executor.py 104.9 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Z
Zeng Jinle 已提交
15
import logging
16 17
import os
import multiprocessing
C
chengduo 已提交
18
import sys
19
import warnings
D
dzhwinter 已提交
20
import numpy as np
S
rename  
sneaxiy 已提交
21
from .wrapped_decorator import signature_safe_contextmanager
22
from .data_feeder import convert_dtype
23
from .framework import Program, default_main_program, Variable, Operator
24
from .framework import convert_np_dtype_to_dtype_, _apply_pass
L
Leo Chen 已提交
25

26
from . import core
27
from . import unique_name
28
from . import compiler
29
from . import set_flags
30
from .trainer_factory import TrainerFactory
31
from .trainer_factory import FetchHandlerMonitor
32
import copy
33
from . import framework
34
from .incubate.checkpoint import auto_checkpoint as acp
35
from .compiler import _prune_feed_ops
36

R
Ruibiao Chen 已提交
37 38
from functools import lru_cache

T
Tink_Y 已提交
39
__all__ = ['Executor', 'global_scope', 'scope_guard']
Y
Yu Yang 已提交
40

Y
Yu Yang 已提交
41
g_scope = core.Scope()
F
flame 已提交
42 43
InferNativeConfig = core.NativeConfig
InferAnalysisConfig = core.AnalysisConfig
Y
Yu Yang 已提交
44

Y
Yu Yang 已提交
45

Y
Yang Yu 已提交
46
def global_scope():
Y
yuyang18 已提交
47
    """
48 49
    :api_attr: Static Graph

Y
yuyang18 已提交
50 51 52
    Get the global/default scope instance. There are a lot of APIs use
    :code:`global_scope` as its default value, e.g., :code:`Executor.run`

C
chengduo 已提交
53 54 55
    Returns:
        Scope: The global/default scope instance.

56 57 58
    Examples:
        .. code-block:: python

59
          import paddle
60 61
          import numpy

62 63
          paddle.static.global_scope().var("data").get_tensor().set(numpy.ones((2, 2)), paddle.CPUPlace())
          numpy.array(paddle.static.global_scope().find_var("data").get_tensor())
Y
yuyang18 已提交
64
    """
Y
Yang Yu 已提交
65 66 67
    return g_scope


68
def _switch_scope(scope):
Y
Yang Yu 已提交
69 70 71 72 73 74
    global g_scope
    ex = g_scope
    g_scope = scope
    return ex


S
rename  
sneaxiy 已提交
75
@signature_safe_contextmanager
Y
Yang Yu 已提交
76
def scope_guard(scope):
Y
yuyang18 已提交
77
    """
78

79 80 81 82 83 84 85 86 87 88 89 90
    This function switches scope through python `with` statement.
    Scope records the mapping between variable names and variables ( :ref:`api_guide_Variable` ),
    similar to brackets in programming languages.
    If this function is not invoked, all variables and variable names are recorded in the default global scope.
    When users need to create variables with the same name,
    they need to switch scopes through this function
    if they do not want the mapping of variables with the same name to be overwritten.
    After switching through the `with` statement,
    all variables created in the `with` block will be assigned to a new scope.

    Parameters:
        scope: The new scope.
Y
yuyang18 已提交
91

92 93
    Returns:
        None
L
lujun 已提交
94

Y
yuyang18 已提交
95
    Examples:
96

97 98
        .. code-block:: python

99
            import paddle
L
lujun 已提交
100
            import numpy
101
            paddle.enable_static()
Y
yuyang18 已提交
102

103 104 105
            new_scope = paddle.static.Scope()
            with paddle.static.scope_guard(new_scope):
                 paddle.static.global_scope().var("data").get_tensor().set(numpy.ones((2, 2)), paddle.CPUPlace())
L
lujun 已提交
106
            numpy.array(new_scope.find_var("data").get_tensor())
Y
yuyang18 已提交
107
    """
L
lujun 已提交
108

109
    ex = _switch_scope(scope)
110 111 112 113
    try:
        yield
    finally:
        _switch_scope(ex)
Y
Yang Yu 已提交
114 115


116
def as_numpy(tensor, copy=False):
117 118 119
    """
    Convert a Tensor to a numpy.ndarray, its only support Tensor without LoD information.
    For higher dimensional sequence data, please use LoDTensor directly.
120

121
    Examples:
122 123 124 125 126 127 128 129 130 131
        .. code-block:: python

          import paddle.fluid as fluid
          import numpy

          new_scope = fluid.Scope()
          with fluid.scope_guard(new_scope):
              fluid.global_scope().var("data").get_tensor().set(numpy.ones((2, 2)), fluid.CPUPlace())
          tensor = new_scope.find_var("data").get_tensor()
          fluid.executor.as_numpy(tensor) # or numpy.array(new_scope.find_var("data").get_tensor())
132 133 134

    Args:
       tensor(Variable): a instance of Tensor
135
       copy(bool, optional): Whether to use deep copy.
136 137 138 139

    Returns:
        numpy.ndarray
    """
C
chengduo 已提交
140
    if isinstance(tensor, core.LoDTensorArray):
141
        return [as_numpy(t, copy) for t in tensor]
D
dzhwinter 已提交
142
    if isinstance(tensor, list):
143
        return [as_numpy(t, copy) for t in tensor]
D
dzhwinter 已提交
144 145
    assert isinstance(tensor, core.LoDTensor)
    lod = tensor.lod()
146
    if len(lod) > 0:
147 148
        raise RuntimeError(
            "Some of your fetched tensors hold LoD information. \
149 150
            They can not be completely cast to Python ndarray. \
            Please set the parameter 'return_numpy' as 'False' to \
151 152
            return LoDTensor itself directly."
        )
Q
qingqing01 已提交
153
    if tensor._is_initialized():
154 155 156 157
        if copy:
            return np.array(tensor)
        else:
            return np.asarray(tensor)
Q
qingqing01 已提交
158 159
    else:
        return None
D
dzhwinter 已提交
160 161


H
Huihuang Zheng 已提交
162 163 164 165
def dtype_is_compatible_with(first, second):
    """
    Returns True if the first dtype can be compatible the second one.
    Currently, we require the two dtype's have to be same.
166

H
Huihuang Zheng 已提交
167 168
    Args:
        dtype (np.dtype|VarType|str): The type of data: float32, int64, etc.
169

H
Huihuang Zheng 已提交
170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
    Returns:
        True if the two types are same.
    """
    if not isinstance(first, core.VarDesc.VarType):
        first = convert_np_dtype_to_dtype_(first)
    if not isinstance(second, core.VarDesc.VarType):
        second = convert_np_dtype_to_dtype_(second)
    return first == second


def dimension_is_compatible_with(first, second):
    """
    Returns True if the two dimensions are compatible.

    A dimension is compatible with the other if:
    1. The length of the dimensions are same.
T
tianshuo78520a 已提交
186 187
    2. Each non-negative number of the two dimensions are same.
    3. For negative number or 'None' in a dimension, it means unknown so it
H
Huihuang Zheng 已提交
188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
       is compatible with any number.

    Args:
        first (list/tuple): integers representing shape. "None" or negative
            number means unknown.
        second (list/tuple): integers representing shape. "None" or negative
            number means unknown.

    Returns:
        True if the two dimensions are compatible.
    """

    dim_len = len(first)
    if dim_len != len(second):
        return False

    for i in range(dim_len):
        if first[i] is None or first[i] < 0:
            continue
        if second[i] is None or second[i] < 0:
            continue
        if first[i] != second[i]:
            return False

    return True


215
def check_feed_shape_type(var, feed, num_places=1):
H
Huihuang Zheng 已提交
216 217
    """
    Returns True if the variable doesn't require feed check or it is compatible
T
tianshuo78520a 已提交
218
    with the shape and have same dtype as the fed value.
H
Huihuang Zheng 已提交
219 220 221

    A dimension is compatible with the other if:
    1. The length of the dimensions are same.
T
tianshuo78520a 已提交
222 223
    2. Each non-negative number of the two dimensions are same.
    3. For negative number or 'None' in a dimension, it means unknown so it
H
Huihuang Zheng 已提交
224
       is compatible with any number.
225

H
Huihuang Zheng 已提交
226 227
    Args:
        var (Variable): the Variable object
T
tianshuo78520a 已提交
228
        feed (LoDTensor): the fed value, which must be a LoDTensor
229 230
        num_places: an integer value indicating the number of places.
            ParallelExecutor will divide data into devices (CPU/GPU) evenly.
H
Huihuang Zheng 已提交
231 232 233 234 235 236 237
    Returns:
        True if the shape and dtype of variable is compatible with the feed value
    Raises:
        ValueError: if the shape or dtype of the variable is not compatible with
            the feed value
    """
    if var.desc.need_check_feed():
238 239
        diff_shape = core.diff_tensor_shape(feed, var.desc, num_places)
        if diff_shape is not None:
240
            raise ValueError(
T
tianshuo78520a 已提交
241
                'The fed Variable %r should have dimensions = %d, shape = '
242 243 244
                '%r, but received fed shape %r on each device'
                % (var.name, len(var.shape), var.shape, diff_shape)
            )
H
Huihuang Zheng 已提交
245
        if not dtype_is_compatible_with(feed._dtype(), var.dtype):
246 247 248 249 250 251 252 253 254 255
            var_dtype_format = (
                convert_dtype(var.dtype)
                if isinstance(var.dtype, core.VarDesc.VarType)
                else var.dtype
            )
            feed_dtype_format = (
                convert_dtype(feed._dtype())
                if isinstance(feed._dtype(), core.VarDesc.VarType)
                else feed._dtype()
            )
256
            raise ValueError(
257 258 259
                'The data type of fed Variable %r must be %r, but received %r'
                % (var.name, var_dtype_format, feed_dtype_format)
            )
H
Huihuang Zheng 已提交
260 261 262
    return True


263
def has_feed_operators(block, feed_targets, feed_holder_name):
264
    """Check whether the block already has feed operators.
265 266 267 268 269 270 271 272 273 274

    Return false if the block does not have any feed operators.
    If some feed operators have been prepended to the block, check that
    the info contained in these feed operators matches the feed_targets
    and feed_holder_name. Raise exception when any mismatch is found.
    Return true when the block has feed operators with matching info.

    Args:
        block: a block instance (typically global block of a program)
        feed_targets: a dictionary of {feed_target_name: feed_target_data}
X
xuwei06 已提交
275 276
        feed_holder_name: the name of the variable that holds the data of
            all feed targets. The type of this feed_holder variable is
277 278 279
            FEED_MINIBATCH, which is essentially vector<LoDTensor>.

    Returns:
X
xuwei06 已提交
280
        A boolean value that indicates whether a block has feed operators
281 282 283 284 285 286 287 288 289 290
        that match the info contained in feed_targets and feed_holder_name.
    """

    feed_count = 0
    for op in block.ops:
        if op.desc.type() == 'feed':
            feed_count += 1
            assert op.desc.input('X')[0] == feed_holder_name
            feed_target_name = op.desc.output('Out')[0]
            if feed_target_name not in feed_targets:
291 292
                raise Exception(
                    "'feed_targets' does not have {} variable".format(
293 294 295
                        feed_target_name
                    )
                )
296 297 298 299
        else:
            break
    if feed_count > 0 and feed_count != len(feed_targets):
        raise Exception(
300 301
            "Feed operators in program desc do not match 'feed_targets'"
        )
302 303 304
    return feed_count > 0


305 306 307 308
def has_fetch_operators(
    block, fetch_targets, fetch_holder_name, fetch_op='fetch'
):
    """Check whether the block already has fetch operators.
X
xuwei06 已提交
309

310 311 312 313 314 315 316 317 318
    Return false if the block does not have any fetch operators.
    If some fetch operators have been appended to the block, check that
    the info contained in these fetch operators matches the fetch_targets
    and fetch_holder_name. Raise exception when any mismatch is found.
    Return true when the block has fetch operators with matching info.

