executor.py 105.6 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Z
Zeng Jinle 已提交
15
import logging
16 17
import os
import multiprocessing
C
chengduo 已提交
18
import sys
19
import warnings
D
dzhwinter 已提交
20
import numpy as np
S
rename  
sneaxiy 已提交
21
from .wrapped_decorator import signature_safe_contextmanager
22
from .data_feeder import convert_dtype
23
from .framework import Program, default_main_program, Variable, Operator
24
from .framework import convert_np_dtype_to_dtype_, _apply_pass
L
Leo Chen 已提交
25

26
from . import core
27
from . import unique_name
28
from . import compiler
29
from . import set_flags
30
from .trainer_factory import TrainerFactory
31
from .trainer_factory import FetchHandlerMonitor
32
import copy
33
from . import framework
34
from .incubate.checkpoint import auto_checkpoint as acp
35
from .compiler import _prune_feed_ops
36

R
Ruibiao Chen 已提交
37 38
from functools import lru_cache

T
Tink_Y 已提交
39
__all__ = ['Executor', 'global_scope', 'scope_guard']
Y
Yu Yang 已提交
40

Y
Yu Yang 已提交
41
g_scope = core.Scope()
F
flame 已提交
42 43
InferNativeConfig = core.NativeConfig
InferAnalysisConfig = core.AnalysisConfig
Y
Yu Yang 已提交
44

Y
Yu Yang 已提交
45

Y
Yang Yu 已提交
46
def global_scope():
Y
yuyang18 已提交
47
    """
48 49
    :api_attr: Static Graph

Y
yuyang18 已提交
50 51 52
    Get the global/default scope instance. There are a lot of APIs use
    :code:`global_scope` as its default value, e.g., :code:`Executor.run`

C
chengduo 已提交
53 54 55
    Returns:
        Scope: The global/default scope instance.

56 57 58
    Examples:
        .. code-block:: python

59
          import paddle
60 61
          import numpy

62 63
          paddle.static.global_scope().var("data").get_tensor().set(numpy.ones((2, 2)), paddle.CPUPlace())
          numpy.array(paddle.static.global_scope().find_var("data").get_tensor())
Y
yuyang18 已提交
64
    """
Y
Yang Yu 已提交
65 66 67
    return g_scope


68
def _switch_scope(scope):
Y
Yang Yu 已提交
69 70 71 72 73 74
    global g_scope
    ex = g_scope
    g_scope = scope
    return ex


S
rename  
sneaxiy 已提交
75
@signature_safe_contextmanager
Y
Yang Yu 已提交
76
def scope_guard(scope):
Y
yuyang18 已提交
77
    """
78

79 80 81 82 83 84 85 86 87 88 89 90
    This function switches scope through python `with` statement.
    Scope records the mapping between variable names and variables ( :ref:`api_guide_Variable` ),
    similar to brackets in programming languages.
    If this function is not invoked, all variables and variable names are recorded in the default global scope.
    When users need to create variables with the same name,
    they need to switch scopes through this function
    if they do not want the mapping of variables with the same name to be overwritten.
    After switching through the `with` statement,
    all variables created in the `with` block will be assigned to a new scope.

    Parameters:
        scope: The new scope.
Y
yuyang18 已提交
91

92 93
    Returns:
        None
L
lujun 已提交
94

Y
yuyang18 已提交
95
    Examples:
96

97 98
        .. code-block:: python

99
            import paddle
L
lujun 已提交
100
            import numpy
101
            paddle.enable_static()
Y
yuyang18 已提交
102

103 104 105
            new_scope = paddle.static.Scope()
            with paddle.static.scope_guard(new_scope):
                 paddle.static.global_scope().var("data").get_tensor().set(numpy.ones((2, 2)), paddle.CPUPlace())
L
lujun 已提交
106
            numpy.array(new_scope.find_var("data").get_tensor())
Y
yuyang18 已提交
107
    """
L
lujun 已提交
108

109
    ex = _switch_scope(scope)
110 111 112 113
    try:
        yield
    finally:
        _switch_scope(ex)
Y
Yang Yu 已提交
114 115


116
def as_numpy(tensor, copy=False):
117 118 119
    """
    Convert a Tensor to a numpy.ndarray, its only support Tensor without LoD information.
    For higher dimensional sequence data, please use LoDTensor directly.
120

121
    Examples:
122 123 124 125 126 127 128 129 130 131
        .. code-block:: python

          import paddle.fluid as fluid
          import numpy

          new_scope = fluid.Scope()
          with fluid.scope_guard(new_scope):
              fluid.global_scope().var("data").get_tensor().set(numpy.ones((2, 2)), fluid.CPUPlace())
          tensor = new_scope.find_var("data").get_tensor()
          fluid.executor.as_numpy(tensor) # or numpy.array(new_scope.find_var("data").get_tensor())
132 133 134

    Args:
       tensor(Variable): a instance of Tensor
135
       copy(bool, optional): Whether to use deep copy.
136 137 138 139

    Returns:
        numpy.ndarray
    """
C
chengduo 已提交
140
    if isinstance(tensor, core.LoDTensorArray):
141
        return [as_numpy(t, copy) for t in tensor]
D
dzhwinter 已提交
142
    if isinstance(tensor, list):
143
        return [as_numpy(t, copy) for t in tensor]
D
dzhwinter 已提交
144 145
    assert isinstance(tensor, core.LoDTensor)
    lod = tensor.lod()
146
    if len(lod) > 0:
147 148
        raise RuntimeError(
            "Some of your fetched tensors hold LoD information. \
149 150
            They can not be completely cast to Python ndarray. \
            Please set the parameter 'return_numpy' as 'False' to \
151 152
            return LoDTensor itself directly."
        )
Q
qingqing01 已提交
153
    if tensor._is_initialized():
154 155 156 157
        if copy:
            return np.array(tensor)
        else:
            return np.asarray(tensor)
Q
qingqing01 已提交
158 159
    else:
        return None
D
dzhwinter 已提交
160 161


H
Huihuang Zheng 已提交
162 163 164 165
def dtype_is_compatible_with(first, second):
    """
    Returns True if the first dtype can be compatible the second one.
    Currently, we require the two dtype's have to be same.
166

H
Huihuang Zheng 已提交
167 168
    Args:
        dtype (np.dtype|VarType|str): The type of data: float32, int64, etc.
169

H
Huihuang Zheng 已提交
170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
    Returns:
        True if the two types are same.
    """
    if not isinstance(first, core.VarDesc.VarType):
        first = convert_np_dtype_to_dtype_(first)
    if not isinstance(second, core.VarDesc.VarType):
        second = convert_np_dtype_to_dtype_(second)
    return first == second


def dimension_is_compatible_with(first, second):
    """
    Returns True if the two dimensions are compatible.

    A dimension is compatible with the other if:
    1. The length of the dimensions are same.
T
tianshuo78520a 已提交
186 187
    2. Each non-negative number of the two dimensions are same.
    3. For negative number or 'None' in a dimension, it means unknown so it
H
Huihuang Zheng 已提交
188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
       is compatible with any number.

    Args:
        first (list/tuple): integers representing shape. "None" or negative
            number means unknown.
        second (list/tuple): integers representing shape. "None" or negative
            number means unknown.

    Returns:
        True if the two dimensions are compatible.
    """

    dim_len = len(first)
    if dim_len != len(second):
        return False

    for i in range(dim_len):
        if first[i] is None or first[i] < 0:
            continue
        if second[i] is None or second[i] < 0:
            continue
        if first[i] != second[i]:
            return False

    return True


215
def check_feed_shape_type(var, feed, num_places=1):
H
Huihuang Zheng 已提交
216 217
    """
    Returns True if the variable doesn't require feed check or it is compatible
T
tianshuo78520a 已提交
218
    with the shape and have same dtype as the fed value.
H
Huihuang Zheng 已提交
219 220 221

    A dimension is compatible with the other if:
    1. The length of the dimensions are same.
T
tianshuo78520a 已提交
222 223
    2. Each non-negative number of the two dimensions are same.
    3. For negative number or 'None' in a dimension, it means unknown so it
H
Huihuang Zheng 已提交
224
       is compatible with any number.
225

H
Huihuang Zheng 已提交
226 227
    Args:
        var (Variable): the Variable object
T
tianshuo78520a 已提交
228
        feed (LoDTensor): the fed value, which must be a LoDTensor
229 230
        num_places: an integer value indicating the number of places.
            ParallelExecutor will divide data into devices (CPU/GPU) evenly.
H
Huihuang Zheng 已提交
231 232 233 234 235 236 237
    Returns:
        True if the shape and dtype of variable is compatible with the feed value
    Raises:
        ValueError: if the shape or dtype of the variable is not compatible with
            the feed value
    """
    if var.desc.need_check_feed():
238 239
        diff_shape = core.diff_tensor_shape(feed, var.desc, num_places)
        if diff_shape is not None:
240
            raise ValueError(
T
tianshuo78520a 已提交
241
                'The fed Variable %r should have dimensions = %d, shape = '
242 243 244
                '%r, but received fed shape %r on each device'
                % (var.name, len(var.shape), var.shape, diff_shape)
            )
H
Huihuang Zheng 已提交
245
        if not dtype_is_compatible_with(feed._dtype(), var.dtype):
246 247 248 249 250 251 252 253 254 255
            var_dtype_format = (
                convert_dtype(var.dtype)
                if isinstance(var.dtype, core.VarDesc.VarType)
                else var.dtype
            )
            feed_dtype_format = (
                convert_dtype(feed._dtype())
                if isinstance(feed._dtype(), core.VarDesc.VarType)
                else feed._dtype()
            )
256
            raise ValueError(
257 258 259
                'The data type of fed Variable %r must be %r, but received %r'
                % (var.name, var_dtype_format, feed_dtype_format)
            )
H
Huihuang Zheng 已提交
260 261 262
    return True


263
def has_feed_operators(block, feed_targets, feed_holder_name):
264
    """Check whether the block already has feed operators.
265 266 267 268 269 270 271 272 273 274

    Return false if the block does not have any feed operators.
    If some feed operators have been prepended to the block, check that
    the info contained in these feed operators matches the feed_targets
    and feed_holder_name. Raise exception when any mismatch is found.
    Return true when the block has feed operators with matching info.

    Args:
        block: a block instance (typically global block of a program)
        feed_targets: a dictionary of {feed_target_name: feed_target_data}
X
xuwei06 已提交
275 276
        feed_holder_name: the name of the variable that holds the data of
            all feed targets. The type of this feed_holder variable is
277 278 279
            FEED_MINIBATCH, which is essentially vector<LoDTensor>.

    Returns:
X
xuwei06 已提交
280
        A boolean value that indicates whether a block has feed operators
281 282 283 284 285 286 287 288 289 290
        that match the info contained in feed_targets and feed_holder_name.
    """

    feed_count = 0
    for op in block.ops:
        if op.desc.type() == 'feed':
            feed_count += 1
            assert op.desc.input('X')[0] == feed_holder_name
            feed_target_name = op.desc.output('Out')[0]
            if feed_target_name not in feed_targets:
291 292
                raise Exception(
                    "'feed_targets' does not have {} variable".format(
293 294 295
                        feed_target_name
                    )
                )
296 297 298 299
        else:
            break
    if feed_count > 0 and feed_count != len(feed_targets):
        raise Exception(
300 301
            "Feed operators in program desc do not match 'feed_targets'"
        )
302 303 304
    return feed_count > 0


305 306 307 308
def has_fetch_operators(
    block, fetch_targets, fetch_holder_name, fetch_op='fetch'
):
    """Check whether the block already has fetch operators.
X
xuwei06 已提交
309

310 311 312 313 314 315 316 317 318
    Return false if the block does not have any fetch operators.
    If some fetch operators have been appended to the block, check that
    the info contained in these fetch operators matches the fetch_targets
    and fetch_holder_name. Raise exception when any mismatch is found.
    Return true when the block has fetch operators with matching info.

