nn.py 130.0 KB
Newer Older
M
minqiyang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import paddle
M
minqiyang 已提交
16 17
from .. import core
from ..layers import utils
18
from ..layers import nn as F
19
from .. import dygraph_utils
M
minqiyang 已提交
20
from . import layers
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
from ..framework import (
    Variable,
    _non_static_mode,
    OpProtoHolder,
    Parameter,
    _dygraph_tracer,
    _varbase_creator,
    default_main_program,
    _global_flags,
    in_dygraph_mode,
    _in_legacy_dygraph,
)
from ..data_feeder import (
    convert_dtype,
    check_variable_and_dtype,
    check_type,
    check_dtype,
)
M
minqiyang 已提交
39
from ..param_attr import ParamAttr
40
from ..initializer import Normal, Constant, NumpyArrayInitializer
H
hong 已提交
41 42
from .. import unique_name
from .layer_object_helper import LayerObjectHelper
43
from ..data_feeder import check_variable_and_dtype, check_type
L
lujun 已提交
44
import numpy as np
45
import numbers
46
import logging
47
import os
48
import paddle.utils.deprecated as deprecated
49
from paddle import _C_ops, _legacy_C_ops
50

51
__all__ = [
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
    'Conv3D',
    'Pool2D',
    'Linear',
    'BatchNorm',
    'Dropout',
    'Embedding',
    'GRUUnit',
    'InstanceNorm',
    'LayerNorm',
    'NCE',
    'PRelu',
    'BilinearTensorProduct',
    'Conv2DTranspose',
    'Conv3DTranspose',
    'GroupNorm',
    'SpectralNorm',
    'TreeConv',
    'Flatten',
70
]
M
minqiyang 已提交
71 72


L
lujun 已提交
73
class Conv3D(layers.Layer):
74
    r"""
75 76 77 78
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
79
    Output(Output) are multidimensional tensors with a shape of
D
DuYao 已提交
80
    :math:`[N, C, D, H, W]` . Where N is batch size, C is the number of
81 82 83 84 85 86 87 88 89 90 91 92 93 94
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

D
DuYao 已提交
95
    * :math:`X`: Input value, a tensor with NCDHW or NDHWC format.
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
    * :math:`W`: Filter value, a tensor with MCDHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

121
    Parameters:
122
        num_channels(int): The number of channels in the input image.
L
lujun 已提交
123
        num_filters(int): The number of filter. It is as same as the output image channel.
D
DuYao 已提交
124
        filter_size (int|tuple, optional): The filter size. If filter_size is a tuple,
125
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
D
DuYao 已提交
126 127 128
            Otherwise, the filter will be a square, filter_size_depth = filter_size_height
            = filter_size_width = filter_size.
        stride (int|tuple, optional): The stride size. If stride is a tuple, it must
129
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
D
DuYao 已提交
130 131
            stride_D = stride_H = stride_W = stride. The default value is 1.
        padding (int|tuple, optional): The padding size. If padding is a tuple, it must
132
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
D
DuYao 已提交
133 134
            padding_D = padding_H = padding_W = padding. The default value is 0.
        dilation (int|tuple, optional): The dilation size. If dilation is a tuple, it must
135
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
D
DuYao 已提交
136
            dilation_D = dilation_H = dilation_W = dilation. The default value is 1.
C
cnn 已提交
137
        groups (int, optional): The groups number of the Conv3D Layer. According to grouped
138 139 140
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
D
DuYao 已提交
141 142
            connected to the second half of the input channels. The default value is 1.
        param_attr (ParamAttr, optional): The parameter attribute for learnable parameters/weights
143 144 145
            of conv3d. If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
D
DuYao 已提交
146 147
            :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. The default value is None.
        bias_attr (ParamAttr|bool, optional): The parameter attribute for the bias of conv3d.
148 149 150
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
D
DuYao 已提交
151 152 153 154 155
            is not set, the bias is initialized zero. The default value is None.
        use_cudnn (bool, optional): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. The default value is True.
        act (str, optional): Activation type, if it is set to None, activation is not appended.
            The default value is None.
156
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
157

D
DuYao 已提交
158 159 160 161
    Attribute:
        **weight** (Parameter): the learnable weights of filters of this layer.

        **bias** (Parameter): the learnable bias of this layer.
162

163
    Returns:
D
DuYao 已提交
164
        None.
165 166 167 168 169 170 171 172

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

173 174 175 176 177 178
          import paddle.fluid as fluid
          import numpy

          with fluid.dygraph.guard():
              data = numpy.random.random((5, 3, 12, 32, 32)).astype('float32')
              conv3d = fluid.dygraph.nn.Conv3D(
179
                    num_channels=3, num_filters=2, filter_size=3, act="relu")
180 181
              ret = conv3d(fluid.dygraph.base.to_variable(data))

182 183
    """

184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
    def __init__(
        self,
        num_channels,
        num_filters,
        filter_size,
        stride=1,
        padding=0,
        dilation=1,
        groups=None,
        param_attr=None,
        bias_attr=None,
        use_cudnn=True,
        act=None,
        dtype='float32',
    ):
L
lujun 已提交
199
        assert param_attr is not False, "param_attr should not be False here."
200
        super().__init__()
201
        self._num_channels = num_channels
L
lujun 已提交
202 203 204
        self._groups = groups
        self._stride = utils.convert_to_list(stride, 3, 'stride')
        self._padding = utils.convert_to_list(padding, 3, 'padding')
205
        self._dilation = utils.convert_to_list(dilation, 3, 'dilation')
L
lujun 已提交
206 207
        self._act = act
        self._use_cudnn = use_cudnn
208 209 210 211
        self._filter_size = filter_size
        self._num_filters = num_filters
        self._param_attr = param_attr
        self._bias_attr = bias_attr
212
        self._dtype = dtype
213 214

        if self._groups is None:
215
            num_filter_channels = self._num_channels
L
lujun 已提交
216
        else:
217
            if self._num_channels % self._groups != 0:
L
lujun 已提交
218
                raise ValueError("num_channels must be divisible by groups.")
219
            num_filter_channels = self._num_channels // self._groups
L
lujun 已提交
220

221 222
        filter_size = utils.convert_to_list(self._filter_size, 3, 'filter_size')
        filter_shape = [self._num_filters, num_filter_channels] + filter_size
L
lujun 已提交
223 224

        def _get_default_param_initializer():
225 226 227 228 229 230 231
            filter_elem_num = (
                filter_size[0]
                * filter_size[1]
                * filter_size[2]
                * self._num_channels
            )
            std = (2.0 / filter_elem_num) ** 0.5
L
lujun 已提交
232 233
            return Normal(0.0, std, 0)

234
        self.weight = self.create_parameter(
235
            attr=self._param_attr,
L
lujun 已提交
236 237
            shape=filter_shape,
            dtype=self._dtype,
238 239
            default_initializer=_get_default_param_initializer(),
        )
L
lujun 已提交
240

241 242 243 244 245 246
        self.bias = self.create_parameter(
            attr=self._bias_attr,
            shape=[self._num_filters],
            dtype=self._dtype,
            is_bias=True,
        )
L
lujun 已提交
247 248 249

    def forward(self, input):
        pre_bias = self._helper.create_variable_for_type_inference(
250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
            dtype=self._dtype
        )

        self._helper.append_op(
            type='conv3d',
            inputs={
                'Input': input,
                'Filter': self.weight,
            },
            outputs={"Output": pre_bias},
            attrs={
                'strides': self._stride,
                'paddings': self._padding,
                'dilations': self._dilation,
                'groups': self._groups if self._groups else 1,
                'use_cudnn': self._use_cudnn,
                'use_mkldnn': False,
            },
        )
L
lujun 已提交
269

270
        if self.bias is not None:
271
            pre_act = self._helper.create_variable_for_type_inference(
272 273 274 275 276 277 278 279
                dtype=self._dtype
            )
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [pre_bias], 'Y': [self.bias]},
                outputs={'Out': [pre_act]},
                attrs={'axis': 1},
            )
280 281
        else:
            pre_act = pre_bias
L
lujun 已提交
282 283 284 285 286

        return self._helper.append_activation(pre_act, act=self._act)


class Conv3DTranspose(layers.Layer):
287
    r"""
L
lujun 已提交
288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332
    **Convlution3D transpose layer**

    The convolution3D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

D
DuYao 已提交
333 334 335 336 337 338 339 340
           D^\prime_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H^\prime_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1 \\\\
           D_{out} &\in [ D^\prime_{out}, D^\prime_{out} + strides[0] ] \\\\
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[1] ] \\\\

    **Note**:

341 342
          The conv3d_transpose can be seen as the backward of the conv3d. For conv3d,
          when stride > 1, conv3d maps multiple input shape to the same output shape,
D
DuYao 已提交
343 344
          so for conv3d_transpose, when stride > 1, input shape maps multiple output shape.
          If output_size is None, :math:`H_{out} = H^\prime_{out}, :math:`H_{out} = \
345 346 347 348 349
          H^\prime_{out}, W_{out} = W^\prime_{out}`; else, the :math:`D_{out}` of the output
          size must between :math:`D^\prime_{out}` and :math:`D^\prime_{out} + strides[0]`,
          the :math:`H_{out}` of the output size must between :math:`H^\prime_{out}`
          and :math:`H^\prime_{out} + strides[1]`, and the :math:`W_{out}` of the output size must
          between :math:`W^\prime_{out}` and :math:`W^\prime_{out} + strides[2]`,
D
DuYao 已提交
350 351
          conv3d_transpose can compute the kernel size automatically.

L
lujun 已提交
352

353
    Parameters:
354
        num_channels(int): The number of channels in the input image.
L
lujun 已提交
355 356
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
357
        filter_size(int|tuple): The filter size. If filter_size is a tuple,
L
lujun 已提交
358
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
359
            Otherwise, the filter will be a square.
D
DuYao 已提交
360 361 362 363 364 365 366 367 368 369
        padding(int|tuple, optional): The padding size. The padding argument effectively
             adds `dilation * (kernel - 1)` amount of zero-padding on both sides of input. If `padding` is a string,
             either 'VALID' or 'SAME' supported, which is the padding algorithm. If `padding`
             is a tuple or list, it could be in three forms: `[pad_depth, pad_height, pad_width]` or
            `[pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`,
            and when `data_format` is `'NCDHW'`, `padding` can be in the form
            `[[0,0], [0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
            when `data_format` is `'NDHWC'`, `padding` can be in the form
            `[[0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
            The default value is 0.
370 371 372
        stride(int|tuple, optional): The stride size. It means the stride in transposed convolution.
            If stride is a tuple, it must contain three integers, (stride_depth, stride_height,
            stride_width). Otherwise, stride_depth = stride_height = stride_width = stride.
D
DuYao 已提交
373 374
            The default value is 1.
        dilation(int|tuple, optional): The dilation size. If dilation is a tuple, it must
L
lujun 已提交
375
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
D
DuYao 已提交
376
            dilation_D = dilation_H = dilation_W = dilation. The default value is 1.
C
cnn 已提交
377
        groups(int, optional): The groups number of the Conv3D transpose layer. Inspired by
L
lujun 已提交
378 379 380 381
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
D
DuYao 已提交
382 383
            The default value is 1.
        param_attr (ParamAttr, optional): The parameter attribute for learnable parameters/weights
L
lujun 已提交
384 385
            of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
D
DuYao 已提交
386 387
            is not set, the parameter is initialized with Xavier. The default value is None.
        bias_attr (ParamAttr|bool, optional): The parameter attribute for the bias of conv3d_transpose.
L
lujun 已提交
388 389 390
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
D
DuYao 已提交
391 392 393 394 395
            is not set, the bias is initialized zero. The default value is None.
        use_cudnn(bool, optional): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. The default value is True.
        act (str, optional): Activation type, if it is set to None, activation is not appended.
            The default value is None.
396
        name(str, optional): The default value is None. Normally there is no need for user
D
DuYao 已提交
397
            to set this property. For more information, please refer to :ref:`api_guide_Name`.
L
lujun 已提交
398

D
DuYao 已提交
399 400 401 402
    Attribute:
        **weight** (Parameter): the learnable weights of filters of this layer.

        **bias** (Parameter): the learnable bias of this layer.
403

L
lujun 已提交
404
    Returns:
D
DuYao 已提交
405
        None.
L
lujun 已提交
406 407 408 409 410 411 412 413

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
       .. code-block:: python

414 415 416 417 418 419
         import paddle.fluid as fluid
         import numpy

         with fluid.dygraph.guard():
             data = numpy.random.random((5, 3, 12, 32, 32)).astype('float32')
             conv3dTranspose = fluid.dygraph.nn.Conv3DTranspose(
420
                    num_channels=3,
421 422 423 424 425
                    num_filters=12,
                    filter_size=12,
                    use_cudnn=False)
             ret = conv3dTranspose(fluid.dygraph.base.to_variable(data))

L
lujun 已提交
426 427
    """

428 429 430 431 432 433 434 435 436 437 438 439 440 441 442
    def __init__(
        self,
        num_channels,
        num_filters,
        filter_size,
        padding=0,
        stride=1,
        dilation=1,
        groups=None,
        param_attr=None,
        bias_attr=None,
        use_cudnn=True,
        act=None,
        dtype='float32',
    ):
443
        super().__init__()
L
lujun 已提交
444 445
        if not isinstance(use_cudnn, bool):
            raise ValueError("use_cudnn should be True or False")
446 447 448
        assert (
            param_attr is not False
        ), "param_attr should not be False in conv3d_transpose."
L
lujun 已提交
449 450 451 452
        self._padding = utils.convert_to_list(padding, 3, 'padding')
        self._stride = utils.convert_to_list(stride, 3, 'stride')
        self._dilation = utils.convert_to_list(dilation, 3, 'dilation')
        self._param_attr = param_attr
453
        self._num_channels = num_channels
L
lujun 已提交
454 455 456 457 458 459
        self._filter_size = filter_size
        self._groups = 1 if groups is None else groups
        self._num_filters = num_filters
        self._use_cudnn = use_cudnn
        self._bias_attr = bias_attr
        self._act = act
460
        self._dtype = dtype
L
lujun 已提交
461

462
        self._filter_size = utils.convert_to_list(
463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478
            self._filter_size, 3, 'conv3d_transpose.filter_size'
        )

        filter_shape = [
            self._num_channels,
            self._num_filters // self._groups,
        ] + self._filter_size
        self.weight = self.create_parameter(
            dtype=self._dtype, shape=filter_shape, attr=self._param_attr
        )
        self.bias = self.create_parameter(
            attr=self._bias_attr,
            shape=[self._num_filters],
            dtype=self._dtype,
            is_bias=True,
        )
L
lujun 已提交
479 480 481

    def forward(self, input):
        pre_bias = self._helper.create_variable_for_type_inference(
482 483 484 485 486 487 488 489 490 491 492 493 494 495
            dtype=self._dtype
        )
        self._helper.append_op(
            type="conv3d_transpose",
            inputs={'Input': [input], 'Filter': [self.weight]},
            outputs={'Output': pre_bias},
            attrs={
                'strides': self._stride,
                'paddings': self._padding,
                'dilations': self._dilation,
                'groups': self._groups if self._groups else 1,
                'use_cudnn': self._use_cudnn,
            },
        )
L
lujun 已提交
496 497 498

        if self._bias_attr:
            pre_act = self._helper.create_variable_for_type_inference(
499 500 501 502 503 504 505 506
                dtype=self._dtype
            )
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [pre_bias], 'Y': [self.bias]},
                outputs={'Out': [pre_act]},
                attrs={'axis': 1},
            )
L
lujun 已提交
507 508 509 510 511 512 513
        else:
            pre_act = pre_bias

        # Currently, we don't support inplace in imperative mode
        return self._helper.append_activation(pre_act, act=self._act)


