distribute_transpiler.py 73.4 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

from __future__ import print_function
16 17 18 19 20
"""
Steps to transpile trainer:
1. split variable to multiple blocks, aligned by product(dim[1:]) (width).
2. rename splited grad variables to add trainer_id suffix ".trainer_%d".
3. modify trainer program add split_op to each grad variable.
Q
Qiyang Min 已提交
21
4. append send_op to send splited variables to server and
22 23
5. add recv_op to fetch params(splited blocks or origin param) from server.
6. append concat_op to merge splited blocks to update local weights.
24 25 26 27 28 29 30 31

Steps to transpile pserver:
1. create new program for parameter server.
2. create params and grad variables that assigned to current server instance.
3. create a sub-block in the server side program
4. append ops that should run on current server instance.
5. add listen_and_serv op
"""
D
dzhwinter 已提交
32

T
typhoonzero 已提交
33
import math
W
Wu Yi 已提交
34
import sys
35
import numpy as np
36
import collections
37
import six
38

39
from .ps_dispatcher import RoundRobin, HashName, PSDispatcher
Y
Yancey 已提交
40
from .. import core, framework
T
typhoonzero 已提交
41
from ..framework import Program, default_main_program, \
T
tangwei12 已提交
42 43
    default_startup_program, Block, \
    Parameter, grad_var_name
44 45
from .details import *
from functools import reduce
46 47 48

LOOKUP_TABLE_TYPE = "lookup_table"
LOOKUP_TABLE_GRAD_TYPE = "lookup_table_grad"
49
OP_ROLE_VAR_ATTR_NAME = core.op_proto_and_checker_maker.kOpRoleVarAttrName()
Y
Yancey1989 已提交
50 51
RPC_OP_ROLE_ATTR_NAME = op_role_attr_name = core.op_proto_and_checker_maker.kOpRoleAttrName(
)
X
fix  
Xin Pan 已提交
52
OPT_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.Optimize
Y
Yancey1989 已提交
53
RPC_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.RPC
54 55 56 57 58 59 60 61 62
DIST_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.Dist
LR_SCHED_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.LRSched

PRINT_LOG = False


def log(*args):
    if PRINT_LOG:
        print(args)
T
done  
typhoonzero 已提交
63 64


T
typhoonzero 已提交
65 66 67 68 69 70
class VarBlock:
    def __init__(self, varname, offset, size):
        self.varname = varname
        # NOTE: real offset is offset * size
        self.offset = offset
        self.size = size
T
done  
typhoonzero 已提交
71

T
typhoonzero 已提交
72 73
    def __str__(self):
        return "%s:%d:%d" % (self.varname, self.offset, self.size)
T
done  
typhoonzero 已提交
74 75


76 77 78 79
def same_or_split_var(p_name, var_name):
    return p_name == var_name or p_name.startswith(var_name + ".block")


G
gongweibao 已提交
80
def slice_variable(var_list, slice_count, min_block_size):
T
typhoonzero 已提交
81
    """
82 83 84 85 86 87
    We may need to split dense tensor to one or more blocks and put
    them equally onto parameter server. One block is a sub-tensor
    aligned by dim[0] of the tensor.

    We need to have a minimal block size so that the calculations in
    the parameter server side can gain better performance. By default
88
    minimum block size 8K elements (maybe 16bit or 32bit or 64bit).
89 90 91

    Args:
        var_list (list): List of variables.
92 93
        slice_count (int): Numel of count that variables will be sliced, which
            could be the pserver services' count.
94 95
        min_block_size (int): Minimum splitted block size.
    Returns:
96
        blocks (list[(varname, block_id, current_block_size)]): A list
97
            of VarBlocks. Each VarBlock specifies a shard of the var.
T
typhoonzero 已提交
98 99 100
    """
    blocks = []
    for var in var_list:
101
        split_count = slice_count
T
typhoonzero 已提交
102 103 104 105
        var_numel = reduce(lambda x, y: x * y, var.shape)
        max_pserver_count = int(math.floor(var_numel / float(min_block_size)))
        if max_pserver_count == 0:
            max_pserver_count = 1
106
        if max_pserver_count < slice_count:
T
typhoonzero 已提交
107 108 109 110 111 112 113 114 115
            split_count = max_pserver_count
        block_size = int(math.ceil(var_numel / float(split_count)))

        if len(var.shape) >= 2:
            # align by dim1(width)
            dim1 = reduce(lambda x, y: x * y, var.shape[1:])
            remains = block_size % dim1
            if remains != 0:
                block_size += dim1 - remains
116
        # update split_count after aligning
T
typhoonzero 已提交
117
        split_count = int(math.ceil(var_numel / float(block_size)))
118
        for block_id in range(split_count):
T
typhoonzero 已提交
119 120 121 122 123 124 125
            curr_block_size = min(block_size, var_numel - (
                (block_id) * block_size))
            block = VarBlock(var.name, block_id, curr_block_size)
            blocks.append(str(block))
    return blocks


G
gongweibao 已提交
126 127 128 129 130 131 132
class DistributeTranspilerConfig(object):
    """
    slice_var_up (bool): Do Tensor slice for pservers, default is True.
    split_method (PSDispatcher): RoundRobin or HashName can be used
        try to choose the best method to balance loads for pservers.
    min_block_size (int): Minimum splitted element number in block.
        According:https://github.com/PaddlePaddle/Paddle/issues/8638#issuecomment-369912156
133
        We can use bandwidth effiently when data size is larger than 2MB.If you
G
gongweibao 已提交
134 135 136 137 138 139
        want to change it, please be sure you see the slice_variable function.
    """

    slice_var_up = True
    split_method = None
    min_block_size = 8192
W
Wu Yi 已提交
140 141
    # supported modes: pserver, nccl2
    mode = "pserver"
142
    print_log = False
G
gongweibao 已提交
143 144


Y
gen rst  
yi.wu 已提交
145
class DistributeTranspiler(object):
Y
yi.wu 已提交
146 147 148 149
    """
    **DistributeTranspiler**

    Convert the fluid program to distributed data-parallelism programs.
W
Wu Yi 已提交
150
    Supports two modes: pserver mode and nccl2 mode.
Y
yi.wu 已提交
151

W
Wu Yi 已提交
152 153 154 155 156 157 158 159 160
    In pserver mode, the main_program will be transformed to use a remote
    parameter server to do parameter optimization. And the optimization
    graph will be put into a parameter server program.

    In nccl2 mode, the transpiler will append a NCCL_ID broadcasting
    op in startup_program to share the NCCL_ID across the job nodes.
    After transpile_nccl2 called, you ***must*** pass trainer_id and
    num_trainers argument to ParallelExecutor to enable NCCL2 distributed
    mode.
Y
yi.wu 已提交
161 162 163 164

    Examples:
        .. code-block:: python

W
Wu Yi 已提交
165 166 167 168 169 170
           # for pserver mode
           pserver_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
           trainer_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
           current_endpoint = "192.168.0.1:6174"
           trainer_id = 0
           trainers = 4
Y
yi.wu 已提交
171 172
           role = os.getenv("PADDLE_TRAINING_ROLE")

W
Wu Yi 已提交
173
           t = fluid.DistributeTranspiler()
Y
yi.wu 已提交
174 175 176 177 178 179 180 181
           t.transpile(
                trainer_id, pservers=pserver_endpoints, trainers=trainers)
           if role == "PSERVER":
                pserver_program = t.get_pserver_program(current_endpoint)
                pserver_startup_program = t.get_startup_program(current_endpoint,
                                                                pserver_program)
           elif role == "TRAINER":
                trainer_program = t.get_trainer_program()
T
tangwei12 已提交
182

W
Wu Yi 已提交
183 184 185 186 187 188 189 190 191 192 193
           # for nccl2 mode
           config = fluid.DistributeTranspilerConfig()
           config.mode = "nccl2"
           t = fluid.DistributeTranspiler(config=config)
           t.transpile(trainer_id, workers=workers, current_endpoint=curr_ep)
           exe = fluid.ParallelExecutor(
               use_cuda,
               loss_name=loss_var.name,
               num_trainers=len(trainers.split(",)),
               trainer_id=trainer_id
           )
Y
yi.wu 已提交
194
    """
Y
Yancey1989 已提交
195

G
gongweibao 已提交
196 197 198 199 200 201 202 203 204
    def __init__(self, config=None):
        if config is not None:
            self.config = config
        else:
            self.config = DistributeTranspilerConfig()

        if self.config.split_method is None:
            self.config.split_method = RoundRobin

205 206 207
        global PRINT_LOG
        if self.config.print_log:
            PRINT_LOG = True
G
gongweibao 已提交
208 209 210
        assert (self.config.min_block_size >= 8192)
        assert (self.config.split_method.__bases__[0] == PSDispatcher)

W
Wu Yi 已提交
211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
    def _transpile_nccl2(self,
                         trainer_id,
                         trainers,
                         current_endpoint,
                         startup_program=None):
        if not startup_program:
            startup_program = default_startup_program()
        if trainer_id >= 0:
            worker_endpoints = trainers.split(",")
            # send NCCL_ID to others or recv from trainer 0
            worker_endpoints.remove(current_endpoint)

            nccl_id_var = startup_program.global_block().create_var(
                name="NCCLID", persistable=True, type=core.VarDesc.VarType.RAW)
            startup_program.global_block().append_op(
                type="gen_nccl_id",
                inputs={},
                outputs={"NCCLID": nccl_id_var},
                attrs={
                    "endpoint": current_endpoint,
                    "endpoint_list": worker_endpoints,
                    "trainer_id": trainer_id
                })
            return nccl_id_var
        else:
            raise ValueError("must set trainer_id > 0")

238 239 240 241 242
    def transpile(self,
                  trainer_id,
                  program=None,
                  pservers="127.0.0.1:6174",
                  trainers=1,
W
Wu Yi 已提交
243
                  sync_mode=True,
W
Wu Yi 已提交
244 245
                  startup_program=None,
                  current_endpoint="127.0.0.1:6174"):
246
        """
Y
yi.wu 已提交
247 248 249 250 251 252 253 254 255
        Run the transpiler.