    Args:
        block: a block instance (typically global block of a program)
        fetch_targets: a dictionary of {fetch_target_name: fetch_target_data}
X
xuwei06 已提交
319 320 321
        fetch_holder_name: the name of the variable that holds the data of
            all fetch targets. The type of this fetch_holder variable is
            FETCH_LIST, which is essentially vector<LoDTensor>.
322
        fetch_op: the operator name of fetch
323

X
xuwei06 已提交
324 325 326
    Return:
        A boolean value that indicates whether a block has fetch operators
        that match the info contained in fetch_targets and fetch_holder_name.
327 328 329 330
    """

    fetch_count = 0
    for op in block.ops:
331
        if op.desc.type() == fetch_op:
332 333 334 335
            fetch_count += 1
            assert op.desc.output('Out')[0] == fetch_holder_name
            fetch_target_name = op.desc.input('X')[0]
            if fetch_target_name not in [
336
                var.desc.name() for var in fetch_targets
337
            ]:
338 339
                raise Exception(
                    "'fetch_targets' does not have {} variable".format(
340 341 342
                        fetch_target_name
                    )
                )
343 344 345 346
            idx = op.desc.attr('col')
            assert fetch_target_name == fetch_targets[idx].desc.name()
    if fetch_count > 0 and fetch_count != len(fetch_targets):
        raise Exception(
347 348
            "Fetch operators in program desc do not match 'fetch_targets'"
        )
349 350 351
    return fetch_count > 0


352 353 354
def _add_feed_fetch_ops(
    program, feed, fetch_list, feed_var_name, fetch_var_name, use_fetch_v2=False
):
R
Ruibiao Chen 已提交
355 356 357 358 359 360 361 362 363 364
    tmp_program = program.clone()

    global_block = tmp_program.global_block()

    if feed_var_name in global_block.vars:
        feed_var = global_block.var(feed_var_name)
    else:
        feed_var = global_block.create_var(
            name=feed_var_name,
            type=core.VarDesc.VarType.FEED_MINIBATCH,
365 366
            persistable=True,
        )
R
Ruibiao Chen 已提交
367 368 369 370 371 372 373

    if fetch_var_name in global_block.vars:
        fetch_var = global_block.var(fetch_var_name)
    else:
        fetch_var = global_block.create_var(
            name=fetch_var_name,
            type=core.VarDesc.VarType.FETCH_LIST,
374 375
            persistable=True,
        )
R
Ruibiao Chen 已提交
376 377 378 379 380 381

    # prepend feed operators
    if not has_feed_operators(global_block, feed, feed_var_name):
        for i, name in enumerate(feed):
            if global_block.has_var(name):
                out = global_block.var(name)
382 383 384 385 386 387
                global_block._prepend_op(
                    type='feed',
                    inputs={'X': [feed_var]},
                    outputs={'Out': [out]},
                    attrs={'col': i},
                )
R
Ruibiao Chen 已提交
388 389 390
            else:
                warnings.warn(
                    "The variable %s is not found in program. It is not declared or is pruned."
391 392
                    % name
                )
R
Ruibiao Chen 已提交
393 394 395 396 397 398 399

    if use_fetch_v2:
        fetch_op = 'fetch_v2'
    else:
        fetch_op = 'fetch'

    # append fetch_operators
400 401 402
    if not has_fetch_operators(
        global_block, fetch_list, fetch_var_name, fetch_op
    ):
R
Ruibiao Chen 已提交
403 404
        for i, var in enumerate(fetch_list):
            assert isinstance(var, Variable) or isinstance(
405 406 407 408 409 410 411 412
                var, str
            ), "Wrong type for fetch_list[%s]: %s" % (i, type(var))
            global_block.append_op(
                type=fetch_op,
                inputs={'X': [var]},
                outputs={'Out': [fetch_var]},
                attrs={'col': i},
            )
R
Ruibiao Chen 已提交
413 414 415 416

    return tmp_program


417 418 419
def _apply_inplace_addto_pass(
    program, enable_inplace, enable_addto, skip_var_names
):
R
Ruibiao Chen 已提交
420 421 422 423 424 425 426 427
    use_cuda = True if core.is_compiled_with_cuda() else False

    attrs = {"use_cuda": use_cuda, "mem_opt_skip_vars": skip_var_names}
    attr_types = {"use_cuda": "bool", "mem_opt_skip_vars": "list[str]"}

    empty_startup_program = Program()
    if enable_inplace:
        pass_name = "buffer_shared_inplace_pass"
428 429 430
        _apply_pass(
            program, empty_startup_program, pass_name, attrs, attr_types
        )
R
Ruibiao Chen 已提交
431 432
    if enable_addto and use_cuda:
        pass_name = "inplace_addto_op_pass"
433 434 435
        _apply_pass(
            program, empty_startup_program, pass_name, attrs, attr_types
        )
R
Ruibiao Chen 已提交
436 437


W
Wu Yi 已提交
438
def _fetch_var(name, scope=None, return_numpy=True):
X
xuwei06 已提交
439
    """
C
chengduoZH 已提交
440 441 442
    Fetch the value of the variable with the given name from the
    given scope.

X
xuwei06 已提交
443
    Args:
444 445 446 447
        name(str): name of the variable. Typically, only persistable variables
            can be found in the scope used for running the program.
        scope(core.Scope|None): scope object. It should be the scope where
            you pass to Executor.run() when running your program.
C
chengduoZH 已提交
448 449 450 451
            If None, global_scope() will be used. Default None.
        return_numpy(bool): whether convert the tensor to numpy.ndarray.
            Default True.

X
xuwei06 已提交
452 453 454
    Returns:
       LodTensor|numpy.ndarray
    """
455
    assert isinstance(name, str)
X
xuwei06 已提交
456 457
    if scope is None:
        scope = global_scope()
S
sneaxiy 已提交
458
    assert isinstance(scope, core._Scope)
X
xuwei06 已提交
459

460
    var = scope.find_var(_to_name_str(name))
461 462 463
    assert var is not None, (
        "Cannot find " + name + " in scope. Perhaps you need to make the"
        " variable persistable by using var.persistable = True in your"
464 465
        " program."
    )
X
xuwei06 已提交
466 467
    tensor = var.get_tensor()
    if return_numpy:
468
        tensor = as_numpy(tensor, copy=True)
X
xuwei06 已提交
469 470 471
    return tensor


X
polish  
Xin Pan 已提交
472
def _to_name_str(var):
473 474 475 476 477
    def _to_str(var):
        if isinstance(var, Variable):
            return var.desc.name()
        elif isinstance(var, str):
            return var
478
        elif isinstance(var, str):
479 480
            return str(var)
        elif isinstance(var, Operator):
481
            return str(id(var))
482 483 484 485 486 487 488 489 490 491
        else:
            raise TypeError(str(var) + " should be Variable, Operator or str")

    # NOTEz(zhiqiu): The item in fetch_list may be tuple returned by Optimizer.minimize(),
    # see comments in _split_optimize_ops_in_fetch_list for more details.
    if isinstance(var, tuple):
        var = var[0]
    if isinstance(var, list):
        s = [_to_str(item) for item in var]
        return ','.join(s)
X
polish  
Xin Pan 已提交
492
    else:
493
        return _to_str(var)
Q
qiaolongfei 已提交
494 495


496 497
def _is_dy2st_enable_standalone_executor():
    return framework._dy2st_enable_standalone_executor_ in [
498 499 500 501 502
        1,
        '1',
        True,
        'True',
        'true',
503 504 505
    ]


506 507 508 509 510 511 512 513 514 515
def _is_cuda_graph_enable_standalone_executor():
    return framework._cuda_graph_enable_standalone_executor_ in [
        1,
        '1',
        True,
        'True',
        'true',
    ]


516 517
def _prepare_fleet_executor():
    from ..distributed.fleet.proto import fleet_executor_desc_pb2
518

519 520 521 522 523 524 525 526 527 528 529 530 531 532 533
    trainer_endpoints_str = os.getenv("PADDLE_TRAINER_ENDPOINTS", "")
    trainer_endpoints = trainer_endpoints_str.split(',')
    fleet_exe_desc = fleet_executor_desc_pb2.FleetExecutorDesc()
    cur_rank = int(os.getenv("PADDLE_TRAINER_ID", 0))
    fleet_exe_desc.cur_rank = cur_rank
    nrank = len(trainer_endpoints)
    for rank, endpoint in enumerate(trainer_endpoints):
        rank_info = fleet_executor_desc_pb2.RankInfo()
        rank_info.rank = rank
        rank_info.ip_port = endpoint
        fleet_exe_desc.cluster_info.append(rank_info)
    fleet_exe = core.FleetExecutor(fleet_exe_desc.SerializeToString())
    return fleet_exe


L
Leo Chen 已提交
534 535
def _get_strong_program_cache_key_for_new_exe(program, feed, fetch_list):
    return program.desc.cached_hash_str() + _get_program_cache_key(
536 537
        feed, fetch_list
    )
L
Leo Chen 已提交
538 539


540
def _get_strong_program_cache_key(program, feed, fetch_list):
L
Leo Chen 已提交
541
    # TODO(zhiqiu): use hash_str to generate cache key as above
542 543 544 545 546 547
    def _get_varname_from_block(block):
        block_str = []
        for var_name in list(block.vars.keys()):
            block_str.append(var_name)
        return "\n".join(block_str)

548 549 550 551 552 553 554 555 556 557
    inner_program = (
        program._program
        if isinstance(program, compiler.CompiledProgram)
        else program
    )
    return (
        _get_varname_from_block(inner_program.blocks[0])
        + str(id(program))
        + _get_program_cache_key(feed, fetch_list)
    )
558 559


X
polish  
Xin Pan 已提交
560
def _get_program_cache_key(feed, fetch_list):
561 562 563 564 565 566
    feed_var_names = []
    if isinstance(feed, dict):
        feed_var_names = list(feed.keys())
    elif isinstance(feed, list) or isinstance(feed, tuple):
        for i, each in enumerate(feed):
            feed_var_names += list(each.keys())
X
polish  
Xin Pan 已提交
567
    fetch_var_names = list(map(_to_name_str, fetch_list))
Q
qiaolongfei 已提交
568 569 570
    return str(feed_var_names + fetch_var_names)


571
def _as_lodtensor(data, place, dtype=None):
W
Wu Yi 已提交
572
    """
573 574
    Convert numpy.ndarray to Tensor, its only support Tensor without LoD information.
    For higher dimensional sequence data, please use LoDTensor directly.
W
Wu Yi 已提交
575

576 577 578 579 580 581 582
    Examples:
        >>> import paddle.fluid as fluid
        >>> place = fluid.CPUPlace()
        >>> exe = fluid.executor(place)
        >>> data = np.array(size=(100, 200, 300))
        >>> np_outs = map(lambda x: fluid.executor._as_lodtensor(x, place), data)
        >>>     ...
W
Wu Yi 已提交
583

584 585 586 587
    Args:
        data(numpy.ndarray|list|tuple|scalar): a instance of array, scalar, list or tuple
        data(core.Place): the place of created tensor
        dtype(core.VarDesc.VarType|str): the expected data type of created tensor
W
Wu Yi 已提交
588

589 590 591 592
    Returns:
        LoDTensor
    """
    # NOTE(zhiqiu): convert python builtin, like float, int, and list, to numpy ndarray
593
    if not isinstance(data, np.ndarray):
594 595 596 597 598 599 600 601
        assert (
            dtype is not None
        ), 'The dtype should be given when feed data is not np.ndarray'
        dtype = (
            convert_dtype(dtype)
            if isinstance(dtype, core.VarDesc.VarType)
            else dtype
        )
602 603
        if np.isscalar(data):
            data = np.array([data]).astype(dtype)
604 605
        elif isinstance(data, (list, tuple)):
            data = np.array(data)
606
            if data.dtype == np.object_:
607 608 609 610 611 612 613 614 615
                raise TypeError(
                    "\n\tFaild to convert input data to a regular ndarray :\n\t* Usually "
                    "this means the input data contains nested lists with different lengths. "
                    "Please consider using 'fluid.create_lod_tensor' to convert it to a LoD-Tensor."
                )
            data = data.astype(dtype)
        else:
            raise TypeError(
                "Convert data of type {} to Tensor is not supported".format(
616 617 618
                    type(data)
                )
            )
619

620
    # convert numpy.ndarray to tensor
W
Wu Yi 已提交
621 622 623 624 625
    tensor = core.LoDTensor()
    tensor.set(data, place)
    return tensor


626
class FetchHandler:
D
Dong Daxiang 已提交
627
    def __init__(self, var_dict=None, period_secs=60):
628
        assert var_dict is not None
D
Dong Daxiang 已提交
629
        self.var_dict = var_dict
630 631
        self.period_secs = period_secs

D
Dong Daxiang 已提交
632 633 634 635 636
    def handler(self, res_dict):
        for key in res_dict:
            if type(res_dict[key]) is np.ndarray:
                sys.stdout.write("{}[0]: {} ".format(key, res_dict[key][0]))
        sys.stdout.write("\n")
637 638 639

    @staticmethod
    def help():
640 641
        print(
            """
D
Dong Daxiang 已提交
642 643 644 645 646 647 648 649
class FetchHandlerExample(FetchHandler):
    def handler(self, res_dict):
        print(res_dict["auc"])
        print("auc: {}, {}".format(res_dict["auc"], time.ctime()))

auc = Variable()
var_dict = {"auc": auc}
handler = FetchHandlerExample(var_dict=var_dict)
650 651
"""
        )
652 653


654
class _StandaloneExecutor:
655
    def __init__(self, place, main_program, scope):
656 657 658
        self._place = core.Place()
        self._place.set_place(place)
        self._main_program = main_program
659
        self._scope = scope
660 661
        self._new_exe = self._create_new_executor()

662
    def run(self, scope, feed_names, fetch_list, return_numpy=True):
663 664
        """
        Args:
665
            feed_names(list): This parameter represents the input names of the model.
666
            fetch_list(list): This parameter represents the Tensors that need to be returned
667
                after the model runs. The default is None.
668 669 670 671 672 673
            return_numpy(bool): This parameter indicates whether convert the fetched Tensors
                (the Tensor specified in the fetch list) to numpy.ndarray. if it is False,
                the type of the return value is a list of :code:`LoDTensor`. The default is True.
        """
        fetch_list = self._check_fetch(fetch_list)

674 675 676
        tensors = self._new_exe.run(
            scope, feed_names, fetch_list
        )._move_to_list()
677 678 679 680 681 682
        if return_numpy:
            return as_numpy(tensors, copy=True)
        else:
            return tensors

    def _create_new_executor(self):
L
Leo Chen 已提交
683
        new_exe = core.StandaloneExecutor(self._place, self._main_program.desc)
684 685 686 687 688

        return new_exe

    def _update_feed(self, feed):
        """
689
        Update the feed dict, remove the feed item which is pruned in program.
690 691

        Notes: This is a very low level API. Users should not use this API
692
        directly.
693 694 695 696 697 698 699 700 701

        Args:
            feed(list|dict): feed dict or list.