X
Xin Pan 已提交
514
class Pool2D(layers.Layer):
515
    r"""
516

517 518 519 520 521
    This interface is used to construct a callable object of the ``Pool2D`` class.
    For more details, refer to code examples.
    The pooling2d operation calculates the output based on the input, pool_type and pool_size, pool_stride,
    pool_padding parameters.Input and output are in NCHW format, where N is batch size, C is the number of feature map,
    H is the height of the feature map, and W is the width of the feature map.
L
lujun 已提交
522 523
    Parameters(ksize, strides, paddings) are two elements. These two elements represent height and width, respectively.
    The input(X) size and output(Out) size may be different.
524

525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568
    Example:

        - Input:

          Input shape: :math:`(N, C, H_{in}, W_{in})`

        - Output:

          Output shape: :math:`(N, C, H_{out}, W_{out})`

        If ``ceil_mode`` = False:

        .. math::

            H_{out} = \\frac{(H_{in} - ksize[0] + 2 * paddings[0])}{strides[0]} + 1 \\\\
            W_{out} = \\frac{(W_{in} - ksize[1] + 2 * paddings[1])}{strides[1]} + 1

        If ``ceil_mode`` = True:

        .. math::

            H_{out} = \\frac{(H_{in} - ksize[0] + 2 * paddings[0] + strides[0] - 1)}{strides[0]} + 1 \\\\
            W_{out} = \\frac{(W_{in} - ksize[1] + 2 * paddings[1] + strides[1] - 1)}{strides[1]} + 1

        If ``exclusive`` = False:

        .. math::

            hstart &= i * strides[0] - paddings[0] \\\\
            hend   &= hstart + ksize[0] \\\\
            wstart &= j * strides[1] - paddings[1] \\\\
            wend   &= wstart + ksize[1] \\\\
            Output(i ,j) &= \\frac{sum(Input[hstart:hend, wstart:wend])}{ksize[0] * ksize[1]}

        If ``exclusive`` = True:

        .. math::

            hstart &= max(0, i * strides[0] - paddings[0])\\\\
            hend &= min(H, hstart + ksize[0]) \\\\
            wstart &= max(0, j * strides[1] - paddings[1]) \\\\
            wend & = min(W, wstart + ksize[1]) \\\\
            Output(i ,j) & = \\frac{sum(Input[hstart:hend, wstart:wend])}{(hend - hstart) * (wend - wstart)}

569
    Parameters:
570
        pool_size (int or list or tuple, optional): The pool kernel size. If pool kernel size is a tuple or list,
571
            it must contain two integers, (pool_size_Height, pool_size_Width).
572
            Otherwise, the pool kernel size will be a square of an int. Default: -1.
573
        pool_type(str, optional) : The pooling type, can be "max" for max-pooling and "avg" for average-pooling.
574 575
            Default: max.
        pool_stride (int or list or tuple, optional): The pool stride size. If pool stride size is a tuple or list,
L
lujun 已提交
576
            it must contain two integers, (pool_stride_Height, pool_stride_Width). Otherwise,
577
            the pool stride size will be a square of an int. Default: 1.
578
        pool_padding (int or list or tuple, optional): The padding size for pooling operation.
579
            If ``pool_padding`` is a tuple,
580
            it must contain two integers, (pool_padding_on_Height, pool_padding_on_Width).
581 582 583 584 585 586 587
            Otherwise, the padding size for pooling operation will be a square of an int. Default: 0.
        global_pooling (bool, optional): Whether to use the global pooling. If global_pooling = true,
            kernel size and paddings will be ignored. Default: False.
        use_cudnn (bool, optional): Only used in cudnn kernel, need install cudnn. Default: True.
        ceil_mode (bool, optional): Whether to use the ceil function to calculate output height and width.
            False is the default. If it is set to False, the floor function will be used. Default: False.
        exclusive (bool, optional): Whether to exclude padding points in average pooling mode. Default: True.
588 589
        data_format (string): The data format of the input and output data. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
590
            ``[batch_size, input_channels, input_height, input_width]``. When it is `"NHWC"`, the data is
591
            stored in the order of: ``[batch_size, input_height, input_width, input_channels]``
592 593

    Returns:
594
        None
595 596

    Raises:
597 598 599 600
        ValueError: If ``pool_type`` is not "max" nor "avg".
        ValueError: If ``global_pooling`` is False and ``pool_size`` is -1.
        ValueError: If ``use_cudnn`` is not a bool value.
        ValueError: If ``data_format`` is not "NCHW" nor "NHWC".
601 602 603 604 605

    Examples:

        .. code-block:: python

L
lujun 已提交
606
          import paddle.fluid as fluid
607 608
          from paddle.fluid.dygraph.base import to_variable
          import numpy as np
L
lujun 已提交
609 610

          with fluid.dygraph.guard():
611
             data = numpy.random.random((3, 32, 32, 5)).astype('float32')
612
             pool2d = fluid.dygraph.Pool2D(pool_size=2,
613 614 615
                            pool_type='max',
                            pool_stride=1,
                            global_pooling=False)
616
             pool2d_res = pool2d(to_variable(data))
617 618 619

    """

620 621 622 623 624 625 626 627 628 629 630 631
    def __init__(
        self,
        pool_size=-1,
        pool_type="max",
        pool_stride=1,
        pool_padding=0,
        global_pooling=False,
        use_cudnn=True,
        ceil_mode=False,
        exclusive=True,
        data_format="NCHW",
    ):
632 633
        data_format = data_format.upper()  # supprt NHWC, nhwc, etc.
        pool_type = pool_type.lower()  # supprt max, Max, etc.
M
minqiyang 已提交
634 635 636
        if pool_type not in ["max", "avg"]:
            raise ValueError(
                "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
637 638
                str(pool_type),
            )
M
minqiyang 已提交
639 640 641 642

        if global_pooling is False and pool_size == -1:
            raise ValueError(
                "When the global_pooling is False, pool_size must be passed "
643 644
                "and be a valid value. Received pool_size: " + str(pool_size)
            )
M
minqiyang 已提交
645 646 647 648

        if not isinstance(use_cudnn, bool):
            raise ValueError("use_cudnn should be True or False")

649
        self._use_mkldnn = _global_flags()["FLAGS_use_mkldnn"]
650

651 652 653
        if data_format not in ["NCHW", "NHWC"]:
            raise ValueError(
                "Attr(data_format) should be 'NCHW' or 'NHWC'. Received "
654 655
                "Attr(data_format): %s." % str(data_format)
            )
656

657
        super().__init__()
M
minqiyang 已提交
658 659 660

        self._pool_type = pool_type
        self._pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
661 662 663
        self._pool_padding = utils.convert_to_list(
            pool_padding, 2, 'pool_padding'
        )
M
minqiyang 已提交
664 665 666 667 668
        self._pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')
        self._global_pooling = global_pooling
        self._use_cudnn = use_cudnn
        self._ceil_mode = ceil_mode
        self._exclusive = exclusive
669
        self._data_format = data_format
M
minqiyang 已提交
670 671 672
        self._l_type = 'pool2d'

    def forward(self, input):
J
Jiabin Yang 已提交
673
        if _non_static_mode():
674
            if not self._use_mkldnn and in_dygraph_mode():
675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711
                return _C_ops.pool2d(
                    input,
                    self._pool_size,
                    self._pool_stride,
                    self._pool_padding,
                    self._ceil_mode,
                    self._exclusive,
                    self._data_format,
                    self._pool_type,
                    self._global_pooling,
                    False,
                    "EXPLICIT",
                    self._use_cudnn,
                )

            attrs = (
                'pooling_type',
                self._pool_type,
                'ksize',
                self._pool_size,
                'global_pooling',
                self._global_pooling,
                'strides',
                self._pool_stride,
                'paddings',
                self._pool_padding,
                'use_cudnn',
                self._use_cudnn,
                'ceil_mode',
                self._ceil_mode,
                'use_mkldnn',
                self._use_mkldnn,
                'exclusive',
                self._exclusive,
                'data_format',
                self._data_format,
            )
712
            return _legacy_C_ops.pool2d(input, *attrs)
713

714
        check_variable_and_dtype(
715 716 717 718 719
            input,
            'input',
            ['int8', 'uint8', 'float16', 'float32', 'float64'],
            'Pool2D',
        )
720

721 722 723 724 725 726 727 728
        attrs = {
            "pooling_type": self._pool_type,
            "ksize": self._pool_size,
            "global_pooling": self._global_pooling,
            "strides": self._pool_stride,
            "paddings": self._pool_padding,
            "use_cudnn": self._use_cudnn,
            "ceil_mode": self._ceil_mode,
729
            "use_mkldnn": self._use_mkldnn,
730
            "exclusive": self._exclusive,
731
            "data_format": self._data_format,
732 733 734
        }
        inputs = {"X": [input]}

M
minqiyang 已提交
735 736
        pool_out = self._helper.create_variable_for_type_inference(self._dtype)

737 738 739 740 741 742
        self._helper.append_op(
            type=self._l_type,
            inputs={"X": input},
            outputs={"Out": pool_out},
            attrs=attrs,
        )
M
minqiyang 已提交
743
        return pool_out
M
minqiyang 已提交
744 745


S
songyouwei 已提交
746 747
class Linear(layers.Layer):
    """
748

S
songyouwei 已提交
749 750 751 752 753 754 755 756
    Fully-connected linear transformation layer:

    .. math::

        Out = Act({XW + b})

    where :math:`X` is the input Tensor, :math:`W` and :math:`b` are weight and bias respectively.

757
    Linear layer takes only one ``Tensor`` input.
S
songyouwei 已提交
758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797
    The Linear layer multiplies input tensor with weight matrix and
    produces an output Tensor of shape [N, *, `output_dim`],
    where N is batch size and `*` means any number of additional dimensions.
    If ``bias_attr`` is not None, a bias variable will be created and added to the output.
    Finally, if ``act`` is not None, it will be applied to the output as well.

    Parameters:
        input_dim(int): The number of input units in this layer.
        output_dim(int): The number of output units in this layer.
        param_attr(ParamAttr or list of ParamAttr, optional): The parameter attribute for learnable
            weights(Parameter) of this layer. Default: None.
        bias_attr(ParamAttr or list of ParamAttr, optional): The attribute for the bias
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
        act(str, optional): Activation to be applied to the output of this layer. Default: None.
        dtype(str, optional): Dtype used for weight, it can be "float32" or "float64". Default: "float32".

    Attributes:
        **weight** (Parameter): the learnable weights of this layer.

        **bias** (Parameter or None): the learnable bias of this layer.

    Returns:
        None

    Examples:
        .. code-block:: python

          from paddle.fluid.dygraph.base import to_variable
          import paddle.fluid as fluid
          from paddle.fluid.dygraph import Linear
          import numpy as np

          data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
          with fluid.dygraph.guard():
              linear = Linear(32, 64)
              data = to_variable(data)
              res = linear(data)  # [30, 10, 64]
    """

798 799 800 801 802 803 804 805 806
    def __init__(
        self,
        input_dim,
        output_dim,
        param_attr=None,
        bias_attr=None,
        act=None,
        dtype="float32",
    ):
807
        super().__init__()
S
songyouwei 已提交
808 809
        self._act = act
        self._dtype = dtype
810 811 812 813 814 815 816 817 818
        self.weight = self.create_parameter(
            shape=[input_dim, output_dim],
            attr=param_attr,
            dtype=dtype,
            is_bias=False,
        )
        self.bias = self.create_parameter(
            shape=[output_dim], attr=bias_attr, dtype=dtype, is_bias=True
        )
S
songyouwei 已提交
819

820
        self._use_mkldnn = _global_flags()["FLAGS_use_mkldnn"]
821

S
songyouwei 已提交
822
    def forward(self, input):
J
Jiabin Yang 已提交
823
        if _non_static_mode():
824
            pre_bias = _varbase_creator(dtype=input.dtype)
825 826 827 828 829 830 831 832 833 834 835 836 837
            _legacy_C_ops.matmul(
                input,
                self.weight,
                pre_bias,
                'transpose_X',
                False,
                'transpose_Y',
                False,
                "alpha",
                1,
                "use_mkldnn",
                self._use_mkldnn,
            )
838
            pre_act = dygraph_utils._append_bias_in_dygraph(
839 840 841
                pre_bias,
                self.bias,
                axis=len(input.shape) - 1,
842 843
                use_mkldnn=self._use_mkldnn,
            )
844

845
            return dygraph_utils._append_activation_in_dygraph(
846 847
                pre_act, self._act, use_mkldnn=self._use_mkldnn
            )
848

849 850 851
        check_variable_and_dtype(
            input, 'input', ['float16', 'float32', 'float64'], "Linear"
        )
852

853
        attrs = {
S
songyouwei 已提交
854 855 856
            "transpose_X": False,
            "transpose_Y": False,
            "alpha": 1,
857
            "use_mkldnn": self._use_mkldnn,
858 859
        }
        inputs = {"X": [input], "Y": [self.weight]}
860

S
songyouwei 已提交
861
        tmp = self._helper.create_variable_for_type_inference(self._dtype)
862 863 864
        self._helper.append_op(
            type="matmul", inputs=inputs, outputs={"Out": tmp}, attrs=attrs
        )
865
        if self.bias is not None:
S
songyouwei 已提交
866
            pre_activation = self._helper.create_variable_for_type_inference(
867 868 869 870 871 872 873 874 875 876 877
                dtype=self._dtype
            )
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [tmp], 'Y': [self.bias]},
                outputs={'Out': [pre_activation]},
                attrs={
                    'axis': len(input.shape) - 1,
                    'use_mkldnn': self._use_mkldnn,
                },
            )
S
songyouwei 已提交
878 879 880 881 882
        else:
            pre_activation = tmp
        return self._helper.append_activation(pre_activation, act=self._act)


883
class InstanceNorm(layers.Layer):
884
    r"""
885 886 887 888 889 890 891 892 893 894 895 896 897 898
    This interface is used to construct a callable object of the ``InstanceNorm`` class.
    For more details, refer to code examples.

    Can be used as a normalizer function for convolution or fully_connected operations.
    The required data format for this layer is one of the following:

    DataLayout: NCHW `[batch, in_channels, in_height, in_width]`

    Refer to `Instance Normalization: The Missing Ingredient for Fast Stylization <https://arxiv.org/pdf/1607.08022.pdf>`_
    for more details.

    :math:`input` is the input features over a mini-batch.

    ..  math::
899

900 901 902 903 904 905 906 907 908 909 910 911 912 913 914
        \\mu_{\\beta} &\\gets \\frac{1}{HW} \\sum_{i=1}^{HW} x_i \\qquad &//\\
        \\ mean\ of\ one\  feature\ map\ in\ mini-batch \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{HW} \\sum_{i=1}^{HW}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ variance\ of\ one\ feature\ map\ in\ mini-batch \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift

    Note:
        `H` means height of feature map, `W` means width of feature map.

    Parameters:
        num_channels(int): Indicate the number of channels of the input ``Tensor``.
        epsilon(float, optional): A value added to the denominator for
            numerical stability. Default is 1e-5.
C
ceci3 已提交
915
        param_attr(ParamAttr|bool, optional): The parameter attribute for Parameter `scale`
916 917
             of instance_norm. If it is set to None or one attribute of ParamAttr, instance_norm
	     will create ParamAttr as param_attr, the name of scale can be set in ParamAttr.
918
	     If the Initializer of the param_attr is not set, the parameter is initialized
C
ceci3 已提交
919 920
	     one. If it is set to False, will not create param_attr. Default: None.
        bias_attr(ParamAttr|bool, optional): The parameter attribute for the bias of instance_norm.
921
             If it is set to None or one attribute of ParamAttr, instance_norm
922 923
	     will create ParamAttr as bias_attr, the name of bias can be set in ParamAttr.
	     If the Initializer of the bias_attr is not set, the bias is initialized zero.
C
ceci3 已提交
924
             If it is set to False, will not create bias_attr. Default: None.
925 926 927 928 929 930 931 932 933 934 935 936 937 938 939
        dtype(str, optional): Indicate the data type of the input ``Tensor``,
             which can be float32 or float64. Default: float32.