        Args:
            trainer_id (int): id for current trainer worker, if you have
                n workers, the id may range from 0 ~ n-1
            program (Program|None): program to transpile,
                default is fluid.default_main_program().
            pservers (str): comma separated ip:port string for the pserver
                list.
W
Wu Yi 已提交
256 257 258
            trainers (int|str): in pserver mode this is the number of
                trainers, in nccl2 mode this is a string of trainer
                endpoints.
Y
yi.wu 已提交
259
            sync_mode (bool): Do sync training or not, default is True.
W
Wu Yi 已提交
260 261
            startup_program (Program|None): startup_program to transpile,
                default is fluid.default_main_program().
W
Wu Yi 已提交
262 263 264
            current_endpoint (str): need pass current endpoint when
                transpile as nccl2 distributed mode. In pserver mode
                this argument is not used.
265 266 267
        """
        if program is None:
            program = default_main_program()
W
Wu Yi 已提交
268 269
        if startup_program is None:
            startup_program = default_startup_program()
270
        self.origin_program = program
W
Wu Yi 已提交
271 272
        self.startup_program = startup_program
        self.origin_startup_program = self.startup_program.clone()
G
gongweibao 已提交
273

W
Wu Yi 已提交
274 275 276 277 278 279 280 281 282
        if self.config.mode == "nccl2":
            assert (isinstance(trainers, str))
            self._transpile_nccl2(
                trainer_id,
                trainers,
                current_endpoint,
                startup_program=startup_program)
            return

283 284 285 286 287 288 289
        self.trainer_num = trainers
        self.sync_mode = sync_mode
        self.trainer_id = trainer_id
        pserver_endpoints = pservers.split(",")
        self.pserver_endpoints = pserver_endpoints
        self.optimize_ops, self.params_grads = self._get_optimize_pass()

G
gongweibao 已提交
290
        ps_dispatcher = self.config.split_method(self.pserver_endpoints)
291
        self.has_distributed_lookup_table = self._has_distributed_lookup_table()
292
        self.param_name_to_grad_name = dict()
W
Wu Yi 已提交
293
        self.grad_name_to_param_name = dict()
294 295
        for param_var, grad_var in self.params_grads:
            self.param_name_to_grad_name[param_var.name] = grad_var.name
W
Wu Yi 已提交
296
            self.grad_name_to_param_name[grad_var.name] = param_var.name
297

T
tangwei12 已提交
298 299 300 301 302 303
        # add distributed attrs to program
        self.origin_program._is_distributed = True
        self.origin_program._endpoints = self.pserver_endpoints
        self.origin_program._is_chief = self.trainer_id == 0
        self.origin_program._distributed_lookup_table = self.table_name if self.table_name else None

304
        # split and create vars, then put splited vars in dicts for later use.
G
gongweibao 已提交
305
        # step 1: split and create vars, then put splited vars in dicts for later use.
G
gongweibao 已提交
306
        self._init_splited_vars()
307

G
gongweibao 已提交
308
        # step 2: insert send op to send gradient vars to parameter servers
Y
Yancey1989 已提交
309
        ps_dispatcher.reset()
Y
update  
Yancey1989 已提交
310
        send_vars = []
311 312 313 314 315 316

        # in general cases, the number of pservers is times of 2, and this
        # will lead to uneven distribution among weights and bias:
        #       fc_w@GRAD_trainer_0, fc_w@GRAD_trainer_1 --> pserver1
        #       fc_b@GRAD_trainer_0, fc_b@GRAD_trainer_1 --> pserver2
        # shuffle the map will avoid the uneven distribution above
M
minqiyang 已提交
317
        grad_var_mapping_items = list(six.iteritems(self.grad_var_mapping))
318

G
gongweibao 已提交
319
        if not self.config.slice_var_up:
320 321
            np.random.seed(self.origin_program.random_seed)
            np.random.shuffle(grad_var_mapping_items)
322

323
        self.grad_name_to_send_dummy_out = dict()
324
        for grad_varname, splited_vars in grad_var_mapping_items:
Y
update  
Yancey1989 已提交
325
            eplist = ps_dispatcher.dispatch(splited_vars)
326

G
gongweibao 已提交
327
            if not self.config.slice_var_up:
328 329
                assert (len(splited_vars) == 1)

330
            splited_grad_varname = grad_varname
Y
Yancey1989 已提交
331
            if len(splited_vars) == 1:
332
                splited_grad_varname = splited_vars[0].name
333 334
                index = find_op_by_output_arg(
                    program.global_block(), splited_grad_varname, reverse=True)
Y
Yancey1989 已提交
335
            elif len(splited_vars) > 1:
336
                orig_var = program.global_block().vars[splited_grad_varname]
337 338
                index = find_op_by_output_arg(
                    program.global_block(), splited_grad_varname, reverse=True)
Y
Yancey1989 已提交
339
                self._insert_split_op(program, orig_var, index, splited_vars)
Y
update  
Yancey1989 已提交
340
                index += 1
Y
Yancey1989 已提交
341 342
            else:
                AssertionError("Can not insert the send op by original "
343
                               "variable name :", splited_grad_varname)
Y
Yancey1989 已提交
344

W
Wu Yi 已提交
345 346
            dummy_output = program.global_block().create_var(
                name=framework.generate_control_dev_var_name())
347
            self.grad_name_to_send_dummy_out[grad_varname] = dummy_output
W
Wu Yi 已提交
348

W
Wu Yi 已提交
349 350 351 352
            # get send op_role_var, if not splited, the grad should have .trainer suffix
            # if splited, grad should be the original grad var name (split_by_ref and send
            # will be on the same place). ParallelExecutor
            # will use op_role_var to get expected device place to run this op.
W
Wu Yi 已提交
353
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
354
                index=index + 1,
355
                type="send",
Y
update  
Yancey1989 已提交
356
                inputs={"X": splited_vars},
357
                outputs={"Out": dummy_output},
Y
Yancey1989 已提交
358 359
                attrs={
                    "epmap": eplist,
360
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
W
Wu Yi 已提交
361 362 363 364
                    OP_ROLE_VAR_ATTR_NAME: [
                        self.grad_name_to_param_name[grad_varname],
                        splited_grad_varname
                    ],
365
                    "sync_mode": not self.sync_mode,
Y
Yancey1989 已提交
366
                })
Y
update  
Yancey1989 已提交
367 368
            for _, var in enumerate(splited_vars):
                send_vars.append(var)
Y
Yancey1989 已提交
369 370

        if self.sync_mode:
W
Wu Yi 已提交
371 372
            send_barrier_out = program.global_block().create_var(
                name=framework.generate_control_dev_var_name())
373 374 375 376
            if self.has_distributed_lookup_table:
                self.grad_name_to_send_dummy_out[
                    self.table_name] = program.global_block().create_var(
                        name=framework.generate_control_dev_var_name())
377
            input_deps = list(self.grad_name_to_send_dummy_out.values())
378

Y
Yancey1989 已提交
379 380
            program.global_block().append_op(
                type="send_barrier",
M
minqiyang 已提交
381
                inputs={"X": list(input_deps)},
W
Wu Yi 已提交
382
                outputs={"Out": send_barrier_out},
Y
Yancey1989 已提交
383 384
                attrs={
                    "endpoints": pserver_endpoints,
Y
Yancey1989 已提交
385
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
Y
Yancey1989 已提交
386
                })
Y
Yancey1989 已提交
387

G
gongweibao 已提交
388
        # step 3: insert recv op to receive parameters from parameter server
Y
Yancey1989 已提交
389
        recv_vars = []
Y
update  
Yancey1989 已提交
390
        for _, var in enumerate(send_vars):
391
            recv_vars.append(self.grad_param_mapping[var])
Y
update  
Yancey1989 已提交
392
        ps_dispatcher.reset()
Y
Yancey1989 已提交
393 394
        eplist = ps_dispatcher.dispatch(recv_vars)

T
typhoonzero 已提交
395
        for i, ep in enumerate(eplist):
Y
Yancey1989 已提交
396 397
            self.param_grad_ep_mapping[ep]["params"].append(recv_vars[i])
            self.param_grad_ep_mapping[ep]["grads"].append(send_vars[i])
398

Y
Yancey1989 已提交
399
        # step4: Concat the parameters splits together after recv.
W
Wu Yi 已提交
400
        all_recv_outputs = []
401
        for param_varname, splited_var in six.iteritems(self.param_var_mapping):
Y
Yancey1989 已提交
402 403 404 405
            eps = []
            for var in splited_var:
                index = [v.name for v in recv_vars].index(var.name)
                eps.append(eplist[index])
W
Wu Yi 已提交
406 407 408 409
            if self.sync_mode:
                recv_dep_in = send_barrier_out
            else:
                # connect deps to send op in async mode
410
                recv_dep_in = self.grad_name_to_send_dummy_out[
W
Wu Yi 已提交
411 412
                    self.param_name_to_grad_name[param_varname]]
            all_recv_outputs.extend(splited_var)
W
Wu Yi 已提交
413 414 415 416 417 418 419 420 421
            # get recv op_role_var, if not splited, the grad should have .trainer suffix
            # if splited, grad should be the original grad var name. ParallelExecutor
            # will use op_role_var to get expected device place to run this op.
            orig_grad_name = self.param_name_to_grad_name[param_varname]
            recv_op_role_var_name = orig_grad_name
            splited_trainer_grad = self.grad_var_mapping[orig_grad_name]
            if len(splited_trainer_grad) == 1:
                recv_op_role_var_name = splited_trainer_grad[0].name

Y
Yancey1989 已提交
422 423
            program.global_block().append_op(
                type="recv",
W
Wu Yi 已提交
424
                inputs={"X": [recv_dep_in]},
Y
Yancey1989 已提交
425 426 427
                outputs={"Out": splited_var},
                attrs={
                    "epmap": eps,
428
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
W
Wu Yi 已提交
429 430
                    OP_ROLE_VAR_ATTR_NAME:
                    [param_varname, recv_op_role_var_name],
431
                    "sync_mode": not self.sync_mode
Y
Yancey1989 已提交
432
                })
T
typhoonzero 已提交
433

Q
qiaolongfei 已提交
434
        if self.sync_mode:
W
Wu Yi 已提交
435
            # form a WAW dependency
Q
qiaolongfei 已提交
436 437 438
            program.global_block().append_op(
                type="fetch_barrier",
                inputs={},
W
Wu Yi 已提交
439
                outputs={"Out": all_recv_outputs},
Q
qiaolongfei 已提交
440 441 442 443
                attrs={
                    "endpoints": pserver_endpoints,
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                })
Y
Yancey1989 已提交
444

445
        for param_varname, splited_var in six.iteritems(self.param_var_mapping):
T
typhoonzero 已提交
446 447
            if len(splited_var) <= 1:
                continue
448
            orig_param = program.global_block().vars[param_varname]
T
typhoonzero 已提交
449
            program.global_block().append_op(
T
typhoonzero 已提交
450
                type="concat",
T
typhoonzero 已提交
451
                inputs={"X": splited_var},
T
typhoonzero 已提交
452
                outputs={"Out": [orig_param]},
453 454 455 456
                attrs={
                    "axis": 0,
                    RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE
                })
T
typhoonzero 已提交
457

G
gongweibao 已提交
458 459
        self._get_trainer_startup_program(recv_vars=recv_vars, eplist=eplist)

460
        if self.has_distributed_lookup_table:
Q
update  
qiaolongfei 已提交
461 462
            self._replace_lookup_table_op_with_prefetch(program,
                                                        pserver_endpoints)
Y
Yancey1989 已提交
463
            self._split_table_grad_and_add_send_vars(program, pserver_endpoints)
464

W
Wu Yi 已提交
465
    def get_trainer_program(self, wait_port=True):
Y
yi.wu 已提交
466 467 468 469 470 471
        """
        Get transpiled trainer side program.