        Returns:
            feed:(list|dict)  updated feed.
        """
        if feed is None:
            feed = {}
702 703 704 705 706 707
        elif isinstance(feed, (list, tuple)):
            assert len(feed) == 1, "Not compiled with data parallel"
            feed = feed[0]

        if not isinstance(feed, dict):
            raise TypeError(
708 709 710
                "feed requires dict as its Parameter. But you passed in %s"
                % (type(feed))
            )
711 712 713 714 715 716 717

        global_block = self._main_program.global_block()
        for feed_name in list(feed.keys()):
            if not global_block.has_var(feed_name):
                feed.pop(feed_name)
                warnings.warn(
                    "The variable %s is not found in program. It is not declared or is pruned."
718 719
                    % feed_name
                )
720 721 722 723 724 725 726 727 728 729 730 731 732

        return feed

    def _check_fetch(self, fetch_list):
        if fetch_list is None:
            fetch_list = []

        res = []
        for fetch_var in fetch_list:
            if isinstance(fetch_var, Variable):
                fetch_var = fetch_var.name
            elif not isinstance(fetch_var, str):
                raise TypeError(
733 734 735 736
                    "Required fetch_var shall be str|Variable, but received {}".format(
                        type(fetch_var).__name__
                    )
                )
737 738 739 740 741

            res.append(fetch_var)
        return res


742 743
class _ExecutorCache:
    class _CachedData:
744 745 746 747 748 749 750 751 752 753
        def __init__(
            self,
            program,
            feed,
            fetch_list,
            feed_var_name,
            fetch_var_name,
            place,
            scope,
        ):
R
Ruibiao Chen 已提交
754 755 756 757 758 759 760 761 762 763 764
            self.program = program
            self.feed = feed
            self.fetch_list = fetch_list
            self.feed_var_name = feed_var_name
            self.fetch_var_name = fetch_var_name
            self.place = place
            self.scope = scope

            # NOTE(Ruibiao): Not all changeable item is considered for key at present,
            # ONLY: program, feed, and fetch_list
            if isinstance(self.program, compiler.CompiledProgram):
765 766 767 768
                if not self.program._program:
                    # The program holds no _program, maybe it is constructed by graph.
                    # Convert graph to program in order to generate key.
                    self.program._program = framework.IrGraph(
769 770
                        self.program._graph
                    ).to_program()
R
Ruibiao Chen 已提交
771 772
                self.key = hash(
                    _get_strong_program_cache_key_for_new_exe(
773 774 775
                        self.program._program, feed, fetch_list
                    )
                )
R
Ruibiao Chen 已提交
776 777 778
            else:
                self.key = hash(
                    _get_strong_program_cache_key_for_new_exe(
779 780 781
                        self.program, feed, fetch_list
                    )
                )
R
Ruibiao Chen 已提交
782 783

        def __eq__(self, other):
784 785 786 787
            return (
                isinstance(other, _ExecutorCache._CachedData)
                and self.key == other.key
            )
R
Ruibiao Chen 已提交
788 789 790 791 792 793 794 795 796

        def __hash__(self):
            return self.key

    def __init__(self):
        # NOTE(Ruibiao): Wrap the lru_cache in constructor so that the cache is local to
        # the _ExecutorCache instance, otherwise a global cache may not be released after
        # the Executor instance deleted
        self._get_cached_program_and_executor = lru_cache(maxsize=8)(
797 798
            self._get_program_and_executor
        )
R
Ruibiao Chen 已提交
799 800 801 802

    def clear(self):
        self._get_cached_program_and_executor.cache_clear()

803 804 805 806 807 808 809 810 811 812
    def get_program_and_executor(
        self,
        program,
        feed,
        fetch_list,
        feed_var_name,
        fetch_var_name,
        place,
        scope,
    ):
R
Ruibiao Chen 已提交
813
        return self._get_cached_program_and_executor(
814 815 816 817 818 819 820 821 822 823
            self._CachedData(
                program,
                feed,
                fetch_list,
                feed_var_name,
                fetch_var_name,
                place,
                scope,
            )
        )
R
Ruibiao Chen 已提交
824 825 826

    def _get_program_and_executor(self, cached_data):
        program = cached_data.program
827 828 829 830 831
        inner_program = (
            program._program
            if isinstance(program, compiler.CompiledProgram)
            else program
        )
R
Ruibiao Chen 已提交
832 833 834 835 836 837 838 839 840
        feed = cached_data.feed
        fetch_list = cached_data.fetch_list
        feed_var_name = cached_data.feed_var_name
        fetch_var_name = cached_data.fetch_var_name
        place = cached_data.place
        scope = cached_data.scope

        # To apply IR pass, compile the Program to IrGraph and convert it back to Program
        if isinstance(program, compiler.CompiledProgram) or isinstance(
841 842 843 844 845 846 847
            program._graph, compiler.CompiledProgram
        ):
            compiled_program = (
                program
                if isinstance(program, compiler.CompiledProgram)
                else program._graph
            )
R
Ruibiao Chen 已提交
848 849
            build_strategy = compiled_program._build_strategy
            # print(f"Program before convert:\n {inner_program}", flush=True)
850 851 852 853 854 855 856 857 858 859
            use_cuda_graph = False
            # When using cuda graph, the cuda graph preparation logic in PE is not
            # executed, but it is processed in the constructor of new executor.
            if (
                build_strategy is not None
                and build_strategy.allow_cuda_graph_capture
            ):
                use_cuda_graph = True
                build_strategy.allow_cuda_graph_capture = False
                set_flags({"FLAGS_new_executor_use_cuda_graph": True})
R
Ruibiao Chen 已提交
860
            compiled_program._compile(scope, place)
861 862
            if use_cuda_graph:
                build_strategy.allow_cuda_graph_capture = True
R
Ruibiao Chen 已提交
863 864 865
            ir_graph = framework.IrGraph(compiled_program._graph)
            converted_program = ir_graph.to_program()

866 867
            if hasattr(inner_program, 'lr_scheduler'):
                converted_program.lr_scheduler = inner_program.lr_scheduler
R
Ruibiao Chen 已提交
868 869 870 871 872 873

            inner_program = converted_program
            # print(f"Program after convert:\n {inner_program}", flush=True)
        else:
            build_strategy = None
            from paddle.incubate.autograd import prim_enabled, prim2orig
874

R
Ruibiao Chen 已提交
875 876 877 878 879
            if prim_enabled() and program == default_main_program():
                prim2orig()

            inner_program = program

880 881 882 883 884 885 886 887
        program = _add_feed_fetch_ops(
            program=inner_program,
            feed=feed,
            fetch_list=fetch_list,
            feed_var_name=feed_var_name,
            fetch_var_name=fetch_var_name,
            use_fetch_v2=True,
        )
R
Ruibiao Chen 已提交
888 889 890

        # standalone executor will apply buffer_shared_inplace_pass and
        # inplace_addto_op_pass to program according to build_strategy
891 892 893 894 895 896 897 898 899 900
        enable_inplace = (
            True
            if build_strategy is None or build_strategy.enable_inplace
            else False
        )
        enable_addto = (
            True
            if build_strategy is not None and build_strategy.enable_addto
            else False
        )
R
Ruibiao Chen 已提交
901 902 903
        if enable_inplace or enable_addto:
            # inplace should skip feed and fetch var
            skip_var_names = eval(_get_program_cache_key(feed, fetch_list))
904 905 906
            _apply_inplace_addto_pass(
                program, enable_inplace, enable_addto, skip_var_names
            )
R
Ruibiao Chen 已提交
907 908 909 910

        new_program = program.clone()
        new_exe = _StandaloneExecutor(place, new_program, scope)
        return new_program, new_exe
911 912


913
class Executor:
914
    """
915 916
    :api_attr: Static Graph

917
    An Executor in Python, supports single/multiple-GPU running,
918
    and single/multiple-CPU running.
C
chengduo 已提交
919 920

    Args:
921
        place(paddle.CPUPlace()|paddle.CUDAPlace(n)|str|None): This parameter represents
922 923 924 925
            which device the executor runs on. When this parameter is None, PaddlePaddle
            will set the default device according to its installation version. If Paddle
            is CPU version, the default device would be set to `CPUPlace()` . If Paddle is
            GPU version, the default device would be set to `CUDAPlace(0)` . Default is None.
926
            If ``place`` is string, it can be ``cpu``, and ``gpu:x``, where ``x``
927 928
            is the index of the GPUs. Note: users only pass one Place or None to initialize
            Executor when using multiple-cards. Other APIs will override the cards. See
929
            `document for multiple-cards <https://www.paddlepaddle.org.cn/documentation/docs/en/develop/guides/01_paddle2.0_introduction/update_en.html#stand-alone-multi-card-launch>`_
C
chengduo 已提交
930 931 932

    Returns:
        Executor
S
Fix doc  
sneaxiy 已提交
933

934
    Examples:
S
Fix doc  
sneaxiy 已提交
935 936
        .. code-block:: python

937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970
            import paddle
            import numpy
            import os

            # Executor is only used in static graph mode
            paddle.enable_static()

            # Set place explicitly.
            # use_cuda = True
            # place = paddle.CUDAPlace(0) if use_cuda else paddle.CPUPlace()
            # exe = paddle.static.Executor(place)

            # If you don't set place, PaddlePaddle sets the default device.
            exe = paddle.static.Executor()

            train_program = paddle.static.Program()
            startup_program = paddle.static.Program()
            with paddle.static.program_guard(train_program, startup_program):
                data = paddle.static.data(name='X', shape=[None, 1], dtype='float32')
                hidden = paddle.static.nn.fc(data, 10)
                loss = paddle.mean(hidden)
                paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)

            # Run the startup program once and only once.
            # Not need to optimize/compile the startup program.
            exe.run(startup_program)

            # Run the main program directly without compile.
            x = numpy.random.random(size=(10, 1)).astype('float32')
            loss_data, = exe.run(train_program, feed={"X": x}, fetch_list=[loss.name])

            # Or, compiled the program and run. See `CompiledProgram`
            # for more details.
            compiled_prog = paddle.static.CompiledProgram(
971
                train_program)
972 973
            loss_data, = exe.run(compiled_prog, feed={"X": x}, fetch_list=[loss.name])

974 975
    """

976 977
    def __init__(self, place=None):
        if place is None:
978 979
            expected_place = framework._current_expected_place()
            self.place = expected_place
980
        else:
981
            self.place = framework._get_paddle_place(place)
Q
qiaolongfei 已提交
982
        self.program_caches = dict()
983
        self.ctx_caches = dict()
984
        self.trainer_caches = dict()
985 986
        self.scope_caches = dict()
        self.var_caches = dict()
987
        self.pruned_program_caches = dict()
988 989 990
        p = core.Place()
        p.set_place(self.place)
        self._default_executor = core.Executor(p)
Y
Yancey1989 已提交
991
        self._closed = False
992
        self.pruned_program_scope_caches = dict()
993
        self._prepare_to_run_called = False
D
dzhwinter 已提交
994

995
        self._auto_checkpoint_name = unique_name.generate(
996 997
            "__auto_checkpoint_executor__"
        )
998

R
Ruibiao Chen 已提交
999
        self._executor_cache = _ExecutorCache()
1000

1001
        self._fleet_executor = None
1002 1003 1004
        # TODO(liyurui): This option will be removed and always true when the functionality
        # of fleet executor with standalone executor is ready.
        self._fleet_executor_with_standalone = False
1005

meteor135's avatar
meteor135 已提交
1006 1007 1008 1009 1010 1011 1012
        self.op_role_key = core.op_proto_and_checker_maker.kOpRoleAttrName()

    def _is_optimizer_op(self, op):
        return self.op_role_key in op.attr_names and int(
            op.all_attrs()[self.op_role_key]
        ) & int(core.op_proto_and_checker_maker.OpRole.Optimize)

R
Ruibiao Chen 已提交
1013 1014 1015 1016 1017 1018
    def __del__(self):
        # NOTE(Ruibiao): The manually call of clear is required. Because in Python, executor_cache
        # may not immediately destructed after Executor instance deleted (so does not the _StandaloneExecutor),
        # that brings errors to mkl-dnn unit tests (see ClearMKLDNNCache in interpretercore.cc for why).
        self._executor_cache.clear()

1019 1020 1021
    def _get_scope_cache(self, program_cache_key):
        return self.scope_caches.get(program_cache_key, None)

1022 1023 1024
    def _get_ctx_cache(self, program_cache_key):
        return self.ctx_caches.get(program_cache_key, None)

1025 1026 1027
    def _get_trainer_cache(self, program_cache_key):
        return self.trainer_caches.get(program_cache_key, None)

Q
Qiao Longfei 已提交
1028 1029 1030 1031 1032 1033
    def _get_program_cache(self, program_cache_key):
        return self.program_caches.get(program_cache_key, None)

    def _add_program_cache(self, program_cache_key, program):
        self.program_caches[program_cache_key] = program

1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045
    def _get_pruned_program_cache(self, program_cache_key):
        return self.pruned_program_caches.get(program_cache_key, None)

    def _add_pruned_program_cache(self, program_cache_key, program):
        self.pruned_program_caches[program_cache_key] = program

    def _get_pruned_program_scope_cache(self, program_cache_key):
        return self.pruned_program_scope_caches.get(program_cache_key, None)

    def _add_pruned_program_scope_cache(self, program_cache_key, program):
        self.pruned_program_scope_caches[program_cache_key] = program

1046 1047 1048
    def _add_ctx_cache(self, ctx_cache_key, ctx):
        self.ctx_caches[ctx_cache_key] = ctx

1049 1050 1051
    def _add_trainer_cache(self, trainer_cache_key, ctx):
        self.trainer_caches[trainer_cache_key] = ctx

1052 1053 1054
    def _add_scope_cache(self, scope_cache_key, scope):
        self.scope_caches[scope_cache_key] = scope

1055 1056 1057 1058 1059 1060 1061
    # just for testing, will be removed later
    @lru_cache()
    def _log_force_set_program_cache(self, use_program_cache):
        logging.warning(
            f"use_program_cache is force set to {use_program_cache} by FLAGS_FORCE_USE_PROGRAM_CACHE"
        )