    Returns:
        None.

    Examples:

        .. code-block:: python

          import paddle.fluid as fluid
          from paddle.fluid.dygraph.base import to_variable
          import numpy as np
          import paddle

940
          # x's shape is [1, 3, 1, 2]
941 942 943 944 945
          x = np.array([[[[1.0, 8.0]], [[10.0, 5.0]], [[4.0, 6.0]]]]).astype('float32')
          with fluid.dygraph.guard():
              x = to_variable(x)
              instanceNorm = paddle.nn.InstanceNorm(3)
              ret = instanceNorm(x)
946
              # ret's shape is [1, 3, 1, 2]; value is [-1 1 0.999999 -0.999999 -0.999995 0.999995]
947 948 949 950
              print(ret)

    """

951 952 953 954 955 956 957 958
    def __init__(
        self,
        num_channels,
        epsilon=1e-5,
        param_attr=None,
        bias_attr=None,
        dtype='float32',
    ):
959
        super().__init__()
960

C
ceci3 已提交
961
        if param_attr == False or bias_attr == False:
962 963
            assert (
                bias_attr == param_attr
964
            ), "param_attr and bias_attr must be set to False at the same time in InstanceNorm"
965 966 967 968 969
        self._epsilon = epsilon
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._dtype = dtype

C
ceci3 已提交
970 971 972 973 974 975
        if param_attr != False and bias_attr != False:
            self.scale = self.create_parameter(
                attr=self._param_attr,
                shape=[num_channels],
                dtype=self._dtype,
                default_initializer=Constant(1.0),
976 977 978 979 980 981 982 983 984
                is_bias=False,
            )
            self.bias = self.create_parameter(
                attr=self._bias_attr,
                shape=[num_channels],
                dtype=self._dtype,
                default_initializer=Constant(0.0),
                is_bias=True,
            )
C
ceci3 已提交
985 986 987
        else:
            self.scale = None
            self.bias = None
988 989

    def forward(self, input):
990
        if in_dygraph_mode():
991 992 993
            out = _C_ops.instance_norm(
                input, self.scale, self.bias, self._epsilon
            )
994 995
            return out
        if _in_legacy_dygraph():
996 997 998
            out, _, _ = _legacy_C_ops.instance_norm(
                input, self.scale, self.bias, 'epsilon', self._epsilon
            )
999 1000
            return out

1001 1002 1003
        check_variable_and_dtype(
            input, 'input', ['float32', 'float64'], "InstanceNorm"
        )
1004 1005 1006

        attrs = {"epsilon": self._epsilon}

C
ceci3 已提交
1007 1008 1009 1010
        if self.scale and self.bias:
            inputs = {"X": [input], "Scale": [self.scale], "Bias": [self.bias]}
        else:
            inputs = {"X": [input]}
1011 1012

        saved_mean = self._helper.create_variable_for_type_inference(
1013 1014
            dtype=self._dtype, stop_gradient=True
        )
1015
        saved_variance = self._helper.create_variable_for_type_inference(
1016 1017
            dtype=self._dtype, stop_gradient=True
        )
1018
        instance_norm_out = self._helper.create_variable_for_type_inference(
1019 1020
            self._dtype
        )
1021 1022 1023 1024

        outputs = {
            "Y": [instance_norm_out],
            "SavedMean": [saved_mean],
1025
            "SavedVariance": [saved_variance],
1026 1027
        }

1028 1029 1030
        self._helper.append_op(
            type="instance_norm", inputs=inputs, outputs=outputs, attrs=attrs
        )
1031 1032 1033
        return instance_norm_out


M
minqiyang 已提交
1034
class BatchNorm(layers.Layer):
1035
    r"""
1036

1037 1038
    This interface is used to construct a callable object of the ``BatchNorm`` class.
    For more details, refer to code examples.
1039
    It implements the function of the Batch Normalization Layer and can be used
1040 1041
    as a normalizer function for conv2d and fully connected operations.
    The data is normalized by the mean and variance of the channel based on the current batch data.
1042 1043 1044 1045
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.

1046
    When use_global_stats = False, the :math:`\mu_{\beta}`
1047
    and :math:`\sigma_{\beta}^{2}` are the statistics of one mini-batch.
1048
    Calculated as follows:
1049 1050 1051

    ..  math::

1052 1053 1054 1055
        \mu_{\beta} &\gets \frac{1}{m} \sum_{i=1}^{m} x_i \qquad &
        //\ mini-batch\ mean \\
        \sigma_{\beta}^{2} &\gets \frac{1}{m} \sum_{i=1}^{m}(x_i - \mu_{\beta})^2 \qquad &
        //\ mini-batch\ variance \\
1056

1057 1058
    - :math:`x` : mini-batch data
    - :math:`m` : the size of the mini-batch data
1059 1060 1061

    When use_global_stats = True, the :math:`\\mu_{\\beta}`
    and :math:`\\sigma_{\\beta}^{2}` are not the statistics of one mini-batch.
1062 1063 1064 1065 1066 1067
    They are global or running statistics (moving_mean and moving_variance). It usually got from the
    pre-trained model. Calculated as follows:

    .. math::
        moving\_mean = moving\_mean * momentum + \mu_{\beta} * (1. - momentum) \quad &// global mean \\
        moving\_variance = moving\_variance * momentum + \sigma_{\beta}^{2} * (1. - momentum) \quad &// global variance \\
1068

1069
    The normalization function formula is as follows:
1070

1071 1072
    ..  math::

1073 1074 1075 1076
        \hat{x_i} &\gets \frac{x_i - \mu_\beta} {\sqrt{\
        \sigma_{\beta}^{2} + \epsilon}} \qquad &//\ normalize \\
        y_i &\gets \gamma \hat{x_i} + \beta \qquad &//\ scale\ and\ shift

1077

1078 1079 1080
    - :math:`\epsilon` : add a smaller value to the variance to prevent division by zero
    - :math:`\gamma` : trainable proportional parameter
    - :math:`\beta` : trainable deviation parameter
1081

1082
    Parameters:
1083
        num_channels(int): Indicate the number of channels of the input ``Tensor``.
T
tianshuo78520a 已提交
1084
        act(str, optional): Activation to be applied to the output of batch normalization. Default: None.
1085 1086 1087
        is_test (bool, optional): A flag indicating whether it is in test phrase or not.
             This flag only has effect on static graph mode. For dygraph mode, please use ``eval()``.
             Default: False.
1088 1089 1090
        momentum(float, optional): The value used for the moving_mean and moving_var computation. Default: 0.9.
        epsilon(float, optional): The small value added to the variance to prevent division by zero. Default: 1e-5.
        param_attr(ParamAttr, optional): The parameter attribute for Parameter `scale`
1091 1092 1093
             of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
1094
        bias_attr(ParamAttr, optional): The parameter attribute for the bias of batch_norm.
1095 1096 1097
             If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
1098 1099 1100 1101 1102 1103
        dtype(str, optional): Indicate the data type of the input ``Tensor``,
             which can be float32 or float64. Default: float32.
        data_layout(str, optional): Specify the input data format, the data format can be "NCHW" or "NHWC". Default: NCHW.
        in_place(bool, optional): Make the input and output of batch norm reuse memory. Default: False.
        moving_mean_name(str, optional): The name of moving_mean which store the global Mean. Default: None.
        moving_variance_name(str, optional): The name of the moving_variance which store the global Variance. Default: None.
1104 1105
        do_model_average_for_mean_and_var(bool, optional): Whether parameter mean and variance should do model
            average when model average is enabled. Default: True.
1106
        use_global_stats(bool, optional): Whether to use global mean and
1107 1108 1109
            variance. In inference or test mode, set use_global_stats to true
            or is_test to true, and the behavior is equivalent.
            In train mode, when setting use_global_stats True, the global mean
1110 1111 1112 1113
            and variance are also used during train period. Default: False.
        trainable_statistics(bool, optional): Whether to calculate mean and var in eval mode. In eval mode, when
            setting trainable_statistics True, mean and variance will be calculated by current batch statistics.
            Default: False.
1114 1115

    Returns:
1116
        None
1117 1118 1119

    Examples:
        .. code-block:: python
L
lujun 已提交
1120 1121

          import paddle.fluid as fluid
1122 1123
          from paddle.fluid.dygraph.base import to_variable
          import numpy as np
L
lujun 已提交
1124

1125
          x = np.random.random(size=(3, 10, 3, 7)).astype('float32')
L
lujun 已提交
1126
          with fluid.dygraph.guard():
1127
              x = to_variable(x)
1128
              batch_norm = fluid.BatchNorm(10)
1129
              hidden1 = batch_norm(x)
1130 1131
    """

1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149
    def __init__(
        self,
        num_channels,
        act=None,
        is_test=False,
        momentum=0.9,
        epsilon=1e-05,
        param_attr=None,
        bias_attr=None,
        dtype='float32',
        data_layout='NCHW',
        in_place=False,
        moving_mean_name=None,
        moving_variance_name=None,
        do_model_average_for_mean_and_var=True,
        use_global_stats=False,
        trainable_statistics=False,
    ):
1150
        super().__init__()
1151
        self._param_attr = param_attr
1152
        self._bias_attr = bias_attr
1153
        self._act = act
1154
        self._use_mkldnn = _global_flags()["FLAGS_use_mkldnn"]
M
minqiyang 已提交
1155

1156 1157 1158
        assert (
            bias_attr is not False
        ), "bias_attr should not be False in batch_norm."
M
minqiyang 已提交
1159

1160 1161
        if dtype == "float16":
            self._dtype = "float32"
M
minqiyang 已提交
1162 1163 1164 1165 1166 1167
        else:
            self._dtype = dtype

        param_shape = [num_channels]

        # create parameter
1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197
        self.weight = self.create_parameter(
            attr=self._param_attr,
            shape=param_shape,
            dtype=self._dtype,
            default_initializer=Constant(1.0),
        )
        self.weight.stop_gradient = (
            use_global_stats and self._param_attr.learning_rate == 0.0
        )

        self.bias = self.create_parameter(
            attr=self._bias_attr,
            shape=param_shape,
            dtype=self._dtype,
            is_bias=True,
        )
        self.bias.stop_gradient = (
            use_global_stats and self._param_attr.learning_rate == 0.0
        )

        self._mean = self.create_parameter(
            attr=ParamAttr(
                name=moving_mean_name,
                initializer=Constant(0.0),
                trainable=False,
                do_model_average=do_model_average_for_mean_and_var,
            ),
            shape=param_shape,
            dtype=self._dtype,
        )
1198
        self._mean.stop_gradient = True
M
minqiyang 已提交
1199

1200 1201 1202 1203 1204 1205 1206 1207 1208 1209
        self._variance = self.create_parameter(
            attr=ParamAttr(
                name=moving_variance_name,
                initializer=Constant(1.0),
                trainable=False,
                do_model_average=do_model_average_for_mean_and_var,
            ),
            shape=param_shape,
            dtype=self._dtype,
        )
1210
        self._variance.stop_gradient = True
M
minqiyang 已提交
1211 1212

        self._in_place = in_place
1213
        self._data_layout = data_layout
M
minqiyang 已提交
1214 1215 1216
        self._momentum = momentum
        self._epsilon = epsilon
        self._is_test = is_test
1217
        self._fuse_with_relu = False
M
minqiyang 已提交
1218
        self._use_global_stats = use_global_stats
1219
        self._trainable_statistics = trainable_statistics
M
minqiyang 已提交
1220 1221 1222 1223 1224 1225 1226

    def forward(self, input):
        # create output
        # mean and mean_out share the same memory
        mean_out = self._mean
        # variance and variance out share the same memory
        variance_out = self._variance
1227

J
Jiabin Yang 已提交
1228
        if _non_static_mode():
H
hong 已提交
1229
            if in_dygraph_mode():
1230
                batch_norm_out, t1, t2, t3, t4, _ = _C_ops.batch_norm(
1231 1232 1233
                    input,
                    self._mean,
                    self._variance,
1234 1235 1236
                    self.weight,
                    self.bias,
                    not self.training,
1237 1238 1239 1240 1241 1242
                    self._momentum,
                    self._epsilon,
                    self._data_layout,
                    self._use_global_stats,
                    self._trainable_statistics,
                )
1243
                return dygraph_utils._append_activation_in_dygraph(
1244 1245
                    batch_norm_out, act=self._act, use_mkldnn=self._use_mkldnn
                )
1246 1247

            elif _in_legacy_dygraph():
1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265
                attrs = (
                    "momentum",
                    self._momentum,
                    "epsilon",
                    self._epsilon,
                    "is_test",
                    not self.training,
                    "data_layout",
                    self._data_layout,
                    "use_mkldnn",
                    self._use_mkldnn,
                    "fuse_with_relu",
                    self._fuse_with_relu,
                    "use_global_stats",
                    self._use_global_stats,
                    'trainable_statistics',
                    self._trainable_statistics,
                )
1266
                batch_norm_out, _, _, _, _, _ = _legacy_C_ops.batch_norm(
1267 1268 1269 1270 1271 1272 1273 1274 1275 1276
                    input,
                    self.weight,
                    self.bias,
                    self._mean,
                    self._variance,
                    None,
                    mean_out,
                    variance_out,
                    *attrs
                )
1277

1278
            return dygraph_utils._append_activation_in_dygraph(
1279 1280
                batch_norm_out, act=self._act, use_mkldnn=self._use_mkldnn
            )
1281

1282 1283 1284
        check_variable_and_dtype(
            input, 'input', ['float16', 'float32', 'float64'], 'BatchNorm'
        )
1285

1286 1287 1288 1289 1290 1291 1292
        attrs = {
            "momentum": self._momentum,
            "epsilon": self._epsilon,
            "is_test": self._is_test,
            "data_layout": self._data_layout,
            "use_mkldnn": False,
            "fuse_with_relu": self._fuse_with_relu,
1293 1294
            "use_global_stats": self._use_global_stats,
            "trainable_statistics": self._trainable_statistics,
1295
        }
M
minqiyang 已提交
1296

1297 1298 1299 1300 1301
        inputs = {
            "X": [input],
            "Scale": [self.weight],
            "Bias": [self.bias],
            "Mean": [self._mean],
1302
            "Variance": [self._variance],
1303 1304
        }

1305
        saved_mean = self._helper.create_variable_for_type_inference(
1306 1307
            dtype=self._dtype, stop_gradient=True
        )
1308
        saved_variance = self._helper.create_variable_for_type_inference(
1309 1310
            dtype=self._dtype, stop_gradient=True
        )
1311
        reserve_space = self._helper.create_variable_for_type_inference(
1312 1313
            dtype=self._helper.input_dtype(input), stop_gradient=True
        )
1314

1315 1316 1317 1318 1319
        batch_norm_out = (
            input
            if self._in_place
            else self._helper.create_variable_for_type_inference(self._dtype)
        )
1320 1321 1322 1323 1324 1325

        outputs = {
            "Y": [batch_norm_out],
            "MeanOut": [mean_out],
            "VarianceOut": [variance_out],
            "SavedMean": [saved_mean],
1326
            "SavedVariance": [saved_variance],
1327
        }
1328
        if reserve_space is not None:
1329
            outputs["ReserveSpace"] = [reserve_space]
1330

1331 1332 1333
        self._helper.append_op(
            type="batch_norm", inputs=inputs, outputs=outputs, attrs=attrs
        )
M
minqiyang 已提交
1334

L
lujun 已提交
1335
        # Currently, we don't support inplace in dygraph mode
1336
        return self._helper.append_activation(batch_norm_out, self._act)
1337 1338


1339 1340
class Dropout(layers.Layer):
    """
1341 1342
    This interface is used to construct a callable object of the ``Dropout`` class.
    For more details, refer to code examples.
1343

1344 1345 1346 1347 1348
    Drop or keep each element of input independently. Dropout is a regularization
    technique for reducing overfitting by preventing neuron co-adaption during
    training. The dropout operator randomly sets (according to the given dropout
    probability) the outputs of some units to zero, while others are remain
    unchanged.
1349