        Returns:
            Program: trainer side program.
        """
T
typhoonzero 已提交
472
        # remove optimize ops and add a send op to main_program
X
Xin Pan 已提交
473
        # FIXME(typhoonzero): Also ops like clip_gradient, lrn_decay?
T
typhoonzero 已提交
474
        lr_ops = self._get_lr_ops()
475
        delete_ops(self.origin_program.global_block(), self.optimize_ops)
T
typhoonzero 已提交
476 477
        delete_ops(self.origin_program.global_block(), lr_ops)

478
        self.origin_program.__str__()
G
gongweibao 已提交
479

W
Wu Yi 已提交
480 481 482
        if wait_port:
            wait_server_ready(self.pserver_endpoints)

483
        return self.origin_program
T
typhoonzero 已提交
484

W
Wu Yi 已提交
485
    def _get_trainer_startup_program(self, recv_vars, eplist):
G
gongweibao 已提交
486 487 488 489
        """
        Get transpiled trainer side startup program.

        Args:
W
Wu Yi 已提交
490
            recv_vars (list): Variable list to recv for current trainer_id
M
minqiyang 已提交
491
            eplist (list): A list of strings indicating
G
gongweibao 已提交
492 493 494 495

        Returns:
            Program: trainer side startup program.
        """
W
Wu Yi 已提交
496
        startup_program = self.startup_program
G
gongweibao 已提交
497 498 499 500

        # FIXME(gongwb): delete not need ops.
        # note that: some parameter is not trainable and those ops can't be deleted.

M
minqiyang 已提交
501
        for varname, splited_var in six.iteritems(self.param_var_mapping):
G
gongweibao 已提交
502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521
            # Get the eplist of recv vars
            eps = []
            for var in splited_var:
                index = [v.name for v in recv_vars].index(var.name)
                eps.append(eplist[index])

            for var in splited_var:
                if startup_program.global_block().has_var(var.name):
                    continue

                startup_program.global_block().create_var(
                    name=var.name,
                    persistable=False,
                    type=var.type,
                    dtype=var.dtype,
                    shape=var.shape,
                    lod_level=var.lod_level)

            op = startup_program.global_block().append_op(
                type="recv",
522
                inputs={"X": []},
G
gongweibao 已提交
523 524 525 526 527 528
                outputs={"Out": splited_var},
                attrs={
                    "epmap": eps,
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                })

W
Wu Yi 已提交
529 530
        fetch_barrier_out = startup_program.global_block().create_var(
            name=framework.generate_control_dev_var_name())
G
gongweibao 已提交
531 532 533
        startup_program.global_block().append_op(
            type="fetch_barrier",
            inputs={},
W
Wu Yi 已提交
534
            outputs={"Out": fetch_barrier_out},
G
gongweibao 已提交
535 536 537 538 539
            attrs={
                "endpoints": self.pserver_endpoints,
                RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
            })

M
minqiyang 已提交
540
        for varname, splited_var in six.iteritems(self.param_var_mapping):
T
tangwei12 已提交
541
            # add concat ops to merge splited parameters received from parameter servers.
G
gongweibao 已提交
542 543
            if len(splited_var) <= 1:
                continue
W
Wu Yi 已提交
544
            # NOTE: if enable memory optimization, origin vars maybe removed.
M
minqiyang 已提交
545
            if varname in startup_program.global_block().vars:
W
Wu Yi 已提交
546 547 548 549 550 551 552 553 554 555
                orig_param = startup_program.global_block().vars[varname]
            else:
                origin_param_var = self.origin_program.global_block().vars[
                    varname]
                orig_param = startup_program.global_block().create_var(
                    name=varname,
                    persistable=origin_param_var.persistable,
                    type=origin_param_var.type,
                    dtype=origin_param_var.dtype,
                    shape=origin_param_var.shape)
G
gongweibao 已提交
556 557 558 559 560 561 562 563
            startup_program.global_block().append_op(
                type="concat",
                inputs={"X": splited_var},
                outputs={"Out": [orig_param]},
                attrs={"axis": 0})

        return startup_program

T
typhoonzero 已提交
564 565
    def get_pserver_program(self, endpoint):
        """
Y
yi.wu 已提交
566
        Get parameter server side program.
567

Y
yi.wu 已提交
568 569
        Args:
            endpoint (str): current parameter server endpoint.
570

Y
yi.wu 已提交
571 572
        Returns:
            Program: the program for current parameter server to run.
T
typhoonzero 已提交
573
        """
Y
yi.wu 已提交
574 575 576 577
        # TODO(panyx0718): Revisit this assumption. what if #blocks > #pservers.
        # NOTE: assume blocks of the same variable is not distributed
        # on the same pserver, only change param/grad varnames for
        # trainers to fetch.
578 579 580
        sys.stderr.write("get_pserver_program() is deprecated, call \
get_pserver_programs() to get pserver main and startup \
in a single call.")
T
typhoonzero 已提交
581 582
        # step1
        pserver_program = Program()
X
Xin Pan 已提交
583
        pserver_program.random_seed = self.origin_program.random_seed
584
        # step2: Create vars to receive vars at parameter servers.
T
typhoonzero 已提交
585 586 587 588 589 590 591 592
        recv_inputs = []
        for v in self.param_grad_ep_mapping[endpoint]["params"]:
            self._clone_var(pserver_program.global_block(), v)
        for v in self.param_grad_ep_mapping[endpoint]["grads"]:
            # create vars for each trainer in global scope, so
            # we don't need to create them when grad arrives.
            # change client side var name to origin name by
            # removing ".trainer_%d" suffix
T
update  
typhoonzero 已提交
593 594 595 596 597
            suff_idx = v.name.find(".trainer_")
            if suff_idx >= 0:
                orig_var_name = v.name[:suff_idx]
            else:
                orig_var_name = v.name
T
typhoonzero 已提交
598 599 600 601 602 603 604 605 606
            # NOTE: single_trainer_var must be created for multi-trainer
            # case to merge grads from multiple trainers
            single_trainer_var = \
                pserver_program.global_block().create_var(
                    name=orig_var_name,
                    persistable=True,
                    type=v.type,
                    dtype=v.dtype,
                    shape=v.shape)
607
            if self.sync_mode and self.trainer_num > 1:
608
                for trainer_id in range(self.trainer_num):
T
typhoonzero 已提交
609 610 611 612 613 614 615 616 617
                    var = pserver_program.global_block().create_var(
                        name="%s.trainer_%d" % (orig_var_name, trainer_id),
                        persistable=False,
                        type=v.type,
                        dtype=v.dtype,
                        shape=v.shape)
                    recv_inputs.append(var)
            else:
                recv_inputs.append(single_trainer_var)
618

Q
qiaolongfei 已提交
619
        # step 3
620
        # Create a union-find data structure from optimize ops,
T
typhoonzero 已提交
621 622 623
        # If two ops are connected, we could add these two ops
        # into one set.
        ufind = self._create_ufind(self.optimize_ops)
Q
qiaolongfei 已提交
624
        # step 3.2
T
typhoonzero 已提交
625 626 627 628
        # Iterate through the ops and append optimize op which
        # located on current pserver
        opt_op_on_pserver = []
        for _, op in enumerate(self.optimize_ops):
629 630
            if self._is_optimizer_op(op) and self._is_opt_op_on_pserver(
                    endpoint, op):
T
typhoonzero 已提交
631
                opt_op_on_pserver.append(op)
Q
qiaolongfei 已提交
632
        # step 3.3
T
typhoonzero 已提交
633
        # Iterate through the ops, and if an op and the optimize ops
634
        # which located on current pserver are in one set, then
T
typhoonzero 已提交
635
        # append it into the sub program.
T
typhoonzero 已提交
636 637 638

        global_ops = []

Y
wip  
yi.wu 已提交
639 640
        def __append_optimize_op__(op, block, grad_to_block_id, merged_var,
                                   lr_ops):
641
            if self._is_optimizer_op(op):
Q
qiaolongfei 已提交
642
                self._append_pserver_ops(block, op, endpoint, grad_to_block_id,
643
                                         self.origin_program, merged_var)
Y
wip  
yi.wu 已提交
644
            elif op not in lr_ops:
Q
Qiyang Min 已提交
645
                self._append_pserver_non_opt_ops(block, op)
646 647 648 649 650 651

        def __op_have_grad_input__(op):
            for varname in op.input_arg_names:
                if varname.find("@GRAD") >= 0:
                    return varname
            return ""
T
typhoonzero 已提交
652

Y
Yancey1989 已提交
653
        def __clone_lr_op_sub_block__(op, program, lr_block):
Q
Qiyang Min 已提交
654 655 656 657 658 659 660 661
            if not op.has_attr('sub_block'):
                return

            origin_block_desc = op.attr('sub_block')
            origin_block = self.origin_program.block(origin_block_desc.id)
            assert isinstance(origin_block, Block)
            # we put the new sub block to new block to follow the block
            # hierarchy of the original blocks
W
Wu Yi 已提交
662
            new_sub_block = program._create_block(lr_block.idx)
Q
Qiyang Min 已提交
663 664 665

            # clone vars
            for var in origin_block.vars:
W
Wu Yi 已提交
666
                new_sub_block._clone_variable(var)
Q
Qiyang Min 已提交
667 668

            # clone ops
Y
Yancey1989 已提交
669 670
            for origin_op in origin_block.ops:
                cloned_op = self._clone_lr_op(program, new_sub_block, origin_op)
Q
Qiyang Min 已提交
671
                # clone sub_block of op
Y
Yancey1989 已提交
672
                __clone_lr_op_sub_block__(cloned_op, program, new_sub_block)
Q
Qiyang Min 已提交
673 674

