(
'--save_mot_txts'
,
...
...
@@ -159,9 +160,14 @@ def argsparser():
help
=
"Whether do random padding for action recognition."
)
parser
.
add_argument
(
"--save_results"
,
type
=
bool
,
action
=
'store_true'
,
default
=
False
,
help
=
"Whether save detection result to file using coco format"
)
parser
.
add_argument
(
'--use_coco_category'
,
action
=
'store_true'
,
default
=
False
,
help
=
'Whether to use the coco format dictionary `clsid2catid`'
)
parser
.
add_argument
(
"--slice_infer"
,
action
=
'store_true'
,
...
...
@@ -386,3 +392,87 @@ def nms(dets, match_threshold=0.6, match_metric='iou'):
keep
=
np
.
where
(
suppressed
==
0
)[
0
]
dets
=
dets
[
keep
,
:]
return
dets
coco_clsid2catid
=
{
0
:
1
,
1
:
2
,
2
:
3
,
3
:
4
,
4
:
5
,
5
:
6
,
6
:
7
,
7
:
8
,
8
:
9
,
9
:
10
,
10
:
11
,
11
:
13
,
12
:
14
,
13
:
15
,
14
:
16
,
15
:
17
,
16
:
18
,
17
:
19
,
18
:
20
,
19
:
21
,
20
:
22
,
21
:
23
,
22
:
24
,
23
:
25
,
24
:
27
,
25
:
28
,
26
:
31
,
27
:
32
,
28
:
33
,
29
:
34
,
30
:
35
,
31
:
36
,
32
:
37
,
33
:
38
,
34
:
39
,
35
:
40
,
36
:
41
,
37
:
42
,
38
:
43
,
39
:
44
,
40
:
46
,
41
:
47
,
42
:
48
,
43
:
49
,
44
:
50
,
45
:
51
,
46
:
52
,
47
:
53
,
48
:
54
,
49
:
55
,
50
:
56
,
51
:
57
,
52
:
58
,
53
:
59
,
54
:
60
,
55
:
61
,
56
:
62
,
57
:
63
,
58
:
64
,
59
:
65
,
60
:
67
,
61
:
70
,
62
:
72
,
63
:
73
,
64
:
74
,
65
:
75
,
66
:
76
,
67
:
77
,
68
:
78
,
69
:
79
,
70
:
80
,
71
:
81
,
72
:
82
,
73
:
84
,
74
:
85
,
75
:
86
,
76
:
87
,
77
:
88
,
78
:
89
,
79
:
90
}
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录