    Args:
        block: a block instance (typically global block of a program)
        fetch_targets: a dictionary of {fetch_target_name: fetch_target_data}
X
xuwei06 已提交
319 320 321
        fetch_holder_name: the name of the variable that holds the data of
            all fetch targets. The type of this fetch_holder variable is
            FETCH_LIST, which is essentially vector<LoDTensor>.
322
        fetch_op: the operator name of fetch
323

X
xuwei06 已提交
324 325 326
    Return:
        A boolean value that indicates whether a block has fetch operators
        that match the info contained in fetch_targets and fetch_holder_name.
327 328 329 330
    """

    fetch_count = 0
    for op in block.ops:
331
        if op.desc.type() == fetch_op:
332 333 334 335
            fetch_count += 1
            assert op.desc.output('Out')[0] == fetch_holder_name
            fetch_target_name = op.desc.input('X')[0]
            if fetch_target_name not in [
336
                var.desc.name() for var in fetch_targets
337
            ]:
338 339
                raise Exception(
                    "'fetch_targets' does not have {} variable".format(
340 341 342
                        fetch_target_name
                    )
                )
343 344 345 346
            idx = op.desc.attr('col')
            assert fetch_target_name == fetch_targets[idx].desc.name()
    if fetch_count > 0 and fetch_count != len(fetch_targets):
        raise Exception(
347 348
            "Fetch operators in program desc do not match 'fetch_targets'"
        )
349 350 351
    return fetch_count > 0


352 353 354
def _add_feed_fetch_ops(
    program, feed, fetch_list, feed_var_name, fetch_var_name, use_fetch_v2=False
):
R
Ruibiao Chen 已提交
355 356 357 358 359 360 361 362 363 364
    tmp_program = program.clone()

    global_block = tmp_program.global_block()

    if feed_var_name in global_block.vars:
        feed_var = global_block.var(feed_var_name)
    else:
        feed_var = global_block.create_var(
            name=feed_var_name,
            type=core.VarDesc.VarType.FEED_MINIBATCH,
365 366
            persistable=True,
        )
R
Ruibiao Chen 已提交
367 368 369 370 371 372 373

    if fetch_var_name in global_block.vars:
        fetch_var = global_block.var(fetch_var_name)
    else:
        fetch_var = global_block.create_var(
            name=fetch_var_name,
            type=core.VarDesc.VarType.FETCH_LIST,
374 375
            persistable=True,
        )
R
Ruibiao Chen 已提交
376 377 378 379 380 381

    # prepend feed operators
    if not has_feed_operators(global_block, feed, feed_var_name):
        for i, name in enumerate(feed):
            if global_block.has_var(name):
                out = global_block.var(name)
382 383 384 385 386 387
                global_block._prepend_op(
                    type='feed',
                    inputs={'X': [feed_var]},
                    outputs={'Out': [out]},
                    attrs={'col': i},
                )
R
Ruibiao Chen 已提交
388 389 390
            else:
                warnings.warn(
                    "The variable %s is not found in program. It is not declared or is pruned."
391 392
                    % name
                )
R
Ruibiao Chen 已提交
393 394 395 396 397 398 399

    if use_fetch_v2:
        fetch_op = 'fetch_v2'
    else:
        fetch_op = 'fetch'

    # append fetch_operators
400 401 402
    if not has_fetch_operators(
        global_block, fetch_list, fetch_var_name, fetch_op
    ):
R
Ruibiao Chen 已提交
403 404
        for i, var in enumerate(fetch_list):
            assert isinstance(var, Variable) or isinstance(
405 406 407 408 409 410 411 412
                var, str
            ), "Wrong type for fetch_list[%s]: %s" % (i, type(var))
            global_block.append_op(
                type=fetch_op,
                inputs={'X': [var]},
                outputs={'Out': [fetch_var]},
                attrs={'col': i},
            )
R
Ruibiao Chen 已提交
413 414 415 416

    return tmp_program


417 418 419
def _apply_inplace_addto_pass(
    program, enable_inplace, enable_addto, skip_var_names
):
R
Ruibiao Chen 已提交
420 421 422 423 424 425 426 427
    use_cuda = True if core.is_compiled_with_cuda() else False

    attrs = {"use_cuda": use_cuda, "mem_opt_skip_vars": skip_var_names}
    attr_types = {"use_cuda": "bool", "mem_opt_skip_vars": "list[str]"}

    empty_startup_program = Program()
    if enable_inplace:
        pass_name = "buffer_shared_inplace_pass"
428 429 430
        _apply_pass(
            program, empty_startup_program, pass_name, attrs, attr_types
        )
R
Ruibiao Chen 已提交
431 432
    if enable_addto and use_cuda:
        pass_name = "inplace_addto_op_pass"
433 434 435
        _apply_pass(
            program, empty_startup_program, pass_name, attrs, attr_types
        )
R
Ruibiao Chen 已提交
436 437


W
Wu Yi 已提交
438
def _fetch_var(name, scope=None, return_numpy=True):
X
xuwei06 已提交
439
    """
C
chengduoZH 已提交
440 441 442
    Fetch the value of the variable with the given name from the
    given scope.

X
xuwei06 已提交
443
    Args:
444 445 446 447
        name(str): name of the variable. Typically, only persistable variables
            can be found in the scope used for running the program.
        scope(core.Scope|None): scope object. It should be the scope where
            you pass to Executor.run() when running your program.
C
chengduoZH 已提交
448 449 450 451
            If None, global_scope() will be used. Default None.
        return_numpy(bool): whether convert the tensor to numpy.ndarray.
            Default True.

X
xuwei06 已提交
452 453 454
    Returns:
       LodTensor|numpy.ndarray
    """
455
    assert isinstance(name, str)
X
xuwei06 已提交
456 457
    if scope is None:
        scope = global_scope()
S
sneaxiy 已提交
458
    assert isinstance(scope, core._Scope)
X
xuwei06 已提交
459

460
    var = scope.find_var(_to_name_str(name))
461 462 463
    assert var is not None, (
        "Cannot find " + name + " in scope. Perhaps you need to make the"
        " variable persistable by using var.persistable = True in your"
464 465
        " program."
    )
X
xuwei06 已提交
466 467
    tensor = var.get_tensor()
    if return_numpy:
468
        tensor = as_numpy(tensor, copy=True)
X
xuwei06 已提交
469 470 471
    return tensor


X
polish  
Xin Pan 已提交
472
def _to_name_str(var):
473 474 475 476 477
    def _to_str(var):
        if isinstance(var, Variable):
            return var.desc.name()
        elif isinstance(var, str):
            return var
478
        elif isinstance(var, str):
479 480
            return str(var)
        elif isinstance(var, Operator):
481
            return str(id(var))
482 483 484 485 486 487 488 489 490 491
        else:
            raise TypeError(str(var) + " should be Variable, Operator or str")

    # NOTEz(zhiqiu): The item in fetch_list may be tuple returned by Optimizer.minimize(),
    # see comments in _split_optimize_ops_in_fetch_list for more details.
    if isinstance(var, tuple):
        var = var[0]
    if isinstance(var, list):
        s = [_to_str(item) for item in var]
        return ','.join(s)
X
polish  
Xin Pan 已提交
492
    else:
493
        return _to_str(var)
Q
qiaolongfei 已提交
494 495


496 497
def _prepare_fleet_executor():
    from ..distributed.fleet.proto import fleet_executor_desc_pb2
498

499 500 501 502 503 504 505 506 507 508 509 510 511 512 513
    trainer_endpoints_str = os.getenv("PADDLE_TRAINER_ENDPOINTS", "")
    trainer_endpoints = trainer_endpoints_str.split(',')
    fleet_exe_desc = fleet_executor_desc_pb2.FleetExecutorDesc()
    cur_rank = int(os.getenv("PADDLE_TRAINER_ID", 0))
    fleet_exe_desc.cur_rank = cur_rank
    nrank = len(trainer_endpoints)
    for rank, endpoint in enumerate(trainer_endpoints):
        rank_info = fleet_executor_desc_pb2.RankInfo()
        rank_info.rank = rank
        rank_info.ip_port = endpoint
        fleet_exe_desc.cluster_info.append(rank_info)
    fleet_exe = core.FleetExecutor(fleet_exe_desc.SerializeToString())
    return fleet_exe


L
Leo Chen 已提交
514 515
def _get_strong_program_cache_key_for_new_exe(program, feed, fetch_list):
    return program.desc.cached_hash_str() + _get_program_cache_key(
516 517
        feed, fetch_list
    )
L
Leo Chen 已提交
518 519


520
def _get_strong_program_cache_key(program, feed, fetch_list):
L
Leo Chen 已提交
521
    # TODO(zhiqiu): use hash_str to generate cache key as above
522 523 524 525 526 527
    def _get_varname_from_block(block):
        block_str = []
        for var_name in list(block.vars.keys()):
            block_str.append(var_name)
        return "\n".join(block_str)

528 529 530 531 532 533 534 535 536 537
    inner_program = (
        program._program
        if isinstance(program, compiler.CompiledProgram)
        else program
    )
    return (
        _get_varname_from_block(inner_program.blocks[0])
        + str(id(program))
        + _get_program_cache_key(feed, fetch_list)
    )
538 539


X
polish  
Xin Pan 已提交
540
def _get_program_cache_key(feed, fetch_list):
541 542 543 544 545 546
    feed_var_names = []
    if isinstance(feed, dict):
        feed_var_names = list(feed.keys())
    elif isinstance(feed, list) or isinstance(feed, tuple):
        for i, each in enumerate(feed):
            feed_var_names += list(each.keys())
X
polish  
Xin Pan 已提交
547
    fetch_var_names = list(map(_to_name_str, fetch_list))
Q
qiaolongfei 已提交
548 549 550
    return str(feed_var_names + fetch_var_names)


551
def _as_lodtensor(data, place, dtype=None):
W
Wu Yi 已提交
552
    """
553 554
    Convert numpy.ndarray to Tensor, its only support Tensor without LoD information.
    For higher dimensional sequence data, please use LoDTensor directly.
W
Wu Yi 已提交
555

556 557 558 559 560 561 562
    Examples:
        >>> import paddle.fluid as fluid
        >>> place = fluid.CPUPlace()
        >>> exe = fluid.executor(place)
        >>> data = np.array(size=(100, 200, 300))
        >>> np_outs = map(lambda x: fluid.executor._as_lodtensor(x, place), data)
        >>>     ...
W
Wu Yi 已提交
563

564 565 566 567
    Args:
        data(numpy.ndarray|list|tuple|scalar): a instance of array, scalar, list or tuple
        data(core.Place): the place of created tensor
        dtype(core.VarDesc.VarType|str): the expected data type of created tensor
W
Wu Yi 已提交
568

569 570 571 572
    Returns:
        LoDTensor
    """
    # NOTE(zhiqiu): convert python builtin, like float, int, and list, to numpy ndarray
573
    if not isinstance(data, np.ndarray):
574 575 576 577 578 579 580 581
        assert (
            dtype is not None
        ), 'The dtype should be given when feed data is not np.ndarray'
        dtype = (
            convert_dtype(dtype)
            if isinstance(dtype, core.VarDesc.VarType)
            else dtype
        )
582
        if np.isscalar(data):
583
            data = np.array(data).astype(dtype)
584 585
        elif isinstance(data, (list, tuple)):
            data = np.array(data)
586
            if data.dtype == np.object_:
587 588 589 590 591 592 593 594 595
                raise TypeError(
                    "\n\tFaild to convert input data to a regular ndarray :\n\t* Usually "
                    "this means the input data contains nested lists with different lengths. "
                    "Please consider using 'fluid.create_lod_tensor' to convert it to a LoD-Tensor."
                )
            data = data.astype(dtype)
        else:
            raise TypeError(
                "Convert data of type {} to Tensor is not supported".format(
596 597 598
                    type(data)
                )
            )
599

600
    # convert numpy.ndarray to tensor
W
Wu Yi 已提交
601 602 603 604 605
    tensor = core.LoDTensor()
    tensor.set(data, place)
    return tensor


606
class FetchHandler:
D
Dong Daxiang 已提交
607
    def __init__(self, var_dict=None, period_secs=60):
608
        assert var_dict is not None
D
Dong Daxiang 已提交
609
        self.var_dict = var_dict
610 611
        self.period_secs = period_secs

D
Dong Daxiang 已提交
612 613 614 615 616
    def handler(self, res_dict):
        for key in res_dict:
            if type(res_dict[key]) is np.ndarray:
                sys.stdout.write("{}[0]: {} ".format(key, res_dict[key][0]))
        sys.stdout.write("\n")
617 618 619

    @staticmethod
    def help():
620 621
        print(
            """
D
Dong Daxiang 已提交
622 623 624 625 626 627 628 629
class FetchHandlerExample(FetchHandler):
    def handler(self, res_dict):
        print(res_dict["auc"])
        print("auc: {}, {}".format(res_dict["auc"], time.ctime()))

auc = Variable()
var_dict = {"auc": auc}
handler = FetchHandlerExample(var_dict=var_dict)
630 631
"""
        )
632 633


634
class _StandaloneExecutor:
635
    def __init__(self, place, programs, scope):
636 637
        self._place = core.Place()
        self._place.set_place(place)
638
        self._programs = programs
639
        self._scope = scope
640 641
        self._new_exe = self._create_new_executor()

642
    def run(self, scope, feed_names, fetch_list, return_numpy=True):
643 644
        """
        Args:
645
            feed_names(list): This parameter represents the input names of the model.
646
            fetch_list(list): This parameter represents the Tensors that need to be returned
647
                after the model runs. The default is None.
648 649 650 651 652 653
            return_numpy(bool): This parameter indicates whether convert the fetched Tensors
                (the Tensor specified in the fetch list) to numpy.ndarray. if it is False,
                the type of the return value is a list of :code:`LoDTensor`. The default is True.
        """
        fetch_list = self._check_fetch(fetch_list)

654 655 656
        tensors = self._new_exe.run(
            scope, feed_names, fetch_list
        )._move_to_list()
657 658 659 660 661 662
        if return_numpy:
            return as_numpy(tensors, copy=True)
        else:
            return tensors

    def _create_new_executor(self):
663 664 665
        new_exe = core.StandaloneExecutor(
            self._place, [program.desc for program in self._programs]
        )
666 667 668 669 670 671 672 673 674 675 676 677 678

        return new_exe

    def _check_fetch(self, fetch_list):
        if fetch_list is None:
            fetch_list = []

        res = []
        for fetch_var in fetch_list:
            if isinstance(fetch_var, Variable):
                fetch_var = fetch_var.name
            elif not isinstance(fetch_var, str):
                raise TypeError(
679 680 681 682
                    "Required fetch_var shall be str|Variable, but received {}".format(
                        type(fetch_var).__name__
                    )
                )
683 684 685 686 687

            res.append(fetch_var)
        return res


688 689
class _ExecutorCache:
    class _CachedData:
690 691 692 693 694 695 696 697 698 699
        def __init__(
            self,
            program,
            feed,
            fetch_list,
            feed_var_name,
            fetch_var_name,
            place,
            scope,
        ):
R
Ruibiao Chen 已提交
700 701 702 703 704 705 706 707 708 709 710
            self.program = program
            self.feed = feed
            self.fetch_list = fetch_list
            self.feed_var_name = feed_var_name
            self.fetch_var_name = fetch_var_name
            self.place = place
            self.scope = scope

