distribute_transpiler.py 82.2 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

from __future__ import print_function
16 17 18 19 20
"""
Steps to transpile trainer:
1. split variable to multiple blocks, aligned by product(dim[1:]) (width).
2. rename splited grad variables to add trainer_id suffix ".trainer_%d".
3. modify trainer program add split_op to each grad variable.
Q
Qiyang Min 已提交
21
4. append send_op to send splited variables to server and
22 23
5. add recv_op to fetch params(splited blocks or origin param) from server.
6. append concat_op to merge splited blocks to update local weights.
24 25 26 27 28 29 30 31

Steps to transpile pserver:
1. create new program for parameter server.
2. create params and grad variables that assigned to current server instance.
3. create a sub-block in the server side program
4. append ops that should run on current server instance.
5. add listen_and_serv op
"""
D
dzhwinter 已提交
32

T
typhoonzero 已提交
33
import math
34
import numpy as np
35
import collections
Q
Qiao Longfei 已提交
36
import logging
37

38
from .ps_dispatcher import RoundRobin, PSDispatcher
W
Wu Yi 已提交
39
from .. import core, framework, unique_name
T
typhoonzero 已提交
40
from ..framework import Program, default_main_program, \
T
tangwei12 已提交
41 42
    default_startup_program, Block, \
    Parameter, grad_var_name
43
from .details import *
Q
Qiao Longfei 已提交
44
from ..distribute_lookup_table import find_distributed_lookup_table
45
from functools import reduce
46 47 48

LOOKUP_TABLE_TYPE = "lookup_table"
LOOKUP_TABLE_GRAD_TYPE = "lookup_table_grad"
49
OP_ROLE_VAR_ATTR_NAME = core.op_proto_and_checker_maker.kOpRoleVarAttrName()
Y
Yancey1989 已提交
50 51
RPC_OP_ROLE_ATTR_NAME = op_role_attr_name = core.op_proto_and_checker_maker.kOpRoleAttrName(
)
X
fix  
Xin Pan 已提交
52
OPT_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.Optimize
Y
Yancey1989 已提交
53
RPC_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.RPC
54 55 56 57 58 59 60 61 62
DIST_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.Dist
LR_SCHED_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.LRSched

PRINT_LOG = False


def log(*args):
    if PRINT_LOG:
        print(args)
T
done  
typhoonzero 已提交
63 64


T
typhoonzero 已提交
65 66 67 68 69 70
class VarBlock:
    def __init__(self, varname, offset, size):
        self.varname = varname
        # NOTE: real offset is offset * size
        self.offset = offset
        self.size = size
T
done  
typhoonzero 已提交
71

T
typhoonzero 已提交
72 73
    def __str__(self):
        return "%s:%d:%d" % (self.varname, self.offset, self.size)
T
done  
typhoonzero 已提交
74 75


76 77 78 79
def same_or_split_var(p_name, var_name):
    return p_name == var_name or p_name.startswith(var_name + ".block")


G
gongweibao 已提交
80
def slice_variable(var_list, slice_count, min_block_size):
T
typhoonzero 已提交
81
    """
82 83 84 85 86 87
    We may need to split dense tensor to one or more blocks and put
    them equally onto parameter server. One block is a sub-tensor
    aligned by dim[0] of the tensor.

    We need to have a minimal block size so that the calculations in
    the parameter server side can gain better performance. By default
88
    minimum block size 8K elements (maybe 16bit or 32bit or 64bit).
89 90 91

    Args:
        var_list (list): List of variables.
92 93
        slice_count (int): Numel of count that variables will be sliced, which
            could be the pserver services' count.
94 95
        min_block_size (int): Minimum splitted block size.
    Returns:
96
        blocks (list[(varname, block_id, current_block_size)]): A list
97
            of VarBlocks. Each VarBlock specifies a shard of the var.
T
typhoonzero 已提交
98 99 100
    """
    blocks = []
    for var in var_list:
101
        split_count = slice_count
T
typhoonzero 已提交
102 103 104 105
        var_numel = reduce(lambda x, y: x * y, var.shape)
        max_pserver_count = int(math.floor(var_numel / float(min_block_size)))
        if max_pserver_count == 0:
            max_pserver_count = 1
106
        if max_pserver_count < slice_count:
T
typhoonzero 已提交
107 108 109 110 111 112 113 114 115
            split_count = max_pserver_count
        block_size = int(math.ceil(var_numel / float(split_count)))

        if len(var.shape) >= 2:
            # align by dim1(width)
            dim1 = reduce(lambda x, y: x * y, var.shape[1:])
            remains = block_size % dim1
            if remains != 0:
                block_size += dim1 - remains
116
        # update split_count after aligning
T
typhoonzero 已提交
117
        split_count = int(math.ceil(var_numel / float(block_size)))
118
        for block_id in range(split_count):
T
typhoonzero 已提交
119 120 121 122 123 124 125
            curr_block_size = min(block_size, var_numel - (
                (block_id) * block_size))
            block = VarBlock(var.name, block_id, curr_block_size)
            blocks.append(str(block))
    return blocks


G
gongweibao 已提交
126 127 128 129 130 131 132
class DistributeTranspilerConfig(object):
    """
    slice_var_up (bool): Do Tensor slice for pservers, default is True.
    split_method (PSDispatcher): RoundRobin or HashName can be used
        try to choose the best method to balance loads for pservers.
    min_block_size (int): Minimum splitted element number in block.
        According:https://github.com/PaddlePaddle/Paddle/issues/8638#issuecomment-369912156
133
        We can use bandwidth effiently when data size is larger than 2MB.If you
G
gongweibao 已提交
134 135 136 137 138 139
        want to change it, please be sure you see the slice_variable function.
    """

    slice_var_up = True
    split_method = None
    min_block_size = 8192
W
Wu Yi 已提交
140
    enable_dc_asgd = False
W
Wu Yi 已提交
141 142
    # supported modes: pserver, nccl2
    mode = "pserver"
143
    print_log = False
G
gongweibao 已提交
144 145