Q
Qiao Longfei 已提交
1062 1063
    def _feed_data(self, program, feed, feed_var_name, scope):
        # feed var to framework
H
Huihuang Zheng 已提交
1064 1065
        global_block = program.global_block()
        for op in global_block.ops:
Q
Qiao Longfei 已提交
1066 1067 1068
            if op.desc.type() == 'feed':
                feed_target_name = op.desc.output('Out')[0]
                cur_feed = feed[feed_target_name]
H
Huihuang Zheng 已提交
1069
                var = global_block.var(feed_target_name)
S
Steffy-zxf 已提交
1070 1071
                if var.dtype != core.VarDesc.VarType.STRINGS:
                    if not isinstance(cur_feed, core.LoDTensor):
1072 1073 1074
                        cur_feed = _as_lodtensor(
                            cur_feed, self.place, var.dtype
                        )
S
Steffy-zxf 已提交
1075
                    check_feed_shape_type(var, cur_feed)
Q
Qiao Longfei 已提交
1076 1077 1078 1079 1080 1081 1082 1083
                idx = op.desc.attr('col')
                core.set_feed_variable(scope, cur_feed, feed_var_name, idx)
            else:
                break

    def _fetch_data(self, fetch_list, fetch_var_name, scope):
        outs = [
            core.get_fetch_variable(scope, fetch_var_name, i)
1084
            for i in range(len(fetch_list))
Q
Qiao Longfei 已提交
1085 1086 1087
        ]
        return outs

1088 1089
    @classmethod
    def _split_optimize_ops_in_fetch_list(cls, fetch_list):
1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100
        """
        Split optimize_ops from fetch_list, which provided to specify program prunning.
        Args:
            fetch_list(list): The original fetch_list.
            Possible types of fetch_list are:
                fetch_list = ['loss']
                fetch_list = [[sgd, sgd], 'loss']
                fetch_list = [([sgd, sgd], [(param, grad)]), 'loss']

        Returns:
            optimize_ops(list): The optimize operators splited from fetch_list.
1101
            fetch_list(list):  The updated fetch_list which does not contain optimize operators.
1102 1103 1104 1105 1106 1107 1108 1109 1110 1111
        """
        _optimize_ops = []
        _fetch_list = []

        def _get_targets(_optimize_ops, _fetch_list, item):
            if isinstance(item, Operator):
                if item._is_optimize_op():
                    _optimize_ops.append(item)
                else:
                    raise TypeError(
1112 1113 1114 1115 1116 1117 1118
                        "The operator in fetch_list is not an optimize_op"
                    )
            elif (
                isinstance(item, Variable)
                or isinstance(item, str)
                or isinstance(item, str)
            ):
1119 1120 1121
                _fetch_list.append(item)
            else:
                raise TypeError(
1122
                    "The item in fetch_list should be str, variable or optimize_op, but received %s.",
1123 1124
                    type(item),
                )
1125

1126
        for index, item in enumerate(fetch_list):
1127 1128 1129 1130 1131 1132 1133
            # NOTE(zhiqiu): to support (optimizer_ops, param_and_grads) and optimizer_ops in fetch_list
            # we should handle tuple and list in fetch_list.
            # TODO(zhiqiu): find a better way to handle that.
            if isinstance(item, list):
                for i in item:
                    _get_targets(_optimize_ops, _fetch_list, i)
            elif isinstance(item, tuple):
1134 1135
                if not isinstance(item[0], (list, tuple)):
                    raise TypeError(
1136 1137 1138 1139
                        "Requires fetch_list[{}][0] shall be one of (list, tuple) when type(fetch_list[{}]) is `tuple`, but received fetch_list[{}][0]'s type is `{}`.".format(
                            index, index, index, type(item[0]).__name__
                        )
                    )
1140 1141 1142 1143 1144 1145 1146
                for i in item[0]:
                    _get_targets(_optimize_ops, _fetch_list, i)
            else:
                _get_targets(_optimize_ops, _fetch_list, item)

        return _fetch_list, _optimize_ops

1147
    @classmethod
1148 1149 1150
    def _prune_program(
        cls, program, feed=None, fetch_list=None, optimize_ops=None
    ):
1151 1152
        """
        Prune operators and variables which are not needed to generate
1153 1154 1155
        :code:`fetch_list` and optimize operators.
        Prune operators and variables which are needed
        to generate variables to be feeded.
1156 1157

        Notes: This is a very low level API. Users should not use this API
1158
        directly.
1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208

        Args:
            program(Program): the origin program
            feed(list|dict): feed dict or list.
            fetch_list(list|Variable): A list of variables need to be fetched
            optimize_ops(list[Operator]): A list of optimizer operators

        Returns:
            Program:  A new, pruned program.
        """
        compiled = isinstance(program, compiler.CompiledProgram)
        if compiled:
            if program._program:
                origin_program = program._program
            else:
                warnings.warn(
                    "The program holds no _program, maybe it is constructed by graph, which can't be pruned yet."
                )
                return
        else:
            origin_program = program

        feed_names = []
        if isinstance(feed, dict):
            feed_names = list(feed.keys())
        elif isinstance(feed, list) or isinstance(feed, tuple):
            for i, each in enumerate(feed):
                feed_names += list(each.keys())

        # if optimize_ops is [], all optimize ops in the program is used.
        if not optimize_ops:
            for block in origin_program.blocks:
                for op in block.ops:
                    if op._is_optimize_op():
                        optimize_ops.append(op)

        targets = fetch_list + optimize_ops
        pruned_program = origin_program._prune_with_input(feed_names, targets)

        if compiled:
            # for compiled program, update the underlying program, re-generate graph,
            # and reset the flag so it can be compiled again.
            program._program = pruned_program
            program._graph = core.Graph(pruned_program.desc)
            program._compiled = False
        else:
            program = pruned_program

        return program

1209 1210
    @classmethod
    def _update_feed(cls, program, feed):
1211
        """
1212
        Update the feed dict, remove the feed item which is pruned in program.
1213 1214

        Notes: This is a very low level API. Users should not use this API
1215
        directly.
1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231

        Args:
            program(Program): the pruned program.
            feed(list|dict): feed dict or list.

        Returns:
            feed:(list|dict)  updated feed.
        """
        compiled = isinstance(program, compiler.CompiledProgram)
        if compiled:
            if program._program:
                global_block = program._program.global_block()
            else:
                warnings.warn(
                    "The program holds no _program, maybe it is constructed by graph."
                )
1232
                return feed
1233 1234 1235 1236 1237 1238 1239 1240 1241
        else:
            global_block = program.global_block()

        if isinstance(feed, dict):
            for feed_name in list(feed.keys()):
                if not global_block.has_var(feed_name):
                    feed.pop(feed_name)
                    warnings.warn(
                        "The variable %s is not found in program. It is not declared or is pruned."
1242 1243
                        % feed_name
                    )
1244 1245 1246 1247 1248 1249 1250 1251

        elif isinstance(feed, list) or isinstance(feed, tuple):
            for i, each in enumerate(feed):
                for feed_name in list(each.keys()):
                    if not global_block.has_var(feed_name):
                        each.pop(feed_name)
                        warnings.warn(
                            "The variable %s is not found in program. It is not declared or is pruned."
1252 1253
                            % feed_name
                        )
1254 1255
        return feed

S
Fix doc  
sneaxiy 已提交
1256 1257 1258 1259 1260 1261
    '''
    TODO(typhoonzero): Define "no longer use" meaning? Can user create
    a new Executor for the same program and run?
    TODO(panyx0718): Why ParallelExecutor doesn't have close?
    '''

Y
Yancey1989 已提交
1262 1263
    def close(self):
        """
C
chengduo 已提交
1264 1265 1266
        Close the executor. This interface is used for distributed training (PServers mode).
        This executor can not be used after calling the interface, because
        this interface releases resources associated with the current Trainer.
Y
Yancey1989 已提交
1267

C
chengduo 已提交
1268 1269
        Returns:
            None
1270 1271 1272 1273

        Examples:
            .. code-block:: python

1274
              import paddle
1275

1276 1277
              cpu = paddle.CPUPlace()
              exe = paddle.static.Executor(cpu)
1278 1279
              # execute training or testing
              exe.close()
Y
Yancey1989 已提交
1280
        """
1281
        if not self._closed:
Y
Yancey1989 已提交
1282
            self._closed = True
1283 1284 1285 1286
            for k, trainer_instance in self.trainer_caches.items():
                self._default_executor.release_trainer(trainer_instance)
                del trainer_instance
            self._default_executor.close()
Y
Yancey1989 已提交
1287

1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299
    def run(
        self,
        program=None,
        feed=None,
        fetch_list=None,
        feed_var_name='feed',
        fetch_var_name='fetch',
        scope=None,
        return_numpy=True,
        use_program_cache=False,
        use_prune=False,
    ):
1300
        """
C
chengduo 已提交
1301 1302 1303
        Run the specified :code:`Program` or :code:`CompiledProgram`. It should be noted that the executor
        will execute all the operators in :code:`Program` or :code:`CompiledProgram` without pruning some
        operators of the :code:`Program` or :code:`CompiledProgram` according to fetch_list. And you could
1304 1305
        specify the scope to store the :code:`Tensor` during the executor running if the scope
        is not set, the executor will use the global scope, i.e. :code:`paddle.static.global_scope()`.
1306

C
chengduo 已提交
1307 1308 1309
        Args:
            program(Program|CompiledProgram): This parameter represents the :code:`Program` or
                :code:`CompiledProgram` to be executed. If this parameter is not provided, that
1310
                parameter is None, the program will be set to :code:`paddle.static.default_main_program()`.
C
chengduo 已提交
1311
                The default is None.
1312
            feed(list|dict): This parameter represents the input Tensors of the model.
C
chengduo 已提交
1313
                If it is single card training, the feed is dict type, and if it is multi-card
1314
                training, the parameter feed can be dict or list of Tensors. If the
C
chengduo 已提交
1315 1316 1317 1318 1319 1320 1321
                parameter type is dict, the data in the feed will be split and sent to
                multiple devices (CPU/GPU), that is to say, the input data will be evenly
                sent to different devices, so you should make sure the number of samples of
                the current mini-batch must be greater than the number of places;
                if the parameter type is list, those data are copied directly to each device,
                so the length of this list should be equal to the number of places.
                The default is None.
1322
            fetch_list(list): This parameter represents the Tensors that need to be returned
1323
                after the model runs. The default is None.
1324
            feed_var_name(str): This parameter represents the name of the input Tensor of
C
chengduo 已提交
1325
                the feed operator. The default is "feed".
1326
            fetch_var_name(str): This parameter represents the name of the output Tensor of
C
chengduo 已提交
1327
                the fetch operator. The default is "fetch".
1328
            scope(Scope): the scope used to run this program, you can switch
1329 1330 1331
                it to different scope. default is :code:`paddle.static.global_scope()`
            return_numpy(bool): This parameter indicates whether convert the fetched Tensors
                (the Tensor specified in the fetch list) to numpy.ndarray. if it is False,
C
chengduo 已提交
1332 1333 1334
                the type of the return value is a list of :code:`LoDTensor`. The default is True.
            use_program_cache(bool): This parameter indicates whether the input :code:`Program` is cached.
                If the parameter is True, the model may run faster in the following cases:
1335 1336
                the input program is :code:`paddle.static.Program`, and the parameters(program, feed Tensor name
                and fetch_list Tensor) of this interface remains unchanged during running.
C
chengduo 已提交
1337
                The default is False.
1338
            use_prune(bool): This parameter indicates whether the input :code:`Program` will be pruned.
1339
                If the parameter is True, the program will be pruned accroding to the given feed and fetch_list,
1340 1341
                which means the operators and variables in program that generate :code:`feed` and are not
                needed to generate :code:`fetch_list` will be pruned. The default is False, which means the
1342
                program will not pruned and all the operators and variables will be executed during running.
1343
                Note that if the tuple returned from :code:`Optimizer.minimize()` is passed to :code:`fetch_list`,
1344
                :code:`use_prune` will be overrided to True, and the program will be pruned.
1345

C
chengduo 已提交
1346 1347 1348 1349
        Returns:

            List: The fetched result list.