1350
    Dropout layer can be removed for efficiency concern.
1351

1352 1353 1354 1355 1356 1357 1358
    Parameters:
        p (float, optional): Probability of setting units to zero. Default: 0.5
        seed (int, optional): A Python integer used to create random seeds. If this
                    parameter is set to None, a random seed is used.
                    NOTE: If an integer seed is given, always the same output
                    units will be dropped. DO NOT use a fixed seed in training. Default: None.
        dropout_implementation(string, optional): ['downgrade_in_infer'(default)|'upscale_in_train']
1359

1360
                                        1. downgrade_in_infer(default), downgrade the outcome at inference
1361

1362 1363
                                           - train: out = input * mask
                                           - inference: out = input * (1.0 - p)
1364

1365 1366 1367
                                           (mask is a tensor same shape with input, value is 0 or 1
                                           ratio of 0 is dropout_prob)
                                        2. upscale_in_train, upscale the outcome at training time
1368

1369 1370
                                           - train: out = input * mask / ( 1.0 - p )
                                           - inference: out = input
1371

1372 1373 1374 1375 1376
                                           (mask is a tensor same shape with input, value is 0 or 1
                                           ratio of 0 is p)
        is_test (bool, optional): A flag indicating whether it is in test phrase or not.
                    This flag only has effect on static graph mode. For dygraph mode, please use ``eval()``.
                    Default: False.
1377

1378 1379
    Returns:
        None
1380

1381
    Examples:
1382

1383
        .. code-block:: python
1384

1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405
            import paddle.fluid as fluid
            from paddle.fluid.dygraph.base import to_variable
            import numpy as np

            x = np.random.random(size=(3, 10, 3, 7)).astype('float32')
            with fluid.dygraph.guard():
                x = to_variable(x)
                m = fluid.dygraph.Dropout(p=0.5)
                droped_train = m(x)
                # switch to eval mode
                m.eval()
                droped_eval = m(x)
    """

    def __init__(
        self,
        p=0.5,
        seed=None,
        dropout_implementation="downgrade_in_infer",
        is_test=False,
    ):
1406
        super().__init__()
1407 1408 1409 1410
        assert isinstance(p, (float, int)), "p argument should be a number"
        assert 0 <= p <= 1, "p argument should between 0 and 1"
        self._dropout_prob = p
        assert seed is None or isinstance(
1411 1412
            seed, int
        ), "seed argument should be None or a integer"
1413 1414
        self._seed = seed
        assert dropout_implementation in (
1415 1416
            'downgrade_in_infer',
            'upscale_in_train',
1417 1418 1419 1420 1421
        ), "dropout_implementation argument should be 'downgrade_in_infer' or 'upscale_in_train'"
        self._dropout_implementation = dropout_implementation
        self._is_test = is_test

    def forward(self, input):
1422 1423 1424
        # fast return for p == 0
        if self._dropout_prob == 0:
            return input
1425 1426 1427 1428 1429
        prog = default_main_program()
        if (self._seed is None or self._seed == 0) and prog.random_seed != 0:
            self._seed = prog.random_seed
        attrs = {
            'dropout_prob': self._dropout_prob,
1430 1431 1432
            'is_test': not self.training
            if _non_static_mode()
            else self._is_test,
1433 1434 1435 1436 1437
            'fix_seed': self._seed is not None,
            'seed': self._seed if self._seed is not None else 0,
            'dropout_implementation': self._dropout_implementation,
        }

J
Jiabin Yang 已提交
1438
        if _non_static_mode():
1439
            attrs = sum(attrs.items(), ())
1440
            out, mask = _legacy_C_ops.dropout(input, *attrs)
1441 1442 1443 1444
            return out

        out = self._helper.create_variable_for_type_inference(dtype=input.dtype)
        mask = self._helper.create_variable_for_type_inference(
1445 1446 1447 1448 1449 1450 1451 1452 1453
            dtype=core.VarDesc.VarType.UINT8, stop_gradient=True
        )

        self._helper.append_op(
            type='dropout',
            inputs={'X': [input]},
            outputs={'Out': [out], 'Mask': [mask]},
            attrs=attrs,
        )
1454 1455 1456
        return out


1457
class Embedding(layers.Layer):
1458
    r"""
1459
    :alias_main: paddle.nn.Embedding
1460 1461
        :alias: paddle.nn.Embedding,paddle.nn.layer.Embedding,paddle.nn.layer.common.Embedding
        :old_api: paddle.fluid.dygraph.Embedding
1462

1463 1464
    **Embedding Layer**

Z
zhongpu 已提交
1465 1466 1467 1468 1469 1470
    This interface is used to construct a callable object of the ``Embedding`` class.
    For specific usage, refer to code examples. It implements the function of the Embedding Layer.
    This layer is used to lookup embeddings vector of ids provided by :attr:`input` .
    It automatically constructs a 2D embedding matrix based on the
    input :attr:`size` (vocab_size, emb_size) and :attr:`dtype` .

1471 1472
    The shape of output Tensor is generated by appending an emb_size dimension to the
    last dimension of the input Tensor shape.
Z
zhongpu 已提交
1473

1474
    **Note:** The id in :attr:`input` must satisfy :math:`0 =< id < size[0]` ,
Z
zhongpu 已提交
1475 1476 1477 1478 1479 1480 1481
    otherwise the program will throw an exception and exit.

    .. code-block:: text

        Case 1:

        input is a Tensor. padding_idx = -1
1482 1483
            input.data = [[1, 3], [2, 4], [4, 127]
            input.shape = [3, 2]
Z
zhongpu 已提交
1484 1485 1486 1487 1488 1489 1490 1491
        Given size = [128, 16]
        output is a Tensor:
            out.shape = [3, 2, 16]
            out.data = [[[0.129435295, 0.244512452, ..., 0.436322452],
                        [0.345421456, 0.524563927, ..., 0.144534654]],

                        [[0.345249859, 0.124939536, ..., 0.194353745],
                        [0.945345345, 0.435394634, ..., 0.435345365]],
1492

Z
zhongpu 已提交
1493 1494 1495 1496
                        [[0.945345345, 0.435394634, ..., 0.435345365],
                        [0.0,         0.0,         ..., 0.0        ]]]  # padding data
        The input padding_idx is less than 0, it is automatically converted to padding_idx = -1 + 128 = 127
        It will pad all-zero data when ids is 127.
1497

1498
    Parameters:
L
lujun 已提交
1499 1500
        size(tuple|list): The shape of the look up table parameter. It should have two elements which indicate the size
            of the dictionary of embeddings and the size of each embedding vector respectively.
Z
zhongpu 已提交
1501
        is_sparse(bool): The flag indicating whether to use sparse update. This parameter only
1502
            affects the performance of the backwards gradient update. It is recommended to set
Z
zhongpu 已提交
1503
            True because sparse update is faster. But some optimizer does not support sparse update,
1504
            such as :ref:`api_fluid_optimizer_AdadeltaOptimizer` , :ref:`api_fluid_optimizer_AdamaxOptimizer` ,
Z
zhongpu 已提交
1505 1506 1507 1508 1509
            :ref:`api_fluid_optimizer_DecayedAdagradOptimizer` , :ref:`api_fluid_optimizer_FtrlOptimizer` ,
            :ref:`api_fluid_optimizer_LambOptimizer` and :ref:`api_fluid_optimizer_LarsMomentumOptimizer` .
            In these case, is_sparse must be False. Default: False.
        is_distributed(bool): Whether to store the embedding matrix in a distributed manner. Only used
            in multi-machine distributed CPU training. Default: False.
1510
        padding_idx(int|long|None): padding_idx needs to be in the interval [-vocab_size, vocab_size).
Z
zhongpu 已提交
1511 1512 1513 1514 1515 1516
            If :math:`padding\_idx < 0`, the :math:`padding\_idx` will automatically be converted
            to :math:`vocab\_size + padding\_idx` . It will output all-zero padding data whenever lookup
            encounters :math:`padding\_idx` in id. And the padding data will not be updated while training.
            If set None, it makes no effect to output. Default: None.
        param_attr(ParamAttr): To specify the weight parameter property. Default: None, which means the
            default weight parameter property is used. See usage for details in :ref:`api_fluid_ParamAttr` . In addition,
1517
            user-defined or pre-trained word vectors can be loaded with the :attr:`param_attr` parameter.
Z
zhongpu 已提交
1518
            The local word vector needs to be transformed into numpy format, and the shape of local word
T
tianshuo78520a 已提交
1519
            vector should be consistent with :attr:`size` . Then :ref:`api_fluid_initializer_NumpyArrayInitializer`
Z
zhongpu 已提交
1520 1521 1522
            is used to load custom or pre-trained word vectors. See code example 2 for details.
        dtype(np.dtype|core.VarDesc.VarType|str): It refers to the data type of output Tensor.
            It must be "float32" or "float64". Default: "float32".
1523

Z
zhongpu 已提交
1524 1525
    Attribute:
        **weight** (Parameter): the learnable weights of this layer.
1526

1527
    Returns:
Z
zhongpu 已提交
1528
        Variable: Embedding Tensor or LoDTensor mapped by input. The data type is the same as :attr:`dtype` .
1529 1530

    Examples:
1531

1532 1533
        .. code-block:: python

L
lujun 已提交
1534 1535 1536 1537
          import paddle.fluid as fluid
          import paddle.fluid.dygraph.base as base
          import numpy as np

Z
zhongpu 已提交
1538
          # example 1
1539 1540
          inp_word = np.array([[2, 3, 5], [4, 2, 1]]).astype('int64')
          inp_word.shape  # [2, 3]
1541 1542
          dict_size = 20
          with fluid.dygraph.guard():
L
lujun 已提交
1543
              emb = fluid.dygraph.Embedding(
1544 1545 1546
                  size=[dict_size, 32],
                  param_attr='emb.w',
                  is_sparse=False)
L
lujun 已提交
1547
              static_rlt3 = emb(base.to_variable(inp_word))
1548
              static_rlt3.shape  # [2, 3, 32]
Z
zhongpu 已提交
1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561

          # example 2: load custom or pre-trained word vectors
          weight_data = np.random.random(size=(128, 100))  # word vectors with numpy format
          w_param_attrs = fluid.ParamAttr(
              name="emb_weight",
              learning_rate=0.5,
              initializer=fluid.initializer.NumpyArrayInitializer(weight_data),
              trainable=True)
          with fluid.dygraph.guard():
              emb = fluid.dygraph.Embedding(
                  size=[128, 100],
                  param_attr= w_param_attrs,
                  is_sparse=False)
1562
              static_rlt3 = emb(base.to_variable(inp_word))
1563 1564
    """

1565 1566 1567 1568 1569 1570 1571 1572 1573
    def __init__(
        self,
        size,
        is_sparse=False,
        is_distributed=False,
        padding_idx=None,
        param_attr=None,
        dtype='float32',
    ):
1574
        super().__init__()
1575 1576 1577
        self._size = size
        self._is_sparse = is_sparse
        self._is_distributed = is_distributed
1578 1579 1580 1581 1582 1583 1584
        self._padding_idx = (
            -1
            if padding_idx is None
            else padding_idx
            if padding_idx >= 0
            else (size[0] + padding_idx)
        )
1585 1586 1587

        self._param_attr = param_attr
        self._dtype = dtype
J
JiabinYang 已提交
1588
        self._remote_prefetch = self._is_sparse and (not self._is_distributed)
1589 1590 1591
        if self._remote_prefetch:
            assert self._is_sparse is True and self._is_distributed is False

1592 1593 1594 1595 1596 1597
        self.weight = self.create_parameter(
            attr=self._param_attr,
            shape=self._size,
            dtype=self._dtype,
            is_bias=False,
        )
1598 1599

    def forward(self, input):
J
Jiabin Yang 已提交
1600
        if _non_static_mode():
1601
            return _legacy_C_ops.lookup_table_v2(
1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612
                self.weight,
                input,
                'is_sparse',
                self._is_sparse,
                'is_distributed',
                self._is_distributed,
                'remote_prefetch',
                self._remote_prefetch,
                'padding_idx',
                self._padding_idx,
            )
1613

1614 1615 1616 1617 1618 1619
        check_variable_and_dtype(
            input,
            'input',
            ['uint8', 'int8', 'int16', 'int32', 'int64'],
            'Embedding',
        )
1620 1621 1622 1623
        attrs = {
            'is_sparse': self._is_sparse,
            'is_distributed': self._is_distributed,
            'remote_prefetch': self._remote_prefetch,
1624
            'padding_idx': self._padding_idx,
1625
        }
1626

1627
        out = self._helper.create_variable_for_type_inference(self._dtype)
1628 1629 1630 1631 1632 1633
        self._helper.append_op(
            type='lookup_table_v2',
            inputs={'Ids': input, 'W': self.weight},
            outputs={'Out': out},
            attrs=attrs,
        )
1634 1635

        return out
M
minqiyang 已提交
1636 1637


1638
class LayerNorm(layers.Layer):
1639
    r"""
1640
    :alias_main: paddle.nn.LayerNorm
1641 1642
        :alias: paddle.nn.LayerNorm,paddle.nn.layer.LayerNorm,paddle.nn.layer.norm.LayerNorm
        :old_api: paddle.fluid.dygraph.LayerNorm
1643

1644 1645 1646
    This interface is used to construct a callable object of the ``LayerNorm`` class.
    For more details, refer to code examples.
    It implements the function of the Layer Normalization Layer and can be applied to mini-batch input data.
1647
    Refer to `Layer Normalization <https://arxiv.org/pdf/1607.06450v1.pdf>`_
1648

1649
    The formula is as follows:
1650

1651
    ..  math::
1652

1653
        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} x_i
1654

1655
        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}{(x_i - \\mu)^2} + \\epsilon}
1656

1657
        y & = f(\\frac{g}{\\sigma}(x - \\mu) + b)
1658

1659 1660 1661 1662 1663
    - :math:`x`: the vector representation of the summed inputs to the neurons in that layer.
    - :math:`H`: the number of hidden units in a layers
    - :math:`\\epsilon`: the small value added to the variance to prevent division by zero.
    - :math:`g`: the trainable scale parameter.
    - :math:`b`: the trainable bias parameter.
1664

1665
    Parameters:
1666 1667 1668 1669
        normalized_shape(int or list or tuple): Input shape from an expected input of
            size :math:`[*, normalized_shape[0], normalized_shape[1], ..., normalized_shape[-1]]`.
            If it is a single integer, this module will normalize over the last dimension
            which is expected to be of that specific size.
1670
        scale(bool, optional): Whether to learn the adaptive gain :math:`g` after
L
lujun 已提交
1671
            normalization. Default: True.
1672
        shift(bool, optional): Whether to learn the adaptive bias :math:`b` after
L
lujun 已提交
1673
            normalization. Default: True.
1674
        epsilon(float, optional): The small value added to the variance to prevent
L
lujun 已提交
1675
            division by zero. Default: 1e-05.
1676
        param_attr(ParamAttr, optional): The parameter attribute for the learnable
1677 1678 1679
            gain :math:`g`. If :attr:`scale` is False, :attr:`param_attr` is
            omitted. If :attr:`scale` is True and :attr:`param_attr` is None,
            a default :code:`ParamAttr` would be added as scale. The
L
lujun 已提交
1680
            :attr:`param_attr` is initialized as 1 if it is added. Default: None.
1681
        bias_attr(ParamAttr, optional): The parameter attribute for the learnable
1682 1683 1684
            bias :math:`b`. If :attr:`shift` is False, :attr:`bias_attr` is
            omitted. If :attr:`shift` is True and :attr:`param_attr` is None,
            a default :code:`ParamAttr` would be added as bias. The
L
lujun 已提交
1685
            :attr:`bias_attr` is initialized as 0 if it is added. Default: None.
T
tianshuo78520a 已提交
1686
        act(str, optional): Activation to be applied to the output of layer normalization.
L
lujun 已提交
1687
                  Default: None.
1688 1689
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".

