infer.py 41.3 KB
Newer Older
Q
qingqing01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import yaml
G
Guanghua Yu 已提交
17
import glob
18 19
import json
from pathlib import Path
Q
qingqing01 已提交
20 21 22 23
from functools import reduce

import cv2
import numpy as np
C
cnn 已提交
24
import math
Q
qingqing01 已提交
25 26 27 28
import paddle
from paddle.inference import Config
from paddle.inference import create_predictor

W
wangguanzhong 已提交
29 30 31 32 33
import sys
# add deploy path of PadleDetection to sys.path
parent_path = os.path.abspath(os.path.join(__file__, *(['..'])))
sys.path.insert(0, parent_path)

34
from benchmark_utils import PaddleInferBenchmark
35
from picodet_postprocess import PicoDetPostProcess
F
Feng Ni 已提交
36
from preprocess import preprocess, Resize, NormalizeImage, Permute, PadStride, LetterBoxResize, WarpAffine, Pad, decode_image
W
wangguanzhong 已提交
37
from keypoint_preprocess import EvalAffine, TopDownEvalAffine, expand_crop
G
Guanghua Yu 已提交
38
from visualize import visualize_box_mask
39
from utils import argsparser, Timer, get_current_memory_mb, multiclass_nms, coco_clsid2catid
G
Guanghua Yu 已提交
40

Q
qingqing01 已提交
41 42
# Global dictionary
SUPPORT_MODELS = {
J
JYChen 已提交
43 44
    'YOLO', 'RCNN', 'SSD', 'Face', 'FCOS', 'SOLOv2', 'TTFNet', 'S2ANet', 'JDE',
    'FairMOT', 'DeepSORT', 'GFL', 'PicoDet', 'CenterNet', 'TOOD', 'RetinaNet',
45 46
    'StrongBaseline', 'STGCN', 'YOLOX', 'YOLOF', 'PPHGNet', 'PPLCNet', 'DETR',
    'CenterTrack'
Q
qingqing01 已提交
47 48
}

49 50
TUNED_TRT_DYNAMIC_MODELS = {'DETR'}

Q
qingqing01 已提交
51

W
wangguanzhong 已提交
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
def bench_log(detector, img_list, model_info, batch_size=1, name=None):
    mems = {
        'cpu_rss_mb': detector.cpu_mem / len(img_list),
        'gpu_rss_mb': detector.gpu_mem / len(img_list),
        'gpu_util': detector.gpu_util * 100 / len(img_list)
    }
    perf_info = detector.det_times.report(average=True)
    data_info = {
        'batch_size': batch_size,
        'shape': "dynamic_shape",
        'data_num': perf_info['img_num']
    }
    log = PaddleInferBenchmark(detector.config, model_info, data_info,
                               perf_info, mems)
    log(name)


Q
qingqing01 已提交
69 70 71
class Detector(object):
    """
    Args:
72
        pred_config (object): config of model, defined by `Config(model_dir)`
Q
qingqing01 已提交
73
        model_dir (str): root path of model.pdiparams, model.pdmodel and infer_cfg.yml
G
Guanghua Yu 已提交
74
        device (str): Choose the device you want to run, it can be: CPU/GPU/XPU, default is CPU
75
        run_mode (str): mode of running(paddle/trt_fp32/trt_fp16)
76
        batch_size (int): size of pre batch in inference
77 78 79
        trt_min_shape (int): min shape for dynamic shape in trt
        trt_max_shape (int): max shape for dynamic shape in trt
        trt_opt_shape (int): opt shape for dynamic shape in trt
80 81 82 83
        trt_calib_mode (bool): If the model is produced by TRT offline quantitative
            calibration, trt_calib_mode need to set True
        cpu_threads (int): cpu threads
        enable_mkldnn (bool): whether to open MKLDNN
84
        enable_mkldnn_bfloat16 (bool): whether to turn on mkldnn bfloat16
W
wangguanzhong 已提交
85 86
        output_dir (str): The path of output
        threshold (float): The threshold of score for visualization
J
JYChen 已提交
87 88
        delete_shuffle_pass (bool): whether to remove shuffle_channel_detect_pass in TensorRT. 
                                    Used by action model.
Q
qingqing01 已提交
89 90
    """

J
JYChen 已提交
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
    def __init__(self,
                 model_dir,
                 device='CPU',
                 run_mode='paddle',
                 batch_size=1,
                 trt_min_shape=1,
                 trt_max_shape=1280,
                 trt_opt_shape=640,
                 trt_calib_mode=False,
                 cpu_threads=1,
                 enable_mkldnn=False,
                 enable_mkldnn_bfloat16=False,
                 output_dir='output',
                 threshold=0.5,
                 delete_shuffle_pass=False):
W
wangguanzhong 已提交
106
        self.pred_config = self.set_config(model_dir)
107
        self.predictor, self.config = load_predictor(
Q
qingqing01 已提交
108
            model_dir,
109
            self.pred_config.arch,
Q
qingqing01 已提交
110
            run_mode=run_mode,
111
            batch_size=batch_size,
Q
qingqing01 已提交
112
            min_subgraph_size=self.pred_config.min_subgraph_size,
G
Guanghua Yu 已提交
113
            device=device,
114
            use_dynamic_shape=self.pred_config.use_dynamic_shape,
115 116
            trt_min_shape=trt_min_shape,
            trt_max_shape=trt_max_shape,
G
Guanghua Yu 已提交
117
            trt_opt_shape=trt_opt_shape,
118 119
            trt_calib_mode=trt_calib_mode,
            cpu_threads=cpu_threads,
120
            enable_mkldnn=enable_mkldnn,
J
JYChen 已提交
121 122
            enable_mkldnn_bfloat16=enable_mkldnn_bfloat16,
            delete_shuffle_pass=delete_shuffle_pass)
G
Guanghua Yu 已提交
123 124
        self.det_times = Timer()
        self.cpu_mem, self.gpu_mem, self.gpu_util = 0, 0, 0
W
wangguanzhong 已提交
125 126 127 128 129 130
        self.batch_size = batch_size
        self.output_dir = output_dir
        self.threshold = threshold

    def set_config(self, model_dir):
        return PredictConfig(model_dir)
Q
qingqing01 已提交
131