1350
        Examples:
1351
            .. code-block:: python
1352
                :name: code-example-1
1353

1354 1355
                import paddle
                import numpy
1356

1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367
                # First create the Executor.
                paddle.enable_static()
                place = paddle.CPUPlace()  # paddle.CUDAPlace(0)
                exe = paddle.static.Executor(place)

                data = paddle.static.data(name='X', shape=[None, 1], dtype='float32')
                hidden = paddle.static.nn.fc(data, 10)
                loss = paddle.mean(hidden)
                adam = paddle.optimizer.Adam()
                adam.minimize(loss)
                i = paddle.zeros(shape=[1], dtype='int64')
1368
                array = paddle.tensor.array_write(x=loss, i=i)
1369

1370 1371
                # Run the startup program once and only once.
                exe.run(paddle.static.default_startup_program())
1372

1373 1374 1375 1376 1377
                x = numpy.random.random(size=(10, 1)).astype('float32')
                loss_val, array_val = exe.run(feed={'X': x},
                                              fetch_list=[loss.name, array.name])
                print(array_val)
                # [array([0.02153828], dtype=float32)]
Z
Zhen Wang 已提交
1378 1379

            .. code-block:: python
1380
                :name: code-example-2
Z
Zhen Wang 已提交
1381

1382
                # required: gpu
1383
                import paddle
Z
Zhen Wang 已提交
1384 1385 1386
                import numpy as np

                # First create the Executor.
1387 1388 1389
                paddle.enable_static()
                place = paddle.CUDAPlace(0)
                exe = paddle.static.Executor(place)
Z
Zhen Wang 已提交
1390

1391
                data = paddle.static.data(name='X', shape=[None, 1], dtype='float32')
Z
Zhen Wang 已提交
1392
                class_dim = 2
1393 1394 1395
                prediction = paddle.static.nn.fc(data, class_dim)
                loss = paddle.mean(prediction)
                adam = paddle.optimizer.Adam()
Z
Zhen Wang 已提交
1396 1397 1398
                adam.minimize(loss)

                # Run the startup program once and only once.
1399 1400 1401
                exe.run(paddle.static.default_startup_program())
                build_strategy = paddle.static.BuildStrategy()
                binary = paddle.static.CompiledProgram(
1402
                    paddle.static.default_main_program(), build_strategy=build_strategy)
Z
Zhen Wang 已提交
1403 1404 1405
                batch_size = 6
                x = np.random.random(size=(batch_size, 1)).astype('float32')

1406 1407 1408
                prediction, = exe.run(binary,
                                      feed={'X': x},
                                    fetch_list=[prediction.name])
Z
Zhen Wang 已提交
1409 1410
                # If the user uses two GPU cards to run this python code, the printed result will be
                # (6, class_dim). The first dimension value of the printed result is the batch_size.
1411 1412 1413
                print("The prediction shape: {}".format(
                    np.array(prediction).shape))
                print(prediction)
1414

Z
Zhen Wang 已提交
1415
                # Out:
1416
                # The prediction shape: (6, 2)
Z
Zhen Wang 已提交
1417 1418 1419 1420 1421 1422
                # [[-0.37789783 -0.19921964]
                #  [-0.3577645  -0.18863106]
                #  [-0.24274671 -0.12814042]
                #  [-0.24635398 -0.13003758]
                #  [-0.49232286 -0.25939852]
                #  [-0.44514108 -0.2345845 ]]
1423

1424
        """
1425 1426
        # Temporary FLAGS, just for testing the performance of program cache
        force_use_program_cache = os.environ.get(
1427 1428
            'FLAGS_FORCE_USE_PROGRAM_CACHE', None
        )
1429 1430
        if force_use_program_cache is not None:
            use_program_cache = force_use_program_cache in [
1431 1432 1433 1434 1435
                1,
                '1',
                True,
                'True',
                'true',
1436
            ]
1437
            self._log_force_set_program_cache(use_program_cache)
1438

1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451
        res = self._run_impl(
            program=program,
            feed=feed,
            fetch_list=fetch_list,
            feed_var_name=feed_var_name,
            fetch_var_name=fetch_var_name,
            scope=scope,
            return_numpy=return_numpy,
            use_program_cache=use_program_cache,
            use_prune=use_prune,
        )
        core.update_autotune_status()
        return res
C
chengduo 已提交
1452

1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464
    def _run_impl(
        self,
        program,
        feed,
        fetch_list,
        feed_var_name,
        fetch_var_name,
        scope,
        return_numpy,
        use_program_cache,
        use_prune,
    ):
Y
Yancey1989 已提交
1465 1466 1467
        if self._closed:
            raise RuntimeError("Attempted to use a closed Executor")

C
chengduo 已提交
1468
        use_default_main_program = program is None
1469 1470
        if program is None:
            program = default_main_program()
1471

1472
        fetch_list = self._check_fetch_list(fetch_list)
1473 1474

        if isinstance(program, Program) and program._pipeline_opt:
L
LiYuRio 已提交
1475
            if "fleet_opt" in program._pipeline_opt:
1476 1477
                # Move prepare here for port conflict with nccl in startup program
                if self._fleet_executor is None:
1478 1479 1480 1481 1482 1483
                    # Temporary manual enable standalone executor for fleet executor,
                    # delete this code after the FLAGS is removed.
                    if 'tasks' in program._pipeline_opt["fleet_opt"]:
                        set_flags(
                            {"FLAGS_fleet_executor_with_standalone": True}
                        )
1484
                    self._fleet_executor = _prepare_fleet_executor()
1485 1486 1487 1488
                return self._run_using_fleet_executor(
                    program=program,
                    feed=feed,
                    fetch_list=fetch_list,
1489 1490
                    with_standalone_executor=self._fleet_executor_with_standalone,
                )
1491 1492 1493
            if "startup_program" in program._pipeline_opt:
                program = program._pipeline_opt["startup_program"]
            else:
1494 1495 1496 1497 1498
                return self._run_pipeline(
                    program,
                    fetch_list=fetch_list,
                    use_program_cache=use_program_cache,
                )
1499 1500

        if isinstance(program, Program) and program._heter_pipeline_opt:
1501
            # print("program._heter_pipeline_opt: {}".format(
1502
            #    program._heter_pipeline_opt))
1503
            ## change default executor
1504 1505 1506 1507 1508 1509
            heter_place = program._heter_pipeline_opt["heter_place"]
            heter_place = framework._get_paddle_place(heter_place)
            p = core.Place()
            p.set_place(heter_place)
            self._default_executor = core.Executor(p)
            # TODO(zhangminxu): support heterps pipeline training using exe.run
1510
            if "startup_program" in program._heter_pipeline_opt:
1511
                # print("get startup_program from _pipeline_opt")
1512 1513
                program = program._heter_pipeline_opt["startup_program"]

1514 1515 1516 1517
        if (
            isinstance(program, Program)
            and len(program.global_block().ops) == 0
        ):
C
chengduo 已提交
1518
            if use_default_main_program:
1519 1520 1521 1522
                error_info = (
                    "Now you are using default_main_program, "
                    "but there are no operators in the program to be executed. "
                    "Please ensure you create model correctly or you can pass "
1523
                    "the Program or the CompiledProgram manually."
1524
                )
1525
            else:
1526 1527 1528
                error_info = (
                    "There are no operators in the program to be executed. "
                    "If you pass Program manually, please use fluid.program_guard "
1529
                    "to ensure the current Program is being used."
1530
                )
C
chengduo 已提交
1531
            warnings.warn(error_info)
1532

1533 1534
        if scope is None:
            scope = global_scope()
1535

1536 1537 1538 1539
        # use_prune can be overrided by putting optimize_ops in fetch_list
        _origin_fetch_list = fetch_list
        _origin_program = program
        fetch_list, optimize_ops = self._split_optimize_ops_in_fetch_list(
1540 1541
            fetch_list
        )
1542 1543 1544
        if optimize_ops:
            use_prune = True
        if use_prune:
1545 1546 1547
            cache_key = _get_strong_program_cache_key(
                program, feed, _origin_fetch_list
            )
1548 1549 1550 1551
            cached_pruned_program = self._get_pruned_program_cache(cache_key)
            if cached_pruned_program is None:
                if isinstance(program, compiler.CompiledProgram):
                    program_scope_cache = self._get_pruned_program_scope_cache(
1552 1553
                        str(id(_origin_program))
                    )
1554 1555 1556 1557
                    # copy the original program, so it can be cached.
                    program = copy.copy(program)
                    # share the local scopes for same original CompiledProgram.
                    program._share_vars_from = program_scope_cache
1558 1559 1560 1561 1562 1563
                    if (
                        self._get_pruned_program_scope_cache(
                            str(id(_origin_program))
                        )
                        is None
                    ):
1564
                        self._add_pruned_program_scope_cache(
1565 1566 1567 1568 1569
                            str(id(_origin_program)), program
                        )
                pruned_program = self._prune_program(
                    program, feed, fetch_list, optimize_ops
                )
1570 1571 1572 1573 1574 1575 1576
                self._add_pruned_program_cache(cache_key, pruned_program)
            else:
                pruned_program = cached_pruned_program

            feed = self._update_feed(pruned_program, feed)
            program = pruned_program

1577
        def _can_use_interpreter_core(program, place):
1578 1579 1580
            compiled = isinstance(
                program, compiler.CompiledProgram
            ) or isinstance(program._graph, compiler.CompiledProgram)
1581
            if compiled:
1582 1583 1584 1585 1586
                compiled_program = (
                    program
                    if isinstance(program, compiler.CompiledProgram)
                    else program._graph
                )
1587

1588
                # Unsupported case 1: inference
1589
                if compiled_program._is_inference:
1590 1591
                    warnings.warn(
                        "Standalone executor is not used for inference",
1592 1593
                        UserWarning,
                    )
1594
                    return False
1595

1596
            return True
1597

1598
        if _can_use_interpreter_core(program, self.place):
1599

1600 1601 1602 1603 1604 1605 1606 1607
            if feed is None:
                feed = {}
            elif isinstance(feed, (list, tuple)):
                assert len(feed) == 1, "Not compiled with data parallel"
                feed = feed[0]
            if not isinstance(feed, dict):
                raise TypeError(
                    "feed requires dict as its Parameter. But you passed in %s"
1608 1609
                    % (type(feed))
                )
1610 1611
            feed = self._update_feed(program, feed)

1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637
            stored_flag = {}
            if isinstance(program, compiler.CompiledProgram) or isinstance(
                program._graph, compiler.CompiledProgram
            ):
                compiled_program = (
                    program
                    if isinstance(program, compiler.CompiledProgram)
                    else program._graph
                )
                build_strategy = compiled_program._build_strategy
                if (
                    build_strategy is not None
                    and build_strategy.force_sequential_run
                ):
                    schedule_flag = [
                        'FLAGS_new_executor_serial_run',
                        'FLAGS_new_executor_sequential_run',
                    ]
                    for flag in schedule_flag:
                        value = os.getenv(flag, False)
                        if isinstance(value, str):
                            value = value.lower()
                            value = True if value == 'true' else False
                        stored_flag[flag] = bool(value)
                    set_flags({f: True for f in schedule_flag})

1638
            program, new_exe = self._executor_cache.get_program_and_executor(
1639 1640 1641 1642 1643 1644 1645 1646
                program,
                feed,
                fetch_list,
                feed_var_name,
                fetch_var_name,
                self.place,
                scope,
            )
1647 1648

            self._feed_data(program, feed, feed_var_name, scope)
1649
            if hasattr(program, 'lr_scheduler'):
1650
                from paddle.optimizer.lr import LRScheduler
1651 1652

                assert isinstance(
1653
                    program.lr_scheduler, LRScheduler
1654
                ), "must be LRScheduler"
1655 1656 1657
                lr_scheduler = program.lr_scheduler
                lr_value = lr_scheduler()
                lr_var = program.global_block().vars[lr_scheduler._var_name]
1658
                data = np.array([lr_value]).astype(convert_dtype(lr_var.dtype))
1659
                tensor = core.get_variable_tensor(scope, lr_scheduler._var_name)
1660 1661
                # NOTE(dev): `tensor.set(data, self.place)` always call TensorCopySync that is a blocking behavior. So we use `_copy_from` to replace it.
                cpu_tensor = _as_lodtensor(data, core.CPUPlace())
1662 1663 1664 1665 1666 1667 1668
                if core.is_cuda_graph_capturing():
                    warnings.warn(
                        "Caution!!! When capturing CUDA Graph, the learning rate scheduler would not "
                        "take any effect! Please set the learning rate manually before each batch!"
                    )
                elif core.is_compiled_with_ipu():
                    # for ipu, tensor is allocated on cpu
1669 1670 1671 1672
                    tensor._copy_from(cpu_tensor, tensor._place())
                else:
                    tensor._copy_from(cpu_tensor, self.place)

1673
            ret = new_exe.run(
1674 1675
                scope, list(feed.keys()), fetch_list, return_numpy
            )
1676 1677
            set_flags(stored_flag)
            return ret
1678

X
polish  
Xin Pan 已提交
1679
        compiled = isinstance(program, compiler.CompiledProgram)
H
Huihuang Zheng 已提交
1680

1681
        # Check if paddle.static.data() variable no feed data
1682 1683 1684 1685 1686 1687
        if use_prune:
            if compiled:
                global_block = program._program.global_block()
            else:
                global_block = program.global_block()
            for varname in global_block.vars:
1688
                vardesc = global_block.desc.find_var(varname.encode())
1689 1690
                varobj = global_block.vars[varname]

1691 1692 1693 1694 1695 1696 1697 1698 1699
                if (
                    vardesc.persistable() == False
                    and vardesc.type() == core.VarDesc.VarType.LOD_TENSOR
                    and vardesc.need_check_feed() == True
                    and varobj.stop_gradient == True
                    and varobj.is_data == True
                    and varobj.belong_to_optimizer == False
                    and varname not in feed
                ):
1700 1701
                    raise ValueError('Need feed data for variable %s' % varname)

1702 1703
        acp._auto_checkpoint(self, program)

1704
        program._compile(scope, self.place)
1705 1706 1707 1708
        assert (
            program._is_inference
        ), f"Program must have _is_inference = True, but get {program._is_inference}"
        return self._run_inference(program._executor, feed)
1709

X
Xin Pan 已提交
1710 1711
    def _run_inference(self, exe, feed):
        return exe.run(feed)
D
dongdaxiang 已提交
1712

1713
    def _check_fetch_list(self, fetch_list):
1714
        is_fetch_var = lambda var: isinstance(var, (Variable, str))
1715 1716
        is_tuple_list = lambda var: isinstance(var, (tuple, list))

1717 1718 1719 1720
        if fetch_list is None:
            return []
        if is_fetch_var(fetch_list):
            return [fetch_list]
1721

1722 1723 1724
        assert is_tuple_list(fetch_list), (
            "Currently , The fetch_list type only should be list or tuple, \n"
            "but the input type is {}. For more information please refer to \n"
1725
            "the executor.run(...).".format(type(fetch_list))
1726
        )
1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739

        res = []
        for i, var in enumerate(fetch_list):
            if is_fetch_var(var):
                res.append(var)
            # such as [x, 'mean_out', loss]
            elif is_tuple_list(var):
                if all(is_fetch_var(v) for v in var):
                    res.extend(list(var))
                else:
                    res.append(var)
            else:
                raise TypeError(
1740 1741 1742 1743
                    "Require fetch_list[{}] 's type shall be one of (Variable, str), but received {}.".format(
                        i, type(var).__name__
                    )
                )
1744 1745 1746

        return res

1747
    def _dump_debug_info(self, program=None, trainer=None):
Z
ziyoujiyi 已提交
1748 1749
        with open(str(id(program)) + "_train_desc.prototxt", "w") as fout:
            fout.write(str(trainer))
1750
        if program._fleet_opt and "fleet_desc" in program._fleet_opt:
1751 1752 1753
            with open("fleet_desc.prototxt", "w") as fout:
                fout.write(str(program._fleet_opt["fleet_desc"]))