            # NOTE(Ruibiao): Not all changeable item is considered for key at present,
            # ONLY: program, feed, and fetch_list
            if isinstance(self.program, compiler.CompiledProgram):
711 712 713 714
                if not self.program._program:
                    # The program holds no _program, maybe it is constructed by graph.
                    # Convert graph to program in order to generate key.
                    self.program._program = framework.IrGraph(
715 716
                        self.program._graph
                    ).to_program()
R
Ruibiao Chen 已提交
717 718
                self.key = hash(
                    _get_strong_program_cache_key_for_new_exe(
719 720 721
                        self.program._program, feed, fetch_list
                    )
                )
R
Ruibiao Chen 已提交
722 723 724
            else:
                self.key = hash(
                    _get_strong_program_cache_key_for_new_exe(
725 726 727
                        self.program, feed, fetch_list
                    )
                )
R
Ruibiao Chen 已提交
728 729

        def __eq__(self, other):
730 731 732 733
            return (
                isinstance(other, _ExecutorCache._CachedData)
                and self.key == other.key
            )
R
Ruibiao Chen 已提交
734 735 736 737 738 739 740 741 742

        def __hash__(self):
            return self.key

    def __init__(self):
        # NOTE(Ruibiao): Wrap the lru_cache in constructor so that the cache is local to
        # the _ExecutorCache instance, otherwise a global cache may not be released after
        # the Executor instance deleted
        self._get_cached_program_and_executor = lru_cache(maxsize=8)(
743 744
            self._get_program_and_executor
        )
R
Ruibiao Chen 已提交
745 746 747 748

    def clear(self):
        self._get_cached_program_and_executor.cache_clear()

749 750 751 752 753 754 755 756 757 758
    def get_program_and_executor(
        self,
        program,
        feed,
        fetch_list,
        feed_var_name,
        fetch_var_name,
        place,
        scope,
    ):
R
Ruibiao Chen 已提交
759
        return self._get_cached_program_and_executor(
760 761 762 763 764 765 766 767 768 769
            self._CachedData(
                program,
                feed,
                fetch_list,
                feed_var_name,
                fetch_var_name,
                place,
                scope,
            )
        )
R
Ruibiao Chen 已提交
770 771 772

    def _get_program_and_executor(self, cached_data):
        program = cached_data.program
773 774 775 776 777
        inner_program = (
            program._program
            if isinstance(program, compiler.CompiledProgram)
            else program
        )
R
Ruibiao Chen 已提交
778 779 780 781 782 783 784 785 786
        feed = cached_data.feed
        fetch_list = cached_data.fetch_list
        feed_var_name = cached_data.feed_var_name
        fetch_var_name = cached_data.fetch_var_name
        place = cached_data.place
        scope = cached_data.scope

        # To apply IR pass, compile the Program to IrGraph and convert it back to Program
        if isinstance(program, compiler.CompiledProgram) or isinstance(
787 788 789 790 791 792 793
            program._graph, compiler.CompiledProgram
        ):
            compiled_program = (
                program
                if isinstance(program, compiler.CompiledProgram)
                else program._graph
            )
R
Ruibiao Chen 已提交
794 795
            build_strategy = compiled_program._build_strategy
            # print(f"Program before convert:\n {inner_program}", flush=True)
796 797 798 799 800 801 802 803 804 805
            use_cuda_graph = False
            # When using cuda graph, the cuda graph preparation logic in PE is not
            # executed, but it is processed in the constructor of new executor.
            if (
                build_strategy is not None
                and build_strategy.allow_cuda_graph_capture
            ):
                use_cuda_graph = True
                build_strategy.allow_cuda_graph_capture = False
                set_flags({"FLAGS_new_executor_use_cuda_graph": True})
R
Ruibiao Chen 已提交
806
            compiled_program._compile(scope, place)
807 808
            if use_cuda_graph:
                build_strategy.allow_cuda_graph_capture = True
R
Ruibiao Chen 已提交
809 810 811
            ir_graph = framework.IrGraph(compiled_program._graph)
            converted_program = ir_graph.to_program()

812 813
            if hasattr(inner_program, 'lr_scheduler'):
                converted_program.lr_scheduler = inner_program.lr_scheduler
R
Ruibiao Chen 已提交
814 815 816 817 818 819

            inner_program = converted_program
            # print(f"Program after convert:\n {inner_program}", flush=True)
        else:
            build_strategy = None
            from paddle.incubate.autograd import prim_enabled, prim2orig
820

R
Ruibiao Chen 已提交
821 822 823 824 825
            if prim_enabled() and program == default_main_program():
                prim2orig()

            inner_program = program

826 827 828 829 830 831 832 833
        program = _add_feed_fetch_ops(
            program=inner_program,
            feed=feed,
            fetch_list=fetch_list,
            feed_var_name=feed_var_name,
            fetch_var_name=fetch_var_name,
            use_fetch_v2=True,
        )
R
Ruibiao Chen 已提交
834 835 836

        # standalone executor will apply buffer_shared_inplace_pass and
        # inplace_addto_op_pass to program according to build_strategy
837 838 839 840 841 842 843 844 845 846
        enable_inplace = (
            True
            if build_strategy is None or build_strategy.enable_inplace
            else False
        )
        enable_addto = (
            True
            if build_strategy is not None and build_strategy.enable_addto
            else False
        )
R
Ruibiao Chen 已提交
847 848 849
        if enable_inplace or enable_addto:
            # inplace should skip feed and fetch var
            skip_var_names = eval(_get_program_cache_key(feed, fetch_list))
850 851 852
            _apply_inplace_addto_pass(
                program, enable_inplace, enable_addto, skip_var_names
            )
R
Ruibiao Chen 已提交
853 854

        new_program = program.clone()
855
        new_exe = _StandaloneExecutor(place, [new_program], scope)
R
Ruibiao Chen 已提交
856
        return new_program, new_exe
857 858


859
class Executor:
860
    """
861 862
    :api_attr: Static Graph

863
    An Executor in Python, supports single/multiple-GPU running,
864
    and single/multiple-CPU running.
C
chengduo 已提交
865 866

    Args:
867
        place(paddle.CPUPlace()|paddle.CUDAPlace(n)|str|None): This parameter represents
868 869 870 871
            which device the executor runs on. When this parameter is None, PaddlePaddle
            will set the default device according to its installation version. If Paddle
            is CPU version, the default device would be set to `CPUPlace()` . If Paddle is
            GPU version, the default device would be set to `CUDAPlace(0)` . Default is None.
872
            If ``place`` is string, it can be ``cpu``, and ``gpu:x``, where ``x``
873 874
            is the index of the GPUs. Note: users only pass one Place or None to initialize
            Executor when using multiple-cards. Other APIs will override the cards. See
875
            `document for multiple-cards <https://www.paddlepaddle.org.cn/documentation/docs/en/develop/guides/01_paddle2.0_introduction/update_en.html#stand-alone-multi-card-launch>`_
C
chengduo 已提交
876 877 878

    Returns:
        Executor
S
Fix doc  
sneaxiy 已提交
879

880
    Examples:
S
Fix doc  
sneaxiy 已提交
881 882
        .. code-block:: python

883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916
            import paddle
            import numpy
            import os

            # Executor is only used in static graph mode
            paddle.enable_static()

            # Set place explicitly.
            # use_cuda = True
            # place = paddle.CUDAPlace(0) if use_cuda else paddle.CPUPlace()
            # exe = paddle.static.Executor(place)

            # If you don't set place, PaddlePaddle sets the default device.
            exe = paddle.static.Executor()

            train_program = paddle.static.Program()
            startup_program = paddle.static.Program()
            with paddle.static.program_guard(train_program, startup_program):
                data = paddle.static.data(name='X', shape=[None, 1], dtype='float32')
                hidden = paddle.static.nn.fc(data, 10)
                loss = paddle.mean(hidden)
                paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)

            # Run the startup program once and only once.
            # Not need to optimize/compile the startup program.
            exe.run(startup_program)

            # Run the main program directly without compile.
            x = numpy.random.random(size=(10, 1)).astype('float32')
            loss_data, = exe.run(train_program, feed={"X": x}, fetch_list=[loss.name])

            # Or, compiled the program and run. See `CompiledProgram`
            # for more details.
            compiled_prog = paddle.static.CompiledProgram(
917
                train_program)
918 919
            loss_data, = exe.run(compiled_prog, feed={"X": x}, fetch_list=[loss.name])

920 921
    """

922 923
    def __init__(self, place=None):
        if place is None:
924 925
            expected_place = framework._current_expected_place()
            self.place = expected_place
926
        else:
927
            self.place = framework._get_paddle_place(place)
Q
qiaolongfei 已提交
928
        self.program_caches = dict()
929
        self.ctx_caches = dict()
930
        self.trainer_caches = dict()
931
        self.scope_caches = dict()
932
        self.micro_scope_cache = dict()
933
        self.var_caches = dict()
934
        self.pruned_program_caches = dict()
935 936 937
        p = core.Place()
        p.set_place(self.place)
        self._default_executor = core.Executor(p)
Y
Yancey1989 已提交
938
        self._closed = False
939
        self.pruned_program_scope_caches = dict()
940
        self._prepare_to_run_called = False
D
dzhwinter 已提交
941

942
        self._auto_checkpoint_name = unique_name.generate(
943 944
            "__auto_checkpoint_executor__"
        )
945

R
Ruibiao Chen 已提交
946
        self._executor_cache = _ExecutorCache()
947

948
        self._fleet_executor = None
949 950 951
        # TODO(liyurui): This option will be removed and always true when the functionality
        # of fleet executor with standalone executor is ready.
        self._fleet_executor_with_standalone = False
952

meteor135's avatar
meteor135 已提交
953 954 955 956 957 958 959
        self.op_role_key = core.op_proto_and_checker_maker.kOpRoleAttrName()

    def _is_optimizer_op(self, op):
        return self.op_role_key in op.attr_names and int(
            op.all_attrs()[self.op_role_key]
        ) & int(core.op_proto_and_checker_maker.OpRole.Optimize)

R
Ruibiao Chen 已提交
960 961 962 963 964 965
    def __del__(self):
        # NOTE(Ruibiao): The manually call of clear is required. Because in Python, executor_cache
        # may not immediately destructed after Executor instance deleted (so does not the _StandaloneExecutor),
        # that brings errors to mkl-dnn unit tests (see ClearMKLDNNCache in interpretercore.cc for why).
        self._executor_cache.clear()

966 967 968
    def _get_scope_cache(self, program_cache_key):
        return self.scope_caches.get(program_cache_key, None)

969 970 971
    def _get_ctx_cache(self, program_cache_key):
        return self.ctx_caches.get(program_cache_key, None)

972 973 974
    def _get_trainer_cache(self, program_cache_key):
        return self.trainer_caches.get(program_cache_key, None)

Q
Qiao Longfei 已提交
975 976 977 978 979 980
    def _get_program_cache(self, program_cache_key):
        return self.program_caches.get(program_cache_key, None)

    def _add_program_cache(self, program_cache_key, program):
        self.program_caches[program_cache_key] = program

981 982 983 984 985 986 987 988 989 990 991 992
    def _get_pruned_program_cache(self, program_cache_key):
        return self.pruned_program_caches.get(program_cache_key, None)

    def _add_pruned_program_cache(self, program_cache_key, program):
        self.pruned_program_caches[program_cache_key] = program

    def _get_pruned_program_scope_cache(self, program_cache_key):
        return self.pruned_program_scope_caches.get(program_cache_key, None)

    def _add_pruned_program_scope_cache(self, program_cache_key, program):
        self.pruned_program_scope_caches[program_cache_key] = program

993 994 995
    def _add_ctx_cache(self, ctx_cache_key, ctx):
        self.ctx_caches[ctx_cache_key] = ctx

996 997 998
    def _add_trainer_cache(self, trainer_cache_key, ctx):
        self.trainer_caches[trainer_cache_key] = ctx

999 1000 1001
    def _add_scope_cache(self, scope_cache_key, scope):
        self.scope_caches[scope_cache_key] = scope

1002 1003 1004 1005 1006 1007
    def _add_micro_scopes_cache(self, program_cache_key, micro_scopes: list):
        self.micro_scope_cache[program_cache_key] = micro_scopes

    def _get_micro_scopes_cache(self, program_cache_key):
        return self.micro_scope_cache.get(program_cache_key, None)

1008 1009 1010 1011 1012 1013 1014
    # just for testing, will be removed later
    @lru_cache()
    def _log_force_set_program_cache(self, use_program_cache):
        logging.warning(
            f"use_program_cache is force set to {use_program_cache} by FLAGS_FORCE_USE_PROGRAM_CACHE"
        )

Q
Qiao Longfei 已提交
1015 1016
    def _feed_data(self, program, feed, feed_var_name, scope):
        # feed var to framework
H
Huihuang Zheng 已提交
1017 1018
        global_block = program.global_block()
        for op in global_block.ops:
Q
Qiao Longfei 已提交
1019 1020 1021
            if op.desc.type() == 'feed':
                feed_target_name = op.desc.output('Out')[0]
                cur_feed = feed[feed_target_name]
H
Huihuang Zheng 已提交
1022
                var = global_block.var(feed_target_name)
S
Steffy-zxf 已提交
1023 1024
                if var.dtype != core.VarDesc.VarType.STRINGS:
                    if not isinstance(cur_feed, core.LoDTensor):
1025 1026 1027
                        cur_feed = _as_lodtensor(
                            cur_feed, self.place, var.dtype
                        )
S
Steffy-zxf 已提交
1028
                    check_feed_shape_type(var, cur_feed)
Q
Qiao Longfei 已提交
1029 1030 1031 1032 1033 1034 1035 1036
                idx = op.desc.attr('col')
                core.set_feed_variable(scope, cur_feed, feed_var_name, idx)
            else:
                break

    def _fetch_data(self, fetch_list, fetch_var_name, scope):
        outs = [
            core.get_fetch_variable(scope, fetch_var_name, i)
1037
            for i in range(len(fetch_list))
Q
Qiao Longfei 已提交
1038 1039 1040
        ]
        return outs