C
cnn 已提交
132
    def preprocess(self, image_list):
Q
qingqing01 已提交
133 134 135 136 137
        preprocess_ops = []
        for op_info in self.pred_config.preprocess_infos:
            new_op_info = op_info.copy()
            op_type = new_op_info.pop('type')
            preprocess_ops.append(eval(op_type)(**new_op_info))
C
cnn 已提交
138 139 140 141

        input_im_lst = []
        input_im_info_lst = []
        for im_path in image_list:
142
            im, im_info = preprocess(im_path, preprocess_ops)
C
cnn 已提交
143 144 145
            input_im_lst.append(im)
            input_im_info_lst.append(im_info)
        inputs = create_inputs(input_im_lst, input_im_info_lst)
W
wangguanzhong 已提交
146 147 148
        input_names = self.predictor.get_input_names()
        for i in range(len(input_names)):
            input_tensor = self.predictor.get_input_handle(input_names[i])
149 150 151 152
            if input_names[i] == 'x':
                input_tensor.copy_from_cpu(inputs['image'])
            else:
                input_tensor.copy_from_cpu(inputs[input_names[i]])
W
wangguanzhong 已提交
153

Q
qingqing01 已提交
154 155
        return inputs

W
wangguanzhong 已提交
156
    def postprocess(self, inputs, result):
Q
qingqing01 已提交
157
        # postprocess output of predictor
W
wangguanzhong 已提交
158
        np_boxes_num = result['boxes_num']
159 160 161
        assert isinstance(np_boxes_num, np.ndarray), \
            '`np_boxes_num` should be a `numpy.ndarray`'

162 163
        result = {k: v for k, v in result.items() if v is not None}
        return result
Q
qingqing01 已提交
164

165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
    def filter_box(self, result, threshold):
        np_boxes_num = result['boxes_num']
        boxes = result['boxes']
        start_idx = 0
        filter_boxes = []
        filter_num = []
        for i in range(len(np_boxes_num)):
            boxes_num = np_boxes_num[i]
            boxes_i = boxes[start_idx:start_idx + boxes_num, :]
            idx = boxes_i[:, 1] > threshold
            filter_boxes_i = boxes_i[idx, :]
            filter_boxes.append(filter_boxes_i)
            filter_num.append(filter_boxes_i.shape[0])
            start_idx += boxes_num
        boxes = np.concatenate(filter_boxes)
        filter_num = np.array(filter_num)
        filter_res = {'boxes': boxes, 'boxes_num': filter_num}
        return filter_res

W
wangguanzhong 已提交
184
    def predict(self, repeats=1):
Q
qingqing01 已提交
185 186
        '''
        Args:
W
wangguanzhong 已提交
187
            repeats (int): repeats number for prediction
Q
qingqing01 已提交
188
        Returns:
W
wangguanzhong 已提交
189
            result (dict): include 'boxes': np.ndarray: shape:[N,6], N: number of box,
Q
qingqing01 已提交
190
                            matix element:[class, score, x_min, y_min, x_max, y_max]
W
wangguanzhong 已提交
191
                            MaskRCNN's result include 'masks': np.ndarray:
G
Guanghua Yu 已提交
192
                            shape: [N, im_h, im_w]
Q
qingqing01 已提交
193
        '''
W
wangguanzhong 已提交
194
        # model prediction
195
        np_boxes_num, np_boxes, np_masks = np.array([0]), None, None
Q
qingqing01 已提交
196 197 198 199 200
        for i in range(repeats):
            self.predictor.run()
            output_names = self.predictor.get_output_names()
            boxes_tensor = self.predictor.get_output_handle(output_names[0])
            np_boxes = boxes_tensor.copy_to_cpu()
201 202 203 204 205 206
            if len(output_names) == 1:
                # some exported model can not get tensor 'bbox_num' 
                np_boxes_num = np.array([len(np_boxes)])
            else:
                boxes_num = self.predictor.get_output_handle(output_names[1])
                np_boxes_num = boxes_num.copy_to_cpu()
G
Guanghua Yu 已提交
207
            if self.pred_config.mask:
Q
qingqing01 已提交
208 209
                masks_tensor = self.predictor.get_output_handle(output_names[2])
                np_masks = masks_tensor.copy_to_cpu()
W
wangguanzhong 已提交
210 211 212 213 214 215 216 217 218 219 220 221
        result = dict(boxes=np_boxes, masks=np_masks, boxes_num=np_boxes_num)
        return result

    def merge_batch_result(self, batch_result):
        if len(batch_result) == 1:
            return batch_result[0]
        res_key = batch_result[0].keys()
        results = {k: [] for k in res_key}
        for res in batch_result:
            for k, v in res.items():
                results[k].append(v)
        for k, v in results.items():
222
            if k not in ['masks', 'segm']:
W
wangguanzhong 已提交
223
                results[k] = np.concatenate(v)
W
wangguanzhong 已提交
224
        return results
Q
qingqing01 已提交
225

W
wangguanzhong 已提交
226 227
    def get_timer(self):
        return self.det_times
W
wangguanzhong 已提交
228

229 230 231 232 233 234
    def predict_image_slice(self,
                            img_list,
                            slice_size=[640, 640],
                            overlap_ratio=[0.25, 0.25],
                            combine_method='nms',
                            match_threshold=0.6,
F
Feng Ni 已提交
235 236 237
                            match_metric='ios',
                            run_benchmark=False,
                            repeats=1,
238
                            visual=True,
239
                            save_results=False):
240 241 242 243 244 245
        # slice infer only support bs=1
        results = []
        try:
            import sahi
            from sahi.slicing import slice_image
        except Exception as e:
F
Feng Ni 已提交
246
            print(
247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
                'sahi not found, plaese install sahi. '
                'for example: `pip install sahi`, see https://github.com/obss/sahi.'
            )
            raise e
        num_classes = len(self.pred_config.labels)
        for i in range(len(img_list)):
            ori_image = img_list[i]
            slice_image_result = sahi.slicing.slice_image(
                image=ori_image,
                slice_height=slice_size[0],
                slice_width=slice_size[1],
                overlap_height_ratio=overlap_ratio[0],
                overlap_width_ratio=overlap_ratio[1])
            sub_img_num = len(slice_image_result)
            merged_bboxs = []
262
            print('slice to {} sub_samples.', sub_img_num)
F
Feng Ni 已提交
263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292

            batch_image_list = [
                slice_image_result.images[_ind] for _ind in range(sub_img_num)
            ]
            if run_benchmark:
                # preprocess
                inputs = self.preprocess(batch_image_list)  # warmup
                self.det_times.preprocess_time_s.start()
                inputs = self.preprocess(batch_image_list)
                self.det_times.preprocess_time_s.end()