1690
    Returns:
1691
        None
1692

1693
    Examples:
1694

1695 1696 1697
        .. code-block:: python

          import paddle.fluid as fluid
1698
          from paddle.fluid.dygraph.base import to_variable
1699 1700
          import numpy

1701
          x = numpy.random.random((3, 32, 32)).astype('float32')
1702
          with fluid.dygraph.guard():
1703
              x = to_variable(x)
1704
              layerNorm = fluid.LayerNorm([32, 32])
1705
              ret = layerNorm(x)
1706

1707
    """
1708

1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719
    def __init__(
        self,
        normalized_shape,
        scale=True,
        shift=True,
        epsilon=1e-05,
        param_attr=None,
        bias_attr=None,
        act=None,
        dtype='float32',
    ):
1720
        super().__init__()
1721 1722
        if isinstance(normalized_shape, numbers.Integral):
            normalized_shape = [normalized_shape]
H
hong 已提交
1723

1724
        self._normalized_shape = list(normalized_shape)
1725 1726 1727 1728 1729 1730
        self._scale = scale
        self._shift = shift
        self._epsilon = epsilon
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._act = act
1731 1732
        self._dtype = dtype
        param_shape = [np.prod(self._normalized_shape)]
1733
        if self._scale:
1734
            self.weight = self.create_parameter(
1735 1736 1737
                attr=self._param_attr,
                shape=param_shape,
                dtype=self._dtype,
1738 1739
                default_initializer=Constant(1.0),
            )
1740 1741
        else:
            if self._param_attr:
T
tianshuo78520a 已提交
1742
                logging.warn("param_attr are only available with scale is True")
1743
            self.weight = None
1744

1745 1746
        if self._shift:
            assert self._bias_attr is not False
1747 1748 1749 1750 1751 1752
            self.bias = self.create_parameter(
                attr=self._bias_attr,
                shape=param_shape,
                dtype=self._dtype,
                is_bias=True,
            )
1753 1754
        else:
            if self._bias_attr:
T
tianshuo78520a 已提交
1755
                logging.warn("bias_attr are only available with shift is True")
1756
            self.bias = None
1757 1758

    def forward(self, input):
1759 1760 1761 1762
        input_shape = list(input.shape)
        input_ndim = len(input_shape)
        normalized_ndim = len(self._normalized_shape)
        self._begin_norm_axis = input_ndim - normalized_ndim
1763 1764 1765 1766
        if (
            input_ndim < normalized_ndim
            or input_shape[self._begin_norm_axis :] != self._normalized_shape
        ):
1767
            str_normalized_shape = str(self._normalized_shape)
1768 1769 1770 1771 1772 1773 1774 1775
            raise ValueError(
                'Given normalized_shape is '
                + str_normalized_shape
                + ', expected input with shape [*, '
                + str_normalized_shape[1:]
                + ', but got input shape '
                + str(input_shape)
            )
1776

J
Jiabin Yang 已提交
1777
        if _non_static_mode():
H
hong 已提交
1778
            if in_dygraph_mode():
1779 1780 1781 1782 1783 1784 1785
                pre_act, _, _, = _C_ops.layer_norm(
                    input,
                    self.weight,
                    self.bias,
                    self._epsilon,
                    self._begin_norm_axis,
                )
H
hong 已提交
1786
                return dygraph_utils._append_activation_in_dygraph(
1787 1788
                    pre_act, act=self._act
                )
H
hong 已提交
1789
            else:
1790
                pre_act, _, _ = _legacy_C_ops.layer_norm(
1791 1792 1793 1794 1795 1796 1797 1798
                    input,
                    self.weight,
                    self.bias,
                    'epsilon',
                    self._epsilon,
                    'begin_norm_axis',
                    self._begin_norm_axis,
                )
H
hong 已提交
1799
                return dygraph_utils._append_activation_in_dygraph(
1800 1801
                    pre_act, act=self._act
                )
1802

1803 1804 1805
        check_variable_and_dtype(
            input, 'input', ['float32', 'float64'], 'LayerNorm'
        )
1806

1807
        inputs = dict()
1808
        inputs['X'] = [input]
1809
        if self._scale:
1810
            inputs['Scale'] = [self.weight]
1811
        if self._shift:
1812 1813 1814
            inputs['Bias'] = [self.bias]
        attrs = {
            "epsilon": self._epsilon,
1815
            "begin_norm_axis": self._begin_norm_axis,
1816 1817
        }

1818 1819
        # create output
        mean_out = self._helper.create_variable_for_type_inference(
1820 1821
            dtype=self._dtype, stop_gradient=True
        )
1822
        variance_out = self._helper.create_variable_for_type_inference(
1823 1824
            dtype=self._dtype, stop_gradient=True
        )
1825
        layer_norm_out = self._helper.create_variable_for_type_inference(
1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841
            self._dtype
        )

        self._helper.append_op(
            type="layer_norm",
            inputs=inputs,
            outputs={
                "Y": layer_norm_out,
                "Mean": mean_out,
                "Variance": variance_out,
            },
            attrs={
                "epsilon": self._epsilon,
                "begin_norm_axis": self._begin_norm_axis,
            },
        )
1842

1843
        return self._helper.append_activation(layer_norm_out, act=self._act)
1844 1845


M
minqiyang 已提交
1846 1847 1848
class GRUUnit(layers.Layer):
    """
    **GRU unit layer**
1849

D
DuYao 已提交
1850 1851
    It creates a callable object from GRUUnit class.
    If origin_mode is True, then the equation of a gru step is from paper
1852
    `Learning Phrase Representations using RNN Encoder-Decoder for Statistical
D
DuYao 已提交
1853
    Machine Translation <https://arxiv.org/pdf/1406.1078.pdf>`_
M
minqiyang 已提交
1854 1855 1856 1857 1858 1859 1860 1861 1862 1863

        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)

            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)

            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)

            h_t & = dot(u_t, h_{t-1}) + dot((1-u_t), m_t)

D
DuYao 已提交
1864
    If origin_mode is False, then the equation of a gru step is from paper
M
minqiyang 已提交
1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889
    `Empirical Evaluation of Gated Recurrent Neural Networks on Sequence
    Modeling <https://arxiv.org/pdf/1412.3555.pdf>`_

        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)

            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)

            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)

            h_t & = dot((1-u_t), h_{t-1}) + dot(u_t, m_t)


    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.

1890
    Parameters:
L
lujun 已提交
1891
        size (int): The input dimension value.
D
DuYao 已提交
1892
        param_attr(ParamAttr, optional): The parameter attribute for the learnable
1893 1894
            hidden-hidden weight matrix.

D
DuYao 已提交
1895
            **Note**:
1896

D
DuYao 已提交
1897
                1. The shape of the weight matrix is :math:`[T, 3*D]`, where D is the hidden size.
1898 1899
                2. All elements in the weight matrix can be divided into two parts. The first
                   part are weights of the update gate and reset gate with shape :math:`[D, 2*D]`,
D
DuYao 已提交
1900
                   and the second part are weights for candidate hidden state with shape :math:`[D, D]`.
M
minqiyang 已提交
1901 1902 1903 1904


            If it is set to None or one attribute of ParamAttr, gru_unit will
            create ParamAttr as param_attr. If the Initializer of the param_attr
1905
            is not set, the parameter is initialized with Xavier. The default
D
DuYao 已提交
1906 1907 1908
            value is None.
        bias_attr (ParamAttr|bool, optional): The parameter attribute for the bias
            of GRU.Note that the bias with :math:`[1, 3*D]` concatenates
M
minqiyang 已提交
1909 1910 1911 1912 1913
            the bias in the update gate, reset gate and candidate calculations.
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, gru_unit will create ParamAttr as
            bias_attr. If the Initializer of the bias_attr is not set, the bias
D
DuYao 已提交
1914
            is initialized zero. The default value is None.
L
lujun 已提交
1915
        activation (str): The activation type for cell (actNode).
D
DuYao 已提交
1916
                             The default value is 'tanh'.
L
lujun 已提交
1917
        gate_activation (str): The activation type for gates (actGate).
D
DuYao 已提交
1918 1919 1920
                                  The default value is 'sigmoid'.
        dtype(str): The dtype of the layers. The data type can be set as
            'float32', 'float64'. The default value is 'float32'.
M
minqiyang 已提交
1921

D
DuYao 已提交
1922 1923 1924 1925
    Attribute:
        **weight** (Parameter): the learnable weights of this layer.

        **bias** (Parameter): the learnable bias of this layer.
1926

M
minqiyang 已提交
1927
    Returns:
D
DuYao 已提交
1928 1929
        tuple: The hidden value, reset-hidden value and gate values. The hidden value
        is a 2-D tensor with shape  :math:`[T, D]` . The reset-hidden value is a
1930
        2-D tensor with shape  :math:`[T, D]` . The gate value is a 2-D tensor with
D
DuYao 已提交
1931
        shape  :math:`[T, 3*D]`.
L
lujun 已提交
1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944

    Examples:

        .. code-block:: python

          import paddle.fluid as fluid
          import paddle.fluid.dygraph.base as base
          import numpy

          lod = [[2, 4, 3]]
          D = 5
          T = sum(lod[0])

D
DuYao 已提交
1945
          input = numpy.random.rand(T, 3 * D).astype('float32')
L
lujun 已提交
1946 1947 1948
          hidden_input = numpy.random.rand(T, D).astype('float32')
          with fluid.dygraph.guard():
              x = numpy.random.random((3, 32, 32)).astype('float32')
1949
              gru = fluid.dygraph.GRUUnit(size=D * 3)
L
lujun 已提交
1950 1951 1952
              dy_ret = gru(
                base.to_variable(input), base.to_variable(hidden_input))

M
minqiyang 已提交
1953 1954
    """

1955 1956 1957 1958 1959 1960 1961 1962 1963 1964
    def __init__(
        self,
        size,
        param_attr=None,
        bias_attr=None,
        activation='tanh',
        gate_activation='sigmoid',
        origin_mode=False,
        dtype='float32',
    ):
1965
        super().__init__()
1966
        self._bias_attr = bias_attr
M
minqiyang 已提交
1967 1968 1969 1970
        activation_dict = dict(
            identity=0,
            sigmoid=1,
            tanh=2,
1971 1972
            relu=3,
        )
H
Hongyu Liu 已提交
1973 1974
        self.activation = activation_dict[activation]
        self.gate_activation = activation_dict[gate_activation]
M
minqiyang 已提交
1975

M
minqiyang 已提交
1976
        self._dtype = dtype
M
minqiyang 已提交
1977 1978
        size = size // 3
        # create weight
1979 1980 1981
        self.weight = self.create_parameter(
            attr=param_attr, shape=[size, 3 * size], dtype=dtype
        )
M
minqiyang 已提交
1982 1983

        # create bias
M
minqiyang 已提交
1984
        bias_size = [1, 3 * size]
1985
        self._bias_size = bias_size
1986 1987 1988
        self.bias = self.create_parameter(
            attr=bias_attr, shape=bias_size, dtype=dtype, is_bias=True
        )
M
minqiyang 已提交
1989

M
minqiyang 已提交
1990
    def forward(self, input, hidden):
J
Jiabin Yang 已提交
1991
        if _non_static_mode():
1992
            gate, reset_hidden_pre, updated_hidden = _legacy_C_ops.gru_unit(
1993 1994 1995 1996 1997 1998 1999 2000 2001
                input,
                hidden,
                self.weight,
                self.bias,
                'activation',
                self.activation,
                'gate_activation',
                self.gate_activation,
            )
2002 2003
            return updated_hidden, reset_hidden_pre, gate

2004 2005 2006 2007 2008 2009
        check_variable_and_dtype(
            input, 'input', ['float32', 'float64'], 'GRUUnit'
        )
        check_variable_and_dtype(
            hidden, 'hidden', ['float32', 'float64'], 'GRUUnit'
        )
2010 2011 2012
        inputs = {
            'Input': [input],
            'HiddenPrev': [hidden],
2013
            'Weight': [self.weight],
2014
        }
2015
        if self.bias is not None:
2016
            inputs['Bias'] = [self.bias]
M
minqiyang 已提交
2017 2018
        gate = self._helper.create_variable_for_type_inference(self._dtype)
        reset_hidden_pre = self._helper.create_variable_for_type_inference(
2019 2020
            self._dtype
        )
M
minqiyang 已提交
2021
        updated_hidden = self._helper.create_variable_for_type_inference(
2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036
            self._dtype
        )
        self._helper.append_op(
            type='gru_unit',
            inputs=inputs,
            outputs={
                'Gate': gate,
                'ResetHiddenPrev': reset_hidden_pre,
                'Hidden': updated_hidden,
            },
            attrs={
                'activation': self.activation,
                'gate_activation': self.gate_activation,
            },
        )
M
minqiyang 已提交
2037 2038

        return updated_hidden, reset_hidden_pre, gate
2039 2040 2041 2042


class NCE(layers.Layer):
    """
2043 2044 2045 2046 2047
    This interface is used to construct a callable object of the ``NCE`` class.
    For more details, refer to code examples.
    It implements the function of the ``NCE`` loss function.
    By default this function uses a uniform distribution for sampling, and it
    compute and return the noise-contrastive estimation training loss. See
2048
    `Noise-contrastive estimation: A new estimation principle for unnormalized statistical models <http://www.jmlr.org/proceedings/papers/v9/gutmann10a/gutmann10a.pdf>`_ .
2049

2050
    Parameters:
2051 2052
        num_total_classes (int): Total number of classes in all samples.
        dim (int): Dimension of input (possibly embedding dim).
2053
        param_attr (ParamAttr, optional): The parameter attribute for learnable weights(Parameter)
2054 2055 2056
             of nce. If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
2057
        bias_attr (ParamAttr or bool, optional): The attribute for the bias of nce.
2058 2059 2060 2061
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
2062
        num_neg_samples (int, optional): The number of negative classes. The default value is 10.
T
tianshuo78520a 已提交
2063
        sampler (str, optional): The sampler used to sample class from negative classes.
2064 2065
                       It can be 'uniform', 'log_uniform' or 'custom_dist'.
                       default: 'uniform'.
2066
        custom_dist (float[], optional): A float[] with size=num_total_classes.
2067
                       It is used when sampler is set to 'custom_dist'.
2068
                       custom_dist[i] is the probability of i-th class to be sampled.
L
lujun 已提交
2069
                       Default: None.
2070 2071
        seed (int, optional): The seed used in sampler. Default: 0.
        is_sparse(bool, optional): The flag indicating whether to use sparse update. If is_sparse is True, the weight@GRAD and bias@GRAD will be changed to SelectedRows. Default: False.
2072
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
2073

2074 2075
    Attribute:
        **weight** (Parameter): the learnable weights of this layer.
2076

2077
        **bias** (Parameter or None): the learnable bias of this layer.
2078

2079
    Returns:
2080
        None
2081 2082 2083 2084

    Examples:
        .. code-block:: python

2085 2086 2087
            import numpy as np
            import paddle.fluid as fluid

2088
            window_size = 5
2089 2090
            dict_size = 20
            label_word = int(window_size // 2) + 1
2091
            inp_word = np.array([[1], [2], [3], [4], [5]]).astype('int64')
2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112
            nid_freq_arr = np.random.dirichlet(np.ones(20) * 1000).astype('float32')

            with fluid.dygraph.guard():
                words = []
                for i in range(window_size):
                    words.append(fluid.dygraph.base.to_variable(inp_word[i]))

                emb = fluid.Embedding(
                    size=[dict_size, 32],
                    param_attr='emb.w',
                    is_sparse=False)

                embs3 = []
                for i in range(window_size):
                    if i == label_word:
                        continue

                    emb_rlt = emb(words[i])
                    embs3.append(emb_rlt)

                embs3 = fluid.layers.concat(input=embs3, axis=1)
2113
                nce = fluid.NCE(
2114
                             num_total_classes=dict_size,
2115
                             dim=embs3.shape[1],
2116 2117 2118 2119 2120 2121 2122
                             num_neg_samples=2,
                             sampler="custom_dist",
                             custom_dist=nid_freq_arr.tolist(),
                             seed=1,
                             param_attr='nce.w',
                             bias_attr='nce.b')