Y
gen rst  
yi.wu 已提交
146
class DistributeTranspiler(object):
Y
yi.wu 已提交
147 148 149 150
    """
    **DistributeTranspiler**

    Convert the fluid program to distributed data-parallelism programs.
W
Wu Yi 已提交
151
    Supports two modes: pserver mode and nccl2 mode.
Y
yi.wu 已提交
152

W
Wu Yi 已提交
153 154 155 156 157 158 159 160 161
    In pserver mode, the main_program will be transformed to use a remote
    parameter server to do parameter optimization. And the optimization
    graph will be put into a parameter server program.

    In nccl2 mode, the transpiler will append a NCCL_ID broadcasting
    op in startup_program to share the NCCL_ID across the job nodes.
    After transpile_nccl2 called, you ***must*** pass trainer_id and
    num_trainers argument to ParallelExecutor to enable NCCL2 distributed
    mode.
Y
yi.wu 已提交
162 163 164 165

    Examples:
        .. code-block:: python

W
Wu Yi 已提交
166 167 168 169 170 171
           # for pserver mode
           pserver_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
           trainer_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
           current_endpoint = "192.168.0.1:6174"
           trainer_id = 0
           trainers = 4
Y
yi.wu 已提交
172 173
           role = os.getenv("PADDLE_TRAINING_ROLE")

W
Wu Yi 已提交
174
           t = fluid.DistributeTranspiler()
Y
yi.wu 已提交
175 176 177 178 179 180 181 182
           t.transpile(
                trainer_id, pservers=pserver_endpoints, trainers=trainers)
           if role == "PSERVER":
                pserver_program = t.get_pserver_program(current_endpoint)
                pserver_startup_program = t.get_startup_program(current_endpoint,
                                                                pserver_program)
           elif role == "TRAINER":
                trainer_program = t.get_trainer_program()
T
tangwei12 已提交
183

W
Wu Yi 已提交
184 185 186 187 188 189 190 191 192 193 194
           # for nccl2 mode
           config = fluid.DistributeTranspilerConfig()
           config.mode = "nccl2"
           t = fluid.DistributeTranspiler(config=config)
           t.transpile(trainer_id, workers=workers, current_endpoint=curr_ep)
           exe = fluid.ParallelExecutor(
               use_cuda,
               loss_name=loss_var.name,
               num_trainers=len(trainers.split(",)),
               trainer_id=trainer_id
           )
Y
yi.wu 已提交
195
    """
Y
Yancey1989 已提交
196

G
gongweibao 已提交
197 198 199 200 201 202 203 204 205
    def __init__(self, config=None):
        if config is not None:
            self.config = config
        else:
            self.config = DistributeTranspilerConfig()

        if self.config.split_method is None:
            self.config.split_method = RoundRobin

206 207 208
        global PRINT_LOG
        if self.config.print_log:
            PRINT_LOG = True
G
gongweibao 已提交
209 210 211
        assert (self.config.min_block_size >= 8192)
        assert (self.config.split_method.__bases__[0] == PSDispatcher)

W
Wu Yi 已提交
212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
    def _transpile_nccl2(self,
                         trainer_id,
                         trainers,
                         current_endpoint,
                         startup_program=None):
        if not startup_program:
            startup_program = default_startup_program()
        if trainer_id >= 0:
            worker_endpoints = trainers.split(",")
            # send NCCL_ID to others or recv from trainer 0
            worker_endpoints.remove(current_endpoint)

            nccl_id_var = startup_program.global_block().create_var(
                name="NCCLID", persistable=True, type=core.VarDesc.VarType.RAW)
            startup_program.global_block().append_op(
                type="gen_nccl_id",
                inputs={},
                outputs={"NCCLID": nccl_id_var},
                attrs={
                    "endpoint": current_endpoint,
                    "endpoint_list": worker_endpoints,
                    "trainer_id": trainer_id
                })
            return nccl_id_var
        else:
            raise ValueError("must set trainer_id > 0")

Q
Qiao Longfei 已提交
239
    def _get_all_remote_sparse_update_op(self, main_program):
Q
Qiao Longfei 已提交
240 241 242 243
        sparse_update_ops = []
        sparse_update_op_types = ["lookup_table"]
        for op in main_program.global_block().ops:
            if op.type in sparse_update_op_types and op.attr(
Q
Qiao Longfei 已提交
244 245
                    'remote_prefetch') is True and not op.attr(
                        'is_distributed'):
Q
Qiao Longfei 已提交
246 247 248
                sparse_update_ops.append(op)
        return sparse_update_ops

Q
Qiao Longfei 已提交
249
    def _update_remote_sparse_update_op(self, param_varname, height_sections,
Q
Qiao Longfei 已提交
250
                                        endpint_map, table_names):
Q
Qiao Longfei 已提交
251 252 253
        for op in self.sparse_update_ops:
            if param_varname in op.input_arg_names:
                op._set_attr('epmap', endpint_map)
Q
Qiao Longfei 已提交
254
                op._set_attr('table_names', table_names)
Q
Qiao Longfei 已提交
255
                op._set_attr('height_sections', height_sections)
Q
Qiao Longfei 已提交
256 257 258 259 260 261 262
                op._set_attr('trainer_id', self.trainer_id)

    def _is_input_of_remote_sparse_update_op(self, param_name):
        for op in self.sparse_update_ops:
            if param_name in op.input_arg_names:
                return True
        return False
Q
Qiao Longfei 已提交
263

264 265 266 267 268
    def transpile(self,
                  trainer_id,
                  program=None,
                  pservers="127.0.0.1:6174",
                  trainers=1,
W
Wu Yi 已提交
269
                  sync_mode=True,
W
Wu Yi 已提交
270 271
                  startup_program=None,
                  current_endpoint="127.0.0.1:6174"):
272
        """
Y
yi.wu 已提交
273 274 275 276 277 278 279
        Run the transpiler.