                # model prediction
                result = self.predict(repeats=50)  # warmup
                self.det_times.inference_time_s.start()
                result = self.predict(repeats=repeats)
                self.det_times.inference_time_s.end(repeats=repeats)

                # postprocess
                result_warmup = self.postprocess(inputs, result)  # warmup
                self.det_times.postprocess_time_s.start()
                result = self.postprocess(inputs, result)
                self.det_times.postprocess_time_s.end()
                self.det_times.img_num += 1

                cm, gm, gu = get_current_memory_mb()
                self.cpu_mem += cm
                self.gpu_mem += gm
                self.gpu_util += gu
            else:
                # preprocess
293
                self.det_times.preprocess_time_s.start()
F
Feng Ni 已提交
294
                inputs = self.preprocess(batch_image_list)
295 296 297 298 299 300 301 302 303 304 305 306 307
                self.det_times.preprocess_time_s.end()

                # model prediction
                self.det_times.inference_time_s.start()
                result = self.predict()
                self.det_times.inference_time_s.end()

                # postprocess
                self.det_times.postprocess_time_s.start()
                result = self.postprocess(inputs, result)
                self.det_times.postprocess_time_s.end()
                self.det_times.img_num += 1

F
Feng Ni 已提交
308 309 310
            st, ed = 0, result['boxes_num'][0]  # start_index, end_index
            for _ind in range(sub_img_num):
                boxes_num = result['boxes_num'][_ind]
311
                ed = st + boxes_num
312
                shift_amount = slice_image_result.starting_pixels[_ind]
F
Feng Ni 已提交
313 314 315 316 317 318
                result['boxes'][st:ed][:, 2:4] = result['boxes'][
                    st:ed][:, 2:4] + shift_amount
                result['boxes'][st:ed][:, 4:6] = result['boxes'][
                    st:ed][:, 4:6] + shift_amount
                merged_bboxs.append(result['boxes'][st:ed])
                st = ed
319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343

            merged_results = {'boxes': []}
            if combine_method == 'nms':
                final_boxes = multiclass_nms(
                    np.concatenate(merged_bboxs), num_classes, match_threshold,
                    match_metric)
                merged_results['boxes'] = np.concatenate(final_boxes)
            elif combine_method == 'concat':
                merged_results['boxes'] = np.concatenate(merged_bboxs)
            else:
                raise ValueError(
                    "Now only support 'nms' or 'concat' to fuse detection results."
                )
            merged_results['boxes_num'] = np.array(
                [len(merged_results['boxes'])], dtype=np.int32)

            if visual:
                visualize(
                    [ori_image],  # should be list
                    merged_results,
                    self.pred_config.labels,
                    output_dir=self.output_dir,
                    threshold=self.threshold)

            results.append(merged_results)
344
            print('Test iter {}'.format(i))
345 346

        results = self.merge_batch_result(results)
347 348 349 350
        if save_results:
            Path(self.output_dir).mkdir(exist_ok=True)
            self.save_coco_results(
                img_list, results, use_coco_category=FLAGS.use_coco_category)
351 352
        return results

W
wangguanzhong 已提交
353 354 355 356
    def predict_image(self,
                      image_list,
                      run_benchmark=False,
                      repeats=1,
357
                      visual=True,
358
                      save_results=False):
W
wangguanzhong 已提交
359
        batch_loop_cnt = math.ceil(float(len(image_list)) / self.batch_size)
Q
qingqing01 已提交
360
        results = []
W
wangguanzhong 已提交
361 362 363 364 365 366 367 368 369 370 371 372
        for i in range(batch_loop_cnt):
            start_index = i * self.batch_size
            end_index = min((i + 1) * self.batch_size, len(image_list))
            batch_image_list = image_list[start_index:end_index]
            if run_benchmark:
                # preprocess
                inputs = self.preprocess(batch_image_list)  # warmup
                self.det_times.preprocess_time_s.start()
                inputs = self.preprocess(batch_image_list)
                self.det_times.preprocess_time_s.end()

                # model prediction
373
                result = self.predict(repeats=50)  # warmup
W
wangguanzhong 已提交
374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413
                self.det_times.inference_time_s.start()
                result = self.predict(repeats=repeats)
                self.det_times.inference_time_s.end(repeats=repeats)

                # postprocess
                result_warmup = self.postprocess(inputs, result)  # warmup
                self.det_times.postprocess_time_s.start()
                result = self.postprocess(inputs, result)
                self.det_times.postprocess_time_s.end()
                self.det_times.img_num += len(batch_image_list)

                cm, gm, gu = get_current_memory_mb()
                self.cpu_mem += cm
                self.gpu_mem += gm
                self.gpu_util += gu
            else:
                # preprocess
                self.det_times.preprocess_time_s.start()
                inputs = self.preprocess(batch_image_list)
                self.det_times.preprocess_time_s.end()

                # model prediction
                self.det_times.inference_time_s.start()
                result = self.predict()
                self.det_times.inference_time_s.end()

                # postprocess
                self.det_times.postprocess_time_s.start()
                result = self.postprocess(inputs, result)
                self.det_times.postprocess_time_s.end()
                self.det_times.img_num += len(batch_image_list)

                if visual:
                    visualize(
                        batch_image_list,
                        result,
                        self.pred_config.labels,
                        output_dir=self.output_dir,
                        threshold=self.threshold)
            results.append(result)
414
            print('Test iter {}'.format(i))
W
wangguanzhong 已提交
415
        results = self.merge_batch_result(results)
416 417 418 419
        if save_results:
            Path(self.output_dir).mkdir(exist_ok=True)
            self.save_coco_results(
                image_list, results, use_coco_category=FLAGS.use_coco_category)
Q
qingqing01 已提交
420 421
        return results