1041 1042
    @classmethod
    def _split_optimize_ops_in_fetch_list(cls, fetch_list):
1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053
        """
        Split optimize_ops from fetch_list, which provided to specify program prunning.
        Args:
            fetch_list(list): The original fetch_list.
            Possible types of fetch_list are:
                fetch_list = ['loss']
                fetch_list = [[sgd, sgd], 'loss']
                fetch_list = [([sgd, sgd], [(param, grad)]), 'loss']

        Returns:
            optimize_ops(list): The optimize operators splited from fetch_list.
1054
            fetch_list(list):  The updated fetch_list which does not contain optimize operators.
1055 1056 1057 1058 1059 1060 1061 1062 1063 1064
        """
        _optimize_ops = []
        _fetch_list = []

        def _get_targets(_optimize_ops, _fetch_list, item):
            if isinstance(item, Operator):
                if item._is_optimize_op():
                    _optimize_ops.append(item)
                else:
                    raise TypeError(
1065 1066 1067 1068 1069 1070 1071
                        "The operator in fetch_list is not an optimize_op"
                    )
            elif (
                isinstance(item, Variable)
                or isinstance(item, str)
                or isinstance(item, str)
            ):
1072 1073 1074
                _fetch_list.append(item)
            else:
                raise TypeError(
1075
                    "The item in fetch_list should be str, variable or optimize_op, but received %s.",
1076 1077
                    type(item),
                )
1078

1079
        for index, item in enumerate(fetch_list):
1080 1081 1082 1083 1084 1085 1086
            # NOTE(zhiqiu): to support (optimizer_ops, param_and_grads) and optimizer_ops in fetch_list
            # we should handle tuple and list in fetch_list.
            # TODO(zhiqiu): find a better way to handle that.
            if isinstance(item, list):
                for i in item:
                    _get_targets(_optimize_ops, _fetch_list, i)
            elif isinstance(item, tuple):
1087 1088
                if not isinstance(item[0], (list, tuple)):
                    raise TypeError(
1089 1090 1091 1092
                        "Requires fetch_list[{}][0] shall be one of (list, tuple) when type(fetch_list[{}]) is `tuple`, but received fetch_list[{}][0]'s type is `{}`.".format(
                            index, index, index, type(item[0]).__name__
                        )
                    )
1093 1094 1095 1096 1097 1098 1099
                for i in item[0]:
                    _get_targets(_optimize_ops, _fetch_list, i)
            else:
                _get_targets(_optimize_ops, _fetch_list, item)

        return _fetch_list, _optimize_ops

1100
    @classmethod
1101 1102 1103
    def _prune_program(
        cls, program, feed=None, fetch_list=None, optimize_ops=None
    ):
1104 1105
        """
        Prune operators and variables which are not needed to generate
1106 1107 1108
        :code:`fetch_list` and optimize operators.
        Prune operators and variables which are needed
        to generate variables to be feeded.
1109 1110

        Notes: This is a very low level API. Users should not use this API
1111
        directly.
1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161

        Args:
            program(Program): the origin program
            feed(list|dict): feed dict or list.
            fetch_list(list|Variable): A list of variables need to be fetched
            optimize_ops(list[Operator]): A list of optimizer operators

        Returns:
            Program:  A new, pruned program.
        """
        compiled = isinstance(program, compiler.CompiledProgram)
        if compiled:
            if program._program:
                origin_program = program._program
            else:
                warnings.warn(
                    "The program holds no _program, maybe it is constructed by graph, which can't be pruned yet."
                )
                return
        else:
            origin_program = program

        feed_names = []
        if isinstance(feed, dict):
            feed_names = list(feed.keys())
        elif isinstance(feed, list) or isinstance(feed, tuple):
            for i, each in enumerate(feed):
                feed_names += list(each.keys())

        # if optimize_ops is [], all optimize ops in the program is used.
        if not optimize_ops:
            for block in origin_program.blocks:
                for op in block.ops:
                    if op._is_optimize_op():
                        optimize_ops.append(op)

        targets = fetch_list + optimize_ops
        pruned_program = origin_program._prune_with_input(feed_names, targets)

        if compiled:
            # for compiled program, update the underlying program, re-generate graph,
            # and reset the flag so it can be compiled again.
            program._program = pruned_program
            program._graph = core.Graph(pruned_program.desc)
            program._compiled = False
        else:
            program = pruned_program

        return program

1162 1163
    @classmethod
    def _update_feed(cls, program, feed):
1164
        """
1165
        Update the feed dict, remove the feed item which is pruned in program.
1166 1167

        Notes: This is a very low level API. Users should not use this API
1168
        directly.
1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184

        Args:
            program(Program): the pruned program.
            feed(list|dict): feed dict or list.

        Returns:
            feed:(list|dict)  updated feed.
        """
        compiled = isinstance(program, compiler.CompiledProgram)
        if compiled:
            if program._program:
                global_block = program._program.global_block()
            else:
                warnings.warn(
                    "The program holds no _program, maybe it is constructed by graph."
                )
1185
                return feed
1186 1187 1188 1189 1190 1191 1192 1193 1194
        else:
            global_block = program.global_block()

        if isinstance(feed, dict):
            for feed_name in list(feed.keys()):
                if not global_block.has_var(feed_name):
                    feed.pop(feed_name)
                    warnings.warn(
                        "The variable %s is not found in program. It is not declared or is pruned."
1195 1196
                        % feed_name
                    )
1197 1198 1199 1200 1201 1202 1203 1204

        elif isinstance(feed, list) or isinstance(feed, tuple):
            for i, each in enumerate(feed):
                for feed_name in list(each.keys()):
                    if not global_block.has_var(feed_name):
                        each.pop(feed_name)
                        warnings.warn(
                            "The variable %s is not found in program. It is not declared or is pruned."
1205 1206
                            % feed_name
                        )
1207 1208
        return feed

S
Fix doc  
sneaxiy 已提交
1209 1210 1211 1212 1213 1214
    '''
    TODO(typhoonzero): Define "no longer use" meaning? Can user create
    a new Executor for the same program and run?
    TODO(panyx0718): Why ParallelExecutor doesn't have close?
    '''

Y
Yancey1989 已提交
1215 1216
    def close(self):
        """
C
chengduo 已提交
1217 1218 1219
        Close the executor. This interface is used for distributed training (PServers mode).
        This executor can not be used after calling the interface, because
        this interface releases resources associated with the current Trainer.
Y
Yancey1989 已提交
1220

C
chengduo 已提交
1221 1222
        Returns:
            None
1223 1224 1225 1226

        Examples:
            .. code-block:: python

1227
              import paddle
1228

1229 1230
              cpu = paddle.CPUPlace()
              exe = paddle.static.Executor(cpu)
1231 1232
              # execute training or testing
              exe.close()
Y
Yancey1989 已提交
1233
        """
1234
        if not self._closed:
Y
Yancey1989 已提交
1235
            self._closed = True
1236 1237 1238 1239
            for k, trainer_instance in self.trainer_caches.items():
                self._default_executor.release_trainer(trainer_instance)
                del trainer_instance
            self._default_executor.close()
Y
Yancey1989 已提交
1240

1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252
    def run(
        self,
        program=None,
        feed=None,
        fetch_list=None,
        feed_var_name='feed',
        fetch_var_name='fetch',
        scope=None,
        return_numpy=True,
        use_program_cache=False,
        use_prune=False,
    ):
1253
        """
C
chengduo 已提交
1254 1255 1256
        Run the specified :code:`Program` or :code:`CompiledProgram`. It should be noted that the executor
        will execute all the operators in :code:`Program` or :code:`CompiledProgram` without pruning some
        operators of the :code:`Program` or :code:`CompiledProgram` according to fetch_list. And you could
1257 1258
        specify the scope to store the :code:`Tensor` during the executor running if the scope
        is not set, the executor will use the global scope, i.e. :code:`paddle.static.global_scope()`.
1259

C
chengduo 已提交
1260 1261 1262
        Args:
            program(Program|CompiledProgram): This parameter represents the :code:`Program` or
                :code:`CompiledProgram` to be executed. If this parameter is not provided, that
1263
                parameter is None, the program will be set to :code:`paddle.static.default_main_program()`.
C
chengduo 已提交
1264
                The default is None.
1265
            feed(list|dict): This parameter represents the input Tensors of the model.
C
chengduo 已提交
1266
                If it is single card training, the feed is dict type, and if it is multi-card
1267
                training, the parameter feed can be dict or list of Tensors. If the
C
chengduo 已提交
1268 1269 1270 1271 1272 1273 1274
                parameter type is dict, the data in the feed will be split and sent to
                multiple devices (CPU/GPU), that is to say, the input data will be evenly
                sent to different devices, so you should make sure the number of samples of
                the current mini-batch must be greater than the number of places;
                if the parameter type is list, those data are copied directly to each device,
                so the length of this list should be equal to the number of places.
                The default is None.
1275
            fetch_list(list): This parameter represents the Tensors that need to be returned
1276
                after the model runs. The default is None.
1277
            feed_var_name(str): This parameter represents the name of the input Tensor of
C
chengduo 已提交
1278
                the feed operator. The default is "feed".
1279
            fetch_var_name(str): This parameter represents the name of the output Tensor of
C
chengduo 已提交
1280
                the fetch operator. The default is "fetch".
1281
            scope(Scope): the scope used to run this program, you can switch
1282 1283 1284
                it to different scope. default is :code:`paddle.static.global_scope()`
            return_numpy(bool): This parameter indicates whether convert the fetched Tensors
                (the Tensor specified in the fetch list) to numpy.ndarray. if it is False,
C
chengduo 已提交
1285 1286 1287
                the type of the return value is a list of :code:`LoDTensor`. The default is True.
            use_program_cache(bool): This parameter indicates whether the input :code:`Program` is cached.
                If the parameter is True, the model may run faster in the following cases:
1288 1289
                the input program is :code:`paddle.static.Program`, and the parameters(program, feed Tensor name
                and fetch_list Tensor) of this interface remains unchanged during running.
C
chengduo 已提交
1290
                The default is False.
1291
            use_prune(bool): This parameter indicates whether the input :code:`Program` will be pruned.
1292
                If the parameter is True, the program will be pruned accroding to the given feed and fetch_list,
1293 1294
                which means the operators and variables in program that generate :code:`feed` and are not
                needed to generate :code:`fetch_list` will be pruned. The default is False, which means the
1295
                program will not pruned and all the operators and variables will be executed during running.
1296
                Note that if the tuple returned from :code:`Optimizer.minimize()` is passed to :code:`fetch_list`,
1297
                :code:`use_prune` will be overrided to True, and the program will be pruned.
1298

C
chengduo 已提交
1299 1300 1301 1302
        Returns:

            List: The fetched result list.

1303
        Examples:
1304
            .. code-block:: python
1305
                :name: code-example-1
1306

1307 1308
                import paddle
                import numpy
1309

1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320
                # First create the Executor.
                paddle.enable_static()
                place = paddle.CPUPlace()  # paddle.CUDAPlace(0)
                exe = paddle.static.Executor(place)

                data = paddle.static.data(name='X', shape=[None, 1], dtype='float32')
                hidden = paddle.static.nn.fc(data, 10)
                loss = paddle.mean(hidden)
                adam = paddle.optimizer.Adam()
                adam.minimize(loss)
                i = paddle.zeros(shape=[1], dtype='int64')
1321
                array = paddle.tensor.array_write(x=loss, i=i)
1322

1323 1324
                # Run the startup program once and only once.
                exe.run(paddle.static.default_startup_program())
1325

1326 1327 1328 1329 1330
                x = numpy.random.random(size=(10, 1)).astype('float32')
                loss_val, array_val = exe.run(feed={'X': x},
                                              fetch_list=[loss.name, array.name])
                print(array_val)
                # [array([0.02153828], dtype=float32)]
Z
Zhen Wang 已提交
1331 1332

            .. code-block:: python
1333
                :name: code-example-2
Z
Zhen Wang 已提交
1334

1335
                # required: gpu
1336
                import paddle
Z
Zhen Wang 已提交
1337 1338 1339
                import numpy as np

                # First create the Executor.
1340 1341 1342
                paddle.enable_static()
                place = paddle.CUDAPlace(0)
                exe = paddle.static.Executor(place)
Z
Zhen Wang 已提交
1343

1344
                data = paddle.static.data(name='X', shape=[None, 1], dtype='float32')
Z
Zhen Wang 已提交
1345
                class_dim = 2
1346 1347 1348
                prediction = paddle.static.nn.fc(data, class_dim)
                loss = paddle.mean(prediction)
                adam = paddle.optimizer.Adam()
Z
Zhen Wang 已提交
1349 1350 1351
                adam.minimize(loss)

                # Run the startup program once and only once.
1352 1353 1354
                exe.run(paddle.static.default_startup_program())
                build_strategy = paddle.static.BuildStrategy()
                binary = paddle.static.CompiledProgram(
1355
                    paddle.static.default_main_program(), build_strategy=build_strategy)
Z
Zhen Wang 已提交
1356 1357 1358
                batch_size = 6
                x = np.random.random(size=(batch_size, 1)).astype('float32')

1359 1360 1361
                prediction, = exe.run(binary,
                                      feed={'X': x},
                                    fetch_list=[prediction.name])
Z
Zhen Wang 已提交
1362 1363
                # If the user uses two GPU cards to run this python code, the printed result will be
                # (6, class_dim). The first dimension value of the printed result is the batch_size.
1364 1365 1366
                print("The prediction shape: {}".format(
                    np.array(prediction).shape))
                print(prediction)
1367