1754 1755 1756 1757 1758 1759
    def _adjust_pipeline_resource(self, pipeline_opt, dataset, pipeline_num):
        filelist_length = len(dataset.dataset.get_filelist())
        if filelist_length < pipeline_num:
            pipeline_num = filelist_length
            print(
                "Pipeline training: setting the pipeline num to %d is enough because there are only %d files"
1760 1761
                % (filelist_length, filelist_length)
            )
1762 1763 1764
        if filelist_length < pipeline_num * pipeline_opt["concurrency_list"][0]:
            print(
                "Pipeline training: setting the 1st element in concurrency_list to %d is enough because there are only %d files"
1765 1766 1767 1768 1769
                % (filelist_length // pipeline_num, filelist_length)
            )
            pipeline_opt["concurrency_list"][0] = (
                filelist_length // pipeline_num
            )
1770 1771 1772
        dataset.set_thread(pipeline_opt["concurrency_list"][0] * pipeline_num)
        return pipeline_num

meteor135's avatar
meteor135 已提交
1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903
    def split_program_by_device(self, program):
        ops_list = []
        type_list = []
        pre = None
        type_cpu = "cpu"
        for op in program.global_block().ops:
            if self._is_optimizer_op(op):
                break
            if op.has_attr("op_device"):
                cur_attr = (
                    op.attr("op_device")
                    if op.attr("op_device") != ""
                    else type_cpu
                )
                if pre is None or pre != cur_attr:
                    ops_list.append([])
                    type_list.append(cur_attr)
                ops_list[-1].append(op)
                pre = cur_attr
        l = len(type_list)
        i = 0
        type_heter = None
        while i < l:
            while i < l and type_list[i] == type_cpu:
                i += 1
            if i == l:
                break

            type_heter = type_list[i]
            i += 1
            start = i
            valid = True
            while i < l and type_list[i] != type_heter:
                if type_list[i] != type_cpu:
                    valid = False
                    break
                i += 1

            if i == l:
                break
            elif not valid:
                continue

            for j in range(start, i):
                for op in ops_list[j]:
                    op._set_attr("op_device", type_heter)
                type_list[j] = type_heter
                j += 1

        pre = None
        merged_ops_list = []
        merged_type_list = []
        for i in range(l):
            if pre is None or pre != type_list[i]:
                merged_ops_list.append([])
                merged_type_list.append(type_list[i])
            merged_ops_list[-1].extend(ops_list[i])
            pre = type_list[i]

        data_vars = set()
        for k in program.global_block().vars:
            var = program.global_block().var(k)
            if not var.persistable:
                data_vars.add(var.name)

        l = len(merged_ops_list)
        inputs_pre = set()
        outputs_pre = set()
        in_from_pre = [[] for i in range(l)]
        for i in range(l):
            inputs = set()
            outputs = set()
            for op in merged_ops_list[i]:
                for input in op.input_names:
                    for tmp in op.input(input):
                        if tmp not in outputs:
                            inputs.add(tmp)
                for output in op.output_names:
                    for tmp in op.output(output):
                        outputs.add(tmp)
            if i == 0:
                in_from_pre[i] = []
            elif i == 1:
                in_from_pre[i] = (outputs_pre | data_vars) & inputs
            else:
                in_from_pre[i] = outputs_pre & inputs
            inputs_pre = copy.deepcopy(inputs)
            outputs_pre = copy.deepcopy(outputs)

        l = len(in_from_pre)
        start_list = []
        end_list = []
        send_list = [[] for i in range(l)]
        sum = 0
        program_list = []
        for i in range(l):
            start_list.append(sum)
            end_list.append(sum + len(merged_ops_list[i]) - 1)
            sum += len(merged_ops_list[i])
            if i < l - 1:
                send_list[i].extend(list(in_from_pre[i + 1]))
            prog = program.clone()
            if merged_type_list[i] != type_cpu:
                prog = prog._prune_with_input(
                    list(in_from_pre[i]), list(send_list[i])
                )
                program_list.append(prog)
            else:
                program_list.append(prog)
        recv_list = [list(i) for i in in_from_pre]
        found = False
        heter_index = None
        for i in range(len(merged_type_list)):
            t = merged_type_list[i]
            if t != type_cpu:
                if found:
                    print("only one region of program can be heter")
                found = True
                heter_index = i
        if heter_index is None:
            print("warning: non heter program")
            return None
        else:
            return [
                start_list[heter_index],
                end_list[heter_index],
                send_list[heter_index],
                recv_list[heter_index],
                program_list[heter_index],
            ]

1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914
    def _prepare_trainer(
        self,
        program=None,
        dataset=None,
        scope=None,
        thread=0,
        debug=False,
        fetch_list=None,
        fetch_info=None,
        print_period=100,
    ):
T
Thunderbrook 已提交
1915
        is_heter = 0
T
Thunderbrook 已提交
1916
        use_ps_gpu = 0
T
Thunderbrook 已提交
1917 1918 1919
        if not program._fleet_opt is None:
            if program._fleet_opt.get("worker_class", "") == "HeterCpuWorker":
                is_heter = 1
T
Thunderbrook 已提交
1920
            if program._fleet_opt.get("trainer", "") == "HeterXpuTrainer":
T
Thunderbrook 已提交
1921
                is_heter = 1
T
Thunderbrook 已提交
1922 1923
            if program._fleet_opt.get("use_ps_gpu", False):
                use_ps_gpu = True
D
dongdaxiang 已提交
1924 1925 1926 1927
        if scope is None:
            scope = global_scope()
        if fetch_list is None:
            fetch_list = []
D
dongdaxiang 已提交
1928 1929 1930
        if fetch_info is None:
            fetch_info = []
        assert len(fetch_list) == len(fetch_info)
D
dongdaxiang 已提交
1931
        compiled = isinstance(program, compiler.CompiledProgram)
T
Thunderbrook 已提交
1932
        if is_heter:
meteor135's avatar
meteor135 已提交
1933
            ret = self.split_program_by_device(program)
D
dongdaxiang 已提交
1934
        if not compiled:
H
hutuxian 已提交
1935 1936 1937
            # TODO: Need a better way to distinguish and specify different execution mode
            if program._pipeline_opt:
                trainer = TrainerFactory()._create_trainer(
1938 1939
                    program._pipeline_opt
                )
1940 1941
            elif program._heter_pipeline_opt:
                trainer = TrainerFactory()._create_trainer(
1942 1943
                    program._heter_pipeline_opt
                )
H
hutuxian 已提交
1944 1945
            else:
                trainer = TrainerFactory()._create_trainer(program._fleet_opt)
1946
                trainer._set_thread_barrier(program._is_distributed)
1947
            trainer._set_program(program)
T
Thunderbrook 已提交
1948 1949
            if is_heter:
                trainer._set_heter_info(ret)
1950
        else:
H
hutuxian 已提交
1951 1952
            if program._pipeline_opt:
                trainer = TrainerFactory()._create_trainer(
1953 1954
                    program.program._pipeline_opt
                )
1955 1956
            elif program._heter_pipeline_opt:
                trainer = TrainerFactory()._create_trainer(
1957 1958
                    program.program._heter_pipeline_opt
                )
H
hutuxian 已提交
1959 1960
            else:
                trainer = TrainerFactory()._create_trainer(
1961 1962
                    program.program._fleet_opt
                )
1963
            trainer._set_program(program.program)
H
hutuxian 已提交
1964

1965
        if thread <= 0:
T
Thunderbrook 已提交
1966 1967 1968
            if use_ps_gpu:
                trainer._set_thread(len(program._fleet_opt["worker_places"]))
            elif dataset.thread_num <= 0:
D
dongdaxiang 已提交
1969
                raise RuntimeError(
1970
                    "You should set thread num first, either in Dataset"
1971 1972
                    "or in Executor.train_from_dataset"
                )
D
dongdaxiang 已提交
1973
            else:
1974
                trainer._set_thread(dataset.thread_num)
1975
        else:
1976
            trainer._set_thread(thread)
H
hutuxian 已提交
1977

1978 1979
        trainer._set_debug(debug)
        trainer._set_fetch_var_and_info(fetch_list, fetch_info, print_period)
1980
        return scope, trainer
1981

1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994
    def _run_from_dataset(
        self,
        program=None,
        dataset=None,
        scope=None,
        thread=0,
        is_infer=False,
        debug=False,
        fetch_list=None,
        fetch_info=None,
        print_period=100,
        fetch_handler=None,
    ):
1995 1996
        if program._pipeline_opt is not None:
            import paddle
1997

1998 1999
            if dataset is not None:
                raise RuntimeError("dataset should be None for pipeline mode")
2000
            # The following fake dataset is created to call
2001 2002 2003 2004 2005
            # the _prepare_trainer api, and it is meaningless.
            data_vars = []
            for var in program.global_block().vars.values():
                if var.is_data:
                    data_vars.append(var)
K
Kim Yann 已提交
2006
            if core.is_compiled_with_custom_device('npu'):
2007
                dataset = paddle.fluid.DatasetFactory().create_dataset(
2008 2009
                    'InMemoryDataset'
                )
2010 2011
            else:
                dataset = paddle.fluid.DatasetFactory().create_dataset(
2012 2013
                    'FileInstantDataset'
                )
2014 2015 2016 2017
            dataset.set_batch_size(1)
            dataset.set_thread(1)
            dataset.set_filelist(['None'])
            dataset.set_use_var(data_vars)
2018 2019
        elif program._heter_pipeline_opt is not None:
            stage_id = program._heter_pipeline_opt["pipeline_stage"]
2020
            # print("test_fl_stage_id: {}".format(stage_id))
2021
            heter_place = program._heter_pipeline_opt["heter_place"]
2022
            if stage_id != 0:
2023 2024
                if "is_fl_mode" not in program._heter_pipeline_opt:
                    import paddle
2025

2026 2027
                    if dataset is not None:
                        raise RuntimeError(
2028 2029
                            "dataset should be None for heter pipeline mode"
                        )
2030
                    # The following fake dataset is created to call
2031 2032 2033 2034 2035 2036
                    # the _prepare_trainer api, and it is meaningless.
                    data_vars = []
                    for var in program.global_block().vars.values():
                        if var.is_data:
                            data_vars.append(var)
                    dataset = paddle.fluid.DatasetFactory().create_dataset(
2037 2038
                        'InMemoryDataset'
                    )
2039 2040 2041 2042
                    dataset.set_batch_size(1)
                    dataset.set_thread(1)
                    dataset.set_filelist(['None'])
                    dataset.set_use_var(data_vars)
2043 2044 2045
            else:
                if dataset is None:
                    raise RuntimeError(
2046 2047
                        "dataset is need and should be initialized"
                    )
2048 2049 2050 2051 2052
            ## change default executor
            heter_place = framework._get_paddle_place(heter_place)
            p = core.Place()
            p.set_place(heter_place)
            self._default_executor = core.Executor(p)
2053 2054 2055
        else:
            if dataset is None:
                raise RuntimeError("dataset is need and should be initialized")
2056 2057

        dataset._prepare_to_run()
2058 2059
        real_fetch_list = []
        if program._pipeline_opt:
2060
            real_program = program._pipeline_opt["section_program"]
2061 2062 2063 2064 2065 2066 2067 2068
            for fetch_var in fetch_list:
                if isinstance(fetch_var, Variable):
                    fetch_var_name = fetch_var.name
                else:
                    fetch_var_name = fetch_var
                if fetch_var_name in real_program.global_block().vars:
                    real_fetch_list.append(fetch_var)

R
Ruibiao Chen 已提交
2069
            program._pipeline_opt["section_program"] = _add_feed_fetch_ops(
2070 2071 2072 2073
                program=program._pipeline_opt["section_program"],
                feed=[],
                fetch_list=real_fetch_list,
                feed_var_name='feed',
2074 2075
                fetch_var_name='fetch',
            )
2076 2077 2078 2079 2080 2081 2082
            main_block = program._pipeline_opt["section_program"].block(0)
            for op in main_block.ops:
                # set the op_role of fetch op to Optimize to avoid
                # erase the fetched vars by gc for pipeline
                if op.type == 'fetch':
                    op._set_attr(
                        'op_role',
2083 2084
                        core.op_proto_and_checker_maker.OpRole.Optimize,
                    )
2085
            fetch_list = None
2086 2087 2088 2089 2090 2091 2092 2093 2094 2095
        scope, trainer = self._prepare_trainer(
            program=program,
            dataset=dataset,
            scope=scope,
            thread=thread,
            debug=debug,
            fetch_list=fetch_list,
            fetch_info=fetch_info,
            print_period=print_period,
        )
2096 2097 2098 2099

        trainer._set_infer(is_infer)
        trainer._gen_trainer_desc()

2100
        if program._pipeline_opt is None:
2101 2102
            if program._heter_pipeline_opt is None:
                self._dump_debug_info(program=program, trainer=trainer)
T
Thunderbrook 已提交
2103 2104 2105
        # warning if dataset not set psgpu in psgpu mode
        if dataset.use_ps_gpu is False and trainer.proto_desc.use_ps_gpu:
            logging.warning("dataset should call set_use_ps_gpu in PsGpu mode")
2106

T
tangwei12 已提交
2107
        dataset._dynamic_adjust_before_train(trainer.proto_desc.thread_num)
2108