2123 2124
                wl = fluid.layers.unsqueeze(words[label_word], axes=[0])
                nce_loss3 = nce(embs3, wl)
2125 2126 2127

    """

2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141
    def __init__(
        self,
        num_total_classes,
        dim,
        sample_weight=None,
        param_attr=None,
        bias_attr=None,
        num_neg_samples=None,
        sampler="uniform",
        custom_dist=None,
        seed=0,
        is_sparse=False,
        dtype='float32',
    ):
2142
        super().__init__()
2143 2144 2145
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._num_total_classes = num_total_classes
2146
        self._dtype = dtype
2147
        self._inputs = dict()
2148 2149 2150
        self._inputs['SampleWeight'] = (
            sample_weight if sample_weight is not None else []
        )
2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205
        if sampler == "uniform":
            sampler = 0
        elif sampler == "log_uniform":
            sampler = 1
        elif sampler == "custom_dist":
            assert custom_dist is not None
            # assert isinstance(custom_dist, Variable)

            custom_dist_len = len(custom_dist)
            alias_probs_ = [0] * custom_dist_len
            alias_ = [0] * custom_dist_len
            bigs = []
            littles = []
            for i in range(custom_dist_len):
                normal_prob = custom_dist[i] * custom_dist_len
                if normal_prob - 1.0 > 0:
                    bigs.append((i, normal_prob))
                elif 1.0 - normal_prob > 0:
                    littles.append((i, normal_prob))
                else:
                    alias_probs_[i] = normal_prob
                    alias_[i] = -1

            while len(bigs) and len(littles):
                big = bigs.pop(0)
                little = littles.pop(0)

                big_idx = big[0]
                big_prob = big[1]

                alias_probs_[little[0]] = little[1]
                alias_[little[0]] = big_idx
                big_left = big[1] + little[1] - 1
                if big_left - 1.0 > 0:
                    bigs.append((big_idx, big_left))
                elif 1.0 - big_left > 0:
                    littles.append((big_idx, big_left))
                else:
                    alias_probs_[big_idx] = big_left
                    alias_[big_idx] = -1

            if len(bigs):
                big = bigs.pop(0)
                alias_probs_[big[0]] = 1.0
                alias_[big[0]] = -1
            if len(littles):
                little = littles.pop(0)
                alias_probs_[little[0]] = 1.0
                alias_[little[0]] = -1

            def _init_by_numpy_array(numpy_array):
                ret = self.create_parameter(
                    attr=ParamAttr(),
                    shape=numpy_array.shape,
                    dtype=numpy_array.dtype,
2206 2207
                    default_initializer=NumpyArrayInitializer(numpy_array),
                )
2208 2209 2210 2211
                ret.stop_gradient = True
                return ret

            self._inputs['CustomDistProbs'] = _init_by_numpy_array(
2212 2213
                np.array(custom_dist).astype('float32')
            )
2214
            self._inputs['CustomDistAlias'] = _init_by_numpy_array(
2215 2216
                np.array(alias_).astype('int32')
            )
2217
            self._inputs['CustomDistAliasProbs'] = _init_by_numpy_array(
2218 2219
                np.array(alias_probs_).astype('float32')
            )
2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238
            sampler = 2
        else:
            raise Exception("Unsupported sampler type.")

        if num_neg_samples is None:
            num_neg_samples = 10
        else:
            num_neg_samples = int(num_neg_samples)
        self._num_neg_samples = num_neg_samples
        remote_prefetch = is_sparse
        print(
            "With sparse mode, if your models has only small parameter prefetch may cause speed down"
        )
        self._attrs = {
            'num_total_classes': int(num_total_classes),
            'num_neg_samples': num_neg_samples,
            'seed': seed,
            'sampler': sampler,
            'is_sparse': is_sparse,
2239
            'remote_prefetch': remote_prefetch,
2240 2241
        }

2242
        self.weight = self.create_parameter(
2243 2244 2245
            attr=self._param_attr,
            shape=[self._num_total_classes, dim],
            is_bias=False,
2246 2247
            dtype=self._dtype,
        )
2248
        if self._bias_attr:
2249
            self.bias = self.create_parameter(
2250 2251 2252
                attr=self._bias_attr,
                shape=[self._num_total_classes, 1],
                is_bias=True,
2253 2254
                dtype=self._dtype,
            )
2255 2256
            self._inputs['Bias'] = self.bias
        self._inputs['Weight'] = self.weight
2257

2258
    def forward(self, input, label, sample_weight=None):
J
Jiabin Yang 已提交
2259
        if _non_static_mode():
2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284
            attrs = (
                'num_total_classes',
                self._attrs['num_total_classes'],
                'num_neg_samples',
                self._attrs['num_neg_samples'],
                'seed',
                self._attrs['seed'],
                'sampler',
                self._attrs['sampler'],
                'is_sparse',
                self._attrs['is_sparse'],
                'remote_prefetch',
                self._attrs['remote_prefetch'],
            )
            cost, _, _ = _legacy_C_ops.nce(
                input,
                label,
                self.weight,
                self.bias,
                self._inputs['SampleWeight'],
                self._inputs['CustomDistProbs'],
                self._inputs['CustomDistAlias'],
                self._inputs['CustomDistAliasProbs'],
                *attrs
            )
W
Weilong Wu 已提交
2285 2286
            return cost / (self._num_neg_samples + 1)

2287 2288
        check_variable_and_dtype(input, "input", ['float32', 'float64'], "NCE")
        check_variable_and_dtype(label, "label", ['int64'], "NCE")
2289 2290 2291
        check_type(
            sample_weight, 'sample_weight', (Variable, type(None)), 'NCE'
        )
2292 2293 2294 2295 2296
        assert isinstance(input, Variable)
        assert isinstance(label, Variable)

        self._inputs['Input'] = input
        self._inputs['Label'] = label
2297 2298 2299
        self._inputs['SampleWeight'] = (
            sample_weight if sample_weight is not None else []
        )
2300 2301

        cost = self._helper.create_variable_for_type_inference(
2302 2303
            dtype=input.dtype
        )
2304
        sample_logits = self._helper.create_variable_for_type_inference(
2305 2306
            dtype=input.dtype
        )
2307
        sample_labels = self._helper.create_variable_for_type_inference(
2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320
            dtype=label.dtype
        )

        self._helper.append_op(
            type='nce',
            inputs=self._inputs,
            outputs={
                'Cost': cost,
                'SampleLogits': sample_logits,
                'SampleLabels': sample_labels,
            },
            attrs=self._attrs,
        )
2321 2322 2323 2324
        return cost / (self._num_neg_samples + 1)


class PRelu(layers.Layer):
2325
    r"""
2326 2327 2328 2329
    This interface is used to construct a callable object of the ``PRelu`` class.
    For more details, refer to code examples.
    It implements three activation methods of the ``PRelu`` activation function.

2330 2331 2332 2333 2334
    Equation:

    .. math::
        y = \max(0, x) + \\alpha * \min(0, x)

2335
    Parameters:
L
lujun 已提交
2336
        mode (str): The mode for weight sharing. It supports all, channel
2337 2338 2339
          and element. all: all elements share same weight
          channel:elements in a channel share same weight
          element:each element has a weight
S
songyouwei 已提交
2340 2341 2342
        channel (int, optional): The number of channels.
          This argument is required when mode is "channel".
          Default: None.
2343
        input_shape (list or tuple, optional): The shape of input.
S
songyouwei 已提交
2344 2345
          This argument is required when mode is "element".
          Default: None.
2346 2347
        param_attr(ParamAttr, optional): The parameter attribute for the learnable
          weight (alpha). Default: None.
2348
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
2349

2350 2351
    Attribute:
        **weight** (Parameter): the learnable weights of this layer.
2352

2353
    Returns:
2354
        None
2355 2356 2357 2358 2359

    Examples:

        .. code-block:: python

L
lujun 已提交
2360
          import paddle.fluid as fluid
2361
          from paddle.fluid.dygraph.base import to_variable
L
lujun 已提交
2362 2363 2364 2365
          import numpy as np

          inp_np = np.ones([5, 200, 100, 100]).astype('float32')
          with fluid.dygraph.guard():
2366
              inp_np = to_variable(inp_np)
S
songyouwei 已提交
2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377
              prelu0 = fluid.PRelu(
                 mode='all',
                 param_attr=fluid.ParamAttr(initializer=fluid.initializer.Constant(1.0)))
              dy_rlt0 = prelu0(inp_np)
              prelu1 = fluid.PRelu(
                 mode='channel',
                 channel=200,
                 param_attr=fluid.ParamAttr(initializer=fluid.initializer.Constant(1.0)))
              dy_rlt1 = prelu1(inp_np)
              prelu2 = fluid.PRelu(
                 mode='element',
2378
                 input_shape=inp_np.shape,
L
lujun 已提交
2379
                 param_attr=fluid.ParamAttr(initializer=fluid.initializer.Constant(1.0)))
S
songyouwei 已提交
2380
              dy_rlt2 = prelu2(inp_np)
L
lujun 已提交
2381

2382 2383
    """

2384 2385 2386 2387 2388 2389 2390 2391
    def __init__(
        self,
        mode,
        channel=None,
        input_shape=None,
        param_attr=None,
        dtype='float32',
    ):
2392
        # need specify name_scope since snake-cased 'PRelu' is 'p_relu'
2393
        super().__init__(name_scope='prelu')
2394 2395
        self._mode = mode
        self._param_attr = param_attr
2396
        self._dtype = dtype
S
songyouwei 已提交
2397 2398 2399 2400
        if mode == 'all':
            self._alpha_shape = [1]
        elif mode == 'channel':
            assert isinstance(
2401 2402 2403
                channel, int
            ), "channel argument is required when mode is 'channel'."
            # NOTE(zhiqiu): The _alpha_shape should be [1, channel] + [1] * len(input_shape[2:]), not [1, channel, 1, 1].
2404
            # However, the suffix 1 in the list is useless, since the tensor is viewed as one demension array during kernel calculation.
2405
            # And, input_shape is not required when mode is 'channel', so it is simplified.
2406
            # NOTE(zhiqiu): Revert shape to [1, channel, 1, 1] for compatibility with saved model of old version.
2407
            self._alpha_shape = [1, channel, 1, 1]
S
songyouwei 已提交
2408
        elif mode == 'element':
2409
            assert isinstance(
2410 2411
                input_shape, (list, tuple)
            ), "input_shape argument is required when mode is 'element'."
S
songyouwei 已提交
2412 2413 2414
            self._alpha_shape = [1] + list(input_shape)[1:]
        else:
            raise ValueError('mode should be one of all, channel, element.')
2415 2416 2417 2418 2419 2420 2421
        self.weight = self.create_parameter(
            attr=self._param_attr,
            shape=self._alpha_shape,
            dtype='float32',
            is_bias=False,
            default_initializer=Constant(1.0),
        )
2422 2423

    def forward(self, input):
2424 2425 2426
        if in_dygraph_mode():
            return _C_ops.prelu(input, self.weight, "NCHW", self._mode)

2427
        check_variable_and_dtype(input, 'input', ['float32'], 'PRelu')
2428
        out = self._helper.create_variable_for_type_inference(self._dtype)
2429 2430 2431 2432 2433 2434
        self._helper.append_op(
            type="prelu",
            inputs={"X": input, 'Alpha': self.weight},
            attrs={"mode": self._mode},
            outputs={"Out": out},
        )
2435 2436 2437 2438
        return out


class BilinearTensorProduct(layers.Layer):
2439
    r"""
2440

2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453
    **Add Bilinear Tensor Product Layer**

    This layer performs bilinear tensor product on two inputs.
    For example:

    .. math::
      out_{i} = x * W_{i} * {y^\mathrm{T}}, i=0,1,...,size-1

    In this formula:
     - :math:`x`: the first input contains M elements, shape is [batch_size, M].
     - :math:`y`: the second input contains N elements, shape is [batch_size, N].
     - :math:`W_{i}`: the i-th learned weight, shape is [M, N]
     - :math:`out_{i}`: the i-th element of out, shape is [batch_size, size].
D
DuYao 已提交
2454
     - :math:`y^\mathrm{T}`: the transpose of :math:`y`.
2455

2456
    Parameters:
2457 2458 2459 2460 2461
       input1_dim (int): The dimension of each first input.
       input2_dim (int): The dimension of each second input.
       output_dim (int): The dimension of output of this layer.
       name (str, optional): The default value is None. Normally there is no need for user
           to set this property. For more information, please refer to :ref:`api_guide_Name`. Default: None.
D
DuYao 已提交
2462
       act (str, optional): Activation to be applied to the output of this layer. The default value is None.
2463
       param_attr (ParamAttr, optional): The parameter attribute for the learnable w, parameters/weights of
D
DuYao 已提交
2464 2465
           this layer. The default value is None.
       bias_attr (ParamAttr, optional): The parameter attribute for the bias
2466
           of this layer. If it is set to False, no bias will be added to the output units.
D
DuYao 已提交
2467
           If it is set to None, the bias is initialized zero. The default value is None.
2468
       dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
2469

D
DuYao 已提交
2470 2471 2472 2473
    Attribute:
        **weight** (Parameter): the learnable weights of this layer.

        **bias** (Parameter): the learnable bias of this layer.
2474

2475
    Returns:
W
wanghuancoder 已提交
2476
       Tensor: A 2-D Tensor of shape [batch_size, size].
2477 2478 2479 2480

    Examples:
       .. code-block:: python

W
wanghuancoder 已提交
2481 2482 2483 2484 2485 2486 2487 2488 2489
        import paddle
        import numpy

        layer1 = numpy.random.random((5, 5)).astype('float32')
        layer2 = numpy.random.random((5, 4)).astype('float32')
        bilinearTensorProduct = paddle.nn.BilinearTensorProduct(
            input1_dim=5, input2_dim=4, output_dim=1000)
        ret = bilinearTensorProduct(paddle.to_tensor(layer1),
                                    paddle.to_tensor(layer2))
2490

2491 2492
    """

2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503
    def __init__(
        self,
        input1_dim,
        input2_dim,
        output_dim,
        name=None,
        act=None,
        param_attr=None,
        bias_attr=None,
        dtype='float32',
    ):
2504
        super().__init__()
2505 2506 2507 2508
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._act = act
        self._name = name
2509 2510 2511
        self._input1_dim = input1_dim
        self._input2_dim = input2_dim
        self._output_dim = output_dim
2512
        self._inputs = dict()
2513
        self._dtype = dtype
2514

2515
        param_shape = [self._output_dim, self._input1_dim, self._input2_dim]
2516 2517 2518 2519 2520 2521
        self.weight = self.create_parameter(
            attr=self._param_attr,
            shape=param_shape,
            dtype=self._dtype,
            is_bias=False,
        )
2522
        bias_size = [1, self._output_dim]
2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534
        self.bias = self.create_parameter(
            attr=self._bias_attr,
            shape=bias_size,
            dtype=self._dtype,
            is_bias=True,
        )

    @deprecated(
        since="2.0.0",
        update_to="paddle.nn.Bilinear",
        reason="New name and new args in Bilinear, easier to use.",
    )
2535
    def forward(self, x, y):
2536 2537 2538 2539 2540 2541
        check_variable_and_dtype(
            x, 'x', ['float32', 'float64'], 'BilinearTensorProduct'
        )
        check_variable_and_dtype(
            y, 'y', ['float32', 'float64'], 'BilinearTensorProduct'
        )
2542
        self._inputs = {"X": x, "Y": y, "Weight": self.weight}
2543
        if self.bias is not None:
2544
            self._inputs["Bias"] = self.bias
2545
        if self._name is not None:
2546 2547 2548 2549 2550
            out = self._helper.create_variable(
                name=".".join([self.full_name(), self._name]),
                dtype=self._dtype,
                persistable=False,
            )
2551
        else:
2552 2553 2554 2555 2556 2557 2558 2559
            out = self._helper.create_variable(
                dtype=self._dtype, persistable=False
            )
        self._helper.append_op(
            type="bilinear_tensor_product",
            inputs=self._inputs,
            outputs={"Out": out},
        )
2560 2561