Z
Zhen Wang 已提交
1368
                # Out:
1369
                # The prediction shape: (6, 2)
Z
Zhen Wang 已提交
1370 1371 1372 1373 1374 1375
                # [[-0.37789783 -0.19921964]
                #  [-0.3577645  -0.18863106]
                #  [-0.24274671 -0.12814042]
                #  [-0.24635398 -0.13003758]
                #  [-0.49232286 -0.25939852]
                #  [-0.44514108 -0.2345845 ]]
1376

1377
        """
1378 1379
        # Temporary FLAGS, just for testing the performance of program cache
        force_use_program_cache = os.environ.get(
1380 1381
            'FLAGS_FORCE_USE_PROGRAM_CACHE', None
        )
1382 1383
        if force_use_program_cache is not None:
            use_program_cache = force_use_program_cache in [
1384 1385 1386 1387 1388
                1,
                '1',
                True,
                'True',
                'true',
1389
            ]
1390
            self._log_force_set_program_cache(use_program_cache)
1391

1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404
        res = self._run_impl(
            program=program,
            feed=feed,
            fetch_list=fetch_list,
            feed_var_name=feed_var_name,
            fetch_var_name=fetch_var_name,
            scope=scope,
            return_numpy=return_numpy,
            use_program_cache=use_program_cache,
            use_prune=use_prune,
        )
        core.update_autotune_status()
        return res
C
chengduo 已提交
1405

1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417
    def _run_impl(
        self,
        program,
        feed,
        fetch_list,
        feed_var_name,
        fetch_var_name,
        scope,
        return_numpy,
        use_program_cache,
        use_prune,
    ):
Y
Yancey1989 已提交
1418 1419 1420
        if self._closed:
            raise RuntimeError("Attempted to use a closed Executor")

C
chengduo 已提交
1421
        use_default_main_program = program is None
1422 1423
        if program is None:
            program = default_main_program()
1424

1425
        fetch_list = self._check_fetch_list(fetch_list)
1426 1427

        if isinstance(program, Program) and program._pipeline_opt:
L
LiYuRio 已提交
1428
            if "fleet_opt" in program._pipeline_opt:
1429 1430 1431
                # Move prepare here for port conflict with nccl in startup program
                if self._fleet_executor is None:
                    self._fleet_executor = _prepare_fleet_executor()
1432 1433 1434 1435
                return self._run_using_fleet_executor(
                    program=program,
                    feed=feed,
                    fetch_list=fetch_list,
1436
                    with_standalone_executor=self._fleet_executor_with_standalone,
1437
                    return_numpy=return_numpy,
1438
                )
1439 1440 1441
            if "startup_program" in program._pipeline_opt:
                program = program._pipeline_opt["startup_program"]
            else:
1442 1443 1444 1445 1446
                return self._run_pipeline(
                    program,
                    fetch_list=fetch_list,
                    use_program_cache=use_program_cache,
                )
1447 1448

        if isinstance(program, Program) and program._heter_pipeline_opt:
1449
            # print("program._heter_pipeline_opt: {}".format(
1450
            #    program._heter_pipeline_opt))
1451
            ## change default executor
1452 1453 1454 1455 1456 1457
            heter_place = program._heter_pipeline_opt["heter_place"]
            heter_place = framework._get_paddle_place(heter_place)
            p = core.Place()
            p.set_place(heter_place)
            self._default_executor = core.Executor(p)
            # TODO(zhangminxu): support heterps pipeline training using exe.run
1458
            if "startup_program" in program._heter_pipeline_opt:
1459
                # print("get startup_program from _pipeline_opt")
1460 1461
                program = program._heter_pipeline_opt["startup_program"]

1462 1463 1464 1465
        if (
            isinstance(program, Program)
            and len(program.global_block().ops) == 0
        ):
C
chengduo 已提交
1466
            if use_default_main_program:
1467 1468 1469 1470
                error_info = (
                    "Now you are using default_main_program, "
                    "but there are no operators in the program to be executed. "
                    "Please ensure you create model correctly or you can pass "
1471
                    "the Program or the CompiledProgram manually."
1472
                )
1473
            else:
1474 1475 1476
                error_info = (
                    "There are no operators in the program to be executed. "
                    "If you pass Program manually, please use fluid.program_guard "
1477
                    "to ensure the current Program is being used."
1478
                )
C
chengduo 已提交
1479
            warnings.warn(error_info)
1480

1481 1482
        if scope is None:
            scope = global_scope()
1483

1484 1485 1486 1487
        # use_prune can be overrided by putting optimize_ops in fetch_list
        _origin_fetch_list = fetch_list
        _origin_program = program
        fetch_list, optimize_ops = self._split_optimize_ops_in_fetch_list(
1488 1489
            fetch_list
        )
1490 1491 1492
        if optimize_ops:
            use_prune = True
        if use_prune:
1493 1494 1495
            cache_key = _get_strong_program_cache_key(
                program, feed, _origin_fetch_list
            )
1496 1497 1498 1499
            cached_pruned_program = self._get_pruned_program_cache(cache_key)
            if cached_pruned_program is None:
                if isinstance(program, compiler.CompiledProgram):
                    program_scope_cache = self._get_pruned_program_scope_cache(
1500 1501
                        str(id(_origin_program))
                    )
1502 1503 1504 1505
                    # copy the original program, so it can be cached.
                    program = copy.copy(program)
                    # share the local scopes for same original CompiledProgram.
                    program._share_vars_from = program_scope_cache
1506 1507 1508 1509 1510 1511
                    if (
                        self._get_pruned_program_scope_cache(
                            str(id(_origin_program))
                        )
                        is None
                    ):
1512
                        self._add_pruned_program_scope_cache(
1513 1514 1515 1516 1517
                            str(id(_origin_program)), program
                        )
                pruned_program = self._prune_program(
                    program, feed, fetch_list, optimize_ops
                )
1518 1519 1520 1521 1522 1523 1524
                self._add_pruned_program_cache(cache_key, pruned_program)
            else:
                pruned_program = cached_pruned_program

            feed = self._update_feed(pruned_program, feed)
            program = pruned_program

1525
        def _can_use_interpreter_core(program, place):
1526 1527 1528
            compiled = isinstance(
                program, compiler.CompiledProgram
            ) or isinstance(program._graph, compiler.CompiledProgram)
1529
            if compiled:
1530 1531 1532 1533 1534
                compiled_program = (
                    program
                    if isinstance(program, compiler.CompiledProgram)
                    else program._graph
                )
1535

1536
                # Unsupported case 1: inference
1537
                if compiled_program._is_inference:
1538 1539
                    warnings.warn(
                        "Standalone executor is not used for inference",
1540 1541
                        UserWarning,
                    )
1542
                    return False
1543

1544
            return True
1545

1546
        if _can_use_interpreter_core(program, self.place):
1547

1548 1549 1550 1551 1552 1553 1554 1555
            if feed is None:
                feed = {}
            elif isinstance(feed, (list, tuple)):
                assert len(feed) == 1, "Not compiled with data parallel"
                feed = feed[0]
            if not isinstance(feed, dict):
                raise TypeError(
                    "feed requires dict as its Parameter. But you passed in %s"
1556 1557
                    % (type(feed))
                )
1558 1559
            feed = self._update_feed(program, feed)

1560 1561 1562 1563 1564 1565 1566 1567 1568 1569
            stored_flag = {}
            if isinstance(program, compiler.CompiledProgram) or isinstance(
                program._graph, compiler.CompiledProgram
            ):
                compiled_program = (
                    program
                    if isinstance(program, compiler.CompiledProgram)
                    else program._graph
                )
                build_strategy = compiled_program._build_strategy
1570
                if build_strategy is not None and build_strategy.sequential_run:
1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582
                    schedule_flag = [
                        'FLAGS_new_executor_serial_run',
                        'FLAGS_new_executor_sequential_run',
                    ]
                    for flag in schedule_flag:
                        value = os.getenv(flag, False)
                        if isinstance(value, str):
                            value = value.lower()
                            value = True if value == 'true' else False
                        stored_flag[flag] = bool(value)
                    set_flags({f: True for f in schedule_flag})

1583
            program, new_exe = self._executor_cache.get_program_and_executor(
1584 1585 1586 1587 1588 1589 1590 1591
                program,
                feed,
                fetch_list,
                feed_var_name,
                fetch_var_name,
                self.place,
                scope,
            )
1592 1593

            self._feed_data(program, feed, feed_var_name, scope)
1594
            if hasattr(program, 'lr_scheduler'):
1595
                from paddle.optimizer.lr import LRScheduler
1596 1597

                assert isinstance(
1598
                    program.lr_scheduler, LRScheduler
1599
                ), "must be LRScheduler"
1600 1601 1602
                lr_scheduler = program.lr_scheduler
                lr_value = lr_scheduler()
                lr_var = program.global_block().vars[lr_scheduler._var_name]
1603
                data = np.array([lr_value]).astype(convert_dtype(lr_var.dtype))
1604
                tensor = core.get_variable_tensor(scope, lr_scheduler._var_name)
1605 1606
                # NOTE(dev): `tensor.set(data, self.place)` always call TensorCopySync that is a blocking behavior. So we use `_copy_from` to replace it.
                cpu_tensor = _as_lodtensor(data, core.CPUPlace())
1607 1608 1609 1610 1611 1612 1613
                if core.is_cuda_graph_capturing():
                    warnings.warn(
                        "Caution!!! When capturing CUDA Graph, the learning rate scheduler would not "
                        "take any effect! Please set the learning rate manually before each batch!"
                    )
                elif core.is_compiled_with_ipu():
                    # for ipu, tensor is allocated on cpu
1614 1615 1616 1617
                    tensor._copy_from(cpu_tensor, tensor._place())
                else:
                    tensor._copy_from(cpu_tensor, self.place)

1618
            ret = new_exe.run(
1619 1620
                scope, list(feed.keys()), fetch_list, return_numpy
            )
1621 1622
            set_flags(stored_flag)
            return ret
1623

X
polish  
Xin Pan 已提交
1624
        compiled = isinstance(program, compiler.CompiledProgram)
H
Huihuang Zheng 已提交
1625

1626
        # Check if paddle.static.data() variable no feed data
1627 1628 1629 1630 1631 1632
        if use_prune:
            if compiled:
                global_block = program._program.global_block()
            else:
                global_block = program.global_block()
            for varname in global_block.vars:
1633
                vardesc = global_block.desc.find_var(varname.encode())
1634 1635
                varobj = global_block.vars[varname]

1636 1637 1638 1639 1640 1641 1642 1643 1644
                if (
                    vardesc.persistable() == False
                    and vardesc.type() == core.VarDesc.VarType.LOD_TENSOR
                    and vardesc.need_check_feed() == True
                    and varobj.stop_gradient == True
                    and varobj.is_data == True
                    and varobj.belong_to_optimizer == False
                    and varname not in feed
                ):
1645 1646
                    raise ValueError('Need feed data for variable %s' % varname)

1647 1648
        acp._auto_checkpoint(self, program)

1649
        program._compile(scope, self.place)
1650 1651 1652 1653
        assert (
            program._is_inference
        ), f"Program must have _is_inference = True, but get {program._is_inference}"
        return self._run_inference(program._executor, feed)
1654

X
Xin Pan 已提交
1655 1656
    def _run_inference(self, exe, feed):
        return exe.run(feed)
D
dongdaxiang 已提交
1657

1658
    def _check_fetch_list(self, fetch_list):
1659
        is_fetch_var = lambda var: isinstance(var, (Variable, str))
1660 1661
        is_tuple_list = lambda var: isinstance(var, (tuple, list))

1662 1663 1664 1665
        if fetch_list is None:
            return []
        if is_fetch_var(fetch_list):
            return [fetch_list]
1666

1667 1668 1669
        assert is_tuple_list(fetch_list), (
            "Currently , The fetch_list type only should be list or tuple, \n"
            "but the input type is {}. For more information please refer to \n"
1670
            "the executor.run(...).".format(type(fetch_list))
1671
        )
1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684

        res = []
        for i, var in enumerate(fetch_list):
            if is_fetch_var(var):
                res.append(var)
            # such as [x, 'mean_out', loss]
            elif is_tuple_list(var):
                if all(is_fetch_var(v) for v in var):
                    res.extend(list(var))
                else:
                    res.append(var)
            else:
                raise TypeError(
1685 1686 1687 1688
                    "Require fetch_list[{}] 's type shall be one of (Variable, str), but received {}.".format(
                        i, type(var).__name__
                    )
                )
1689 1690 1691

        return res

1692
    def _dump_debug_info(self, program=None, trainer=None):
Z
ziyoujiyi 已提交
1693 1694
        with open(str(id(program)) + "_train_desc.prototxt", "w") as fout:
            fout.write(str(trainer))
1695
        if program._fleet_opt and "fleet_desc" in program._fleet_opt:
1696 1697 1698
            with open("fleet_desc.prototxt", "w") as fout:
                fout.write(str(program._fleet_opt["fleet_desc"]))