W
wangguanzhong 已提交
422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438
    def predict_video(self, video_file, camera_id):
        video_out_name = 'output.mp4'
        if camera_id != -1:
            capture = cv2.VideoCapture(camera_id)
        else:
            capture = cv2.VideoCapture(video_file)
            video_out_name = os.path.split(video_file)[-1]
        # Get Video info : resolution, fps, frame count
        width = int(capture.get(cv2.CAP_PROP_FRAME_WIDTH))
        height = int(capture.get(cv2.CAP_PROP_FRAME_HEIGHT))
        fps = int(capture.get(cv2.CAP_PROP_FPS))
        frame_count = int(capture.get(cv2.CAP_PROP_FRAME_COUNT))
        print("fps: %d, frame_count: %d" % (fps, frame_count))

        if not os.path.exists(self.output_dir):
            os.makedirs(self.output_dir)
        out_path = os.path.join(self.output_dir, video_out_name)
439
        fourcc = cv2.VideoWriter_fourcc(* 'mp4v')
W
wangguanzhong 已提交
440 441 442 443 444 445 446 447
        writer = cv2.VideoWriter(out_path, fourcc, fps, (width, height))
        index = 1
        while (1):
            ret, frame = capture.read()
            if not ret:
                break
            print('detect frame: %d' % (index))
            index += 1
L
lazyn1997 已提交
448
            results = self.predict_image([frame[:, :, ::-1]], visual=False)
W
wangguanzhong 已提交
449 450 451 452 453 454 455 456 457 458 459 460 461

            im = visualize_box_mask(
                frame,
                results,
                self.pred_config.labels,
                threshold=self.threshold)
            im = np.array(im)
            writer.write(im)
            if camera_id != -1:
                cv2.imshow('Mask Detection', im)
                if cv2.waitKey(1) & 0xFF == ord('q'):
                    break
        writer.release()
W
wangguanzhong 已提交
462

463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502
    def save_coco_results(self, image_list, results, use_coco_category=False):
        bbox_results = []
        mask_results = []
        idx = 0
        print("Start saving coco json files...")
        for i, box_num in enumerate(results['boxes_num']):
            file_name = os.path.split(image_list[i])[-1]
            if use_coco_category:
                img_id = int(os.path.splitext(file_name)[0])
            else:
                img_id = i

            if 'boxes' in results:
                boxes = results['boxes'][idx:idx + box_num].tolist()
                bbox_results.extend([{
                    'image_id': img_id,
                    'category_id': coco_clsid2catid[int(box[0])] \
                        if use_coco_category else int(box[0]),
                    'file_name': file_name,
                    'bbox': [box[2], box[3], box[4] - box[2],
                         box[5] - box[3]],  # xyxy -> xywh
                    'score': box[1]} for box in boxes])

            if 'masks' in results:
                import pycocotools.mask as mask_util

                boxes = results['boxes'][idx:idx + box_num].tolist()
                masks = results['masks'][i][:box_num].astype(np.uint8)
                seg_res = []
                for box, mask in zip(boxes, masks):
                    rle = mask_util.encode(
                        np.array(
                            mask[:, :, None], dtype=np.uint8, order="F"))[0]
                    if 'counts' in rle:
                        rle['counts'] = rle['counts'].decode("utf8")
                    seg_res.append({
                        'image_id': img_id,
                        'category_id': coco_clsid2catid[int(box[0])] \
                        if use_coco_category else int(box[0]),
                        'file_name': file_name,
503
                        'segmentation': rle,
504 505
                        'score': box[1]})
                mask_results.extend(seg_res)
506

507
            idx += box_num
508

509 510 511 512 513 514 515 516 517 518
        if bbox_results:
            bbox_file = os.path.join(self.output_dir, "bbox.json")
            with open(bbox_file, 'w') as f:
                json.dump(bbox_results, f)
            print(f"The bbox result is saved to {bbox_file}")
        if mask_results:
            mask_file = os.path.join(self.output_dir, "mask.json")
            with open(mask_file, 'w') as f:
                json.dump(mask_results, f)
            print(f"The mask result is saved to {mask_file}")
519

Q
qingqing01 已提交
520

G
Guanghua Yu 已提交
521 522 523 524
class DetectorSOLOv2(Detector):
    """
    Args:
        model_dir (str): root path of model.pdiparams, model.pdmodel and infer_cfg.yml
G
Guanghua Yu 已提交
525
        device (str): Choose the device you want to run, it can be: CPU/GPU/XPU, default is CPU
526
        run_mode (str): mode of running(paddle/trt_fp32/trt_fp16)
527
        batch_size (int): size of pre batch in inference
528 529 530
        trt_min_shape (int): min shape for dynamic shape in trt
        trt_max_shape (int): max shape for dynamic shape in trt
        trt_opt_shape (int): opt shape for dynamic shape in trt
531 532 533 534
        trt_calib_mode (bool): If the model is produced by TRT offline quantitative
            calibration, trt_calib_mode need to set True
        cpu_threads (int): cpu threads
        enable_mkldnn (bool): whether to open MKLDNN 
535
        enable_mkldnn_bfloat16 (bool): Whether to turn on mkldnn bfloat16
W
wangguanzhong 已提交
536 537 538
        output_dir (str): The path of output
        threshold (float): The threshold of score for visualization
       
G
Guanghua Yu 已提交
539 540
    """

W
wangguanzhong 已提交
541 542
    def __init__(
            self,
G
Guanghua Yu 已提交
543
            model_dir,
W
wangguanzhong 已提交
544 545 546 547 548 549 550 551 552
            device='CPU',
            run_mode='paddle',
            batch_size=1,
            trt_min_shape=1,
            trt_max_shape=1280,
            trt_opt_shape=640,
            trt_calib_mode=False,
            cpu_threads=1,
            enable_mkldnn=False,
553
            enable_mkldnn_bfloat16=False,
W
wangguanzhong 已提交
554 555 556 557 558
            output_dir='./',
            threshold=0.5, ):
        super(DetectorSOLOv2, self).__init__(
            model_dir=model_dir,
            device=device,
G
Guanghua Yu 已提交
559
            run_mode=run_mode,
560
            batch_size=batch_size,
561 562
            trt_min_shape=trt_min_shape,
            trt_max_shape=trt_max_shape,
G
Guanghua Yu 已提交
563
            trt_opt_shape=trt_opt_shape,
564 565
            trt_calib_mode=trt_calib_mode,
            cpu_threads=cpu_threads,
W
wangguanzhong 已提交
566
            enable_mkldnn=enable_mkldnn,
567
            enable_mkldnn_bfloat16=enable_mkldnn_bfloat16,
W
wangguanzhong 已提交
568 569
            output_dir=output_dir,
            threshold=threshold, )
G
Guanghua Yu 已提交
570