        Args:
            trainer_id (int): id for current trainer worker, if you have
                n workers, the id may range from 0 ~ n-1
            program (Program|None): program to transpile,
                default is fluid.default_main_program().
W
Wu Yi 已提交
280 281
            startup_program (Program|None): startup_program to transpile,
                default is fluid.default_startup_program().
Y
yi.wu 已提交
282 283
            pservers (str): comma separated ip:port string for the pserver
                list.
W
Wu Yi 已提交
284 285 286
            trainers (int|str): in pserver mode this is the number of
                trainers, in nccl2 mode this is a string of trainer
                endpoints.
Y
yi.wu 已提交
287
            sync_mode (bool): Do sync training or not, default is True.
W
Wu Yi 已提交
288 289
            startup_program (Program|None): startup_program to transpile,
                default is fluid.default_main_program().
W
Wu Yi 已提交
290 291 292
            current_endpoint (str): need pass current endpoint when
                transpile as nccl2 distributed mode. In pserver mode
                this argument is not used.
293 294 295
        """
        if program is None:
            program = default_main_program()
W
Wu Yi 已提交
296 297
        if startup_program is None:
            startup_program = default_startup_program()
298
        self.origin_program = program
W
Wu Yi 已提交
299 300
        self.startup_program = startup_program
        self.origin_startup_program = self.startup_program.clone()
G
gongweibao 已提交
301

W
Wu Yi 已提交
302 303 304 305 306 307 308 309 310
        if self.config.mode == "nccl2":
            assert (isinstance(trainers, str))
            self._transpile_nccl2(
                trainer_id,
                trainers,
                current_endpoint,
                startup_program=startup_program)
            return

311 312 313 314 315 316 317
        self.trainer_num = trainers
        self.sync_mode = sync_mode
        self.trainer_id = trainer_id
        pserver_endpoints = pservers.split(",")
        self.pserver_endpoints = pserver_endpoints
        self.optimize_ops, self.params_grads = self._get_optimize_pass()

G
gongweibao 已提交
318
        ps_dispatcher = self.config.split_method(self.pserver_endpoints)
319 320
        self.table_name = find_distributed_lookup_table(self.origin_program)
        self.has_distributed_lookup_table = self.table_name != None
321
        self.param_name_to_grad_name = dict()
W
Wu Yi 已提交
322
        self.grad_name_to_param_name = dict()
323 324
        for param_var, grad_var in self.params_grads:
            self.param_name_to_grad_name[param_var.name] = grad_var.name
W
Wu Yi 已提交
325
            self.grad_name_to_param_name[grad_var.name] = param_var.name
326

Q
Qiao Longfei 已提交
327
        # get all sparse update ops
Q
Qiao Longfei 已提交
328
        self.sparse_update_ops = self._get_all_remote_sparse_update_op(
Q
Qiao Longfei 已提交
329
            self.origin_program)
Q
Qiao Longfei 已提交
330
        # use_sparse_update_param_name -> split_height_section
Q
Qiao Longfei 已提交
331 332
        self.sparse_param_to_height_sections = dict()

T
tangwei12 已提交
333 334 335 336 337 338
        # add distributed attrs to program
        self.origin_program._is_distributed = True
        self.origin_program._endpoints = self.pserver_endpoints
        self.origin_program._is_chief = self.trainer_id == 0
        self.origin_program._distributed_lookup_table = self.table_name if self.table_name else None

339
        # split and create vars, then put splited vars in dicts for later use.
G
gongweibao 已提交
340
        # step 1: split and create vars, then put splited vars in dicts for later use.
G
gongweibao 已提交
341
        self._init_splited_vars()
342

G
gongweibao 已提交
343
        # step 2: insert send op to send gradient vars to parameter servers
Y
Yancey1989 已提交
344
        ps_dispatcher.reset()
Y
update  
Yancey1989 已提交
345
        send_vars = []
346 347 348 349 350 351

        # in general cases, the number of pservers is times of 2, and this
        # will lead to uneven distribution among weights and bias:
        #       fc_w@GRAD_trainer_0, fc_w@GRAD_trainer_1 --> pserver1
        #       fc_b@GRAD_trainer_0, fc_b@GRAD_trainer_1 --> pserver2
        # shuffle the map will avoid the uneven distribution above
M
minqiyang 已提交
352
        grad_var_mapping_items = list(six.iteritems(self.grad_var_mapping))
353

G
gongweibao 已提交
354
        if not self.config.slice_var_up:
355 356
            np.random.seed(self.origin_program.random_seed)
            np.random.shuffle(grad_var_mapping_items)
357

358
        self.grad_name_to_send_dummy_out = dict()
359
        for grad_varname, splited_vars in grad_var_mapping_items:
Y
update  
Yancey1989 已提交
360
            eplist = ps_dispatcher.dispatch(splited_vars)
361

G
gongweibao 已提交
362
            if not self.config.slice_var_up:
363 364
                assert (len(splited_vars) == 1)