        # add activation
2562
        return self._helper.append_activation(out, act=self._act)
2563 2564 2565


class Conv2DTranspose(layers.Layer):
2566
    r"""
2567 2568
    This interface is used to construct a callable object of the ``Conv2DTranspose`` class.
    For more details, refer to code examples.
2569
    The convolution2D transpose layer calculates the output based on the input,
2570 2571 2572
    filter, and dilations, strides, paddings. Input and output
    are in NCHW format. Where N is batch size, C is the number of feature map,
    H is the height of the feature map, and W is the width of the feature map.
2573 2574
    Filter's shape is [MCHW] , where M is the number of input feature map,
    C is the number of output feature map, H is the height of the filter,
2575 2576
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input feature map divided by the groups.
2577 2578 2579
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
2580 2581
    The details of convolution transpose layer, please refer to the following explanation and references
    `conv2dtranspose <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_ .
2582 2583 2584 2585 2586 2587 2588 2589 2590

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    Where:

2591 2592
    * :math:`X`: Input value, a ``Tensor`` with NCHW format.
    * :math:`W`: Filter value, a ``Tensor`` with shape [MCHW] .
2593
    * :math:`\\ast`: Convolution operation.
2594
    * :math:`b`: Bias value, a 2-D ``Tensor`` with shape [M, 1].
2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`

        Where

        .. math::

           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\\\
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[0] ) \\\\
           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[1] )

2619
    Parameters:
2620
        num_channels(int): The number of channels in the input image.
2621
        num_filters(int): The number of the filter. It is as same as the output
2622
            feature map.
2623 2624 2625
        filter_size(int or tuple): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
2626
        output_size(int or tuple, optional): The output image size. If output size is a
2627 2628 2629
            tuple, it must contain two integers, (image_H, image_W). None if use
            filter_size, padding, and stride to calculate output_size.
            if output_size and filter_size are specified at the same time, They
L
lujun 已提交
2630
            should follow the formula above. Default: None.
2631
        padding(int or tuple, optional): The padding size. If padding is a tuple, it must
2632
            contain two integers, (padding_H, padding_W). Otherwise, the
2633 2634
            padding_H = padding_W = padding. Default: 0.
        stride(int or tuple, optional): The stride size. If stride is a tuple, it must
2635
            contain two integers, (stride_H, stride_W). Otherwise, the
2636 2637
            stride_H = stride_W = stride. Default: 1.
        dilation(int or tuple, optional): The dilation size. If dilation is a tuple, it must
2638
            contain two integers, (dilation_H, dilation_W). Otherwise, the
2639
            dilation_H = dilation_W = dilation. Default: 1.
C
cnn 已提交
2640
        groups(int, optional): The groups number of the Conv2D transpose layer. Inspired by
2641 2642 2643 2644
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
2645 2646
            Default: 1.
        param_attr (ParamAttr, optional): The parameter attribute for learnable weights(Parameter)
2647 2648 2649
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
2650
        bias_attr (ParamAttr or bool, optional): The attribute for the bias of conv2d_transpose.
2651 2652 2653 2654
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
2655
        use_cudnn(bool, optional): Use cudnn kernel or not, it is valid only when the cudnn
2656
            library is installed. Default: True.
2657
        act (str, optional): Activation type, if it is set to None, activation is not appended.
2658
            Default: None.
2659
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
2660

2661 2662
    Attribute:
        **weight** (Parameter): the learnable weights of filters of this layer.
2663

2664
        **bias** (Parameter or None): the learnable bias of this layer.
2665

2666 2667
    Returns:
        None
2668 2669 2670 2671

    Examples:
       .. code-block:: python

2672
          import paddle.fluid as fluid
2673
          import numpy as np
2674 2675

          with fluid.dygraph.guard():
2676
              data = np.random.random((3, 32, 32, 5)).astype('float32')
2677
              conv2DTranspose = fluid.dygraph.nn.Conv2DTranspose(
2678
                    num_channels=32, num_filters=2, filter_size=3)
2679 2680
              ret = conv2DTranspose(fluid.dygraph.base.to_variable(data))

2681 2682
    """

2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698
    def __init__(
        self,
        num_channels,
        num_filters,
        filter_size,
        output_size=None,
        padding=0,
        stride=1,
        dilation=1,
        groups=None,
        param_attr=None,
        bias_attr=None,
        use_cudnn=True,
        act=None,
        dtype='float32',
    ):
2699
        super().__init__()
2700 2701 2702
        assert (
            param_attr is not False
        ), "param_attr should not be False in conv2d_transpose."
2703 2704
        self._param_attr = param_attr
        self._bias_attr = bias_attr
2705
        self._act = act
2706
        self._groups = groups
2707
        self._num_channels = num_channels
2708 2709 2710 2711 2712 2713 2714
        self._num_filters = num_filters
        self._use_cudnn = use_cudnn
        self._padding = padding
        self._stride = stride
        self._dilation = dilation
        self._filter_size = filter_size
        self._output_size = output_size
2715
        self._dtype = dtype
2716

2717 2718 2719 2720 2721
        if (
            self._num_channels == self._groups
            and self._num_filters == self._num_channels
            and not self._use_cudnn
        ):
2722
            self._op_type = 'depthwise_conv2d_transpose'
2723 2724
        else:
            self._op_type = 'conv2d_transpose'
2725 2726 2727 2728 2729

        self._padding = utils.convert_to_list(self._padding, 2, 'padding')
        self._stride = utils.convert_to_list(self._stride, 2, 'stride')
        self._dilation = utils.convert_to_list(self._dilation, 2, 'dilation')

2730
        self._filter_size = utils.convert_to_list(
2731 2732
            self._filter_size, 2, 'conv2d_transpose.filter_size'
        )
2733 2734 2735

        if self._output_size is None:
            self._output_size = []
2736 2737 2738
        elif isinstance(self._output_size, list):
            if utils._contain_var(self._output_size):
                self._output_size = utils._convert_to_tensor_list(
2739 2740
                    self._output_size
                )
2741 2742
            else:
                self._output_size = utils.convert_to_list(
2743 2744
                    self._output_size, 2, 'output_size'
                )
2745
        elif isinstance(self._output_size, int):
2746 2747 2748
            self._output_size = utils.convert_to_list(
                self._output_size, 2, 'output_size'
            )
2749
        elif isinstance(self._output_size, Variable):
2750 2751 2752 2753 2754 2755
            check_dtype(
                self._output_size.dtype,
                'output_size',
                ['int32', 'int64'],
                'Conv2DTranspose',
            )
2756
            if len(self._output_size.shape) == 1 and (
2757 2758 2759
                self._output_size.shape[0] == 1
                or self._output_size.shape[0] == 2
            ):
2760 2761 2762 2763
                if self._output_size.shape[0] == 1:
                    self._output_size = [self._output_size, self._output_size]
            else:
                raise ValueError(
2764 2765
                    "output_size must contain one or two integers."
                )
2766
        else:
2767
            raise ValueError("output_size should be list or int or Tensor")
2768 2769
        self._padding = utils.convert_to_list(self._padding, 2, 'padding')
        self._groups = 1 if self._groups is None else self._groups
2770 2771 2772 2773
        filter_shape = [
            self._num_channels,
            self._num_filters // self._groups,
        ] + self._filter_size
2774

2775 2776 2777
        self.weight = self.create_parameter(
            dtype=self._dtype, shape=filter_shape, attr=self._param_attr
        )
2778

2779 2780 2781 2782 2783 2784
        self.bias = self.create_parameter(
            attr=self._bias_attr,
            shape=[self._num_filters],
            dtype=self._dtype,
            is_bias=True,
        )
2785

2786
    def forward(self, input):
J
Jiabin Yang 已提交
2787
        if _non_static_mode():
2788
            op = getattr(_legacy_C_ops, self._op_type)
2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804
            out = op(
                input,
                self.weight,
                'output_size',
                self._output_size,
                'strides',
                self._stride,
                'paddings',
                self._padding,
                'dilations',
                self._dilation,
                'groups',
                self._groups,
                'use_cudnn',
                self._use_cudnn,
            )
2805
            pre_bias = out
2806
            pre_act = dygraph_utils._append_bias_in_dygraph(
2807 2808 2809 2810 2811
                pre_bias, self.bias, 1
            )
            return dygraph_utils._append_activation_in_dygraph(
                pre_act, act=self._act
            )
2812

2813 2814 2815
        check_variable_and_dtype(
            input, 'input', ['float16', 'float32', 'float64'], "Conv2DTranspose"
        )
2816

2817 2818 2819 2820 2821 2822 2823
        inputs = {'Input': [input], 'Filter': [self.weight]}
        attrs = {
            'output_size': self._output_size,
            'strides': self._stride,
            'paddings': self._padding,
            'dilations': self._dilation,
            'groups': self._groups,
2824
            'use_cudnn': self._use_cudnn,
2825 2826
        }

2827
        pre_bias = self._helper.create_variable_for_type_inference(
2828 2829 2830 2831 2832 2833 2834 2835
            dtype=input.dtype
        )
        self._helper.append_op(
            type=self._op_type,
            inputs=inputs,
            outputs={'Output': pre_bias},
            attrs=attrs,
        )
2836

2837
        if self.bias is not None:
2838
            pre_act = self._helper.create_variable_for_type_inference(
2839 2840 2841 2842 2843 2844 2845 2846
                dtype=self._dtype
            )
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [pre_bias], 'Y': [self.bias]},
                outputs={'Out': [pre_act]},
                attrs={'axis': 1},
            )
2847 2848 2849 2850
        else:
            pre_act = pre_bias

        out = self._helper.append_activation(pre_act, act=self._act)
2851 2852 2853 2854 2855 2856 2857 2858 2859
        return out


class SequenceConv(layers.Layer):
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.

2860
    Parameters:
L
lujun 已提交
2861
        name_scope(str): The name of this class.
2862
        num_filters (int): number of filters.
L
lujun 已提交
2863 2864 2865
        filter_size (int): the filter size (H and W). Default: 3.
        filter_stride (int): stride of the filter. Default: 1.
        padding (bool|None): if True, add paddings. Default: None
2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of sequence_conv.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of sequence_conv. If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.

2878 2879 2880 2881
    Attributes:
        weight (Parameter): the learnable weights of filters of this layer.
        bias (Parameter|None): the learnable bias of this layer.

2882 2883 2884 2885
    Returns:
        Variable: output of sequence_conv
    """

2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898
    def __init__(
        self,
        name_scope,
        num_filters,
        filter_size=3,
        filter_stride=1,
        padding=None,
        bias_attr=None,
        param_attr=None,
        act=None,
    ):
        assert (
            not _non_static_mode()
2899
        ), "SequenceConv is not supported by dynamic graph mode yet!"
2900
        super().__init__(name_scope)
2901 2902 2903 2904 2905 2906
        self._num_filters = num_filters
        self._filter_size = filter_size
        self._filter_stride = filter_stride
        self._padding = padding
        self._bias_attr = bias_attr
        self._param_attr = param_attr
2907
        self._act = act
2908

2909
    def _build_once(self, input):
2910 2911
        self._dtype = self._helper.input_dtype(input)
        filter_shape = [self._filter_size * input.shape[1], self._num_filters]
2912 2913 2914
        self.weight = self.create_parameter(
            attr=self._param_attr, shape=filter_shape, dtype=self._dtype
        )
2915

2916 2917 2918 2919 2920 2921
        self.bias = self.create_parameter(
            attr=self._bias_attr,
            shape=[self._num_filters],
            dtype=self._dtype,
            is_bias=True,
        )
2922

2923 2924
    def forward(self, input):
        pre_bias = self._helper.create_variable_for_type_inference(self._dtype)
2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937
        self._helper.append_op(
            type='sequence_conv',
            inputs={
                'X': [input],
                'Filter': [self.weight],
            },
            outputs={"Out": pre_bias},
            attrs={
                'contextStride': self._filter_stride,
                'contextStart': -int(self._filter_size // 2),
                'contextLength': self._filter_size,
            },
        )
2938

2939
        if self.bias is not None:
2940
            pre_act = self._helper.create_variable_for_type_inference(
2941 2942 2943 2944 2945 2946 2947 2948
                dtype=self._dtype
            )
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [pre_bias], 'Y': [self.bias]},
                outputs={'Out': [pre_act]},
                attrs={'axis': 1},
            )
2949 2950 2951 2952
        else:
            pre_act = pre_bias

        return self._helper.append_activation(pre_act, act=self._act)
L
lujun 已提交
2953 2954 2955


class RowConv(layers.Layer):
2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973
    """
    ***Row-convolution operator***

    The row convolution is called lookahead convolution.  This operator was introduced in the following paper for DeepSpeech2:
    http://www.cs.cmu.edu/~dyogatam/papers/wang+etal.iclrworkshop2016.pdf

    The main motivation is that a bidirectional RNN, useful in DeepSpeech like speech models, learns representation for a sequence by performing a
    forward and a backward pass through the entire sequence. However, unlike
    unidirectional RNNs, bidirectional RNNs are challenging to deploy in an online
    and low-latency setting. The lookahead convolution incorporates information
    from future subsequences in a computationally efficient manner to improve
    unidirectional recurrent neural networks. The row convolution operator is
    different from the 1D sequence convolution, and is computed as follows:

    Given an input sequence X of length t and input dimension D, and a filter (W) of size context * D.

    More details about row_conv please refer to the design document https://github.com/PaddlePaddle/Paddle/issues/2228#issuecomment-303903645 .

2974
    Parameters:
L
lujun 已提交
2975
        name_scope(str): The name of this class.
2976 2977 2978
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
        param_attr (ParamAttr): Attributes of parameters, including
L
lujun 已提交
2979 2980
            name, initializer etc. Default: None.
        act (str): Non-linear activation to be applied to output variable. Default: None.
2981

2982 2983 2984
    Attributes:
        weight (Parameter): the learnable weights of this layer.

2985
    Returns:
L
lujun 已提交
2986 2987
        the output(Out) is a LodTensor, which supports variable time-length input sequences.
        The underlying tensor in this LodTensor is a matrix with shape T x N, i.e., the same shape as X.
2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          import numpy

          with fluid.dygraph.guard():
              x = numpy.random.random((16)).astype('float32')
              rowConv = fluid.dygraph.nn.RowConv(
                    'RowConv', future_context_size=2)
              ret = rowConv(fluid.dygraph.base.to_variable(x))

    """

3003 3004 3005 3006 3007
    def __init__(
        self, name_scope, future_context_size, param_attr=None, act=None
    ):
        assert (
            not _non_static_mode()
3008
        ), "RowConv is not supported by dynamic graph mode yet!"
3009
        super().__init__(name_scope)
L
lujun 已提交
3010 3011 3012 3013
        self._act = act
        self._param_attr = param_attr
        self._future_context_size = future_context_size

3014
    def _build_once(self, input):
L
lujun 已提交
3015 3016
        self._dtype = self._helper.input_dtype(input)
        filter_shape = [self._future_context_size + 1, input.shape[1]]
3017 3018 3019 3020 3021 3022
        self.weight = self.create_parameter(
            attr=self._param_attr,
            shape=filter_shape,
            dtype=self._dtype,
            is_bias=False,
        )
L
lujun 已提交
3023 3024 3025

    def forward(self, input):
        out = self._helper.create_variable_for_type_inference(self._dtype)
3026 3027 3028 3029 3030
        self._helper.append_op(
            type='row_conv',
            inputs={'X': [input], 'Filter': [self.weight]},
            outputs={'Out': [out]},
        )
L
lujun 已提交
3031 3032 3033 3034 3035
        return self._helper.append_activation(out, act=self._act)


class GroupNorm(layers.Layer):
    """
3036
    :alias_main: paddle.nn.GroupNorm
3037 3038
        :alias: paddle.nn.GroupNorm,paddle.nn.layer.GroupNorm,paddle.nn.layer.norm.GroupNorm
        :old_api: paddle.fluid.dygraph.GroupNorm
3039

3040 3041 3042 3043 3044 3045
    This interface is used to construct a callable object of the ``GroupNorm`` class.
    For more details, refer to code examples.
    It implements the function of the Group Normalization Layer.
    Refer to `Group Normalization <https://arxiv.org/abs/1803.08494>`_ .