W
wangguanzhong 已提交
571
    def predict(self, repeats=1):
G
Guanghua Yu 已提交
572 573
        '''
        Args:
W
wangguanzhong 已提交
574
            repeats (int): repeat number for prediction
G
Guanghua Yu 已提交
575
        Returns:
W
wangguanzhong 已提交
576
            result (dict): 'segm': np.ndarray,shape:[N, im_h, im_w]
G
Guanghua Yu 已提交
577 578
                            'cate_label': label of segm, shape:[N]
                            'cate_score': confidence score of segm, shape:[N]
G
Guanghua Yu 已提交
579 580 581 582 583
        '''
        np_label, np_score, np_segms = None, None, None
        for i in range(repeats):
            self.predictor.run()
            output_names = self.predictor.get_output_names()
W
wangguanzhong 已提交
584 585
            np_boxes_num = self.predictor.get_output_handle(output_names[
                0]).copy_to_cpu()
G
Guanghua Yu 已提交
586 587
            np_label = self.predictor.get_output_handle(output_names[
                1]).copy_to_cpu()
G
Guanghua Yu 已提交
588
            np_score = self.predictor.get_output_handle(output_names[
G
Guanghua Yu 已提交
589
                2]).copy_to_cpu()
G
Guanghua Yu 已提交
590 591
            np_segms = self.predictor.get_output_handle(output_names[
                3]).copy_to_cpu()
G
Guanghua Yu 已提交
592

W
wangguanzhong 已提交
593
        result = dict(
W
wangguanzhong 已提交
594 595 596 597
            segm=np_segms,
            label=np_label,
            score=np_score,
            boxes_num=np_boxes_num)
W
wangguanzhong 已提交
598
        return result
G
Guanghua Yu 已提交
599 600


601 602 603 604 605
class DetectorPicoDet(Detector):
    """
    Args:
        model_dir (str): root path of model.pdiparams, model.pdmodel and infer_cfg.yml
        device (str): Choose the device you want to run, it can be: CPU/GPU/XPU, default is CPU
606
        run_mode (str): mode of running(paddle/trt_fp32/trt_fp16)
607 608 609 610 611 612 613
        batch_size (int): size of pre batch in inference
        trt_min_shape (int): min shape for dynamic shape in trt
        trt_max_shape (int): max shape for dynamic shape in trt
        trt_opt_shape (int): opt shape for dynamic shape in trt
        trt_calib_mode (bool): If the model is produced by TRT offline quantitative
            calibration, trt_calib_mode need to set True
        cpu_threads (int): cpu threads
614 615
        enable_mkldnn (bool): whether to turn on MKLDNN
        enable_mkldnn_bfloat16 (bool): whether to turn on MKLDNN_BFLOAT16
616 617
    """

W
wangguanzhong 已提交
618 619
    def __init__(
            self,
620
            model_dir,
W
wangguanzhong 已提交
621 622 623 624 625 626 627 628 629
            device='CPU',
            run_mode='paddle',
            batch_size=1,
            trt_min_shape=1,
            trt_max_shape=1280,
            trt_opt_shape=640,
            trt_calib_mode=False,
            cpu_threads=1,
            enable_mkldnn=False,
630
            enable_mkldnn_bfloat16=False,
W
wangguanzhong 已提交
631 632 633 634 635
            output_dir='./',
            threshold=0.5, ):
        super(DetectorPicoDet, self).__init__(
            model_dir=model_dir,
            device=device,
636 637 638 639 640 641 642
            run_mode=run_mode,
            batch_size=batch_size,
            trt_min_shape=trt_min_shape,
            trt_max_shape=trt_max_shape,
            trt_opt_shape=trt_opt_shape,
            trt_calib_mode=trt_calib_mode,
            cpu_threads=cpu_threads,
W
wangguanzhong 已提交
643
            enable_mkldnn=enable_mkldnn,
644
            enable_mkldnn_bfloat16=enable_mkldnn_bfloat16,
W
wangguanzhong 已提交
645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660
            output_dir=output_dir,
            threshold=threshold, )

    def postprocess(self, inputs, result):
        # postprocess output of predictor
        np_score_list = result['boxes']
        np_boxes_list = result['boxes_num']
        postprocessor = PicoDetPostProcess(
            inputs['image'].shape[2:],
            inputs['im_shape'],
            inputs['scale_factor'],
            strides=self.pred_config.fpn_stride,
            nms_threshold=self.pred_config.nms['nms_threshold'])
        np_boxes, np_boxes_num = postprocessor(np_score_list, np_boxes_list)
        result = dict(boxes=np_boxes, boxes_num=np_boxes_num)
        return result
661

W
wangguanzhong 已提交
662
    def predict(self, repeats=1):
663 664
        '''
        Args:
W
wangguanzhong 已提交
665
            repeats (int): repeat number for prediction
666
        Returns:
W
wangguanzhong 已提交
667
            result (dict): include 'boxes': np.ndarray: shape:[N,6], N: number of box,
668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683
                            matix element:[class, score, x_min, y_min, x_max, y_max]
        '''
        np_score_list, np_boxes_list = [], []
        for i in range(repeats):
            self.predictor.run()
            np_score_list.clear()
            np_boxes_list.clear()
            output_names = self.predictor.get_output_names()
            num_outs = int(len(output_names) / 2)
            for out_idx in range(num_outs):
                np_score_list.append(
                    self.predictor.get_output_handle(output_names[out_idx])
                    .copy_to_cpu())
                np_boxes_list.append(
                    self.predictor.get_output_handle(output_names[
                        out_idx + num_outs]).copy_to_cpu())
W
wangguanzhong 已提交
684 685
        result = dict(boxes=np_score_list, boxes_num=np_boxes_list)
        return result
686 687