365
            splited_grad_varname = grad_varname
Y
Yancey1989 已提交
366
            if len(splited_vars) == 1:
367
                splited_grad_varname = splited_vars[0].name
368 369
                index = find_op_by_output_arg(
                    program.global_block(), splited_grad_varname, reverse=True)
Q
Qiao Longfei 已提交
370 371 372 373 374 375 376
                if splited_vars[0].type == core.VarDesc.VarType.SELECTED_ROWS:
                    sparse_param_name = self.grad_name_to_param_name[
                        splited_grad_varname]
                    if self._is_input_of_remote_sparse_update_op(
                            sparse_param_name):
                        self.sparse_param_to_height_sections[
                            sparse_param_name] = [splited_vars[0].shape[0]]
Y
Yancey1989 已提交
377
            elif len(splited_vars) > 1:
378
                orig_var = program.global_block().vars[splited_grad_varname]
379 380
                index = find_op_by_output_arg(
                    program.global_block(), splited_grad_varname, reverse=True)
Y
Yancey1989 已提交
381
                self._insert_split_op(program, orig_var, index, splited_vars)
Y
update  
Yancey1989 已提交
382
                index += 1
Y
Yancey1989 已提交
383 384
            else:
                AssertionError("Can not insert the send op by original "
385
                               "variable name :", splited_grad_varname)
Y
Yancey1989 已提交
386

W
Wu Yi 已提交
387 388
            dummy_output = program.global_block().create_var(
                name=framework.generate_control_dev_var_name())
389
            self.grad_name_to_send_dummy_out[grad_varname] = dummy_output
W
Wu Yi 已提交
390

W
Wu Yi 已提交
391 392 393 394
            # get send op_role_var, if not splited, the grad should have .trainer suffix
            # if splited, grad should be the original grad var name (split_by_ref and send
            # will be on the same place). ParallelExecutor
            # will use op_role_var to get expected device place to run this op.
W
Wu Yi 已提交
395
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
396
                index=index + 1,
397
                type="send",
Y
update  
Yancey1989 已提交
398
                inputs={"X": splited_vars},
399
                outputs={"Out": dummy_output},
Y
Yancey1989 已提交
400 401
                attrs={
                    "epmap": eplist,
402
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
W
Wu Yi 已提交
403 404 405 406
                    OP_ROLE_VAR_ATTR_NAME: [
                        self.grad_name_to_param_name[grad_varname],
                        splited_grad_varname
                    ],
407
                    "sync_mode": not self.sync_mode,
Y
Yancey1989 已提交
408
                })
Y
update  
Yancey1989 已提交
409 410
            for _, var in enumerate(splited_vars):
                send_vars.append(var)
Y
Yancey1989 已提交
411 412

        if self.sync_mode:
W
Wu Yi 已提交
413 414
            send_barrier_out = program.global_block().create_var(
                name=framework.generate_control_dev_var_name())
415 416 417 418
            if self.has_distributed_lookup_table:
                self.grad_name_to_send_dummy_out[
                    self.table_name] = program.global_block().create_var(
                        name=framework.generate_control_dev_var_name())
419
            input_deps = list(self.grad_name_to_send_dummy_out.values())
420

Y
Yancey1989 已提交
421 422
            program.global_block().append_op(
                type="send_barrier",
M
minqiyang 已提交
423
                inputs={"X": list(input_deps)},
W
Wu Yi 已提交
424
                outputs={"Out": send_barrier_out},
Y
Yancey1989 已提交
425 426
                attrs={
                    "endpoints": pserver_endpoints,
W
Wu Yi 已提交
427 428
                    "sync_mode": self.sync_mode,
                    "trainer_id": self.trainer_id,
Y
Yancey1989 已提交
429
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
Y
Yancey1989 已提交
430
                })
Y
Yancey1989 已提交
431

G
gongweibao 已提交
432
        # step 3: insert recv op to receive parameters from parameter server
Y
Yancey1989 已提交
433
        recv_vars = []
Y
update  
Yancey1989 已提交
434
        for _, var in enumerate(send_vars):
435
            recv_vars.append(self.grad_param_mapping[var])
Y
update  
Yancey1989 已提交
436
        ps_dispatcher.reset()
Y
Yancey1989 已提交
437 438
        eplist = ps_dispatcher.dispatch(recv_vars)

T
typhoonzero 已提交
439
        for i, ep in enumerate(eplist):
Y
Yancey1989 已提交
440 441
            self.param_grad_ep_mapping[ep]["params"].append(recv_vars[i])
            self.param_grad_ep_mapping[ep]["grads"].append(send_vars[i])
442

Y
Yancey1989 已提交
443
        # step4: Concat the parameters splits together after recv.
W
Wu Yi 已提交
444
        all_recv_outputs = []
445
        for param_varname, splited_var in six.iteritems(self.param_var_mapping):
Y
Yancey1989 已提交
446
            eps = []
Q
Qiao Longfei 已提交
447
            table_names = []
Y
Yancey1989 已提交
448 449 450
            for var in splited_var:
                index = [v.name for v in recv_vars].index(var.name)
                eps.append(eplist[index])
Q
Qiao Longfei 已提交
451
                table_names.append(var.name)
W
Wu Yi 已提交
452 453 454 455
            if self.sync_mode:
                recv_dep_in = send_barrier_out
            else:
                # connect deps to send op in async mode
456
                recv_dep_in = self.grad_name_to_send_dummy_out[
W
Wu Yi 已提交
457
                    self.param_name_to_grad_name[param_varname]]
Q
Qiao Longfei 已提交
458