            # reset the block of op
W
Wu Yi 已提交
675
            op._set_attr('sub_block', new_sub_block)
Q
Qiyang Min 已提交
676

677
        # append lr decay ops to the child block if exists
678
        lr_ops = self._get_lr_ops()
679 680
        # record optimize blocks and we can run them on pserver parallel
        optimize_blocks = []
681
        if len(lr_ops) > 0:
W
Wu Yi 已提交
682
            lr_decay_block = pserver_program._create_block(
Q
qiaolongfei 已提交
683
                pserver_program.num_blocks - 1)
684
            optimize_blocks.append(lr_decay_block)
685
            for _, op in enumerate(lr_ops):
Y
Yancey1989 已提交
686
                cloned_op = self._append_pserver_non_opt_ops(lr_decay_block, op)
Q
Qiyang Min 已提交
687
                # append sub blocks to pserver_program in lr_decay_op
Y
Yancey1989 已提交
688 689
                __clone_lr_op_sub_block__(cloned_op, pserver_program,
                                          lr_decay_block)
690

T
typhoonzero 已提交
691
        # append op to the current block
Q
qiaolongfei 已提交
692
        grad_to_block_id = []
Q
qiaolongfei 已提交
693
        pre_block_idx = pserver_program.num_blocks - 1
T
typhoonzero 已提交
694
        for idx, opt_op in enumerate(opt_op_on_pserver):
W
Wu Yi 已提交
695
            per_opt_block = pserver_program._create_block(pre_block_idx)
696
            optimize_blocks.append(per_opt_block)
697
            optimize_target_param_name = opt_op.attr(OP_ROLE_VAR_ATTR_NAME)[0]
698
            # append grad merging ops before clip and weight decay
699 700
            # e.g. merge grad -> L2Decay op -> clip op -> optimize
            merged_var = None
701
            for _, op in enumerate(self.optimize_ops):
702 703 704 705 706
                # find the origin grad var before clipping/L2Decay,
                # merged_var should be the input var name of L2Decaybuil
                grad_varname_for_block = op.attr(OP_ROLE_VAR_ATTR_NAME)[1]
                if op.attr(OP_ROLE_VAR_ATTR_NAME)[
                        0] == optimize_target_param_name:
707 708 709
                    merged_var = self._append_pserver_grad_merge_ops(
                        per_opt_block, grad_varname_for_block, endpoint,
                        grad_to_block_id, self.origin_program)
710 711 712 713 714 715
                    if merged_var:
                        break  # append optimize op once then append other ops.
            if merged_var:
                for _, op in enumerate(self.optimize_ops):
                    # optimizer is connected to itself
                    if op.attr(OP_ROLE_VAR_ATTR_NAME)[0] == optimize_target_param_name and \
S
seiriosPlus 已提交
716
                            op not in global_ops:
717 718 719 720 721
                        log("append opt op: ", op.type, op.input_arg_names,
                            merged_var)
                        __append_optimize_op__(op, per_opt_block,
                                               grad_to_block_id, merged_var,
                                               lr_ops)
T
typhoonzero 已提交
722

W
Wu Yi 已提交
723 724
        # dedup grad to ids list
        grad_to_block_id = list(set(grad_to_block_id))
T
typhoonzero 已提交
725
        # append global ops
726
        if global_ops:
W
Wu Yi 已提交
727
            opt_state_block = pserver_program._create_block(
Q
qiaolongfei 已提交
728
                pserver_program.num_blocks - 1)
729
            optimize_blocks.append(opt_state_block)
Q
qiaolongfei 已提交
730
            for glb_op in global_ops:
X
Xi Chen 已提交
731
                __append_optimize_op__(glb_op, opt_state_block,
Y
wip  
yi.wu 已提交
732
                                       grad_to_block_id, None, lr_ops)
T
typhoonzero 已提交
733

734
        # process distributed lookup_table
Q
qiaolongfei 已提交
735
        prefetch_var_name_to_block_id = []
736 737
        if self.has_distributed_lookup_table:
            pserver_index = self.pserver_endpoints.index(endpoint)
738
            table_opt_block = self._create_table_optimize_block(
739
                pserver_index, pserver_program, pre_block_idx, grad_to_block_id)
740
            optimize_blocks.append(table_opt_block)
T
tangwei12 已提交
741
            lookup_table_var_name_to_block_id = self._create_prefetch_block(
742
                pserver_index, pserver_program, table_opt_block)
T
tangwei12 已提交
743 744
            checkpoint_block_id = self._create_checkpoint_save_block(
                pserver_program, table_opt_block.idx)
745

T
tangwei12 已提交
746
            pserver_program._distributed_lookup_table = self.table_name
T
tangwei12 已提交
747 748
            prefetch_var_name_to_block_id.extend(
                lookup_table_var_name_to_block_id)
749

750
        attrs = {
751
            "optimize_blocks": optimize_blocks,
752 753 754
            "endpoint": endpoint,
            "Fanin": self.trainer_num,
            "sync_mode": self.sync_mode,
Y
Yancey1989 已提交
755
            "grad_to_block_id": grad_to_block_id,
756
        }
T
tangwei12 已提交
757 758

        if self.has_distributed_lookup_table:
T
tangwei12 已提交
759
            attrs['checkpint_block_id'] = checkpoint_block_id
760

T
tangwei12 已提交
761 762 763 764
        if len(prefetch_var_name_to_block_id) > 0:
            attrs[
                'prefetch_var_name_to_block_id'] = prefetch_var_name_to_block_id

T
typhoonzero 已提交
765 766 767 768 769
        # step5 append the listen_and_serv op
        pserver_program.global_block().append_op(
            type="listen_and_serv",
            inputs={'X': recv_inputs},
            outputs={},
770
            attrs=attrs)
771

T
tangwei12 已提交
772
        # add distributed attrs
T
tangwei12 已提交
773
        pserver_program._slice_vars_and_attrs = self._get_slice_vars_and_attrs(
T
tangwei12 已提交
774
            endpoint)
775

W
Wu Yi 已提交
776
        pserver_program._sync_with_cpp()
W
Wu Yi 已提交
777 778
        # save pserver program to generate pserver side startup relatively.
        self.pserver_program = pserver_program
T
typhoonzero 已提交
779 780
        return pserver_program

W
Wu Yi 已提交
781 782 783 784 785 786
    def get_pserver_programs(self, endpoint):
        """
        Get pserver side main program and startup program for distributed training.

        Args:
            endpoint (str): current pserver endpoint.
M
minqiyang 已提交
787

W
Wu Yi 已提交
788 789 790 791
        Returns:
            tuple: (main_program, startup_program), of type "Program"
        """
        pserver_prog = self.get_pserver_program(endpoint)
W
Wu Yi 已提交
792 793
        pserver_startup = self.get_startup_program(
            endpoint, pserver_program=pserver_prog)
W
Wu Yi 已提交
794 795
        return pserver_prog, pserver_startup

796 797
    def get_startup_program(self,
                            endpoint,
W
Wu Yi 已提交
798
                            pserver_program=None,
799
                            startup_program=None):
T
typhoonzero 已提交
800
        """
W
Wu Yi 已提交
801 802
        **Deprecated**

T
typhoonzero 已提交
803 804 805
        Get startup program for current parameter server.
        Modify operator input variables if there are variables that
        were split to several blocks.
Y
yi.wu 已提交
806 807 808

        Args:
            endpoint (str): current pserver endpoint.
W
Wu Yi 已提交
809 810
            pserver_program (Program): deprecated, call get_pserver_program first.
            startup_program (Program): deprecated, should pass startup_program
M
minqiyang 已提交
811
                when initalizing
812

Y
yi.wu 已提交
813 814
        Returns:
            Program: parameter server side startup program.
T
typhoonzero 已提交
815
        """
816 817 818
        sys.stderr.write("get_startup_program() is deprecated, call \
get_pserver_programs() to get pserver main and startup \
in a single call.")
W
Wu Yi 已提交
819
        if pserver_program != None:
820 821 822
            sys.stderr.write("passing pserver_program to get_startup_program() \
is deprecated, you can use new API get_pserver_programs() to \
get both pserver main program and startup program.")
W
Wu Yi 已提交
823
        if startup_program != None:
824 825 826
            sys.stderr.write("passing startup_program to get_startup_program() \
is deprecated, use fluid.program_guard() or pass this argument \
to transpile() call.")
W
Wu Yi 已提交
827

T
typhoonzero 已提交
828
        s_prog = Program()
W
Wu Yi 已提交
829
        orig_s_prog = self.startup_program
X
Xin Pan 已提交
830
        s_prog.random_seed = orig_s_prog.random_seed
T
typhoonzero 已提交
831 832 833 834 835 836 837 838 839 840 841
        params = self.param_grad_ep_mapping[endpoint]["params"]

        def _get_splited_name_and_shape(varname):
            for idx, splited_param in enumerate(params):
                pname = splited_param.name
                if same_or_split_var(pname, varname) and varname != pname:
                    return pname, splited_param.shape
            return "", []

        # 1. create vars in pserver program to startup program
        pserver_vars = pserver_program.global_block().vars
842
        created_var_map = collections.OrderedDict()
M
minqiyang 已提交
843
        for _, var in six.iteritems(pserver_vars):
W
Wu Yi 已提交
844
            tmpvar = s_prog.global_block()._clone_variable(var)
T
typhoonzero 已提交
845 846 847 848
            created_var_map[var.name] = tmpvar

        # 2. rename op outputs
        for op in orig_s_prog.global_block().ops:
849
            new_outputs = collections.OrderedDict()
T
typhoonzero 已提交
850 851
            # do not append startup op if var is not on this pserver
            op_on_pserver = False
G
gongweibao 已提交
852 853 854 855 856 857 858 859 860 861
            # TODO(gongwb): remove this line.
            if op.type not in ["recv", "fetch_barrier", "concat"]:
                for key in op.output_names:
                    newname, _ = _get_splited_name_and_shape(op.output(key)[0])
                    if newname:
                        op_on_pserver = True
                        new_outputs[key] = created_var_map[newname]
                    elif op.output(key)[0] in pserver_vars:
                        op_on_pserver = True
                        new_outputs[key] = pserver_vars[op.output(key)[0]]
T
typhoonzero 已提交
862 863

            if op_on_pserver:
864 865 866
                # most startup program ops have no inputs
                new_inputs = self._get_input_map_from_op(pserver_vars, op)

T
typhoonzero 已提交
867 868 869
                if op.type in [
                        "gaussian_random", "fill_constant", "uniform_random"
                ]:
W
Wu Yi 已提交
870
                    op._set_attr("shape", list(new_outputs["Out"].shape))
T
typhoonzero 已提交
871 872 873 874
                s_prog.global_block().append_op(
                    type=op.type,
                    inputs=new_inputs,
                    outputs=new_outputs,
G
gongweibao 已提交
875
                    attrs=op.all_attrs())
876 877