C
cnn 已提交
688
def create_inputs(imgs, im_info):
Q
qingqing01 已提交
689 690
    """generate input for different model type
    Args:
W
wangguanzhong 已提交
691 692
        imgs (list(numpy)): list of images (np.ndarray)
        im_info (list(dict)): list of image info
Q
qingqing01 已提交
693 694 695 696 697
    Returns:
        inputs (dict): input of model
    """
    inputs = {}

C
cnn 已提交
698 699
    im_shape = []
    scale_factor = []
700 701 702 703 704 705 706 707
    if len(imgs) == 1:
        inputs['image'] = np.array((imgs[0], )).astype('float32')
        inputs['im_shape'] = np.array(
            (im_info[0]['im_shape'], )).astype('float32')
        inputs['scale_factor'] = np.array(
            (im_info[0]['scale_factor'], )).astype('float32')
        return inputs

C
cnn 已提交
708 709 710 711
    for e in im_info:
        im_shape.append(np.array((e['im_shape'], )).astype('float32'))
        scale_factor.append(np.array((e['scale_factor'], )).astype('float32'))

C
cnn 已提交
712 713
    inputs['im_shape'] = np.concatenate(im_shape, axis=0)
    inputs['scale_factor'] = np.concatenate(scale_factor, axis=0)
C
cnn 已提交
714 715 716 717 718 719 720 721 722 723 724 725

    imgs_shape = [[e.shape[1], e.shape[2]] for e in imgs]
    max_shape_h = max([e[0] for e in imgs_shape])
    max_shape_w = max([e[1] for e in imgs_shape])
    padding_imgs = []
    for img in imgs:
        im_c, im_h, im_w = img.shape[:]
        padding_im = np.zeros(
            (im_c, max_shape_h, max_shape_w), dtype=np.float32)
        padding_im[:, :im_h, :im_w] = img
        padding_imgs.append(padding_im)
    inputs['image'] = np.stack(padding_imgs, axis=0)
Q
qingqing01 已提交
726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744
    return inputs


class PredictConfig():
    """set config of preprocess, postprocess and visualize
    Args:
        model_dir (str): root path of model.yml
    """

    def __init__(self, model_dir):
        # parsing Yaml config for Preprocess
        deploy_file = os.path.join(model_dir, 'infer_cfg.yml')
        with open(deploy_file) as f:
            yml_conf = yaml.safe_load(f)
        self.check_model(yml_conf)
        self.arch = yml_conf['arch']
        self.preprocess_infos = yml_conf['Preprocess']
        self.min_subgraph_size = yml_conf['min_subgraph_size']
        self.labels = yml_conf['label_list']
G
Guanghua Yu 已提交
745
        self.mask = False
746
        self.use_dynamic_shape = yml_conf['use_dynamic_shape']
G
Guanghua Yu 已提交
747 748
        if 'mask' in yml_conf:
            self.mask = yml_conf['mask']
749 750 751
        self.tracker = None
        if 'tracker' in yml_conf:
            self.tracker = yml_conf['tracker']
752 753 754 755
        if 'NMS' in yml_conf:
            self.nms = yml_conf['NMS']
        if 'fpn_stride' in yml_conf:
            self.fpn_stride = yml_conf['fpn_stride']
756 757 758 759
        if self.arch == 'RCNN' and yml_conf.get('export_onnx', False):
            print(
                'The RCNN export model is used for ONNX and it only supports batch_size = 1'
            )
Q
qingqing01 已提交
760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782
        self.print_config()

    def check_model(self, yml_conf):
        """
        Raises:
            ValueError: loaded model not in supported model type 
        """
        for support_model in SUPPORT_MODELS:
            if support_model in yml_conf['arch']:
                return True
        raise ValueError("Unsupported arch: {}, expect {}".format(yml_conf[
            'arch'], SUPPORT_MODELS))

    def print_config(self):
        print('-----------  Model Configuration -----------')
        print('%s: %s' % ('Model Arch', self.arch))
        print('%s: ' % ('Transform Order'))
        for op_info in self.preprocess_infos:
            print('--%s: %s' % ('transform op', op_info['type']))
        print('--------------------------------------------')