W
Wu Yi 已提交
459 460 461 462 463 464 465 466 467
            # get recv op_role_var, if not splited, the grad should have .trainer suffix
            # if splited, grad should be the original grad var name. ParallelExecutor
            # will use op_role_var to get expected device place to run this op.
            orig_grad_name = self.param_name_to_grad_name[param_varname]
            recv_op_role_var_name = orig_grad_name
            splited_trainer_grad = self.grad_var_mapping[orig_grad_name]
            if len(splited_trainer_grad) == 1:
                recv_op_role_var_name = splited_trainer_grad[0].name

Q
Qiao Longfei 已提交
468 469 470
            if param_varname in self.sparse_param_to_height_sections:
                height_sections = self.sparse_param_to_height_sections[
                    param_varname]
Q
Qiao Longfei 已提交
471 472
                self._update_remote_sparse_update_op(
                    param_varname, height_sections, eps, table_names)
Q
Qiao Longfei 已提交
473
            else:
Q
Qiao Longfei 已提交
474
                all_recv_outputs.extend(splited_var)
Q
Qiao Longfei 已提交
475 476 477 478 479 480 481 482 483 484 485 486
                program.global_block().append_op(
                    type="recv",
                    inputs={"X": [recv_dep_in]},
                    outputs={"Out": splited_var},
                    attrs={
                        "epmap": eps,
                        "trainer_id": self.trainer_id,
                        RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
                        OP_ROLE_VAR_ATTR_NAME:
                        [param_varname, recv_op_role_var_name],
                        "sync_mode": not self.sync_mode
                    })
T
typhoonzero 已提交
487

Q
qiaolongfei 已提交
488
        if self.sync_mode:
W
Wu Yi 已提交
489
            # form a WAW dependency
Q
qiaolongfei 已提交
490 491 492
            program.global_block().append_op(
                type="fetch_barrier",
                inputs={},
W
Wu Yi 已提交
493
                outputs={"Out": all_recv_outputs},
Q
qiaolongfei 已提交
494 495
                attrs={
                    "endpoints": pserver_endpoints,
W
Wu Yi 已提交
496
                    "trainer_id": self.trainer_id,
Q
qiaolongfei 已提交
497 498
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                })
Y
Yancey1989 已提交
499

500
        for param_varname, splited_var in six.iteritems(self.param_var_mapping):
T
typhoonzero 已提交
501 502
            if len(splited_var) <= 1:
                continue
503
            orig_param = program.global_block().vars[param_varname]
Q
Qiao Longfei 已提交
504 505 506 507 508 509 510 511 512
            if param_varname not in self.sparse_param_to_height_sections:
                program.global_block().append_op(
                    type="concat",
                    inputs={"X": splited_var},
                    outputs={"Out": [orig_param]},
                    attrs={
                        "axis": 0,
                        RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE
                    })
T
typhoonzero 已提交
513

G
gongweibao 已提交
514 515
        self._get_trainer_startup_program(recv_vars=recv_vars, eplist=eplist)

516
        if self.has_distributed_lookup_table:
Q
update  
qiaolongfei 已提交
517 518
            self._replace_lookup_table_op_with_prefetch(program,
                                                        pserver_endpoints)
Y
Yancey1989 已提交
519
            self._split_table_grad_and_add_send_vars(program, pserver_endpoints)
520

W
Wu Yi 已提交
521
    def get_trainer_program(self, wait_port=True):
Y
yi.wu 已提交
522 523 524 525 526 527
        """
        Get transpiled trainer side program.

        Returns:
            Program: trainer side program.
        """
T
typhoonzero 已提交
528
        # remove optimize ops and add a send op to main_program
X
Xin Pan 已提交
529
        # FIXME(typhoonzero): Also ops like clip_gradient, lrn_decay?
T
typhoonzero 已提交
530
        lr_ops = self._get_lr_ops()
531
        delete_ops(self.origin_program.global_block(), self.optimize_ops)
T
typhoonzero 已提交
532 533
        delete_ops(self.origin_program.global_block(), lr_ops)

534 535
        # delete table init op
        if self.has_distributed_lookup_table:
536 537 538
            table_var = self.startup_program.global_block().vars[
                self.table_name]
            table_param_init_op = []
539 540
            for op in self.startup_program.global_block().ops:
                if self.table_name in op.output_arg_names:
541 542 543 544 545
                    table_param_init_op.append(op)
            init_op_num = len(table_param_init_op)
            if init_op_num != 1:
                raise ValueError("table init op num should be 1, now is " + str(
                    init_op_num))
Q
Qiao Longfei 已提交
546
            table_init_op = table_param_init_op[0]
547 548 549 550 551 552
            self.startup_program.global_block().append_op(
                type="fake_init",
                inputs={},
                outputs={"Out": table_var},
                attrs={"shape": table_init_op.attr('shape')})
            delete_ops(self.startup_program.global_block(), table_param_init_op)
553

554
        self.origin_program.__str__()
G
gongweibao 已提交
555

W
Wu Yi 已提交
556 557 558
        if wait_port:
            wait_server_ready(self.pserver_endpoints)

559
        return self.origin_program
T
typhoonzero 已提交
560

W
Wu Yi 已提交
561
    def _get_trainer_startup_program(self, recv_vars, eplist):
G
gongweibao 已提交
562 563 564 565
        """
        Get transpiled trainer side startup program.

        Args:
W
Wu Yi 已提交
566
            recv_vars (list): Variable list to recv for current trainer_id
M
minqiyang 已提交
567
            eplist (list): A list of strings indicating
G
gongweibao 已提交
568 569 570 571

        Returns:
            Program: trainer side startup program.
        """
W
Wu Yi 已提交
572
        startup_program = self.startup_program
G
gongweibao 已提交
573 574 575 576

        # FIXME(gongwb): delete not need ops.
        # note that: some parameter is not trainable and those ops can't be deleted.