        # add slice vars
T
tangwei12 已提交
878
        s_prog._slice_vars_and_attrs = self._get_slice_vars_and_attrs(endpoint)
879

T
typhoonzero 已提交
880 881
        return s_prog

T
tangwei12 已提交
882 883 884
    def _get_slice_vars_and_attrs(self, endpoint):
        slice_vars_and_attrs = []
        block_suffix = "block"
885
        for param in self.param_grad_ep_mapping[endpoint]["params"]:
T
tangwei12 已提交
886
            orig_var_name, block_name, _ = self._get_varname_parts(param.name)
T
tangwei12 已提交
887
            if not block_name:
888 889
                continue

T
tangwei12 已提交
890
            block_idx = int(block_name.split(block_suffix)[1])
891 892 893 894 895 896
            orig_var = self.origin_program.global_block().vars[orig_var_name]

            skip_numel = 0
            slice_vars = self.param_var_mapping[orig_var_name]
            for slice_var in slice_vars[:block_idx]:
                skip_numel += reduce(lambda x, y: x * y, slice_var.shape)
T
tangwei12 已提交
897
            slice_vars_and_attrs.append([orig_var, skip_numel, param])
898

T
tangwei12 已提交
899
        return slice_vars_and_attrs
900

901 902
    # ====================== private transpiler functions =====================

Y
yi.wu 已提交
903 904 905 906 907 908 909 910 911
    def _has_distributed_lookup_table(self):
        # process lookup_table_op
        # 1. check all lookup_table_op is distributed
        # 2. check all lookup_table_op share the same table.
        distributed_lookup_table_ops = []
        # support only one distributed_lookup_table now
        self.table_name = None
        for op in self.origin_program.global_block().ops:
            if op.type == LOOKUP_TABLE_TYPE:
G
gongweibao 已提交
912
                if op.attr('is_distributed') is True:
Y
yi.wu 已提交
913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963
                    if self.table_name is None:
                        self.table_name = op.input("W")[0]
                    if self.table_name != op.input("W")[0]:
                        raise RuntimeError("all distributed lookup_table_ops"
                                           " should have only one table")
                    distributed_lookup_table_ops.append(op)
                else:
                    if self.table_name is not None:
                        assert op.input("W")[0] != self.table_name

        return len(distributed_lookup_table_ops) > 0

    def _update_dist_lookup_table_vars(self, param_list, grad_list,
                                       params_grads):
        # TODO(wuyi): put find a way to put dist lookup table stuff all together.
        # update self.table_param_grad and self.trainer_side_table_grad_list
        program = self.origin_program
        if self.has_distributed_lookup_table:
            param_list = [
                param for param in param_list if param.name != self.table_name
            ]
            grad_list = [
                grad for grad in grad_list
                if grad.name != grad_var_name(self.table_name)
            ]
            self.table_param_grad = [
                param_grad for param_grad in params_grads
                if param_grad[0].name == self.table_name
            ][0]
            table_grad_var = self.table_param_grad[1]
            if self.sync_mode:
                self.trainer_side_table_grad_list = [
                    program.global_block().create_var(
                        name="%s.trainer_%d.pserver_%d" %
                        (table_grad_var.name, self.trainer_id, index),
                        type=table_grad_var.type,
                        shape=table_grad_var.shape,
                        dtype=table_grad_var.dtype)
                    for index in range(len(self.pserver_endpoints))
                ]
            else:
                self.trainer_side_table_grad_list = [
                    program.global_block().create_var(
                        name="%s.pserver_%d" % (table_grad_var.name, index),
                        type=table_grad_var.type,
                        shape=table_grad_var.shape,
                        dtype=table_grad_var.dtype)
                    for index in range(len(self.pserver_endpoints))
                ]
        return param_list, grad_list

G
gongweibao 已提交
964
    def _init_splited_vars(self):
Y
yi.wu 已提交
965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987
        # update these mappings for further transpile:
        # 1. param_var_mapping: param var name -> [splited params vars]
        # 2. grad_var_mapping: grad var name -> [splited grads vars]
        # 3. grad_param_mapping: grad.blockx -> param.blockx
        # 4. param_grad_ep_mapping: ep -> {"params": [], "grads": []}

        param_list = []
        grad_list = []
        param_grad_set = set()
        for p, g in self.params_grads:
            # skip parameter marked not trainable
            if type(p) == Parameter and p.trainable == False:
                continue
            if p.name not in param_grad_set:
                param_list.append(p)
                param_grad_set.add(p.name)
            if g.name not in param_grad_set:
                grad_list.append(g)
                param_grad_set.add(g.name)

        param_list, grad_list = self._update_dist_lookup_table_vars(
            param_list, grad_list, self.params_grads)

G
gongweibao 已提交
988
        if self.config.slice_var_up:
Y
yi.wu 已提交
989 990
            # when we slice var up into blocks, we will slice the var according to
            # pserver services' count. A pserver may have two or more listening ports.
G
gongweibao 已提交
991 992 993
            grad_blocks = slice_variable(grad_list,
                                         len(self.pserver_endpoints),
                                         self.config.min_block_size)
Y
yi.wu 已提交
994
            param_blocks = slice_variable(param_list,
G
gongweibao 已提交
995 996
                                          len(self.pserver_endpoints),
                                          self.config.min_block_size)
Y
yi.wu 已提交
997 998 999
        else:
            # when we do NOT slice var up into blocks, we will always slice params
            # grads into one block.
G
gongweibao 已提交
1000 1001 1002 1003
            grad_blocks = slice_variable(grad_list, 1,
                                         self.config.min_block_size)
            param_blocks = slice_variable(param_list, 1,
                                          self.config.min_block_size)
Y
yi.wu 已提交
1004 1005
        assert (len(grad_blocks) == len(param_blocks))

1006
        # origin_param_name -> [splited_param_vars]
Y
yi.wu 已提交
1007 1008
        self.param_var_mapping = self._create_vars_from_blocklist(
            self.origin_program, param_blocks)
1009
        # origin_grad_name -> [splited_grad_vars]
Y
yi.wu 已提交
1010 1011 1012 1013
        self.grad_var_mapping = self._create_vars_from_blocklist(
            self.origin_program,
            grad_blocks,
            add_trainer_suffix=self.trainer_num > 1)
1014
        # dict(grad_splited_var -> param_splited_var)
1015
        self.grad_param_mapping = collections.OrderedDict()
Y
yi.wu 已提交
1016 1017 1018
        for g, p in zip(grad_blocks, param_blocks):
            g_name, g_bid, _ = g.split(":")
            p_name, p_bid, _ = p.split(":")
T
tangwei12 已提交
1019
            self.grad_param_mapping[self.grad_var_mapping[g_name][int(g_bid)]] = \
1020
                self.param_var_mapping[p_name][int(p_bid)]
Y
yi.wu 已提交
1021 1022

        # create mapping of endpoint -> split var to create pserver side program
1023
        self.param_grad_ep_mapping = collections.OrderedDict()
Y
yi.wu 已提交
1024 1025 1026 1027 1028 1029 1030 1031 1032
        [
            self.param_grad_ep_mapping.update({
                ep: {
                    "params": [],
                    "grads": []
                }
            }) for ep in self.pserver_endpoints
        ]

1033
    # transpiler function for dis lookup_table
Q
update  
qiaolongfei 已提交
1034 1035
    def _replace_lookup_table_op_with_prefetch(self, program,
                                               pserver_endpoints):
1036
        # 1. replace lookup_table_op with split_ids_op -> prefetch_op -> sum_op
S
seiriosPlus 已提交
1037
        self.all_in_ids_vars = []
Q
qiaolongfei 已提交
1038 1039
        self.all_prefetch_input_vars = []
        self.all_prefetch_output_vars = []
S
seiriosPlus 已提交
1040 1041
        self.all_out_emb_vars = []
        lookup_table_op_index = -1
1042 1043 1044 1045 1046 1047 1048 1049 1050

        continue_search_lookup_table_op = True
        while continue_search_lookup_table_op:
            continue_search_lookup_table_op = False
            all_ops = program.global_block().ops
            for op in all_ops:
                if op.type == LOOKUP_TABLE_TYPE:
                    continue_search_lookup_table_op = True

S
seiriosPlus 已提交
1051 1052
                    lookup_table_op_index = lookup_table_op_index if lookup_table_op_index != -1 else list(
                        all_ops).index(op)
1053 1054 1055
                    ids_name = op.input("Ids")
                    out_name = op.output("Out")

Q
qiaolongfei 已提交
1056
                    ids_var = program.global_block().vars[ids_name[0]]
S
seiriosPlus 已提交
1057
                    self.all_in_ids_vars.append(ids_var)
Q
qiaolongfei 已提交
1058 1059

                    out_var = program.global_block().vars[out_name[0]]
S
seiriosPlus 已提交
1060
                    self.all_out_emb_vars.append(out_var)
1061 1062

                    # delete lookup_table_op
1063
                    delete_ops(program.global_block(), [op])
1064 1065 1066
                    # break for loop
                    break

S
seiriosPlus 已提交
1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112
        for index in range(len(self.pserver_endpoints)):
            in_var = program.global_block().create_var(
                name=str("prefetch_compress_in_tmp_" + str(index)),
                type=self.all_in_ids_vars[0].type,
                shape=self.all_in_ids_vars[0].shape,
                dtype=self.all_in_ids_vars[0].dtype)
            self.all_prefetch_input_vars.append(in_var)

            out_var = program.global_block().create_var(
                name=str("prefetch_compress_out_tmp_" + str(index)),
                type=self.all_out_emb_vars[0].type,
                shape=self.all_out_emb_vars[0].shape,
                dtype=self.all_out_emb_vars[0].dtype)
            self.all_prefetch_output_vars.append(out_var)

        # insert split_ids_op
        program.global_block()._insert_op(
            index=lookup_table_op_index,
            type="split_ids",
            inputs={'Ids': self.all_in_ids_vars},
            outputs={"Out": self.all_prefetch_input_vars})

        # insert prefetch_op
        program.global_block()._insert_op(
            index=lookup_table_op_index + 1,
            type="prefetch",
            inputs={'X': self.all_prefetch_input_vars},
            outputs={"Out": self.all_prefetch_output_vars},
            attrs={
                "epmap": pserver_endpoints,
                # FIXME(qiao) temporarily disable this config because prefetch
                # is not act as other rpc op, it's more like a forward op
                # RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
            })

        # insert concat_op
        program.global_block()._insert_op(
            index=lookup_table_op_index + 2,
            type="merge_ids",
            inputs={
                'Ids': self.all_in_ids_vars,
                'Rows': self.all_prefetch_input_vars,
                'X': self.all_prefetch_output_vars
            },
            outputs={"Out": self.all_out_emb_vars})