    Parameters:
3046
        channels(int): The number of channels of input.
3047 3048 3049 3050 3051 3052 3053 3054 3055
        groups(int): The number of groups that divided from channels.
        epsilon(float, optional): The small value added to the variance to prevent
                                  division by zero. Default: 1e-05.
        param_attr(ParamAttr, optional): The parameter attribute for the learnable
                                         scale :math:`g`. If it is set to False, no scale will be added to the output units.
                                         If it is set to None, the bias is initialized one. Default: None.
        bias_attr(ParamAttr, optional): The parameter attribute for the learnable
                                        bias :math:`b`. If it is set to False, no bias will be added to the output units.
                                        If it is set to None, the bias is initialized zero. Default: None.
T
tianshuo78520a 已提交
3056
        act(str, optional): Activation to be applied to the output of group normalization. Default: None.
3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069
        data_layout(str, optional): Specify the input data format. Only NCHW is supported. Default: NCHW.

    Returns:
        None

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          import numpy as np

          with fluid.dygraph.guard():
              x = np.random.random((8, 32, 32)).astype('float32')
3070
              groupNorm = fluid.dygraph.nn.GroupNorm(channels=32, groups=4)
3071
              ret = groupNorm(fluid.dygraph.base.to_variable(x))
L
lujun 已提交
3072 3073 3074

    """

3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085
    def __init__(
        self,
        channels,
        groups,
        epsilon=1e-05,
        param_attr=None,
        bias_attr=None,
        act=None,
        data_layout='NCHW',
        dtype='float32',
    ):
3086
        super().__init__()
L
lujun 已提交
3087 3088 3089
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._epsilon = epsilon
3090
        self._channels = channels
L
lujun 已提交
3091 3092
        self._groups = groups
        self._act = act
3093
        self._dtype = dtype
L
lujun 已提交
3094 3095 3096
        if data_layout != 'NCHW':
            raise ValueError("unsupported data layout:" + data_layout)

3097
        param_shape = [self._channels]
L
lujun 已提交
3098

3099 3100 3101 3102 3103 3104
        self.weight = self.create_parameter(
            attr=self._param_attr or False,
            shape=param_shape,
            dtype=self._dtype,
            default_initializer=Constant(1.0),
        )
3105

3106 3107 3108 3109 3110 3111
        self.bias = self.create_parameter(
            attr=self._bias_attr or False,
            shape=param_shape,
            dtype=self._dtype,
            is_bias=True,
        )
L
lujun 已提交
3112 3113

    def forward(self, input):
3114
        mean_out = self._helper.create_variable_for_type_inference(
3115 3116
            dtype=self._dtype, stop_gradient=True
        )
3117
        variance_out = self._helper.create_variable_for_type_inference(
3118 3119
            dtype=self._dtype, stop_gradient=True
        )
3120
        if in_dygraph_mode():
3121 3122 3123 3124 3125 3126 3127 3128
            out = _C_ops.group_norm(
                input,
                self.weight,
                self.bias,
                self._epsilon,
                self._groups,
                "NCHW",
            )
3129

3130 3131 3132
            return dygraph_utils._append_activation_in_dygraph(out, self._act)

        elif _in_legacy_dygraph():
3133
            attrs = ('epsilon', self._epsilon, 'groups', self._groups)
3134 3135 3136
            out, _, _ = _legacy_C_ops.group_norm(
                input, self.weight, self.bias, mean_out, variance_out, *attrs
            )
3137 3138

            return dygraph_utils._append_activation_in_dygraph(out, self._act)
J
Jiabin Yang 已提交
3139 3140 3141 3142 3143 3144 3145 3146 3147
        else:
            inputs = {'X': input}
            if self.bias is not None:
                inputs['Bias'] = self.bias
            if self.weight is not None:
                inputs['Scale'] = self.weight

            # create output
            group_norm_out = self._helper.create_variable_for_type_inference(
3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160
                dtype=self._dtype
            )

            self._helper.append_op(
                type="group_norm",
                inputs=inputs,
                outputs={
                    "Y": group_norm_out,
                    "Mean": mean_out,
                    "Variance": variance_out,
                },
                attrs={"epsilon": self._epsilon, "groups": self._groups},
            )
J
Jiabin Yang 已提交
3161 3162

            return self._helper.append_activation(group_norm_out, self._act)
L
lujun 已提交
3163 3164 3165


class SpectralNorm(layers.Layer):
3166
    r"""
3167 3168
    This interface is used to construct a callable object of the ``SpectralNorm`` class.
    For more details, refer to code examples. It implements the function of the Spectral Normalization Layer.
3169 3170 3171 3172 3173 3174 3175 3176 3177 3178
    This layer calculates the spectral normalization value of weight parameters of
    fc, conv1d, conv2d, conv3d layers which should be 2-D, 3-D, 4-D, 5-D
    Parameters. Calculations are showed as follows.

    Step 1:
    Generate vector U in shape of [H], and V in shape of [W].
    While H is the :attr:`dim` th dimension of the input weights,
    and W is the product result of remaining dimensions.

    Step 2:
T
tianshuo78520a 已提交
3179
    :attr:`power_iters` should be a positive integer, do following
3180 3181 3182 3183
    calculations with U and V for :attr:`power_iters` rounds.

    .. math::

3184
        \mathbf{v} := \frac{\mathbf{W}^{T} \mathbf{u}}{\|\mathbf{W}^{T} \mathbf{u}\|_2}
3185

3186
        \mathbf{u} := \frac{\mathbf{W}^{T} \mathbf{v}}{\|\mathbf{W}^{T} \mathbf{v}\|_2}
3187 3188 3189 3190 3191 3192 3193 3194

    Step 3:
    Calculate :math:`\sigma(\mathbf{W})` and normalize weight values.

    .. math::

        \sigma(\mathbf{W}) = \mathbf{u}^{T} \mathbf{W} \mathbf{v}

3195
        \mathbf{W} = \frac{\mathbf{W}}{\sigma(\mathbf{W})}
3196 3197 3198 3199


    Refer to `Spectral Normalization <https://arxiv.org/abs/1802.05957>`_ .

3200
    Parameters:
3201
        weight_shape(list or tuple): The shape of weight parameter.
3202 3203 3204 3205
        dim(int, optional): The index of dimension which should be permuted to the first before reshaping Input(Weight) to matrix, it should be set as 0 if Input(Weight) is the weight of fc layer, and should be set as 1 if Input(Weight) is the weight of conv layer. Default: 0.
        power_iters(int, optional): The number of power iterations to calculate spectral norm. Default: 1.
        eps(float, optional): The epsilon for numerical stability in calculating norms. Default: 1e-12.
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name` .
3206
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
3207 3208

    Returns:
3209
        None
3210 3211 3212 3213

    Examples:
       .. code-block:: python

C
Chen Long 已提交
3214 3215
            import paddle
            x = paddle.rand((2,8,32,32))
3216

C
Chen Long 已提交
3217 3218 3219 3220
            spectral_norm = paddle.nn.SpectralNorm(x.shape, dim=1, power_iters=2)
            spectral_norm_out = spectral_norm(x)

            print(spectral_norm_out.shape) # [2, 8, 32, 32]
3221 3222 3223

    """

3224 3225 3226
    def __init__(
        self, weight_shape, dim=0, power_iters=1, eps=1e-12, dtype='float32'
    ):
3227
        super().__init__()
L
lujun 已提交
3228 3229 3230
        self._power_iters = power_iters
        self._eps = eps
        self._dim = dim
3231
        self._dtype = dtype
L
lujun 已提交
3232

3233
        self._weight_shape = list(weight_shape)
3234 3235 3236 3237 3238
        assert (
            np.prod(self._weight_shape) > 0
        ), "Any dimension of `weight_shape` cannot be equal to 0."
        assert dim < len(self._weight_shape), (
            "The input `dim` should be less than the "
3239
            "length of `weight_shape`, but received dim="
3240 3241
            "{}".format(dim)
        )
3242 3243
        h = self._weight_shape[self._dim]
        w = np.prod(self._weight_shape) // h
L
lujun 已提交
3244

3245 3246 3247 3248 3249 3250
        self.weight_u = self.create_parameter(
            attr=ParamAttr(),
            shape=[h],
            dtype=self._dtype,
            default_initializer=Normal(0.0, 1.0),
        )
3251
        self.weight_u.stop_gradient = True
L
lujun 已提交
3252

3253 3254 3255 3256 3257 3258
        self.weight_v = self.create_parameter(
            attr=ParamAttr(),
            shape=[w],
            dtype=self._dtype,
            default_initializer=Normal(0.0, 1.0),
        )
3259
        self.weight_v.stop_gradient = True
L
lujun 已提交
3260 3261

    def forward(self, weight):
3262
        if in_dygraph_mode():
3263 3264 3265 3266 3267 3268 3269 3270
            return _C_ops.spectral_norm(
                weight,
                self.weight_u,
                self.weight_v,
                self._dim,
                self._power_iters,
                self._eps,
            )
3271

3272 3273 3274
        check_variable_and_dtype(
            weight, "weight", ['float32', 'float64'], 'SpectralNorm'
        )
3275
        inputs = {'Weight': weight, 'U': self.weight_u, 'V': self.weight_v}
L
lujun 已提交
3276
        out = self._helper.create_variable_for_type_inference(self._dtype)
3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288
        self._helper.append_op(
            type="spectral_norm",
            inputs=inputs,
            outputs={
                "Out": out,
            },
            attrs={
                "dim": self._dim,
                "power_iters": self._power_iters,
                "eps": self._eps,
            },
        )
L
lujun 已提交
3289 3290 3291 3292 3293

        return out


class TreeConv(layers.Layer):
3294
    """
3295 3296 3297 3298 3299 3300 3301 3302
    This interface is used to construct a callable object of the ``TreeConv`` class.
    For more details, refer to code examples.
    Tree-Based Convolution is a kind of convolution based on tree structure.
    Tree-Based Convolution is a part of Tree-Based Convolution Neural Network(TBCNN),
    which is used to classify tree structures, such as Abstract Syntax Tree.
    Tree-Based Convolution proposed a kind of data structure called continuous binary tree,
    which regards multiway tree as binary tree.
    The paper of Tree-Based Convolution Operator is here: `tree-based convolution <https://arxiv.org/abs/1409.5718v1/>`_ .
3303

3304
    Parameters:
3305
        feature_size(int): last dimension of nodes_vector.
3306 3307 3308 3309 3310 3311 3312
        output_size(int): output feature width.
        num_filters(int, optional): number of filters, Default: 1.
        max_depth(int, optional): max depth of filters, Default: 2.
        act(str, optional): activation function, Default: tanh.
        param_attr(ParamAttr, optional): the parameter attribute for the filters, Default: None.
        bias_attr(ParamAttr, optional): the parameter attribute for the bias of this layer, Default: None.
        name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` .
3313
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
3314

3315 3316
    Attribute:
        **weight** (Parameter): the learnable weights of filters of this layer.
3317

3318
        **bias** (Parameter or None): the learnable bias of this layer.
3319

3320 3321
    Returns:
        None
L
lujun 已提交
3322

3323
    Examples:
L
lujun 已提交
3324

3325
        .. code-block:: python
3326

3327 3328
          import paddle.fluid as fluid
          import numpy
3329

3330 3331 3332 3333
          with fluid.dygraph.guard():
              nodes_vector = numpy.random.random((1, 10, 5)).astype('float32')
              edge_set = numpy.random.random((1, 9, 2)).astype('int32')
              treeConv = fluid.dygraph.nn.TreeConv(
3334
                feature_size=5, output_size=6, num_filters=1, max_depth=2)
3335
              ret = treeConv(fluid.dygraph.base.to_variable(nodes_vector), fluid.dygraph.base.to_variable(edge_set))
3336 3337
    """

3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349
    def __init__(
        self,
        feature_size,
        output_size,
        num_filters=1,
        max_depth=2,
        act='tanh',
        param_attr=None,
        bias_attr=None,
        name=None,
        dtype='float32',
    ):
3350
        super().__init__()
L
lujun 已提交
3351
        self._name = name
3352
        self._feature_size = feature_size
L
lujun 已提交
3353 3354 3355 3356 3357 3358
        self._output_size = output_size
        self._act = act
        self._max_depth = max_depth
        self._num_filters = num_filters
        self._bias_attr = bias_attr
        self._param_attr = param_attr
3359 3360
        self._dtype = dtype
        w_shape = [self._feature_size, 3, self._output_size, self._num_filters]
L
lujun 已提交
3361
        if self._bias_attr:
3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373
            self.bias = self.create_parameter(
                attr=self._bias_attr,
                shape=[self._num_filters],
                dtype=self._dtype,
                is_bias=True,
            )
        self.weight = self.create_parameter(
            attr=self._param_attr,
            shape=w_shape,
            dtype=self._dtype,
            is_bias=False,
        )
L
lujun 已提交
3374 3375

    def forward(self, nodes_vector, edge_set):
3376 3377
        check_type(nodes_vector, 'nodes_vector', (Variable), 'TreeConv')
        check_type(edge_set, 'edge_set', (Variable), 'TreeConv')
L
lujun 已提交
3378
        if self._name:
3379 3380 3381
            out = self.create_variable(
                name=self._name, dtype=self._dtype, persistable=False
            )
L
lujun 已提交
3382 3383
        else:
            out = self._helper.create_variable_for_type_inference(
3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397
                dtype=self._dtype
            )
        self._helper.append_op(
            type='tree_conv',
            inputs={
                'NodesVector': nodes_vector,
                'EdgeSet': edge_set,
                'Filter': self.weight,
            },
            outputs={
                'Out': out,
            },
            attrs={'max_depth': self._max_depth},
        )
L
lujun 已提交
3398 3399
        if self._bias_attr:
            pre_activation = self._helper.create_variable_for_type_inference(
3400 3401 3402 3403 3404 3405 3406 3407
                dtype=self._dtype
            )
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [out], 'Y': [self.bias]},
                outputs={'Out': [pre_activation]},
                attrs={'axis': 1},
            )
L
lujun 已提交
3408 3409 3410
        else:
            pre_activation = out
        return self._helper.append_activation(pre_activation, act=self._act)
3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421


class Flatten(layers.Layer):
    """
    This interface is used to construct a callable object of the ``FLatten`` class.
    For more details, refer to code examples.
    It implements flatten a contiguous range of dims into a tensor.

    Parameters:
        start_axis(int): first dim to flatten (default = 1)
        stop_axis(int): last dim to flatten (default = -1).
3422

3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433
    Returns:
        None

    Examples:

        .. code-block:: python

          import paddle
          import numpy as np

          inp_np = np.ones([5, 2, 3, 4]).astype('float32')
Z
Zhou Wei 已提交
3434
          inp_np = paddle.to_tensor(inp_np)
3435 3436 3437 3438 3439 3440
          flatten = paddle.nn.Flatten(start_axis=1, stop_axis=2)
          flatten_res = flatten(inp_np)

    """

    def __init__(self, start_axis=1, stop_axis=-1):
3441
        super().__init__()
3442 3443 3444 3445
        self.start_axis = start_axis
        self.stop_axis = stop_axis

    def forward(self, input):
3446 3447 3448
        out = paddle.tensor.manipulation.flatten(
            input, start_axis=self.start_axis, stop_axis=self.stop_axis
        )
3449
        return out