1699 1700 1701 1702 1703 1704
    def _adjust_pipeline_resource(self, pipeline_opt, dataset, pipeline_num):
        filelist_length = len(dataset.dataset.get_filelist())
        if filelist_length < pipeline_num:
            pipeline_num = filelist_length
            print(
                "Pipeline training: setting the pipeline num to %d is enough because there are only %d files"
1705 1706
                % (filelist_length, filelist_length)
            )
1707 1708 1709
        if filelist_length < pipeline_num * pipeline_opt["concurrency_list"][0]:
            print(
                "Pipeline training: setting the 1st element in concurrency_list to %d is enough because there are only %d files"
1710 1711 1712 1713 1714
                % (filelist_length // pipeline_num, filelist_length)
            )
            pipeline_opt["concurrency_list"][0] = (
                filelist_length // pipeline_num
            )
1715 1716 1717
        dataset.set_thread(pipeline_opt["concurrency_list"][0] * pipeline_num)
        return pipeline_num

meteor135's avatar
meteor135 已提交
1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848
    def split_program_by_device(self, program):
        ops_list = []
        type_list = []
        pre = None
        type_cpu = "cpu"
        for op in program.global_block().ops:
            if self._is_optimizer_op(op):
                break
            if op.has_attr("op_device"):
                cur_attr = (
                    op.attr("op_device")
                    if op.attr("op_device") != ""
                    else type_cpu
                )
                if pre is None or pre != cur_attr:
                    ops_list.append([])
                    type_list.append(cur_attr)
                ops_list[-1].append(op)
                pre = cur_attr
        l = len(type_list)
        i = 0
        type_heter = None
        while i < l:
            while i < l and type_list[i] == type_cpu:
                i += 1
            if i == l:
                break

            type_heter = type_list[i]
            i += 1
            start = i
            valid = True
            while i < l and type_list[i] != type_heter:
                if type_list[i] != type_cpu:
                    valid = False
                    break
                i += 1

            if i == l:
                break
            elif not valid:
                continue

            for j in range(start, i):
                for op in ops_list[j]:
                    op._set_attr("op_device", type_heter)
                type_list[j] = type_heter
                j += 1

        pre = None
        merged_ops_list = []
        merged_type_list = []
        for i in range(l):
            if pre is None or pre != type_list[i]:
                merged_ops_list.append([])
                merged_type_list.append(type_list[i])
            merged_ops_list[-1].extend(ops_list[i])
            pre = type_list[i]

        data_vars = set()
        for k in program.global_block().vars:
            var = program.global_block().var(k)
            if not var.persistable:
                data_vars.add(var.name)

        l = len(merged_ops_list)
        inputs_pre = set()
        outputs_pre = set()
        in_from_pre = [[] for i in range(l)]
        for i in range(l):
            inputs = set()
            outputs = set()
            for op in merged_ops_list[i]:
                for input in op.input_names:
                    for tmp in op.input(input):
                        if tmp not in outputs:
                            inputs.add(tmp)
                for output in op.output_names:
                    for tmp in op.output(output):
                        outputs.add(tmp)
            if i == 0:
                in_from_pre[i] = []
            elif i == 1:
                in_from_pre[i] = (outputs_pre | data_vars) & inputs
            else:
                in_from_pre[i] = outputs_pre & inputs
            inputs_pre = copy.deepcopy(inputs)
            outputs_pre = copy.deepcopy(outputs)

        l = len(in_from_pre)
        start_list = []
        end_list = []
        send_list = [[] for i in range(l)]
        sum = 0
        program_list = []
        for i in range(l):
            start_list.append(sum)
            end_list.append(sum + len(merged_ops_list[i]) - 1)
            sum += len(merged_ops_list[i])
            if i < l - 1:
                send_list[i].extend(list(in_from_pre[i + 1]))
            prog = program.clone()
            if merged_type_list[i] != type_cpu:
                prog = prog._prune_with_input(
                    list(in_from_pre[i]), list(send_list[i])
                )
                program_list.append(prog)
            else:
                program_list.append(prog)
        recv_list = [list(i) for i in in_from_pre]
        found = False
        heter_index = None
        for i in range(len(merged_type_list)):
            t = merged_type_list[i]
            if t != type_cpu:
                if found:
                    print("only one region of program can be heter")
                found = True
                heter_index = i
        if heter_index is None:
            print("warning: non heter program")
            return None
        else:
            return [
                start_list[heter_index],
                end_list[heter_index],
                send_list[heter_index],
                recv_list[heter_index],
                program_list[heter_index],
            ]

1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859
    def _prepare_trainer(
        self,
        program=None,
        dataset=None,
        scope=None,
        thread=0,
        debug=False,
        fetch_list=None,
        fetch_info=None,
        print_period=100,
    ):
T
Thunderbrook 已提交
1860
        is_heter = 0
T
Thunderbrook 已提交
1861
        use_ps_gpu = 0
T
Thunderbrook 已提交
1862 1863 1864
        if not program._fleet_opt is None:
            if program._fleet_opt.get("worker_class", "") == "HeterCpuWorker":
                is_heter = 1
T
Thunderbrook 已提交
1865
            if program._fleet_opt.get("trainer", "") == "HeterXpuTrainer":
T
Thunderbrook 已提交
1866
                is_heter = 1
T
Thunderbrook 已提交
1867 1868
            if program._fleet_opt.get("use_ps_gpu", False):
                use_ps_gpu = True
D
dongdaxiang 已提交
1869 1870 1871 1872
        if scope is None:
            scope = global_scope()
        if fetch_list is None:
            fetch_list = []
D
dongdaxiang 已提交
1873 1874 1875
        if fetch_info is None:
            fetch_info = []
        assert len(fetch_list) == len(fetch_info)
D
dongdaxiang 已提交
1876
        compiled = isinstance(program, compiler.CompiledProgram)
T
Thunderbrook 已提交
1877
        if is_heter:
meteor135's avatar
meteor135 已提交
1878
            ret = self.split_program_by_device(program)
D
dongdaxiang 已提交
1879
        if not compiled:
H
hutuxian 已提交
1880 1881 1882
            # TODO: Need a better way to distinguish and specify different execution mode
            if program._pipeline_opt:
                trainer = TrainerFactory()._create_trainer(
1883 1884
                    program._pipeline_opt
                )
1885 1886
            elif program._heter_pipeline_opt:
                trainer = TrainerFactory()._create_trainer(
1887 1888
                    program._heter_pipeline_opt
                )
H
hutuxian 已提交
1889 1890
            else:
                trainer = TrainerFactory()._create_trainer(program._fleet_opt)
1891
                trainer._set_thread_barrier(program._is_distributed)
1892
            trainer._set_program(program)
T
Thunderbrook 已提交
1893 1894
            if is_heter:
                trainer._set_heter_info(ret)
1895
        else:
H
hutuxian 已提交
1896 1897
            if program._pipeline_opt:
                trainer = TrainerFactory()._create_trainer(
1898 1899
                    program.program._pipeline_opt
                )
1900 1901
            elif program._heter_pipeline_opt:
                trainer = TrainerFactory()._create_trainer(
1902 1903
                    program.program._heter_pipeline_opt
                )
H
hutuxian 已提交
1904 1905
            else:
                trainer = TrainerFactory()._create_trainer(
1906 1907
                    program.program._fleet_opt
                )
1908
            trainer._set_program(program.program)
H
hutuxian 已提交
1909

1910
        if thread <= 0:
T
Thunderbrook 已提交
1911 1912 1913
            if use_ps_gpu:
                trainer._set_thread(len(program._fleet_opt["worker_places"]))
            elif dataset.thread_num <= 0:
D
dongdaxiang 已提交
1914
                raise RuntimeError(
1915
                    "You should set thread num first, either in Dataset"
1916 1917
                    "or in Executor.train_from_dataset"
                )
D
dongdaxiang 已提交
1918
            else:
1919
                trainer._set_thread(dataset.thread_num)
1920
        else:
1921
            trainer._set_thread(thread)
H
hutuxian 已提交
1922

1923 1924
        trainer._set_debug(debug)
        trainer._set_fetch_var_and_info(fetch_list, fetch_info, print_period)
1925
        return scope, trainer
1926

1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939
    def _run_from_dataset(
        self,
        program=None,
        dataset=None,
        scope=None,
        thread=0,
        is_infer=False,
        debug=False,
        fetch_list=None,
        fetch_info=None,
        print_period=100,
        fetch_handler=None,
    ):
1940 1941
        if program._pipeline_opt is not None:
            import paddle
1942

1943 1944
            if dataset is not None:
                raise RuntimeError("dataset should be None for pipeline mode")
1945
            # The following fake dataset is created to call
1946 1947 1948 1949 1950
            # the _prepare_trainer api, and it is meaningless.
            data_vars = []
            for var in program.global_block().vars.values():
                if var.is_data:
                    data_vars.append(var)
1951 1952 1953
            dataset = paddle.fluid.DatasetFactory().create_dataset(
                'FileInstantDataset'
            )
1954 1955 1956 1957
            dataset.set_batch_size(1)
            dataset.set_thread(1)
            dataset.set_filelist(['None'])
            dataset.set_use_var(data_vars)
1958 1959
        elif program._heter_pipeline_opt is not None:
            stage_id = program._heter_pipeline_opt["pipeline_stage"]
1960
            # print("test_fl_stage_id: {}".format(stage_id))
1961
            heter_place = program._heter_pipeline_opt["heter_place"]
1962
            if stage_id != 0:
1963 1964
                if "is_fl_mode" not in program._heter_pipeline_opt:
                    import paddle
1965

1966 1967
                    if dataset is not None:
                        raise RuntimeError(
1968 1969
                            "dataset should be None for heter pipeline mode"
                        )
1970
                    # The following fake dataset is created to call
1971 1972 1973 1974 1975 1976
                    # the _prepare_trainer api, and it is meaningless.
                    data_vars = []
                    for var in program.global_block().vars.values():
                        if var.is_data:
                            data_vars.append(var)
                    dataset = paddle.fluid.DatasetFactory().create_dataset(
1977 1978
                        'InMemoryDataset'
                    )
1979 1980 1981 1982
                    dataset.set_batch_size(1)
                    dataset.set_thread(1)
                    dataset.set_filelist(['None'])
                    dataset.set_use_var(data_vars)
1983 1984 1985
            else:
                if dataset is None:
                    raise RuntimeError(
1986 1987
                        "dataset is need and should be initialized"
                    )
1988 1989 1990 1991 1992
            ## change default executor
            heter_place = framework._get_paddle_place(heter_place)
            p = core.Place()
            p.set_place(heter_place)
            self._default_executor = core.Executor(p)
1993 1994 1995
        else:
            if dataset is None:
                raise RuntimeError("dataset is need and should be initialized")
1996 1997

        dataset._prepare_to_run()
1998 1999
        real_fetch_list = []
        if program._pipeline_opt:
2000
            real_program = program._pipeline_opt["section_program"]
2001 2002 2003 2004 2005 2006 2007 2008
            for fetch_var in fetch_list:
                if isinstance(fetch_var, Variable):
                    fetch_var_name = fetch_var.name
                else:
                    fetch_var_name = fetch_var
                if fetch_var_name in real_program.global_block().vars:
                    real_fetch_list.append(fetch_var)

R
Ruibiao Chen 已提交
2009
            program._pipeline_opt["section_program"] = _add_feed_fetch_ops(
2010 2011 2012 2013
                program=program._pipeline_opt["section_program"],
                feed=[],
                fetch_list=real_fetch_list,
                feed_var_name='feed',
2014 2015
                fetch_var_name='fetch',
            )
2016 2017 2018 2019 2020 2021 2022
            main_block = program._pipeline_opt["section_program"].block(0)
            for op in main_block.ops:
                # set the op_role of fetch op to Optimize to avoid
                # erase the fetched vars by gc for pipeline
                if op.type == 'fetch':
                    op._set_attr(
                        'op_role',
2023 2024
                        core.op_proto_and_checker_maker.OpRole.Optimize,
                    )
2025
            fetch_list = None
2026 2027 2028 2029 2030 2031 2032 2033 2034 2035
        scope, trainer = self._prepare_trainer(
            program=program,
            dataset=dataset,
            scope=scope,
            thread=thread,
            debug=debug,
            fetch_list=fetch_list,
            fetch_info=fetch_info,
            print_period=print_period,
        )
2036 2037 2038 2039

        trainer._set_infer(is_infer)
        trainer._gen_trainer_desc()

2040
        if program._pipeline_opt is None:
2041 2042
            if program._heter_pipeline_opt is None:
                self._dump_debug_info(program=program, trainer=trainer)
T
Thunderbrook 已提交
2043 2044 2045
        # warning if dataset not set psgpu in psgpu mode
        if dataset.use_ps_gpu is False and trainer.proto_desc.use_ps_gpu:
            logging.warning("dataset should call set_use_ps_gpu in PsGpu mode")
2046

T
tangwei12 已提交
2047
        dataset._dynamic_adjust_before_train(trainer.proto_desc.thread_num)
2048

2049
        if program._heter_pipeline_opt is None:
2050 2051 2052 2053 2054
            trainer_instance = (
                self._default_executor.init_for_dataset(  # -->InitForDataset
                    program.desc, trainer._desc(), scope, dataset.dataset
                )
            )
2055 2056
        else:
            # cache trainer instance for heterps pipeline training
2057
            if fetch_list is None:
2058 2059 2060 2061 2062
                fetch_list = []
            cache_key = _get_strong_program_cache_key(program, None, fetch_list)
            trainer_instance = self._get_trainer_cache(cache_key)
            if trainer_instance is None:
                trainer_instance = self._default_executor.init_for_dataset(
2063 2064 2065
                    program.desc, trainer._desc(), scope, dataset.dataset
                )
                # print("test_fl_ps - trainer_desc: {}\n".format(trainer))
2066 2067 2068
                self._add_trainer_cache(cache_key, trainer_instance)
            else:
                trainer_instance.ResetDataset(dataset.dataset)
2069