Y
Yancey1989 已提交
1113
    def _split_table_grad_and_add_send_vars(self, program, pserver_endpoints):
1114
        # 2. add split_ids_op and send_op to send gradient to pservers
1115

1116 1117
        # there should only be one table_name
        all_ops = program.global_block().ops
T
typhoonzero 已提交
1118
        table_grad_name = grad_var_name(self.table_name)
1119 1120 1121 1122
        for op in all_ops:
            if table_grad_name in op.output_arg_names:
                op_index = list(all_ops).index(op)
                # insert split_ids_op
W
Wu Yi 已提交
1123
                program.global_block()._insert_op(
1124 1125 1126 1127 1128
                    index=op_index + 1,
                    type="split_ids",
                    inputs={
                        'Ids': [program.global_block().vars[table_grad_name]]
                    },
1129
                    outputs={"Out": self.trainer_side_table_grad_list})
W
Wu Yi 已提交
1130
                program.global_block()._insert_op(
1131
                    index=op_index + 2,
1132
                    type="send",
1133
                    inputs={'X': self.trainer_side_table_grad_list},
1134 1135 1136 1137 1138
                    outputs={
                        'Out':
                        [self.grad_name_to_send_dummy_out[self.table_name]]
                        if self.sync_mode else []
                    },
Y
Yancey1989 已提交
1139
                    attrs={
1140
                        "sync_mode": not self.sync_mode,
Y
Yancey1989 已提交
1141
                        "epmap": pserver_endpoints,
W
Wu Yi 已提交
1142 1143 1144 1145 1146
                        RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
                        OP_ROLE_VAR_ATTR_NAME: [
                            self.grad_name_to_param_name[table_grad_name],
                            table_grad_name
                        ]
Y
Yancey1989 已提交
1147
                    })
1148 1149 1150 1151 1152 1153
                break

    def _create_prefetch_block(self, pserver_index, pserver_program,
                               optimize_block):
        # STEP: create prefetch block
        table_var = pserver_program.global_block().vars[self.table_name]
Q
qiaolongfei 已提交
1154
        prefetch_var_name_to_block_id = []
S
seiriosPlus 已提交
1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179
        prefetch_block = pserver_program._create_block(optimize_block.idx)
        trainer_ids = self.all_prefetch_input_vars[pserver_index]
        pserver_ids = pserver_program.global_block().create_var(
            name=trainer_ids.name,
            type=trainer_ids.type,
            shape=trainer_ids.shape,
            dtype=trainer_ids.dtype)
        trainer_out = self.all_prefetch_output_vars[pserver_index]
        pserver_out = pserver_program.global_block().create_var(
            name=trainer_out.name,
            type=trainer_out.type,
            shape=trainer_out.shape,
            dtype=trainer_out.dtype)
        prefetch_block.append_op(
            type="lookup_sparse_table",
            inputs={'Ids': pserver_ids,
                    "W": table_var},
            outputs={"Out": pserver_out},
            attrs={
                "is_sparse": True,  # has no effect on lookup_table op
                "is_distributed": True,
                "padding_idx": -1
            })
        prefetch_var_name_to_block_id.append(trainer_ids.name + ":" + str(
            prefetch_block.idx))
Q
qiaolongfei 已提交
1180
        return prefetch_var_name_to_block_id
1181 1182

    def _create_table_optimize_block(self, pserver_index, pserver_program,
1183
                                     pre_block_idx, grad_to_block_id):
1184
        # STEP: create table optimize block
1185
        table_opt_block = pserver_program._create_block(pre_block_idx)
1186
        # create table param and grad var in pserver program
1187 1188 1189 1190 1191 1192 1193
        # create table optimize block in pserver program
        table_opt_op = [
            op for op in self.optimize_ops
            if 'Param' in op.input_names and op.input("Param")[0] ==
            self.table_name
        ][0]

Y
Yancey1989 已提交
1194 1195
        origin_param_var = self.origin_program.global_block().vars[
            self.table_name]
T
tangwei12 已提交
1196

T
tangwei12 已提交
1197
        zero_dim = int(
T
bug fix  
tangwei12 已提交
1198 1199
            math.ceil(origin_param_var.shape[0] / float(
                len(self.pserver_endpoints))))
T
tangwei12 已提交
1200 1201 1202
        table_shape = list(origin_param_var.shape)
        table_shape[0] = zero_dim

Y
Yancey1989 已提交
1203 1204
        param_var = pserver_program.global_block().create_var(
            name=origin_param_var.name,
T
tangwei12 已提交
1205
            shape=table_shape,
Y
Yancey1989 已提交
1206 1207 1208
            dtype=origin_param_var.dtype,
            type=core.VarDesc.VarType.SELECTED_ROWS,
            persistable=True)
1209

1210 1211
        # parameter must be selected rows
        param_var.desc.set_type(core.VarDesc.VarType.SELECTED_ROWS)
W
Wu Yi 已提交
1212
        grad_var = pserver_program.global_block()._clone_variable(
T
typhoonzero 已提交
1213
            self.origin_program.global_block().vars[grad_var_name(
1214
                self.table_name)])
1215

1216 1217 1218
        lr_var = pserver_program.global_block()._clone_variable(
            self.origin_program.global_block().vars[table_opt_op.input(
                "LearningRate")[0]])
1219

1220 1221 1222
        if self.sync_mode:
            # create grad vars in pserver program
            table_grad_var = self.table_param_grad[1]
1223
            pserver_side_table_grad_list = [
1224 1225 1226 1227 1228 1229 1230 1231 1232
                pserver_program.global_block().create_var(
                    name="%s.trainer_%d.pserver_%d" %
                    (table_grad_var.name, index, pserver_index),
                    type=table_grad_var.type,
                    shape=table_grad_var.shape,
                    dtype=table_grad_var.dtype)
                for index in range(self.trainer_num)
            ]

1233
            # append sum op for pserver_side_table_grad_list
1234 1235
            table_opt_block.append_op(
                type="sum",
1236
                inputs={"X": pserver_side_table_grad_list},
1237 1238
                outputs={"Out": [grad_var]},
                attrs={"use_mkldnn": False})
1239 1240
        else:
            # in async_mode, for table gradient, it also need to be splited to each parameter server
1241
            origin_grad_name = grad_var.name
1242 1243
            splited_grad_name = self.trainer_side_table_grad_list[
                pserver_index].name
1244 1245
            if not splited_grad_name.startswith(origin_grad_name):
                raise ValueError("origin_grad_var: " + splited_grad_name +
1246
                                 " grad_var:" + grad_var.name)
W
Wu Yi 已提交
1247
            grad_var = pserver_program.global_block()._rename_var(
1248
                origin_grad_name, splited_grad_name)
1249 1250 1251 1252 1253 1254 1255

        inputs = {
            "Param": [param_var],
            "Grad": [grad_var],
            "LearningRate": [lr_var]
        }
        outputs = {"ParamOut": [param_var]}
1256
        # only support sgd now
1257 1258 1259 1260
        import logging
        logging.warn(
            "distribute lookup table only support sgd optimizer, change it's optimizer to sgd instead of "
            + table_opt_op.type)
1261
        table_opt_block.append_op(type="sgd", inputs=inputs, outputs=outputs)
1262

1263 1264 1265
        # add table parameter gradient and it's block id to grad_to_block_id
        grad_to_block_id.append(grad_var.name + ":" + str(table_opt_block.idx))

1266 1267
        return table_opt_block

T
tangwei12 已提交
1268 1269 1270 1271 1272 1273
    def _create_checkpoint_save_block(self, pserver_program, pre_block_idx):
        """
        create a new block to handle save checkpoint.
        """
        import os

T
tangwei12 已提交
1274
        pserver_program.global_block().create_var(
T
tangwei12 已提交
1275
            name="kLookupTablePath",
T
tangwei12 已提交
1276 1277
            persistable=True,
            type=core.VarDesc.VarType.RAW)
T
tangwei12 已提交
1278

W
Wu Yi 已提交
1279
        checkpoint_save_block = pserver_program._create_block(pre_block_idx)
T
tangwei12 已提交
1280
        # this 'file_path' do not be used in save lookup table variable
T
tangwei12 已提交
1281 1282 1283 1284
        checkpoint_save_block.append_op(
            type='save',
            inputs={'X': [self.table_name]},
            outputs={},
T
tangwei12 已提交
1285
            attrs={'file_path': "none"})
T
tangwei12 已提交
1286 1287 1288

        return checkpoint_save_block.idx

T
typhoonzero 已提交
1289 1290 1291 1292 1293
    def _create_vars_from_blocklist(self,
                                    program,
                                    block_list,
                                    add_trainer_suffix=False):
        """
1294
        Create vars for each split.
T
typhoonzero 已提交
1295 1296
        NOTE: only grads need to be named for different trainers, use
              add_trainer_suffix to rename the grad vars.
1297 1298 1299 1300
        Args:
            program (ProgramDesc): ProgramDesc which gradients blong.
            block_list (list[(varname, block_id, block_size)]): List of gradient blocks.
            add_trainer_suffix (Bool): Add trainer suffix to new variable's name if set True.
1301
        Returns:
1302
            var_mapping (collections.OrderedDict(varname->[new_varname_variable])):A dict mapping
1303
                from original var name to each var split.
T
typhoonzero 已提交
1304
        """
1305 1306

        # varname->[(block_id, current_block_size)]
1307
        block_map = collections.OrderedDict()
1308

1309
        var_mapping = collections.OrderedDict()
T
typhoonzero 已提交
1310 1311
        for block_str in block_list:
            varname, offset, size = block_str.split(":")
1312
            if varname not in block_map:
T
typhoonzero 已提交
1313
                block_map[varname] = []
1314
            block_map[varname].append((int(offset), int(size)))
Y
yi.wu 已提交
1315

M
minqiyang 已提交
1316
        for varname, splited in six.iteritems(block_map):
T
typhoonzero 已提交
1317
            orig_var = program.global_block().var(varname)
T
typhoonzero 已提交
1318
            if len(splited) == 1:
1319
                if self.sync_mode and add_trainer_suffix:
T
typhoonzero 已提交
1320
                    new_var_name = "%s.trainer_%d" % \
T
tangwei12 已提交
1321
                                   (orig_var.name, self.trainer_id)
W
Wu Yi 已提交
1322
                    program.global_block()._rename_var(varname, new_var_name)
T
typhoonzero 已提交
1323 1324 1325 1326 1327
                    var_mapping[varname] = \
                        [program.global_block().var(new_var_name)]
                else:
                    var_mapping[varname] = \
                        [program.global_block().var(orig_var.name)]
T
typhoonzero 已提交
1328
                continue
T
typhoonzero 已提交
1329
            var_mapping[varname] = []
T
typhoonzero 已提交
1330 1331 1332 1333
            orig_shape = orig_var.shape
            orig_dim1_flatten = 1
            if len(orig_shape) >= 2:
                orig_dim1_flatten = reduce(lambda x, y: x * y, orig_shape[1:])
T
typhoonzero 已提交
1334