def load_predictor(model_dir,
783
                   arch,
784
                   run_mode='paddle',
Q
qingqing01 已提交
785
                   batch_size=1,
G
Guanghua Yu 已提交
786
                   device='CPU',
787 788 789 790
                   min_subgraph_size=3,
                   use_dynamic_shape=False,
                   trt_min_shape=1,
                   trt_max_shape=1280,
G
Guanghua Yu 已提交
791
                   trt_opt_shape=640,
792 793
                   trt_calib_mode=False,
                   cpu_threads=1,
794
                   enable_mkldnn=False,
J
JYChen 已提交
795
                   enable_mkldnn_bfloat16=False,
796 797
                   delete_shuffle_pass=False,
                   tuned_trt_shape_file="shape_range_info.pbtxt"):
Q
qingqing01 已提交
798 799 800
    """set AnalysisConfig, generate AnalysisPredictor
    Args:
        model_dir (str): root path of __model__ and __params__
G
Guanghua Yu 已提交
801
        device (str): Choose the device you want to run, it can be: CPU/GPU/XPU, default is CPU
802
        run_mode (str): mode of running(paddle/trt_fp32/trt_fp16/trt_int8)
803 804 805 806
        use_dynamic_shape (bool): use dynamic shape or not
        trt_min_shape (int): min shape for dynamic shape in trt
        trt_max_shape (int): max shape for dynamic shape in trt
        trt_opt_shape (int): opt shape for dynamic shape in trt
G
Guanghua Yu 已提交
807 808
        trt_calib_mode (bool): If the model is produced by TRT offline quantitative
            calibration, trt_calib_mode need to set True
J
JYChen 已提交
809 810
        delete_shuffle_pass (bool): whether to remove shuffle_channel_detect_pass in TensorRT. 
                                    Used by action model.
Q
qingqing01 已提交
811 812 813
    Returns:
        predictor (PaddlePredictor): AnalysisPredictor
    Raises:
G
Guanghua Yu 已提交
814
        ValueError: predict by TensorRT need device == 'GPU'.
Q
qingqing01 已提交
815
    """
816
    if device != 'GPU' and run_mode != 'paddle':
Q
qingqing01 已提交
817
        raise ValueError(
G
Guanghua Yu 已提交
818 819
            "Predict by TensorRT mode: {}, expect device=='GPU', but device == {}"
            .format(run_mode, device))
820 821 822 823 824 825 826 827 828
    infer_model = os.path.join(model_dir, 'model.pdmodel')
    infer_params = os.path.join(model_dir, 'model.pdiparams')
    if not os.path.exists(infer_model):
        infer_model = os.path.join(model_dir, 'inference.pdmodel')
        infer_params = os.path.join(model_dir, 'inference.pdiparams')
        if not os.path.exists(infer_model):
            raise ValueError(
                "Cannot find any inference model in dir: {},".format(model_dir))
    config = Config(infer_model, infer_params)
G
Guanghua Yu 已提交
829
    if device == 'GPU':
Q
qingqing01 已提交
830 831 832
        # initial GPU memory(M), device ID
        config.enable_use_gpu(200, 0)
        # optimize graph and fuse op
833
        config.switch_ir_optim(True)
G
Guanghua Yu 已提交
834
    elif device == 'XPU':
835 836
        if config.lite_engine_enabled():
            config.enable_lite_engine()
G
Guanghua Yu 已提交
837
        config.enable_xpu(10 * 1024 * 1024)
838 839 840 841
    elif device == 'NPU':
        if config.lite_engine_enabled():
            config.enable_lite_engine()
        config.enable_npu()
Q
qingqing01 已提交
842 843
    else:
        config.disable_gpu()
844 845
        config.set_cpu_math_library_num_threads(cpu_threads)
        if enable_mkldnn:
G
Guanghua Yu 已提交
846 847 848 849
            try:
                # cache 10 different shapes for mkldnn to avoid memory leak
                config.set_mkldnn_cache_capacity(10)
                config.enable_mkldnn()
850 851
                if enable_mkldnn_bfloat16:
                    config.enable_mkldnn_bfloat16()
G
Guanghua Yu 已提交
852 853 854 855 856
            except Exception as e:
                print(
                    "The current environment does not support `mkldnn`, so disable mkldnn."
                )
                pass
Q
qingqing01 已提交
857

G
Guanghua Yu 已提交
858 859 860 861 862
    precision_map = {
        'trt_int8': Config.Precision.Int8,
        'trt_fp32': Config.Precision.Float32,
        'trt_fp16': Config.Precision.Half
    }
Q
qingqing01 已提交
863
    if run_mode in precision_map.keys():
864 865
        if arch in TUNED_TRT_DYNAMIC_MODELS:
            config.collect_shape_range_info(tuned_trt_shape_file)
Q
qingqing01 已提交
866
        config.enable_tensorrt_engine(
W
wangxinxin08 已提交
867
            workspace_size=(1 << 25) * batch_size,
Q
qingqing01 已提交
868 869 870 871
            max_batch_size=batch_size,
            min_subgraph_size=min_subgraph_size,
            precision_mode=precision_map[run_mode],
            use_static=False,
G
Guanghua Yu 已提交
872
            use_calib_mode=trt_calib_mode)
873 874 875
        if arch in TUNED_TRT_DYNAMIC_MODELS:
            config.enable_tuned_tensorrt_dynamic_shape(tuned_trt_shape_file,
                                                       True)
876 877

        if use_dynamic_shape:
878
            min_input_shape = {
W
wangxinxin08 已提交
879 880
                'image': [batch_size, 3, trt_min_shape, trt_min_shape],
                'scale_factor': [batch_size, 2]
881 882
            }
            max_input_shape = {
W
wangxinxin08 已提交
883 884
                'image': [batch_size, 3, trt_max_shape, trt_max_shape],
                'scale_factor': [batch_size, 2]
885 886
            }
            opt_input_shape = {
W
wangxinxin08 已提交
887 888
                'image': [batch_size, 3, trt_opt_shape, trt_opt_shape],
                'scale_factor': [batch_size, 2]
889
            }
890 891 892
            config.set_trt_dynamic_shape_info(min_input_shape, max_input_shape,
                                              opt_input_shape)
            print('trt set dynamic shape done!')
Q
qingqing01 已提交
893 894 895 896 897 898 899

    # disable print log when predict
    config.disable_glog_info()
    # enable shared memory
    config.enable_memory_optim()
    # disable feed, fetch OP, needed by zero_copy_run
    config.switch_use_feed_fetch_ops(False)
J
JYChen 已提交
900 901
    if delete_shuffle_pass:
        config.delete_pass("shuffle_channel_detect_pass")
Q
qingqing01 已提交
902
    predictor = create_predictor(config)
903
    return predictor, config
Q
qingqing01 已提交
904 905


G
Guanghua Yu 已提交
906 907 908 909 910
def get_test_images(infer_dir, infer_img):
    """
    Get image path list in TEST mode
    """
    assert infer_img is not None or infer_dir is not None, \
J
JYChen 已提交
911
        "--image_file or --image_dir should be set"
G
Guanghua Yu 已提交
912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936
    assert infer_img is None or os.path.isfile(infer_img), \
            "{} is not a file".format(infer_img)
    assert infer_dir is None or os.path.isdir(infer_dir), \
            "{} is not a directory".format(infer_dir)