T
tangwei12 已提交
2070 2071 2072 2073 2074 2075
        if fetch_handler is not None:
            scope0 = trainer_instance.get_worker_scope(0)
            fetch_monitor = FetchHandlerMonitor(scope0, fetch_handler)
            fetch_monitor.start()
            self._default_executor.run_from_dataset(trainer_instance)
            fetch_monitor.stop()
2076 2077
            if program._heter_pipeline_opt is None:
                self._default_executor.release_trainer(trainer_instance)
T
tangwei12 已提交
2078 2079
        else:
            self._default_executor.run_from_dataset(trainer_instance)
2080 2081
            if program._heter_pipeline_opt is None:
                self._default_executor.release_trainer(trainer_instance)
T
tangwei12 已提交
2082 2083

        dataset._dynamic_adjust_after_train()
2084
        dataset._finish_to_run()
2085 2086 2087 2088
        if real_fetch_list:
            arr = scope.find_var('fetch').get_fetch_list()
            tensors = arr._move_to_list()
            return as_numpy(tensors)
T
tangwei12 已提交
2089

2090 2091
        return None

2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105
    def _prepare_pipeline_ctx(
        self,
        program=None,
        dataset=None,
        scope=None,
        thread=0,
        is_infer=False,
        debug=False,
        fetch_list=None,
        fetch_info=None,
        print_period=100,
        fetch_handler=None,
        use_program_cache=False,
    ):
2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122
        assert program._pipeline_opt is not None
        assert dataset is None, "dataset should be None for pipeline mode"

        cache_key = _get_strong_program_cache_key(program, None, fetch_list)
        ctx = self._get_ctx_cache(cache_key)
        if use_program_cache and ctx is not None:
            return ctx

        import paddle

        # The following fake dataset is created to call
        # the _prepare_trainer api, and it is meaningless.
        def _get_dataset():
            data_vars = []
            for var in program.global_block().vars.values():
                if var.is_data:
                    data_vars.append(var)
2123 2124 2125
            dataset = paddle.fluid.DatasetFactory().create_dataset(
                'FileInstantDataset'
            )
2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145
            dataset.set_batch_size(1)
            dataset.set_thread(1)
            dataset.set_filelist(['None'])
            dataset.set_use_var(data_vars)
            dataset._prepare_to_run()
            return dataset

        dataset = _get_dataset()

        def _get_real_program_fetch_list():
            real_program = program._pipeline_opt["section_program"]
            real_fetch_list = []
            for fetch_var in fetch_list:
                if isinstance(fetch_var, Variable):
                    fetch_var_name = fetch_var.name
                else:
                    fetch_var_name = fetch_var
                if fetch_var_name in real_program.global_block().vars:
                    real_fetch_list.append(fetch_var)

2146 2147 2148 2149 2150 2151 2152
            real_program = _add_feed_fetch_ops(
                program=real_program,
                feed=[],
                fetch_list=real_fetch_list,
                feed_var_name='feed',
                fetch_var_name='fetch',
            )
2153 2154 2155 2156 2157 2158 2159
            main_block = real_program.block(0)
            for op in main_block.ops:
                # set the op_role of fetch op to Optimize to avoid
                # erase the fetched vars by gc for pipeline
                if op.type == 'fetch':
                    op._set_attr(
                        'op_role',
2160 2161
                        core.op_proto_and_checker_maker.OpRole.Optimize,
                    )
2162 2163 2164 2165 2166 2167 2168
            return real_program, real_fetch_list

        real_program, real_fetch_list = _get_real_program_fetch_list()

        program._pipeline_opt["section_program"] = real_program
        fetch_list = None

2169 2170 2171 2172 2173 2174 2175 2176 2177 2178
        scope, trainer = self._prepare_trainer(
            program=program,
            dataset=dataset,
            scope=scope,
            thread=thread,
            debug=debug,
            fetch_list=fetch_list,
            fetch_info=fetch_info,
            print_period=print_period,
        )
2179 2180 2181 2182 2183 2184 2185

        trainer._set_infer(is_infer)
        trainer._gen_trainer_desc()

        # NOTE: only for debug, very slow
        # self._dump_debug_info(program=program, trainer=trainer)

T
Thunderbrook 已提交
2186 2187 2188
        # warning if dataset not set psgpu in psgpu mode
        if dataset.use_ps_gpu is False and trainer.proto_desc.use_ps_gpu:
            logging.warning("dataset should call set_use_ps_gpu in PsGpu mode")
2189 2190 2191
        dataset._dynamic_adjust_before_train(trainer.proto_desc.thread_num)

        trainer_desc = trainer._desc()  # slow, cache
2192
        trainer_instance = self._default_executor.init_for_dataset(
2193 2194
            program.desc, trainer_desc, scope, dataset.dataset
        )
2195 2196

        ctx = [scope, real_fetch_list, trainer_instance]
2197 2198
        if use_program_cache:
            self._add_ctx_cache(cache_key, ctx)
2199

2200 2201
        return ctx

2202 2203 2204 2205 2206 2207
    def _prepare_fleet_executor_carrier(
        self,
        carrier_id="",
        program=None,
        scope=None,
        fleet_opt=None,
L
LiYuRio 已提交
2208
        micro_scope_list=[],
2209 2210 2211 2212 2213 2214 2215
        with_standalone_executor=False,
    ):
        num_micro_batches = (
            fleet_opt["num_micro_batches"]
            if "num_micro_batches" in fleet_opt
            else 1
        )
2216
        cur_rank = int(os.getenv("PADDLE_TRAINER_ID", 0))
2217
        trainer_endpoints = os.getenv("PADDLE_TRAINER_ENDPOINTS", "").split(',')
2218
        nrank = len(trainer_endpoints)
2219

2220 2221
        assert 'scheduler' in fleet_opt or 'tasks' in fleet_opt, (
            "Fleet executor need configuration for scheduler, you can choose from 1F1B or Origin. "
2222
            "Or you can provide a list of task nodes to init fleet executor directly."
2223
        )
2224
        if 'tasks' in fleet_opt:
2225 2226 2227 2228
            assert 'task_id_to_rank' in fleet_opt, (
                "If you provide tasks to init fleet executor,"
                " task_id_to_rank should also be provided."
            )
2229 2230 2231
            print('fleet executor will use user defined task nodes')
            tasks = [task.task_node() for task in fleet_opt['tasks']]
            task_id_to_rank = fleet_opt['task_id_to_rank']
2232
        else:
2233 2234
            scheduler = fleet_opt['scheduler']
            if scheduler == '1F1B':
2235 2236 2237 2238 2239 2240 2241 2242 2243
                from paddle.distributed.fleet.fleet_executor_utils import (
                    run1f1b,
                )

                if (
                    "dist_strategy" not in fleet_opt
                    or "pp_degree" not in fleet_opt["dist_strategy"]
                    or fleet_opt["dist_strategy"]["pp_degree"] == 1
                ):
2244 2245
                    warnings.warn("Using 1F1B scheduler with pp_degree == 1.")
                tasks, task_id_to_rank = run1f1b(
2246 2247 2248 2249 2250 2251 2252
                    program,
                    cur_rank,
                    fleet_opt.get('num_micro_batches', 1),
                    fleet_opt.get('dist_strategy', {}),
                    nrank,
                    with_standalone_executor,
                )
2253 2254
            elif scheduler == 'Origin':
                from paddle.distributed.fleet.fleet_executor_utils import origin
2255 2256 2257 2258 2259 2260 2261 2262

                if (
                    "dist_strategy" in fleet_opt
                    and "pp_degree" in fleet_opt["dist_strategy"]
                ):
                    assert (
                        fleet_opt["dist_strategy"]["pp_degree"] == 1
                    ), "For pipeline mode, the scheduler should be 1F1B instead of Origin."
2263
                if "num_micro_batches" in fleet_opt:
2264 2265 2266
                    assert (
                        fleet_opt["num_micro_batches"] == 1
                    ), "For origin scheduler mode, the num micro batches should be 1."
2267 2268
                tasks, task_id_to_rank = origin(program, cur_rank)
            else:
2269 2270 2271
                raise "Fleet_executor only supports 1F1B and Origin scheduler, " "but received " + str(
                    scheduler
                ) + "."
2272 2273 2274
            # NOTE: have to hold these vars, otherwise will be destructed
            fleet_opt['tasks'] = tasks
            fleet_opt['task_id_to_rank'] = task_id_to_rank
2275 2276
        place = core.Place()
        place.set_place(self.place)
L
LiYuRio 已提交
2277

2278 2279 2280
        inference_root_scope_vars = (
            fleet_opt["fetch_var"] if "fetch_var" in fleet_opt else []
        )
2281 2282 2283 2284 2285 2286 2287 2288
        self._fleet_executor.init(
            carrier_id,
            program.desc,
            scope,
            place,
            num_micro_batches,
            tasks,
            task_id_to_rank,
2289
            inference_root_scope_vars,
L
LiYuRio 已提交
2290
            micro_scope_list,
2291 2292 2293 2294 2295 2296 2297 2298 2299 2300
        )

    def _run_using_fleet_executor(
        self,
        program=None,
        feed=None,
        feed_var_name="feed",
        fetch_var_name="fetch",
        fetch_list=None,
        with_standalone_executor=False,
2301
        return_numpy=True,
2302
    ):
2303 2304
        cache_key = _get_strong_program_cache_key(program, feed, fetch_list)
        cached_program = self._get_program_cache(cache_key)
2305
        cached_scope = self._get_scope_cache(cache_key)
2306 2307
        micro_cached_scopes = self._get_micro_scopes_cache(cache_key)
        fleet_opt = program._pipeline_opt["fleet_opt"]
2308 2309 2310
        if cached_scope is None:
            cached_scope = global_scope()
            self._add_scope_cache(cache_key, cached_scope)
2311 2312 2313 2314 2315 2316 2317 2318 2319
        if micro_cached_scopes is None:
            micro_cached_scopes = []
            if (
                "inference_generation" in fleet_opt
                and fleet_opt["inference_generation"]
            ):
                for _ in range(int(fleet_opt["num_micro_batches"])):
                    micro_cached_scopes.append(cached_scope.new_scope())
                self._add_micro_scopes_cache(cache_key, micro_cached_scopes)
2320
        if cached_program is None:
2321 2322 2323
            assert (
                program._pipeline_opt
            ), "program should have _pipeline_opt to start carrier"
2324
            real_feed = [] if feed is None else feed
2325 2326 2327
            real_program = program
            if "section_program" in program._pipeline_opt:
                real_program = program._pipeline_opt["section_program"]
2328 2329 2330 2331 2332 2333 2334
            cached_program = _add_feed_fetch_ops(
                program=real_program,
                feed=real_feed,
                fetch_list=fetch_list,
                feed_var_name=feed_var_name,
                fetch_var_name=fetch_var_name,
            )
2335 2336 2337 2338 2339 2340 2341
            main_block = cached_program.block(0)
            for op in main_block.ops:
                # set the op_role of fetch op to Optimize to avoid
                # erase the fetched vars by gc for pipeline
                if op.type == 'fetch':
                    op._set_attr(
                        'op_role',
2342 2343
                        core.op_proto_and_checker_maker.OpRole.Optimize,
                    )
2344
            self._add_program_cache(cache_key, cached_program)
2345
            fleet_opt = program._pipeline_opt["fleet_opt"]
2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356
            if 'tasks' in fleet_opt:
                # Insert feed/fetch op for cloned program in each task node,
                # these ops has already been inserted into the origin program.
                # To avoid every task nodes all have feed/fetch ops,
                # only insert feed ops into the first task node,
                # then insert fetch ops into the last task node.

                # Insert feed ops
                feed_task = fleet_opt['tasks'][0]
                print("Inserting feed ops for task", feed_task.task_id())
                feed_program = feed_task.get_program()
2357 2358 2359 2360 2361
                feed_program = self._add_feed_ops(
                    program=feed_program,
                    feed=real_feed,
                    feed_var_name=feed_var_name,
                )
2362 2363 2364 2365 2366 2367 2368 2369 2370
                feed_task.set_program(feed_program)

                # Insert fetch ops
                fetch_task = fleet_opt['tasks'][-1]
                print("Inserting fetch ops for task", fetch_task.task_id())
                fetch_program = fetch_task.get_program()
                fetch_program = self._add_fetch_ops(
                    program=fetch_program,
                    fetch_list=fetch_list,
2371 2372
                    fetch_var_name=fetch_var_name,
                )
2373 2374 2375 2376 2377 2378 2379
                main_block = fetch_program.block(0)
                for op in main_block.ops:
                    # set the op_role of fetch op to Optimize to avoid
                    # erase the fetched vars by gc for pipeline
                    if op.type == 'fetch':
                        op._set_attr(
                            'op_role',
2380 2381
                            core.op_proto_and_checker_maker.OpRole.Optimize,
                        )
2382 2383
                fetch_task.set_program(fetch_program)

L
LiYuRio 已提交
2384 2385 2386 2387 2388 2389 2390 2391
            micro_scope_list = []
            if (
                "inference_generation" in fleet_opt
                and fleet_opt["inference_generation"]
            ):
                for i in range(int(fleet_opt["num_micro_batches"])):
                    micro_scope_list.append(cached_scope.new_scope())

2392 2393 2394 2395 2396
            self._prepare_fleet_executor_carrier(
                cache_key,
                program=cached_program,
                scope=cached_scope,
                fleet_opt=fleet_opt,
2397
                micro_scope_list=micro_cached_scopes,
2398 2399
                with_standalone_executor=with_standalone_executor,
            )
2400

2401
        if feed:
2402 2403 2404
            # NOTE: don't have to traverse programs in task nodes,
            # since they all sub program of cached program and
            # cached program is also added feed fetch var
2405
            self._feed_data(cached_program, feed, feed_var_name, cached_scope)
2406 2407

        from paddle.optimizer.lr import LRScheduler
2408

2409 2410 2411 2412 2413
        if hasattr(program, 'lr_scheduler'):
            lr_scheduler = program.lr_scheduler
            assert isinstance(lr_scheduler, LRScheduler), "must be LRScheduler"
            lr_value = lr_scheduler()
            lr_var = program.global_block().vars[lr_scheduler._var_name]
2414
            data = np.array([lr_value]).astype(convert_dtype(lr_var.dtype))
2415
            tensor = core.get_variable_tensor(
2416
                cached_scope, lr_scheduler._var_name
2417
            )
2418 2419
            tensor.set(data, self.place)