T
typhoonzero 已提交
1335
            for i, block in enumerate(splited):
T
typhoonzero 已提交
1336
                size = block[1]
M
minqiyang 已提交
1337
                rows = size // orig_dim1_flatten
T
typhoonzero 已提交
1338 1339 1340
                splited_shape = [rows]
                if len(orig_shape) >= 2:
                    splited_shape.extend(orig_shape[1:])
T
typhoonzero 已提交
1341
                new_var_name = ""
1342
                if self.sync_mode and add_trainer_suffix:
T
typhoonzero 已提交
1343
                    new_var_name = "%s.block%d.trainer_%d" % \
T
tangwei12 已提交
1344
                                   (varname, i, self.trainer_id)
T
typhoonzero 已提交
1345 1346
                else:
                    new_var_name = "%s.block%d" % \
T
tangwei12 已提交
1347
                                   (varname, i)
T
typhoonzero 已提交
1348
                var = program.global_block().create_var(
T
typhoonzero 已提交
1349 1350
                    name=new_var_name,
                    persistable=False,
T
typhoonzero 已提交
1351
                    dtype=orig_var.dtype,
1352
                    type=orig_var.type,
T
typhoonzero 已提交
1353
                    shape=splited_shape)  # flattend splited var
T
typhoonzero 已提交
1354
                var_mapping[varname].append(var)
W
Wu Yi 已提交
1355
            program.global_block()._sync_with_cpp()
T
typhoonzero 已提交
1356
        return var_mapping
T
done  
typhoonzero 已提交
1357

1358
    def _clone_var(self, block, var, persistable=True):
T
done  
typhoonzero 已提交
1359 1360 1361 1362 1363 1364
        return block.create_var(
            name=var.name,
            shape=var.shape,
            dtype=var.dtype,
            type=var.type,
            lod_level=var.lod_level,
1365
            persistable=persistable)
T
done  
typhoonzero 已提交
1366

Y
Yancey1989 已提交
1367
    def _insert_split_op(self, program, orig_var, index, splited_vars):
Y
update  
Yancey1989 已提交
1368 1369 1370 1371
        if orig_var.type == core.VarDesc.VarType.SELECTED_ROWS:
            height_sections = []
            for v in splited_vars:
                height_sections.append(v.shape[0])
W
Wu Yi 已提交
1372
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
1373 1374 1375 1376
                index=index + 1,
                type="split_selected_rows",
                inputs={"X": orig_var},
                outputs={"Out": splited_vars},
1377 1378 1379 1380
                attrs={
                    "height_sections": height_sections,
                    RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE
                })
Y
update  
Yancey1989 已提交
1381 1382 1383 1384
        elif orig_var.type == core.VarDesc.VarType.LOD_TENSOR:
            sections = []
            for v in splited_vars:
                sections.append(v.shape[0])
W
Wu Yi 已提交
1385
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
1386 1387 1388 1389
                index=index + 1,
                type="split_byref",
                inputs={"X": orig_var},
                outputs={"Out": splited_vars},
1390 1391 1392 1393
                attrs={
                    "sections": sections,
                    RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE
                })
Y
update  
Yancey1989 已提交
1394 1395 1396
        else:
            AssertionError("Variable type should be in set "
                           "[LOD_TENSOR, SELECTED_ROWS]")
T
done  
typhoonzero 已提交
1397

T
typhoonzero 已提交
1398 1399 1400 1401
    def _get_optimizer_input_shape(self, op_type, varkey, orig_shape,
                                   param_shape):
        """
        Returns the shape for optimizer inputs that need to be reshaped when
1402
        Param and Grad is split to multiple servers.
T
typhoonzero 已提交
1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417
        """
        # HACK(typhoonzero): Should use functions of corresponding optimizer in
        # optimizer.py to get the shape, do not  bind this in the transpiler.
        if op_type == "adam":
            if varkey in ["Moment1", "Moment2"]:
                return param_shape
        elif op_type == "adagrad":
            if varkey == "Moment":
                return param_shape
        elif op_type == "adamax":
            if varkey in ["Moment", "InfNorm"]:
                return param_shape
        elif op_type == "momentum":
            if varkey == "Velocity":
                return param_shape
W
Wu Yi 已提交
1418 1419
        elif op_type == "rmsprop":
            if varkey in ["Moment", "MeanSquare"]:
T
typhoonzero 已提交
1420
                return param_shape
1421 1422 1423
        elif op_type == "decayed_adagrad":
            if varkey == "Moment":
                return param_shape
T
typhoonzero 已提交
1424 1425 1426 1427
        elif op_type == "sgd":
            pass
        return orig_shape

1428 1429
    def _get_varname_parts(self, varname):
        # returns origin, blockid, trainerid
T
typhoonzero 已提交
1430
        orig_var_name = ""
1431 1432 1433 1434 1435 1436 1437 1438 1439 1440
        trainer_part = ""
        block_part = ""
        trainer_idx = varname.find(".trainer_")
        if trainer_idx >= 0:
            trainer_part = varname[trainer_idx + 1:]
        else:
            trainer_idx = len(varname)
        block_index = varname.find(".block")
        if block_index >= 0:
            block_part = varname[block_index + 1:trainer_idx]
T
typhoonzero 已提交
1441
        else:
1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463
            block_index = len(varname)
        orig_var_name = varname[0:min(block_index, trainer_idx)]
        return orig_var_name, block_part, trainer_part

    def _orig_varname(self, varname):
        orig, _, _ = self._get_varname_parts(varname)
        return orig

    def _append_pserver_grad_merge_ops(self, optimize_block,
                                       grad_varname_for_block, endpoint,
                                       grad_to_block_id, origin_program):
        program = optimize_block.program
        pserver_block = program.global_block()
        grad_block = None
        for g in self.param_grad_ep_mapping[endpoint]["grads"]:
            if self._orig_varname(g.name) == \
                    self._orig_varname(grad_varname_for_block):
                grad_block = g
                break
        if not grad_block:
            # do not append this op if current endpoint
            # is not dealing with this grad block
1464
            return None
1465 1466 1467 1468
        orig_varname, block_name, trainer_name = self._get_varname_parts(
            grad_block.name)
        if block_name:
            merged_var_name = '.'.join([orig_varname, block_name])
T
typhoonzero 已提交
1469
        else:
1470
            merged_var_name = orig_varname
1471 1472

        merged_var = pserver_block.vars[merged_var_name]
1473 1474 1475
        grad_to_block_id.append(merged_var.name + ":" + str(optimize_block.idx))
        if self.sync_mode and self.trainer_num > 1:
            vars2merge = []
1476
            for i in range(self.trainer_num):
1477
                per_trainer_name = "%s.trainer_%d" % \
T
tangwei12 已提交
1478
                                   (merged_var_name, i)
1479 1480 1481 1482
                vars2merge.append(pserver_block.vars[per_trainer_name])
            optimize_block.append_op(
                type="sum",
                inputs={"X": vars2merge},
1483 1484
                outputs={"Out": merged_var},
                attrs={"use_mkldnn": False})
Q
qiaolongfei 已提交
1485 1486 1487 1488 1489
            optimize_block.append_op(
                type="scale",
                inputs={"X": merged_var},
                outputs={"Out": merged_var},
                attrs={"scale": 1.0 / float(self.trainer_num)})
1490
        return merged_var
T
typhoonzero 已提交
1491

1492
    def _append_pserver_ops(self, optimize_block, opt_op, endpoint,
1493
                            grad_to_block_id, origin_program, merged_var):
1494
        program = optimize_block.program
T
typhoonzero 已提交
1495
        pserver_block = program.global_block()
1496
        new_inputs = collections.OrderedDict()
W
Wu Yi 已提交
1497 1498 1499 1500 1501 1502 1503 1504 1505 1506

        def _get_param_block(opt_op):
            # param is already created on global program
            param_block = None
            for p in self.param_grad_ep_mapping[endpoint]["params"]:
                if same_or_split_var(p.name, opt_op.input("Param")[0]):
                    param_block = p
                    break
            return param_block

T
typhoonzero 已提交
1507
        for key in opt_op.input_names:
T
typhoonzero 已提交
1508 1509 1510
            if key == "Grad":
                new_inputs[key] = merged_var
            elif key == "Param":
W
Wu Yi 已提交
1511
                param_block = _get_param_block(opt_op)
T
typhoonzero 已提交
1512 1513
                if not param_block:
                    return
T
typhoonzero 已提交
1514
                tmpvar = pserver_block.create_var(
T
typhoonzero 已提交
1515
                    name=param_block.name,
T
typhoonzero 已提交
1516
                    persistable=True,
T
typhoonzero 已提交
1517 1518 1519
                    dtype=param_block.dtype,
                    shape=param_block.shape)
                new_inputs[key] = tmpvar
1520
            elif key == "LearningRate":
1521
                # learning rate variable has already be created by non-optimize op,
1522
                # don't create it once again.
1523
                lr_varname = opt_op.input(key)[0]
1524
                if lr_varname in pserver_block.vars:
1525 1526 1527 1528 1529 1530 1531 1532 1533
                    new_inputs[key] = pserver_block.vars[opt_op.input(key)[0]]
                else:
                    origin_var = origin_program.global_block().vars[lr_varname]
                    tmpvar = pserver_block.create_var(
                        name=origin_var.name,
                        persistable=origin_var.persistable,
                        dtype=origin_var.dtype,
                        shape=origin_var.shape)
                    new_inputs[key] = tmpvar
T
typhoonzero 已提交
1534

T
typhoonzero 已提交
1535
        for key in opt_op.input_names:
1536
            new_shape = None
W
Wu Yi 已提交
1537
            if key in ["Param", "Grad", "LearningRate"]:
T
typhoonzero 已提交
1538
                continue
1539
            var = self.origin_program.global_block().vars[opt_op.input(key)[0]]
T
typhoonzero 已提交
1540 1541 1542 1543
            # update accumulator variable shape
            param_shape = new_inputs["Param"].shape
            new_shape = self._get_optimizer_input_shape(opt_op.type, key,
                                                        var.shape, param_shape)
T
typhoonzero 已提交
1544
            tmpvar = pserver_block.create_var(
T
typhoonzero 已提交
1545 1546 1547 1548 1549
                name=var.name,
                persistable=var.persistable,
                dtype=var.dtype,
                shape=new_shape)
            new_inputs[key] = tmpvar
T
typhoonzero 已提交
1550