M
minqiyang 已提交
577
        for varname, splited_var in six.iteritems(self.param_var_mapping):
G
gongweibao 已提交
578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597
            # Get the eplist of recv vars
            eps = []
            for var in splited_var:
                index = [v.name for v in recv_vars].index(var.name)
                eps.append(eplist[index])

            for var in splited_var:
                if startup_program.global_block().has_var(var.name):
                    continue

                startup_program.global_block().create_var(
                    name=var.name,
                    persistable=False,
                    type=var.type,
                    dtype=var.dtype,
                    shape=var.shape,
                    lod_level=var.lod_level)

            op = startup_program.global_block().append_op(
                type="recv",
598
                inputs={"X": []},
G
gongweibao 已提交
599 600 601 602 603 604
                outputs={"Out": splited_var},
                attrs={
                    "epmap": eps,
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                })

W
Wu Yi 已提交
605 606
        fetch_barrier_out = startup_program.global_block().create_var(
            name=framework.generate_control_dev_var_name())
G
gongweibao 已提交
607 608 609
        startup_program.global_block().append_op(
            type="fetch_barrier",
            inputs={},
W
Wu Yi 已提交
610
            outputs={"Out": fetch_barrier_out},
G
gongweibao 已提交
611 612 613 614 615
            attrs={
                "endpoints": self.pserver_endpoints,
                RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
            })

M
minqiyang 已提交
616
        for varname, splited_var in six.iteritems(self.param_var_mapping):
T
tangwei12 已提交
617
            # add concat ops to merge splited parameters received from parameter servers.
G
gongweibao 已提交
618 619
            if len(splited_var) <= 1:
                continue
W
Wu Yi 已提交
620
            # NOTE: if enable memory optimization, origin vars maybe removed.
M
minqiyang 已提交
621
            if varname in startup_program.global_block().vars:
W
Wu Yi 已提交
622 623 624 625 626 627 628 629 630 631
                orig_param = startup_program.global_block().vars[varname]
            else:
                origin_param_var = self.origin_program.global_block().vars[
                    varname]
                orig_param = startup_program.global_block().create_var(
                    name=varname,
                    persistable=origin_param_var.persistable,
                    type=origin_param_var.type,
                    dtype=origin_param_var.dtype,
                    shape=origin_param_var.shape)
G
gongweibao 已提交
632 633 634 635 636 637 638 639
            startup_program.global_block().append_op(
                type="concat",
                inputs={"X": splited_var},
                outputs={"Out": [orig_param]},
                attrs={"axis": 0})

        return startup_program

T
typhoonzero 已提交
640 641
    def get_pserver_program(self, endpoint):
        """
Y
yi.wu 已提交
642
        Get parameter server side program.
643

Y
yi.wu 已提交
644 645
        Args:
            endpoint (str): current parameter server endpoint.
646

Y
yi.wu 已提交
647 648
        Returns:
            Program: the program for current parameter server to run.
T
typhoonzero 已提交
649
        """
Y
yi.wu 已提交
650 651 652 653
        # TODO(panyx0718): Revisit this assumption. what if #blocks > #pservers.
        # NOTE: assume blocks of the same variable is not distributed
        # on the same pserver, only change param/grad varnames for
        # trainers to fetch.
654 655 656
        sys.stderr.write("get_pserver_program() is deprecated, call \
get_pserver_programs() to get pserver main and startup \
in a single call.")
T
typhoonzero 已提交
657 658
        # step1
        pserver_program = Program()
X
Xin Pan 已提交
659
        pserver_program.random_seed = self.origin_program.random_seed
660
        # step2: Create vars to receive vars at parameter servers.
T
typhoonzero 已提交
661 662 663 664 665 666 667 668
        recv_inputs = []
        for v in self.param_grad_ep_mapping[endpoint]["params"]:
            self._clone_var(pserver_program.global_block(), v)
        for v in self.param_grad_ep_mapping[endpoint]["grads"]:
            # create vars for each trainer in global scope, so
            # we don't need to create them when grad arrives.
            # change client side var name to origin name by
            # removing ".trainer_%d" suffix
T
update  
typhoonzero 已提交
669 670 671 672 673
            suff_idx = v.name.find(".trainer_")
            if suff_idx >= 0:
                orig_var_name = v.name[:suff_idx]
            else:
                orig_var_name = v.name
T
typhoonzero 已提交
674 675 676 677 678 679 680 681 682
            # NOTE: single_trainer_var must be created for multi-trainer
            # case to merge grads from multiple trainers
            single_trainer_var = \
                pserver_program.global_block().create_var(
                    name=orig_var_name,
                    persistable=True,
                    type=v.type,
                    dtype=v.dtype,
                    shape=v.shape)
683
            if self.sync_mode and self.trainer_num > 1:
684
                for trainer_id in range(self.trainer_num):
T
typhoonzero 已提交
685 686 687 688 689 690 691 692 693
                    var = pserver_program.global_block().create_var(
                        name="%s.trainer_%d" % (orig_var_name, trainer_id),
                        persistable=False,
                        type=v.type,
                        dtype=v.dtype,
                        shape=v.shape)
                    recv_inputs.append(var)
            else:
                recv_inputs.append(single_trainer_var)
694