2420
        self._fleet_executor.run(cache_key)
L
LiYuRio 已提交
2421 2422 2423 2424 2425 2426
        if "fetch_var" in fleet_opt:
            # If we speed up the generation in evaluation, we need to generate
            # multiple queries at the same time. Each query will in separate scope in order
            # not mix up. It indicate that final result will in multiple scopes and need to
            # fetch each.
            result_list = []
2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447
            for scope in micro_cached_scopes:
                scope_result_list = []
                for varname in fleet_opt["fetch_var"]:
                    tensor = None
                    try:
                        tensor = core.get_variable_tensor(scope, varname)
                        if return_numpy:
                            tensor = as_numpy(tensor)
                    except:
                        var = scope.find_var(varname)
                        tensor = var.get_lod_tensor_array()
                        if return_numpy:
                            tensor = as_numpy(tensor)
                        else:
                            tensor = [t for t in tensor]

                    if tensor:
                        scope_result_list.append(tensor)

                if scope_result_list:
                    result_list.append(scope_result_list)
L
LiYuRio 已提交
2448 2449
            return result_list

2450 2451 2452 2453
        if fetch_list:
            arr = cached_scope.find_var(fetch_var_name).get_fetch_list()
            tensors = arr._move_to_list()
            return as_numpy(tensors)
L
LiYuRio 已提交
2454 2455
        return None

2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466
    def _add_feed_ops(self, program, feed, feed_var_name):
        tmp_program = program.clone()

        global_block = tmp_program.global_block()

        if feed_var_name in global_block.vars:
            feed_var = global_block.var(feed_var_name)
        else:
            feed_var = global_block.create_var(
                name=feed_var_name,
                type=core.VarDesc.VarType.FEED_MINIBATCH,
2467 2468
                persistable=True,
            )
2469 2470 2471 2472 2473 2474

        # prepend feed operators
        if not has_feed_operators(global_block, feed, feed_var_name):
            for i, name in enumerate(feed):
                if global_block.has_var(name):
                    out = global_block.var(name)
2475 2476 2477 2478 2479 2480
                    global_block._prepend_op(
                        type='feed',
                        inputs={'X': [feed_var]},
                        outputs={'Out': [out]},
                        attrs={'col': i},
                    )
2481 2482 2483
                else:
                    warnings.warn(
                        "The variable %s is not found in program. It is not declared or is pruned."
2484 2485
                        % name
                    )
2486 2487 2488

        return tmp_program

2489
    @classmethod
2490 2491 2492
    def _add_fetch_ops(
        cls, program, fetch_list, fetch_var_name, use_fetch_v2=False
    ):
2493 2494 2495 2496 2497 2498 2499 2500 2501 2502
        tmp_program = program.clone()

        global_block = tmp_program.global_block()

        if fetch_var_name in global_block.vars:
            fetch_var = global_block.var(fetch_var_name)
        else:
            fetch_var = global_block.create_var(
                name=fetch_var_name,
                type=core.VarDesc.VarType.FETCH_LIST,
2503 2504
                persistable=True,
            )
2505 2506 2507 2508 2509 2510 2511

        if use_fetch_v2:
            fetch_op = 'fetch_v2'
        else:
            fetch_op = 'fetch'

        # append fetch_operators
2512 2513 2514
        if not has_fetch_operators(
            global_block, fetch_list, fetch_var_name, fetch_op
        ):
2515 2516
            for i, var in enumerate(fetch_list):
                assert isinstance(var, Variable) or isinstance(
2517 2518 2519 2520 2521 2522 2523 2524
                    var, str
                ), "Wrong type for fetch_list[%s]: %s" % (i, type(var))
                global_block.append_op(
                    type=fetch_op,
                    inputs={'X': [var]},
                    outputs={'Out': [fetch_var]},
                    attrs={'col': i},
                )
2525 2526 2527

        return tmp_program

2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538
    @classmethod
    def _remove_fetch_ops(cls, program, fetch_op_name='fetch'):
        tmp_program = program.clone()
        global_block = tmp_program.global_block()
        op_num = len(global_block.ops)
        for idx in reversed(range(op_num)):
            if global_block.ops[idx].type == fetch_op_name:
                global_block._remove_op(idx)

        return tmp_program

2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565
    def _run_pipeline(
        self,
        program=None,
        dataset=None,
        scope=None,
        thread=0,
        is_infer=False,
        debug=False,
        fetch_list=None,
        fetch_info=None,
        print_period=100,
        fetch_handler=None,
        use_program_cache=False,
    ):
        scope, real_fetch_list, trainer_instance = self._prepare_pipeline_ctx(
            program,
            dataset,
            scope,
            thread,
            is_infer,
            debug,
            fetch_list,
            fetch_info,
            print_period,
            fetch_handler,
            use_program_cache,
        )
2566

2567
        from paddle.optimizer.lr import LRScheduler
2568

2569 2570 2571 2572 2573
        if hasattr(program, 'lr_scheduler'):
            lr_scheduler = program.lr_scheduler
            assert isinstance(lr_scheduler, LRScheduler), "must be LRScheduler"
            lr_value = lr_scheduler()
            lr_var = program.global_block().vars[lr_scheduler._var_name]
2574
            data = np.array([lr_value]).astype(convert_dtype(lr_var.dtype))
2575
            tensor = core.get_variable_tensor(scope, lr_scheduler._var_name)
2576 2577
            tensor.set(data, self.place)

2578 2579
        self._default_executor.run_from_dataset(trainer_instance)

2580 2581 2582
        if not use_program_cache:
            self._default_executor.release_trainer(trainer_instance)

2583 2584 2585 2586 2587 2588 2589
        if real_fetch_list:
            arr = scope.find_var('fetch').get_fetch_list()
            tensors = arr._move_to_list()
            return as_numpy(tensors)

        return None

2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601
    def infer_from_dataset(
        self,
        program=None,
        dataset=None,
        scope=None,
        thread=0,
        debug=False,
        fetch_list=None,
        fetch_info=None,
        print_period=100,
        fetch_handler=None,
    ):
2602
        """
2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613
        Infer from a pre-defined Dataset. Dataset is defined in paddle.fluid.dataset.
        Given a program, either a program or compiled program, infer_from_dataset will
        consume all data samples in dataset. Input scope can be given by users. By default,
        scope is global_scope(). The total number of thread run in training is `thread`.
        Thread number used in training will be minimum value of threadnum in Dataset and
        the value of thread in this interface. Debug can be set so that executor will display
        Run-Time for all operators and the throughputs of current infer task.

        The document of infer_from_dataset is almost the same as train_from_dataset,
        except that in distributed training, push gradients will be disabled in infer_from_dataset.
        infer_from_dataset() can be used for evaluation in multi-threadvery easily.
2614

2615 2616
        Args:
            program(Program|CompiledProgram): the program that needs to be run,
2617
                if not provided, then default_main_program (not compiled) will be used.
2618
            dataset(paddle.fluid.Dataset): dataset created outside this function,
2619 2620
                a user should provide a well-defined dataset before calling this function.
                Please check the document of Dataset if needed. default is None
2621
            scope(Scope): the scope used to run this program, you can switch it to different scope
2622 2623 2624
                for each run. default is global_scope
            thread(int): number of thread a user wants to run in this function. Default is 0, which
                means using thread num of dataset
2625
            debug(bool): whether a user wants to run infer_from_dataset, default is False
2626
            fetch_list(Tensor List): fetch Tensor list, each Tensor will be printed during
2627
                training, default is None
2628
            fetch_info(String List): print information for each Tensor, default is None
2629
            print_period(int): the number of mini-batches for each print, default is 100
2630
            fetch_handler(FetchHandler): a user define class for fetch output.
2631

2632 2633 2634 2635
        Returns:
            None

        Examples:
2636 2637

            .. code-block:: python
2638

2639
                import paddle
2640

2641 2642 2643 2644 2645 2646
                paddle.enable_static()
                place = paddle.CPUPlace()  # you can set place = paddle.CUDAPlace(0) to use gpu
                exe = paddle.static.Executor(place)
                x = paddle.static.data(name="x", shape=[None, 10, 10], dtype="int64")
                y = paddle.static.data(name="y", shape=[None, 1], dtype="int64", lod_level=1)
                dataset = paddle.fluid.DatasetFactory().create_dataset()
2647
                dataset.set_use_var([x, y])
2648
                dataset.set_thread(1)
2649 2650
                # you should set your own filelist, e.g. filelist = ["dataA.txt"]
                filelist = []
2651
                dataset.set_filelist(filelist)
2652 2653 2654
                exe.run(paddle.static.default_startup_program())
                exe.infer_from_dataset(program=paddle.static.default_main_program(),
                                       dataset=dataset)
2655

2656
        """
2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689
        return self._run_from_dataset(
            program,
            dataset,
            scope,
            thread,
            True,
            debug,
            fetch_list,
            fetch_info,
            print_period,
            fetch_handler,
        )

    def start_heter_trainer(
        self,
        program=None,
        scope=None,
        debug=False,
        fetch_list=None,
        fetch_info=None,
        print_period=100,
        fetch_handler=None,
    ):
        scope, trainer = self._prepare_trainer(
            program=program,
            dataset=None,
            scope=scope,
            thread=1,
            debug=debug,
            fetch_list=fetch_list,
            fetch_info=fetch_info,
            print_period=print_period,
        )
T
Thunderbrook 已提交
2690

2691
        trainer._set_infer(False)
T
Thunderbrook 已提交
2692 2693 2694 2695 2696
        trainer._gen_trainer_desc()

        self._dump_debug_info(program=program, trainer=trainer)

        trainer_instance = self._default_executor.init_for_dataset(
2697 2698
            program.desc, trainer._desc(), scope, None
        )
T
Thunderbrook 已提交
2699

2700
        # if fetch_handler is not None:
T
Thunderbrook 已提交
2701 2702 2703 2704 2705 2706
        #    scope0 = trainer_instance.get_worker_scope(0)
        #    fetch_monitor = FetchHandlerMonitor(scope0, fetch_handler)
        #    fetch_monitor.start()
        #    self._default_executor.run_from_dataset(trainer_instance)
        #    fetch_monitor.stop()
        #    self._default_executor.release_trainer(trainer_instance)
2707
        # else:
T
Thunderbrook 已提交
2708 2709

        self._default_executor.run_from_dataset(trainer_instance)
2710
        # self._default_executor.release_trainer(trainer_instance)
T
Thunderbrook 已提交
2711 2712 2713

        return trainer_instance

2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725
    def train_from_dataset(
        self,
        program=None,
        dataset=None,
        scope=None,
        thread=0,
        debug=False,
        fetch_list=None,
        fetch_info=None,
        print_period=100,
        fetch_handler=None,
    ):
2726 2727 2728 2729 2730 2731 2732 2733
        """
        Train from a pre-defined Dataset. Dataset is defined in paddle.fluid.dataset.
        Given a program, either a program or compiled program, train_from_dataset will
        consume all data samples in dataset. Input scope can be given by users. By default,
        scope is global_scope(). The total number of thread run in training is `thread`.
        Thread number used in training will be minimum value of threadnum in Dataset and
        the value of thread in this interface. Debug can be set so that executor will display
        Run-Time for all operators and the throughputs of current training task.
2734

2735 2736 2737 2738
        Note: train_from_dataset will destroy all resources created within executor for each run.

        Args:
            program(Program|CompiledProgram): the program that needs to be run,
2739
                if not provided, then default_main_program (not compiled) will be used.
2740
            dataset(paddle.fluid.Dataset): dataset created outside this function,
2741 2742
                a user should provide a well-defined dataset before calling this function.
                Please check the document of Dataset if needed.
2743
            scope(Scope): the scope used to run this program, you can switch it to different scope
2744 2745 2746
                for each run. default is global_scope
            thread(int): number of thread a user wants to run in this function. Default is 0, which
                means using thread num of dataset
2747
            debug(bool): whether a user wants to run train_from_dataset
2748
            fetch_list(Tensor List): fetch Tensor list, each variable will be printed
2749
                during training
2750
            fetch_info(String List): print information for each Tensor, its length should be equal
2751 2752
                to fetch_list
            print_period(int): the number of mini-batches for each print, default is 100
2753
            fetch_handler(FetchHandler): a user define class for fetch output.
2754 2755 2756

        Returns:
            None
2757

2758
        Examples:
2759

2760 2761
            .. code-block:: python

2762
              import paddle
2763

2764 2765 2766 2767 2768 2769
              paddle.enable_static()
              place = paddle.CPUPlace() # you can set place = paddle.CUDAPlace(0) to use gpu
              exe = paddle.static.Executor(place)
              x = paddle.static.data(name="x", shape=[None, 10, 10], dtype="int64")
              y = paddle.static.data(name="y", shape=[None, 1], dtype="int64", lod_level=1)
              dataset = paddle.fluid.DatasetFactory().create_dataset()
2770
              dataset.set_use_var([x, y])
2771
              dataset.set_thread(1)
2772 2773
              # you should set your own filelist, e.g. filelist = ["dataA.txt"]
              filelist = []
2774
              dataset.set_filelist(filelist)
2775 2776
              exe.run(paddle.static.default_startup_program())
              exe.train_from_dataset(program=paddle.static.default_main_program(),
2777
                                     dataset=dataset)
2778 2779

        """
2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791
        return self._run_from_dataset(
            program,
            dataset,
            scope,
            thread,
            False,
            debug,
            fetch_list,
            fetch_info,
            print_period,
            fetch_handler,
        )