2109
        if program._heter_pipeline_opt is None:
2110 2111 2112 2113 2114
            trainer_instance = (
                self._default_executor.init_for_dataset(  # -->InitForDataset
                    program.desc, trainer._desc(), scope, dataset.dataset
                )
            )
2115 2116
        else:
            # cache trainer instance for heterps pipeline training
2117
            if fetch_list is None:
2118 2119 2120 2121 2122
                fetch_list = []
            cache_key = _get_strong_program_cache_key(program, None, fetch_list)
            trainer_instance = self._get_trainer_cache(cache_key)
            if trainer_instance is None:
                trainer_instance = self._default_executor.init_for_dataset(
2123 2124 2125
                    program.desc, trainer._desc(), scope, dataset.dataset
                )
                # print("test_fl_ps - trainer_desc: {}\n".format(trainer))
2126 2127 2128
                self._add_trainer_cache(cache_key, trainer_instance)
            else:
                trainer_instance.ResetDataset(dataset.dataset)
2129

T
tangwei12 已提交
2130 2131 2132 2133 2134 2135
        if fetch_handler is not None:
            scope0 = trainer_instance.get_worker_scope(0)
            fetch_monitor = FetchHandlerMonitor(scope0, fetch_handler)
            fetch_monitor.start()
            self._default_executor.run_from_dataset(trainer_instance)
            fetch_monitor.stop()
2136 2137
            if program._heter_pipeline_opt is None:
                self._default_executor.release_trainer(trainer_instance)
T
tangwei12 已提交
2138 2139
        else:
            self._default_executor.run_from_dataset(trainer_instance)
2140 2141
            if program._heter_pipeline_opt is None:
                self._default_executor.release_trainer(trainer_instance)
T
tangwei12 已提交
2142 2143

        dataset._dynamic_adjust_after_train()
2144
        dataset._finish_to_run()
2145 2146 2147 2148
        if real_fetch_list:
            arr = scope.find_var('fetch').get_fetch_list()
            tensors = arr._move_to_list()
            return as_numpy(tensors)
T
tangwei12 已提交
2149

2150 2151
        return None

2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165
    def _prepare_pipeline_ctx(
        self,
        program=None,
        dataset=None,
        scope=None,
        thread=0,
        is_infer=False,
        debug=False,
        fetch_list=None,
        fetch_info=None,
        print_period=100,
        fetch_handler=None,
        use_program_cache=False,
    ):
2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182
        assert program._pipeline_opt is not None
        assert dataset is None, "dataset should be None for pipeline mode"

        cache_key = _get_strong_program_cache_key(program, None, fetch_list)
        ctx = self._get_ctx_cache(cache_key)
        if use_program_cache and ctx is not None:
            return ctx

        import paddle

        # The following fake dataset is created to call
        # the _prepare_trainer api, and it is meaningless.
        def _get_dataset():
            data_vars = []
            for var in program.global_block().vars.values():
                if var.is_data:
                    data_vars.append(var)
K
Kim Yann 已提交
2183
            if core.is_compiled_with_custom_device('npu'):
2184
                dataset = paddle.fluid.DatasetFactory().create_dataset(
2185 2186
                    'InMemoryDataset'
                )
2187 2188
            else:
                dataset = paddle.fluid.DatasetFactory().create_dataset(
2189 2190
                    'FileInstantDataset'
                )
2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210
            dataset.set_batch_size(1)
            dataset.set_thread(1)
            dataset.set_filelist(['None'])
            dataset.set_use_var(data_vars)
            dataset._prepare_to_run()
            return dataset

        dataset = _get_dataset()

        def _get_real_program_fetch_list():
            real_program = program._pipeline_opt["section_program"]
            real_fetch_list = []
            for fetch_var in fetch_list:
                if isinstance(fetch_var, Variable):
                    fetch_var_name = fetch_var.name
                else:
                    fetch_var_name = fetch_var
                if fetch_var_name in real_program.global_block().vars:
                    real_fetch_list.append(fetch_var)

2211 2212 2213 2214 2215 2216 2217
            real_program = _add_feed_fetch_ops(
                program=real_program,
                feed=[],
                fetch_list=real_fetch_list,
                feed_var_name='feed',
                fetch_var_name='fetch',
            )
2218 2219 2220 2221 2222 2223 2224
            main_block = real_program.block(0)
            for op in main_block.ops:
                # set the op_role of fetch op to Optimize to avoid
                # erase the fetched vars by gc for pipeline
                if op.type == 'fetch':
                    op._set_attr(
                        'op_role',
2225 2226
                        core.op_proto_and_checker_maker.OpRole.Optimize,
                    )
2227 2228 2229 2230 2231 2232 2233
            return real_program, real_fetch_list

        real_program, real_fetch_list = _get_real_program_fetch_list()

        program._pipeline_opt["section_program"] = real_program
        fetch_list = None

2234 2235 2236 2237 2238 2239 2240 2241 2242 2243
        scope, trainer = self._prepare_trainer(
            program=program,
            dataset=dataset,
            scope=scope,
            thread=thread,
            debug=debug,
            fetch_list=fetch_list,
            fetch_info=fetch_info,
            print_period=print_period,
        )
2244 2245 2246 2247 2248 2249 2250

        trainer._set_infer(is_infer)
        trainer._gen_trainer_desc()

        # NOTE: only for debug, very slow
        # self._dump_debug_info(program=program, trainer=trainer)

T
Thunderbrook 已提交
2251 2252 2253
        # warning if dataset not set psgpu in psgpu mode
        if dataset.use_ps_gpu is False and trainer.proto_desc.use_ps_gpu:
            logging.warning("dataset should call set_use_ps_gpu in PsGpu mode")
2254 2255 2256
        dataset._dynamic_adjust_before_train(trainer.proto_desc.thread_num)

        trainer_desc = trainer._desc()  # slow, cache
2257
        trainer_instance = self._default_executor.init_for_dataset(
2258 2259
            program.desc, trainer_desc, scope, dataset.dataset
        )
2260 2261

        ctx = [scope, real_fetch_list, trainer_instance]
2262 2263
        if use_program_cache:
            self._add_ctx_cache(cache_key, ctx)
2264

2265 2266
        return ctx

2267 2268 2269 2270 2271 2272
    def _prepare_fleet_executor_carrier(
        self,
        carrier_id="",
        program=None,
        scope=None,
        fleet_opt=None,
L
LiYuRio 已提交
2273
        micro_scope_list=[],
2274 2275 2276 2277 2278 2279 2280
        with_standalone_executor=False,
    ):
        num_micro_batches = (
            fleet_opt["num_micro_batches"]
            if "num_micro_batches" in fleet_opt
            else 1
        )
2281
        cur_rank = int(os.getenv("PADDLE_TRAINER_ID", 0))
2282
        trainer_endpoints = os.getenv("PADDLE_TRAINER_ENDPOINTS", "").split(',')
2283
        nrank = len(trainer_endpoints)
2284

2285 2286
        assert 'scheduler' in fleet_opt or 'tasks' in fleet_opt, (
            "Fleet executor need configuration for scheduler, you can choose from 1F1B or Origin. "
2287
            "Or you can provide a list of task nodes to init fleet executor directly."
2288
        )
2289
        if 'tasks' in fleet_opt:
2290 2291 2292 2293
            assert 'task_id_to_rank' in fleet_opt, (
                "If you provide tasks to init fleet executor,"
                " task_id_to_rank should also be provided."
            )
2294 2295 2296
            print('fleet executor will use user defined task nodes')
            tasks = [task.task_node() for task in fleet_opt['tasks']]
            task_id_to_rank = fleet_opt['task_id_to_rank']
2297
        else:
2298 2299
            scheduler = fleet_opt['scheduler']
            if scheduler == '1F1B':
2300 2301 2302 2303 2304 2305 2306 2307 2308
                from paddle.distributed.fleet.fleet_executor_utils import (
                    run1f1b,
                )

                if (
                    "dist_strategy" not in fleet_opt
                    or "pp_degree" not in fleet_opt["dist_strategy"]
                    or fleet_opt["dist_strategy"]["pp_degree"] == 1
                ):
2309 2310
                    warnings.warn("Using 1F1B scheduler with pp_degree == 1.")
                tasks, task_id_to_rank = run1f1b(
2311 2312 2313 2314 2315 2316 2317
                    program,
                    cur_rank,
                    fleet_opt.get('num_micro_batches', 1),
                    fleet_opt.get('dist_strategy', {}),
                    nrank,
                    with_standalone_executor,
                )
2318 2319
            elif scheduler == 'Origin':
                from paddle.distributed.fleet.fleet_executor_utils import origin
2320 2321 2322 2323 2324 2325 2326 2327

                if (
                    "dist_strategy" in fleet_opt
                    and "pp_degree" in fleet_opt["dist_strategy"]
                ):
                    assert (
                        fleet_opt["dist_strategy"]["pp_degree"] == 1
                    ), "For pipeline mode, the scheduler should be 1F1B instead of Origin."
2328
                if "num_micro_batches" in fleet_opt:
2329 2330 2331
                    assert (
                        fleet_opt["num_micro_batches"] == 1
                    ), "For origin scheduler mode, the num micro batches should be 1."
2332 2333
                tasks, task_id_to_rank = origin(program, cur_rank)
            else:
2334 2335 2336
                raise "Fleet_executor only supports 1F1B and Origin scheduler, " "but received " + str(
                    scheduler
                ) + "."
2337 2338 2339
            # NOTE: have to hold these vars, otherwise will be destructed
            fleet_opt['tasks'] = tasks
            fleet_opt['task_id_to_rank'] = task_id_to_rank
2340 2341
        place = core.Place()
        place.set_place(self.place)
L
LiYuRio 已提交
2342

2343 2344 2345
        inference_root_scope_vars = (
            fleet_opt["fetch_var"] if "fetch_var" in fleet_opt else []
        )
2346 2347 2348 2349 2350 2351 2352 2353
        self._fleet_executor.init(
            carrier_id,
            program.desc,
            scope,
            place,
            num_micro_batches,
            tasks,
            task_id_to_rank,
2354
            inference_root_scope_vars,
L
LiYuRio 已提交
2355
            micro_scope_list,
2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366
        )

    def _run_using_fleet_executor(
        self,
        program=None,
        feed=None,
        feed_var_name="feed",
        fetch_var_name="fetch",
        fetch_list=None,
        with_standalone_executor=False,
    ):
2367 2368
        cache_key = _get_strong_program_cache_key(program, feed, fetch_list)
        cached_program = self._get_program_cache(cache_key)
2369
        cached_scope = self._get_scope_cache(cache_key)
2370 2371 2372 2373
        if cached_scope is None:
            cached_scope = global_scope()
            self._add_scope_cache(cache_key, cached_scope)
        if cached_program is None:
2374 2375 2376
            assert (
                program._pipeline_opt
            ), "program should have _pipeline_opt to start carrier"
2377
            real_feed = [] if feed is None else feed
2378 2379 2380
            real_program = program
            if "section_program" in program._pipeline_opt:
                real_program = program._pipeline_opt["section_program"]
2381 2382 2383 2384 2385 2386 2387
            cached_program = _add_feed_fetch_ops(
                program=real_program,
                feed=real_feed,
                fetch_list=fetch_list,
                feed_var_name=feed_var_name,
                fetch_var_name=fetch_var_name,
            )
2388 2389 2390 2391 2392 2393 2394
            main_block = cached_program.block(0)
            for op in main_block.ops:
                # set the op_role of fetch op to Optimize to avoid
                # erase the fetched vars by gc for pipeline
                if op.type == 'fetch':
                    op._set_attr(
                        'op_role',
2395 2396
                        core.op_proto_and_checker_maker.OpRole.Optimize,
                    )
2397
            self._add_program_cache(cache_key, cached_program)
2398
            fleet_opt = program._pipeline_opt["fleet_opt"]
2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409
            if 'tasks' in fleet_opt:
                # Insert feed/fetch op for cloned program in each task node,
                # these ops has already been inserted into the origin program.
                # To avoid every task nodes all have feed/fetch ops,
                # only insert feed ops into the first task node,
                # then insert fetch ops into the last task node.