1551
        # change output's ParamOut variable
1552 1553
        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, opt_op)
1554
        outputs["ParamOut"] = new_inputs["Param"]
1555
        optimize_block.append_op(
T
typhoonzero 已提交
1556 1557
            type=opt_op.type,
            inputs=new_inputs,
T
typhoonzero 已提交
1558
            outputs=outputs,
G
gongweibao 已提交
1559
            attrs=opt_op.all_attrs())
T
typhoonzero 已提交
1560

1561 1562
    def _is_splited_grad_var(self, var, var_dict):
        grad_block = None
M
minqiyang 已提交
1563
        for _, g in six.iteritems(var_dict):
1564 1565 1566 1567 1568 1569
            if self._orig_varname(g.name) == self._orig_varname(var.name):
                if g.name.find(".trainer_") == -1:
                    grad_block = g
                    break
        return grad_block

Q
Qiyang Min 已提交
1570 1571 1572
    def _clone_lr_op(self, program, block, op):
        inputs = self._get_input_map_from_op(
            self.origin_program.global_block().vars, op)
M
minqiyang 已提交
1573
        for key, varlist in six.iteritems(inputs):
Q
Qiyang Min 已提交
1574 1575 1576 1577
            if not isinstance(varlist, list):
                varlist = [varlist]
            for var in varlist:
                if var not in program.global_block().vars:
W
Wu Yi 已提交
1578
                    block._clone_variable(var)
Q
Qiyang Min 已提交
1579 1580 1581

        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, op)
M
minqiyang 已提交
1582
        for key, varlist in six.iteritems(outputs):
Q
Qiyang Min 已提交
1583 1584 1585 1586
            if not isinstance(varlist, list):
                varlist = [varlist]
            for var in varlist:
                if var not in program.global_block().vars:
W
Wu Yi 已提交
1587
                    block._clone_variable(var)
Q
Qiyang Min 已提交
1588

Y
Yancey1989 已提交
1589
        return block.append_op(
G
gongweibao 已提交
1590
            type=op.type, inputs=inputs, outputs=outputs, attrs=op.all_attrs())
Q
Qiyang Min 已提交
1591 1592

    def _append_pserver_non_opt_ops(self, optimize_block, opt_op):
1593
        program = optimize_block.program
1594
        # Append the ops for parameters that do not need to be optimized/updated
1595 1596
        inputs = self._get_input_map_from_op(
            self.origin_program.global_block().vars, opt_op)
M
minqiyang 已提交
1597
        for key, varlist in six.iteritems(inputs):
1598 1599
            if not isinstance(varlist, list):
                varlist = [varlist]
T
typhoonzero 已提交
1600
            for var in varlist:
1601 1602 1603 1604 1605 1606
                # for ops like clipping and weight decay, get the splited var
                # for inputs/outputs
                grad_block = self._is_splited_grad_var(
                    var, program.global_block().vars)
                if grad_block:
                    inputs[key] = grad_block
1607
                elif var.name not in program.global_block().vars:
1608
                    program.global_block().create_var(
T
typhoonzero 已提交
1609 1610 1611 1612 1613
                        name=var.name,
                        persistable=var.persistable,
                        dtype=var.dtype,
                        shape=var.shape)

1614 1615
        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, opt_op)
M
minqiyang 已提交
1616
        for key, varlist in six.iteritems(outputs):
1617 1618 1619
            if not isinstance(varlist, list):
                varlist = [varlist]
            for var in varlist:
1620 1621 1622 1623
                grad_block = self._is_splited_grad_var(
                    var, program.global_block().vars)
                if grad_block:
                    outputs[key] = grad_block
1624
                elif var.name not in program.global_block().vars:
W
Wu Yi 已提交
1625
                    program.global_block()._clone_variable(var)
1626

Y
Yancey1989 已提交
1627
        return optimize_block.append_op(
T
typhoonzero 已提交
1628
            type=opt_op.type,
T
typhoonzero 已提交
1629 1630
            inputs=inputs,
            outputs=outputs,
G
gongweibao 已提交
1631
            attrs=opt_op.all_attrs())
T
typhoonzero 已提交
1632

1633 1634 1635 1636
    def _is_op_connected(self, op1, op2):
        # If one op's input is another op's output or
        # one op's output is another op's input, we say
        # the two operator is connected.
Q
qiaolongfei 已提交
1637
        if set(op1.desc.output_arg_names()) & set(op2.desc.input_arg_names()) or \
T
tangwei12 已提交
1638
                set(op1.desc.input_arg_names()) & set(op2.desc.output_arg_names()):
1639 1640 1641 1642 1643 1644
            return True
        return False

    def _create_ufind(self, optimize_ops):
        # Create a unit find data struct by optimize ops
        ufind = UnionFind(optimize_ops)
1645 1646
        for i in range(len(optimize_ops)):
            for j in range(i, len(optimize_ops)):
1647 1648 1649 1650 1651 1652
                op1 = optimize_ops[i]
                op2 = optimize_ops[j]
                if self._is_op_connected(op1, op2):
                    ufind.union(op1, op2)
        return ufind

1653
    def _is_optimizer_op(self, op):
T
typhoonzero 已提交
1654
        if "Param" in op.input_names and \
T
tangwei12 已提交
1655
                "LearningRate" in op.input_names:
1656 1657 1658 1659 1660 1661 1662
            return True
        return False

    def _is_opt_op_on_pserver(self, endpoint, op):
        param_names = [
            p.name for p in self.param_grad_ep_mapping[endpoint]["params"]
        ]
T
typhoonzero 已提交
1663
        if op.input("Param")[0] in param_names:
1664 1665 1666
            return True
        else:
            for n in param_names:
T
typhoonzero 已提交
1667
                param = op.input("Param")[0]
T
typhoonzero 已提交
1668
                if same_or_split_var(n, param) and n != param:
1669 1670 1671
                    return True
            return False

T
typhoonzero 已提交
1672
    def _get_input_map_from_op(self, varmap, op):
1673
        """Returns a dict from op input name to the vars in varmap."""
1674
        iomap = collections.OrderedDict()
T
typhoonzero 已提交
1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685
        for key in op.input_names:
            vars = []
            for varname in op.input(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap

    def _get_output_map_from_op(self, varmap, op):
1686
        """Returns a dict from op output name to the vars in varmap."""
1687
        iomap = collections.OrderedDict()
T
typhoonzero 已提交
1688 1689 1690 1691 1692 1693 1694 1695 1696
        for key in op.output_names:
            vars = []
            for varname in op.output(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap
1697 1698

    def _get_lr_ops(self):
1699 1700 1701
        lr_ops = []
        block = self.origin_program.global_block()
        for op in block.ops:
X
fix  
Xin Pan 已提交
1702 1703 1704 1705
            role_id = int(op.attr(RPC_OP_ROLE_ATTR_NAME))
            if role_id == int(LR_SCHED_OP_ROLE_ATTR_VALUE) or \
                role_id == int(LR_SCHED_OP_ROLE_ATTR_VALUE) | \
                    int(OPT_OP_ROLE_ATTR_VALUE):
1706 1707 1708 1709 1710
                lr_ops.append(op)
                log("append lr op: ", op.type)
        return lr_ops

    def _get_lr_ops_deprecated(self):
1711 1712 1713 1714
        lr_ops = []
        # find learning rate variables by optimize op
        lr_vars = set()
        for op in self.optimize_ops:
1715
            if self._is_optimizer_op(op):
1716 1717 1718 1719
                lr_vars.add(op.input("LearningRate")[0])

        find_ops = []
        # find ops which output is lr var
1720
        block = self.origin_program.global_block()
1721 1722 1723 1724 1725
        for op in block.ops:
            if set(op.output_arg_names) & lr_vars:
                find_ops.append(op)
        # make a union find struct by the ops in default_main_program
        ufind = UnionFind(block.ops)
1726

1727 1728 1729 1730 1731
        for op1 in block.ops:
            for op2 in block.ops:
                # NOTE: we need to skip all optimize ops, since it is connected
                # with forward/backward ops and lr ops, we only need the lr ops.
                if op1 != op2 and self._is_op_connected(op1, op2) and \
T
tangwei12 已提交
1732
                        not self._is_optimizer_op(op1) and not self._is_optimizer_op(op2):
1733 1734 1735 1736 1737 1738
                    ufind.union(op1, op2)
        # find all ops which is related with lr var
        for op1 in block.ops:
            for op2 in find_ops:
                if ufind.is_connected(op1, op2):
                    lr_ops.append(op1)
1739 1740
                    # we only need to append op for once
                    break
1741
        return lr_ops
Y
Yancey1989 已提交
1742

W
Wu Yi 已提交
1743 1744 1745 1746 1747
    def _is_opt_role_op(self, op):
        # NOTE: depend on oprole to find out whether this op is for
        # optimize
        op_maker = core.op_proto_and_checker_maker
        optimize_role = core.op_proto_and_checker_maker.OpRole.Optimize
G
gongweibao 已提交
1748 1749
        if op_maker.kOpRoleAttrName() in op.attr_names and \
                int(op.all_attrs()[op_maker.kOpRoleAttrName()]) == int(optimize_role):
W
Wu Yi 已提交
1750 1751 1752
            return True
        return False

Y
Yancey1989 已提交
1753
    def _get_optimize_pass(self):
1754
        """
1755
        Get optimizer operators, parameters and gradients from origin_program
1756 1757 1758 1759
        Returns:
            opt_ops (list): optimize operators.
            params_grads (dict): paramter->gradient.
        """
Y
Yancey1989 已提交
1760 1761 1762
        block = self.origin_program.global_block()
        opt_ops = []
        params_grads = []
1763 1764
        # tmp set to dedup
        optimize_params = set()
1765
        origin_var_dict = self.origin_program.global_block().vars
Y
Yancey1989 已提交
1766
        for op in block.ops:
W
Wu Yi 已提交
1767
            if self._is_opt_role_op(op):
Y
Yancey1989 已提交
1768
                opt_ops.append(op)
1769 1770 1771 1772 1773 1774
                if op.attr(OP_ROLE_VAR_ATTR_NAME):
                    param_name = op.attr(OP_ROLE_VAR_ATTR_NAME)[0]
                    grad_name = op.attr(OP_ROLE_VAR_ATTR_NAME)[1]
                    if not param_name in optimize_params:
                        optimize_params.add(param_name)
                        log("adding param_grad pair: ", param_name, grad_name)
1775 1776
                        params_grads.append([
                            origin_var_dict[param_name],
1777
                            origin_var_dict[grad_name]
1778
                        ])
Y
Yancey1989 已提交
1779 1780 1781
            else:
                pass
        return opt_ops, params_grads