Q
qiaolongfei 已提交
695
        # step 3
696
        # Create a union-find data structure from optimize ops,
T
typhoonzero 已提交
697 698 699
        # If two ops are connected, we could add these two ops
        # into one set.
        ufind = self._create_ufind(self.optimize_ops)
Q
qiaolongfei 已提交
700
        # step 3.2
T
typhoonzero 已提交
701 702 703 704
        # Iterate through the ops and append optimize op which
        # located on current pserver
        opt_op_on_pserver = []
        for _, op in enumerate(self.optimize_ops):
705 706
            if self._is_optimizer_op(op) and self._is_opt_op_on_pserver(
                    endpoint, op):
T
typhoonzero 已提交
707
                opt_op_on_pserver.append(op)
Q
qiaolongfei 已提交
708
        # step 3.3
W
Wu Yi 已提交
709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726
        # prepare if dc asgd is enabled
        if self.config.enable_dc_asgd == True:
            assert (self.sync_mode == False)
            self.param_bak_list = []
            # add param_bak for each trainer
            for p in self.param_grad_ep_mapping[endpoint]["params"]:
                # each parameter should have w_bak for each trainer id
                for i in range(self.trainer_num):
                    param_bak_name = "%s.trainer_%d_bak" % (p.name, i)
                    tmpvar = pserver_program.global_block().create_var(
                        # NOTE: this var name format is used in `request_get_handler`
                        name=param_bak_name,
                        type=p.type,
                        shape=p.shape,
                        dtype=p.dtype)
                    self.param_bak_list.append((p, tmpvar))

        # step 3.4
T
typhoonzero 已提交
727
        # Iterate through the ops, and if an op and the optimize ops
728
        # which located on current pserver are in one set, then
T
typhoonzero 已提交
729
        # append it into the sub program.
T
typhoonzero 已提交
730 731 732

        global_ops = []

Y
wip  
yi.wu 已提交
733 734
        def __append_optimize_op__(op, block, grad_to_block_id, merged_var,
                                   lr_ops):
735
            if self._is_optimizer_op(op):
Q
qiaolongfei 已提交
736
                self._append_pserver_ops(block, op, endpoint, grad_to_block_id,
737
                                         self.origin_program, merged_var)
Y
wip  
yi.wu 已提交
738
            elif op not in lr_ops:
Q
Qiyang Min 已提交
739
                self._append_pserver_non_opt_ops(block, op)
740 741 742 743 744 745

        def __op_have_grad_input__(op):
            for varname in op.input_arg_names:
                if varname.find("@GRAD") >= 0:
                    return varname
            return ""
T
typhoonzero 已提交
746

Y
Yancey1989 已提交
747
        def __clone_lr_op_sub_block__(op, program, lr_block):
Q
Qiyang Min 已提交
748 749 750 751 752 753 754 755
            if not op.has_attr('sub_block'):
                return

            origin_block_desc = op.attr('sub_block')
            origin_block = self.origin_program.block(origin_block_desc.id)
            assert isinstance(origin_block, Block)
            # we put the new sub block to new block to follow the block
            # hierarchy of the original blocks
W
Wu Yi 已提交
756
            new_sub_block = program._create_block(lr_block.idx)
Q
Qiyang Min 已提交
757 758 759

            # clone vars
            for var in origin_block.vars:
W
Wu Yi 已提交
760
                new_sub_block._clone_variable(var)
Q
Qiyang Min 已提交
761 762

            # clone ops
Y
Yancey1989 已提交
763 764
            for origin_op in origin_block.ops:
                cloned_op = self._clone_lr_op(program, new_sub_block, origin_op)
Q
Qiyang Min 已提交
765
                # clone sub_block of op
Y
Yancey1989 已提交
766
                __clone_lr_op_sub_block__(cloned_op, program, new_sub_block)
Q
Qiyang Min 已提交
767 768

            # reset the block of op
W
Wu Yi 已提交
769
            op._set_attr('sub_block', new_sub_block)
Q
Qiyang Min 已提交
770

771
        # append lr decay ops to the child block if exists
772
        lr_ops = self._get_lr_ops()
773 774
        # record optimize blocks and we can run them on pserver parallel
        optimize_blocks = []
775
        if len(lr_ops) > 0:
W
Wu Yi 已提交
776
            lr_decay_block = pserver_program._create_block(
Q
qiaolongfei 已提交
777
                pserver_program.num_blocks - 1)
778
            optimize_blocks.append(lr_decay_block)
779
            for _, op in enumerate(lr_ops):
Y
Yancey1989 已提交
780
                cloned_op = self._append_pserver_non_opt_ops(lr_decay_block, op)
Q
Qiyang Min 已提交
781
                # append sub blocks to pserver_program in lr_decay_op
Y
Yancey1989 已提交
782 783
                __clone_lr_op_sub_block__(cloned_op, pserver_program,
                                          lr_decay_block)
784

T
typhoonzero 已提交
785
        # append op to the current block
Q
qiaolongfei 已提交
786
        grad_to_block_id = []
Q
qiaolongfei 已提交
787
        pre_block_idx = pserver_program.num_blocks - 1
T
typhoonzero 已提交
788
        for idx, opt_op in enumerate(opt_op_on_pserver):
W
Wu Yi 已提交
789
            per_opt_block = pserver_program._create_block(pre_block_idx)
790
            optimize_blocks.append(per_opt_block)
791
            optimize_target_param_name = opt_op.attr(OP_ROLE_VAR_ATTR_NAME)[0]
792
            # append grad merging ops before clip and weight decay
793 794
            # e.g. merge grad -> L2Decay op -> clip op -> optimize
            merged_var = None
795
            for _, op in enumerate(self.optimize_ops):
796 797 798 799 800
                # find the origin grad var before clipping/L2Decay,
                # merged_var should be the input var name of L2Decaybuil
                grad_varname_for_block = op.attr(OP_ROLE_VAR_ATTR_NAME)[1]
                if op.attr(OP_ROLE_VAR_ATTR_NAME)[
                        0] == optimize_target_param_name:
801 802 803
                    merged_var = self._append_pserver_grad_merge_ops(
                        per_opt_block, grad_varname_for_block, endpoint,
                        grad_to_block_id, self.origin_program)
804 805 806 807 808 809
                    if merged_var:
                        break  # append optimize op once then append other ops.
            if merged_var:
                for _, op in enumerate(self.optimize_ops):
                    # optimizer is connected to itself
                    if op.attr(OP_ROLE_VAR_ATTR_NAME)[0] == optimize_target_param_name and \
S
seiriosPlus 已提交
810
                            op not in global_ops:
811 812 813 814 815
                        log("append opt op: ", op.type, op.input_arg_names,
                            merged_var)
                        __append_optimize_op__(op, per_opt_block,
                                               grad_to_block_id, merged_var,
                                               lr_ops)
T
typhoonzero 已提交
816