                # Insert feed ops
                feed_task = fleet_opt['tasks'][0]
                print("Inserting feed ops for task", feed_task.task_id())
                feed_program = feed_task.get_program()
2410 2411 2412 2413 2414
                feed_program = self._add_feed_ops(
                    program=feed_program,
                    feed=real_feed,
                    feed_var_name=feed_var_name,
                )
2415 2416 2417 2418 2419 2420 2421 2422 2423
                feed_task.set_program(feed_program)

                # Insert fetch ops
                fetch_task = fleet_opt['tasks'][-1]
                print("Inserting fetch ops for task", fetch_task.task_id())
                fetch_program = fetch_task.get_program()
                fetch_program = self._add_fetch_ops(
                    program=fetch_program,
                    fetch_list=fetch_list,
2424 2425
                    fetch_var_name=fetch_var_name,
                )
2426 2427 2428 2429 2430 2431 2432
                main_block = fetch_program.block(0)
                for op in main_block.ops:
                    # set the op_role of fetch op to Optimize to avoid
                    # erase the fetched vars by gc for pipeline
                    if op.type == 'fetch':
                        op._set_attr(
                            'op_role',
2433 2434
                            core.op_proto_and_checker_maker.OpRole.Optimize,
                        )
2435 2436
                fetch_task.set_program(fetch_program)

L
LiYuRio 已提交
2437 2438 2439 2440 2441 2442 2443 2444
            micro_scope_list = []
            if (
                "inference_generation" in fleet_opt
                and fleet_opt["inference_generation"]
            ):
                for i in range(int(fleet_opt["num_micro_batches"])):
                    micro_scope_list.append(cached_scope.new_scope())

2445 2446 2447 2448 2449
            self._prepare_fleet_executor_carrier(
                cache_key,
                program=cached_program,
                scope=cached_scope,
                fleet_opt=fleet_opt,
L
LiYuRio 已提交
2450
                micro_scope_list=micro_scope_list,
2451 2452
                with_standalone_executor=with_standalone_executor,
            )
2453

2454
        if feed:
2455 2456 2457
            # NOTE: don't have to traverse programs in task nodes,
            # since they all sub program of cached program and
            # cached program is also added feed fetch var
2458
            self._feed_data(cached_program, feed, feed_var_name, cached_scope)
2459 2460

        from paddle.optimizer.lr import LRScheduler
2461

2462 2463 2464 2465 2466
        if hasattr(program, 'lr_scheduler'):
            lr_scheduler = program.lr_scheduler
            assert isinstance(lr_scheduler, LRScheduler), "must be LRScheduler"
            lr_value = lr_scheduler()
            lr_var = program.global_block().vars[lr_scheduler._var_name]
2467
            data = np.array([lr_value]).astype(convert_dtype(lr_var.dtype))
2468
            tensor = core.get_variable_tensor(
2469
                cached_scope, lr_scheduler._var_name
2470
            )
2471 2472
            tensor.set(data, self.place)

2473 2474
        self._fleet_executor.run(cache_key)

L
LiYuRio 已提交
2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486
        if "fetch_var" in fleet_opt:
            # If we speed up the generation in evaluation, we need to generate
            # multiple queries at the same time. Each query will in separate scope in order
            # not mix up. It indicate that final result will in multiple scopes and need to
            # fetch each.
            result_list = []
            for scope in micro_scope_list:
                for var in fleet_opt["fetch_var"]:
                    tensor = core.get_variable_tensor(scope, var)
                result_list.append(as_numpy(tensor))
            return result_list

2487 2488 2489 2490
        if fetch_list:
            arr = cached_scope.find_var(fetch_var_name).get_fetch_list()
            tensors = arr._move_to_list()
            return as_numpy(tensors)
L
LiYuRio 已提交
2491 2492
        return None

2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503
    def _add_feed_ops(self, program, feed, feed_var_name):
        tmp_program = program.clone()

        global_block = tmp_program.global_block()

        if feed_var_name in global_block.vars:
            feed_var = global_block.var(feed_var_name)
        else:
            feed_var = global_block.create_var(
                name=feed_var_name,
                type=core.VarDesc.VarType.FEED_MINIBATCH,
2504 2505
                persistable=True,
            )
2506 2507 2508 2509 2510 2511

        # prepend feed operators
        if not has_feed_operators(global_block, feed, feed_var_name):
            for i, name in enumerate(feed):
                if global_block.has_var(name):
                    out = global_block.var(name)
2512 2513 2514 2515 2516 2517
                    global_block._prepend_op(
                        type='feed',
                        inputs={'X': [feed_var]},
                        outputs={'Out': [out]},
                        attrs={'col': i},
                    )
2518 2519 2520
                else:
                    warnings.warn(
                        "The variable %s is not found in program. It is not declared or is pruned."
2521 2522
                        % name
                    )
2523 2524 2525

        return tmp_program

2526
    @classmethod
2527 2528 2529
    def _add_fetch_ops(
        cls, program, fetch_list, fetch_var_name, use_fetch_v2=False
    ):
2530 2531 2532 2533 2534 2535 2536 2537 2538 2539
        tmp_program = program.clone()

        global_block = tmp_program.global_block()

        if fetch_var_name in global_block.vars:
            fetch_var = global_block.var(fetch_var_name)
        else:
            fetch_var = global_block.create_var(
                name=fetch_var_name,
                type=core.VarDesc.VarType.FETCH_LIST,
2540 2541
                persistable=True,
            )
2542 2543 2544 2545 2546 2547 2548

        if use_fetch_v2:
            fetch_op = 'fetch_v2'
        else:
            fetch_op = 'fetch'

        # append fetch_operators
2549 2550 2551
        if not has_fetch_operators(
            global_block, fetch_list, fetch_var_name, fetch_op
        ):
2552 2553
            for i, var in enumerate(fetch_list):
                assert isinstance(var, Variable) or isinstance(
2554 2555 2556 2557 2558 2559 2560 2561
                    var, str
                ), "Wrong type for fetch_list[%s]: %s" % (i, type(var))
                global_block.append_op(
                    type=fetch_op,
                    inputs={'X': [var]},
                    outputs={'Out': [fetch_var]},
                    attrs={'col': i},
                )
2562 2563 2564

        return tmp_program

2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575
    @classmethod
    def _remove_fetch_ops(cls, program, fetch_op_name='fetch'):
        tmp_program = program.clone()
        global_block = tmp_program.global_block()
        op_num = len(global_block.ops)
        for idx in reversed(range(op_num)):
            if global_block.ops[idx].type == fetch_op_name:
                global_block._remove_op(idx)

        return tmp_program

2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602
    def _run_pipeline(
        self,
        program=None,
        dataset=None,
        scope=None,
        thread=0,
        is_infer=False,
        debug=False,
        fetch_list=None,
        fetch_info=None,
        print_period=100,
        fetch_handler=None,
        use_program_cache=False,
    ):
        scope, real_fetch_list, trainer_instance = self._prepare_pipeline_ctx(
            program,
            dataset,
            scope,
            thread,
            is_infer,
            debug,
            fetch_list,
            fetch_info,
            print_period,
            fetch_handler,
            use_program_cache,
        )
2603

2604
        from paddle.optimizer.lr import LRScheduler
2605

2606 2607 2608 2609 2610
        if hasattr(program, 'lr_scheduler'):
            lr_scheduler = program.lr_scheduler
            assert isinstance(lr_scheduler, LRScheduler), "must be LRScheduler"
            lr_value = lr_scheduler()
            lr_var = program.global_block().vars[lr_scheduler._var_name]
2611
            data = np.array([lr_value]).astype(convert_dtype(lr_var.dtype))
2612
            tensor = core.get_variable_tensor(scope, lr_scheduler._var_name)
2613 2614
            tensor.set(data, self.place)

2615 2616
        self._default_executor.run_from_dataset(trainer_instance)

2617 2618 2619
        if not use_program_cache:
            self._default_executor.release_trainer(trainer_instance)

2620 2621 2622 2623 2624 2625 2626
        if real_fetch_list:
            arr = scope.find_var('fetch').get_fetch_list()
            tensors = arr._move_to_list()
            return as_numpy(tensors)

        return None

2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638
    def infer_from_dataset(
        self,
        program=None,
        dataset=None,
        scope=None,
        thread=0,
        debug=False,
        fetch_list=None,
        fetch_info=None,
        print_period=100,
        fetch_handler=None,
    ):
2639
        """
2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650
        Infer from a pre-defined Dataset. Dataset is defined in paddle.fluid.dataset.
        Given a program, either a program or compiled program, infer_from_dataset will
        consume all data samples in dataset. Input scope can be given by users. By default,
        scope is global_scope(). The total number of thread run in training is `thread`.
        Thread number used in training will be minimum value of threadnum in Dataset and
        the value of thread in this interface. Debug can be set so that executor will display
        Run-Time for all operators and the throughputs of current infer task.

        The document of infer_from_dataset is almost the same as train_from_dataset,
        except that in distributed training, push gradients will be disabled in infer_from_dataset.
        infer_from_dataset() can be used for evaluation in multi-threadvery easily.
2651

2652 2653
        Args:
            program(Program|CompiledProgram): the program that needs to be run,
2654
                if not provided, then default_main_program (not compiled) will be used.
2655
            dataset(paddle.fluid.Dataset): dataset created outside this function,
2656 2657
                a user should provide a well-defined dataset before calling this function.
                Please check the document of Dataset if needed. default is None
2658
            scope(Scope): the scope used to run this program, you can switch it to different scope
2659 2660 2661
                for each run. default is global_scope
            thread(int): number of thread a user wants to run in this function. Default is 0, which
                means using thread num of dataset
2662
            debug(bool): whether a user wants to run infer_from_dataset, default is False
2663
            fetch_list(Tensor List): fetch Tensor list, each Tensor will be printed during
2664
                training, default is None
2665
            fetch_info(String List): print information for each Tensor, default is None
2666
            print_period(int): the number of mini-batches for each print, default is 100
2667
            fetch_handler(FetchHandler): a user define class for fetch output.
2668

2669 2670 2671 2672
        Returns:
            None

        Examples:
2673 2674

            .. code-block:: python
2675

2676
                import paddle
2677

2678 2679 2680 2681 2682 2683
                paddle.enable_static()
                place = paddle.CPUPlace()  # you can set place = paddle.CUDAPlace(0) to use gpu
                exe = paddle.static.Executor(place)
                x = paddle.static.data(name="x", shape=[None, 10, 10], dtype="int64")
                y = paddle.static.data(name="y", shape=[None, 1], dtype="int64", lod_level=1)
                dataset = paddle.fluid.DatasetFactory().create_dataset()
2684
                dataset.set_use_var([x, y])
2685
                dataset.set_thread(1)
2686 2687
                # you should set your own filelist, e.g. filelist = ["dataA.txt"]
                filelist = []
2688
                dataset.set_filelist(filelist)
2689 2690 2691
                exe.run(paddle.static.default_startup_program())
                exe.infer_from_dataset(program=paddle.static.default_main_program(),
                                       dataset=dataset)
2692

2693
        """
2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726
        return self._run_from_dataset(
            program,
            dataset,
            scope,
            thread,
            True,
            debug,
            fetch_list,
            fetch_info,
            print_period,
            fetch_handler,
        )

    def start_heter_trainer(
        self,
        program=None,
        scope=None,
        debug=False,
        fetch_list=None,
        fetch_info=None,
        print_period=100,
        fetch_handler=None,
    ):
        scope, trainer = self._prepare_trainer(
            program=program,
            dataset=None,
            scope=scope,
            thread=1,
            debug=debug,
            fetch_list=fetch_list,
            fetch_info=fetch_info,
            print_period=print_period,
        )
T
Thunderbrook 已提交
2727

2728
        trainer._set_infer(False)
T
Thunderbrook 已提交
2729 2730 2731 2732 2733
        trainer._gen_trainer_desc()

        self._dump_debug_info(program=program, trainer=trainer)

        trainer_instance = self._default_executor.init_for_dataset(
2734 2735
            program.desc, trainer._desc(), scope, None
        )
T
Thunderbrook 已提交
2736

2737
        # if fetch_handler is not None:
T
Thunderbrook 已提交
2738 2739 2740 2741 2742 2743
        #    scope0 = trainer_instance.get_worker_scope(0)
        #    fetch_monitor = FetchHandlerMonitor(scope0, fetch_handler)
        #    fetch_monitor.start()
        #    self._default_executor.run_from_dataset(trainer_instance)
        #    fetch_monitor.stop()
        #    self._default_executor.release_trainer(trainer_instance)
2744
        # else:
T
Thunderbrook 已提交
2745 2746

        self._default_executor.run_from_dataset(trainer_instance)
2747
        # self._default_executor.release_trainer(trainer_instance)
T
Thunderbrook 已提交
2748 2749 2750

        return trainer_instance

2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762
    def train_from_dataset(
        self,
        program=None,
        dataset=None,
        scope=None,
        thread=0,
        debug=False,
        fetch_list=None,
        fetch_info=None,
        print_period=100,
        fetch_handler=None,
    ):
2763 2764 2765 2766 2767 2768 2769 2770
        """
        Train from a pre-defined Dataset. Dataset is defined in paddle.fluid.dataset.
        Given a program, either a program or compiled program, train_from_dataset will
        consume all data samples in dataset. Input scope can be given by users. By default,
        scope is global_scope(). The total number of thread run in training is `thread`.
        Thread number used in training will be minimum value of threadnum in Dataset and
        the value of thread in this interface. Debug can be set so that executor will display
        Run-Time for all operators and the throughputs of current training task.
2771

2772 2773 2774 2775
        Note: train_from_dataset will destroy all resources created within executor for each run.

        Args:
            program(Program|CompiledProgram): the program that needs to be run,
2776
                if not provided, then default_main_program (not compiled) will be used.
2777
            dataset(paddle.fluid.Dataset): dataset created outside this function,
2778 2779
                a user should provide a well-defined dataset before calling this function.
                Please check the document of Dataset if needed.
2780
            scope(Scope): the scope used to run this program, you can switch it to different scope
2781 2782 2783
                for each run. default is global_scope
            thread(int): number of thread a user wants to run in this function. Default is 0, which
                means using thread num of dataset
2784
            debug(bool): whether a user wants to run train_from_dataset
2785
            fetch_list(Tensor List): fetch Tensor list, each variable will be printed
2786
                during training
2787
            fetch_info(String List): print information for each Tensor, its length should be equal
2788 2789
                to fetch_list
            print_period(int): the number of mini-batches for each print, default is 100
2790
            fetch_handler(FetchHandler): a user define class for fetch output.
2791 2792 2793

        Returns:
            None
2794

2795
        Examples:
2796

2797 2798
            .. code-block:: python

2799
              import paddle
2800

2801 2802 2803 2804 2805 2806
              paddle.enable_static()
              place = paddle.CPUPlace() # you can set place = paddle.CUDAPlace(0) to use gpu
              exe = paddle.static.Executor(place)
              x = paddle.static.data(name="x", shape=[None, 10, 10], dtype="int64")
              y = paddle.static.data(name="y", shape=[None, 1], dtype="int64", lod_level=1)
              dataset = paddle.fluid.DatasetFactory().create_dataset()
2807
              dataset.set_use_var([x, y])
2808
              dataset.set_thread(1)
2809 2810
              # you should set your own filelist, e.g. filelist = ["dataA.txt"]
              filelist = []
2811
              dataset.set_filelist(filelist)
2812 2813
              exe.run(paddle.static.default_startup_program())
              exe.train_from_dataset(program=paddle.static.default_main_program(),
2814
                                     dataset=dataset)
2815 2816

        """
2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828
        return self._run_from_dataset(
            program,
            dataset,
            scope,
            thread,
            False,
            debug,
            fetch_list,
            fetch_info,
            print_period,
            fetch_handler,
        )