    # infer_img has a higher priority
    if infer_img and os.path.isfile(infer_img):
        return [infer_img]

    images = set()
    infer_dir = os.path.abspath(infer_dir)
    assert os.path.isdir(infer_dir), \
        "infer_dir {} is not a directory".format(infer_dir)
    exts = ['jpg', 'jpeg', 'png', 'bmp']
    exts += [ext.upper() for ext in exts]
    for ext in exts:
        images.update(glob.glob('{}/*.{}'.format(infer_dir, ext)))
    images = list(images)

    assert len(images) > 0, "no image found in {}".format(infer_dir)
    print("Found {} inference images in total.".format(len(images)))

    return images


W
wangguanzhong 已提交
937
def visualize(image_list, result, labels, output_dir='output/', threshold=0.5):
Q
qingqing01 已提交
938
    # visualize the predict result
C
cnn 已提交
939 940
    start_idx = 0
    for idx, image_file in enumerate(image_list):
W
wangguanzhong 已提交
941
        im_bboxes_num = result['boxes_num'][idx]
C
cnn 已提交
942
        im_results = {}
W
wangguanzhong 已提交
943 944 945 946 947 948 949 950 951 952 953 954 955 956 957
        if 'boxes' in result:
            im_results['boxes'] = result['boxes'][start_idx:start_idx +
                                                  im_bboxes_num, :]
        if 'masks' in result:
            im_results['masks'] = result['masks'][start_idx:start_idx +
                                                  im_bboxes_num, :]
        if 'segm' in result:
            im_results['segm'] = result['segm'][start_idx:start_idx +
                                                im_bboxes_num, :]
        if 'label' in result:
            im_results['label'] = result['label'][start_idx:start_idx +
                                                  im_bboxes_num]
        if 'score' in result:
            im_results['score'] = result['score'][start_idx:start_idx +
                                                  im_bboxes_num]
W
wangguanzhong 已提交
958

C
cnn 已提交
959 960 961 962 963 964 965 966 967
        start_idx += im_bboxes_num
        im = visualize_box_mask(
            image_file, im_results, labels, threshold=threshold)
        img_name = os.path.split(image_file)[-1]
        if not os.path.exists(output_dir):
            os.makedirs(output_dir)
        out_path = os.path.join(output_dir, img_name)
        im.save(out_path, quality=95)
        print("save result to: " + out_path)
Q
qingqing01 已提交
968 969 970 971 972 973 974 975 976 977


def print_arguments(args):
    print('-----------  Running Arguments -----------')
    for arg, value in sorted(vars(args).items()):
        print('%s: %s' % (arg, value))
    print('------------------------------------------')


def main():
W
wangguanzhong 已提交
978 979 980 981
    deploy_file = os.path.join(FLAGS.model_dir, 'infer_cfg.yml')
    with open(deploy_file) as f:
        yml_conf = yaml.safe_load(f)
    arch = yml_conf['arch']
982
    detector_func = 'Detector'
W
wangguanzhong 已提交
983
    if arch == 'SOLOv2':
984
        detector_func = 'DetectorSOLOv2'
W
wangguanzhong 已提交
985
    elif arch == 'PicoDet':
986 987
        detector_func = 'DetectorPicoDet'

988 989 990 991 992 993 994 995 996 997 998 999 1000 1001
    detector = eval(detector_func)(
        FLAGS.model_dir,
        device=FLAGS.device,
        run_mode=FLAGS.run_mode,
        batch_size=FLAGS.batch_size,
        trt_min_shape=FLAGS.trt_min_shape,
        trt_max_shape=FLAGS.trt_max_shape,
        trt_opt_shape=FLAGS.trt_opt_shape,
        trt_calib_mode=FLAGS.trt_calib_mode,
        cpu_threads=FLAGS.cpu_threads,
        enable_mkldnn=FLAGS.enable_mkldnn,
        enable_mkldnn_bfloat16=FLAGS.enable_mkldnn_bfloat16,
        threshold=FLAGS.threshold,
        output_dir=FLAGS.output_dir)
G
Guanghua Yu 已提交
1002

Q
qingqing01 已提交
1003
    # predict from video file or camera video stream
G
Guanghua Yu 已提交
1004
    if FLAGS.video_file is not None or FLAGS.camera_id != -1:
W
wangguanzhong 已提交
1005
        detector.predict_video(FLAGS.video_file, FLAGS.camera_id)
G
Guanghua Yu 已提交
1006 1007
    else:
        # predict from image
C
cnn 已提交
1008 1009
        if FLAGS.image_dir is None and FLAGS.image_file is not None:
            assert FLAGS.batch_size == 1, "batch_size should be 1, when image_file is not None"
G
Guanghua Yu 已提交
1010
        img_list = get_test_images(FLAGS.image_dir, FLAGS.image_file)
1011 1012 1013 1014 1015 1016 1017 1018
        if FLAGS.slice_infer:
            detector.predict_image_slice(
                img_list,
                FLAGS.slice_size,
                FLAGS.overlap_ratio,
                FLAGS.combine_method,
                FLAGS.match_threshold,
                FLAGS.match_metric,
1019 1020
                visual=FLAGS.save_images,
                save_results=FLAGS.save_results)
1021 1022
        else:
            detector.predict_image(
1023 1024 1025 1026 1027
                img_list,
                FLAGS.run_benchmark,
                repeats=100,
                visual=FLAGS.save_images,
                save_results=FLAGS.save_results)
G
Guanghua Yu 已提交
1028 1029 1030
        if not FLAGS.run_benchmark:
            detector.det_times.info(average=True)
        else:
1031
            mode = FLAGS.run_mode
W
wangguanzhong 已提交
1032
            model_dir = FLAGS.model_dir
1033
            model_info = {
1034 1035
                'model_name': model_dir.strip('/').split('/')[-1],
                'precision': mode.split('_')[-1]
1036
            }
W
wangguanzhong 已提交
1037
            bench_log(detector, img_list, model_info, name='DET')
Q
qingqing01 已提交
1038 1039 1040 1041


if __name__ == '__main__':
    paddle.enable_static()
G
Guanghua Yu 已提交
1042
    parser = argsparser()
Q
qingqing01 已提交
1043 1044
    FLAGS = parser.parse_args()
    print_arguments(FLAGS)
G
Guanghua Yu 已提交
1045
    FLAGS.device = FLAGS.device.upper()
1046 1047
    assert FLAGS.device in ['CPU', 'GPU', 'XPU', 'NPU'
                            ], "device should be CPU, GPU, XPU or NPU"
G
Guanghua Yu 已提交
1048
    assert not FLAGS.use_gpu, "use_gpu has been deprecated, please use --device"
Q
qingqing01 已提交
1049

1050 1051 1052
    assert not (
        FLAGS.enable_mkldnn == False and FLAGS.enable_mkldnn_bfloat16 == True
    ), 'To enable mkldnn bfloat, please turn on both enable_mkldnn and enable_mkldnn_bfloat16'
1053

Q
qingqing01 已提交
1054
    main()