W
Wu Yi 已提交
817
# dedup grad to ids list
W
Wu Yi 已提交
818
        grad_to_block_id = list(set(grad_to_block_id))
T
typhoonzero 已提交
819
        # append global ops
820
        if global_ops:
W
Wu Yi 已提交
821
            opt_state_block = pserver_program._create_block(
Q
qiaolongfei 已提交
822
                pserver_program.num_blocks - 1)
823
            optimize_blocks.append(opt_state_block)
Q
qiaolongfei 已提交
824
            for glb_op in global_ops:
X
Xi Chen 已提交
825
                __append_optimize_op__(glb_op, opt_state_block,
Y
wip  
yi.wu 已提交
826
                                       grad_to_block_id, None, lr_ops)
T
typhoonzero 已提交
827

828
        # process distributed lookup_table
Q
qiaolongfei 已提交
829
        prefetch_var_name_to_block_id = []
830 831
        if self.has_distributed_lookup_table:
            pserver_index = self.pserver_endpoints.index(endpoint)
832
            table_opt_block = self._create_table_optimize_block(
833
                pserver_index, pserver_program, pre_block_idx, grad_to_block_id)
834
            optimize_blocks.append(table_opt_block)
T
tangwei12 已提交
835
            lookup_table_var_name_to_block_id = self._create_prefetch_block(
836
                pserver_index, pserver_program, table_opt_block)
T
tangwei12 已提交
837 838
            checkpoint_block_id = self._create_checkpoint_save_block(
                pserver_program, table_opt_block.idx)
839

T
tangwei12 已提交
840
            pserver_program._distributed_lookup_table = self.table_name
T
tangwei12 已提交
841 842
            prefetch_var_name_to_block_id.extend(
                lookup_table_var_name_to_block_id)
843

844
        if len(optimize_blocks) == 0:
Q
Qiao Longfei 已提交
845 846
            logging.warn("pserver [" + str(endpoint) +
                         "] has no optimize block!!")
847 848 849 850 851 852
            pre_block_idx = pserver_program.num_blocks - 1
            empty_block = pserver_program._create_block(pre_block_idx)
            optimize_blocks.append(empty_block)

        # In some case, some parameter server will have no parameter to optimize
        # So we give an empty optimize block to parameter server.
853
        attrs = {
854
            "optimize_blocks": optimize_blocks,
855 856 857
            "endpoint": endpoint,
            "Fanin": self.trainer_num,
            "sync_mode": self.sync_mode,
Y
Yancey1989 已提交
858
            "grad_to_block_id": grad_to_block_id,
859
        }
T
tangwei12 已提交
860 861

        if self.has_distributed_lookup_table:
T
tangwei12 已提交
862
            attrs['checkpint_block_id'] = checkpoint_block_id
W
Wu Yi 已提交
863 864
        if self.config.enable_dc_asgd:
            attrs['dc_asgd'] = True
865

T
tangwei12 已提交
866 867 868 869
        if len(prefetch_var_name_to_block_id) > 0:
            attrs[
                'prefetch_var_name_to_block_id'] = prefetch_var_name_to_block_id

T
typhoonzero 已提交
870 871 872 873 874
        # step5 append the listen_and_serv op
        pserver_program.global_block().append_op(
            type="listen_and_serv",
            inputs={'X': recv_inputs},
            outputs={},
875
            attrs=attrs)
876

T
tangwei12 已提交
877
        # add distributed attrs
T
tangwei12 已提交
878
        pserver_program._slice_vars_and_attrs = self._get_slice_vars_and_attrs(
T
tangwei12 已提交
879
            endpoint)
880

W
Wu Yi 已提交
881
        pserver_program._sync_with_cpp()
W
Wu Yi 已提交
882 883
        # save pserver program to generate pserver side startup relatively.
        self.pserver_program = pserver_program
T
typhoonzero 已提交
884 885
        return pserver_program

W
Wu Yi 已提交
886 887 888 889 890 891
    def get_pserver_programs(self, endpoint):
        """
        Get pserver side main program and startup program for distributed training.

        Args:
            endpoint (str): current pserver endpoint.
M
minqiyang 已提交
892

W
Wu Yi 已提交
893 894 895 896
        Returns:
            tuple: (main_program, startup_program), of type "Program"
        """
        pserver_prog = self.get_pserver_program(endpoint)
W
Wu Yi 已提交
897 898
        pserver_startup = self.get_startup_program(
            endpoint, pserver_program=pserver_prog)
W
Wu Yi 已提交
899 900
        return pserver_prog, pserver_startup

901 902
    def get_startup_program(self,
                            endpoint,
W
Wu Yi 已提交
903
                            pserver_program=None,
904
                            startup_program=None):
T
typhoonzero 已提交
905
        """
W
Wu Yi 已提交
906 907
        **Deprecated**

T
typhoonzero 已提交
908 909 910
        Get startup program for current parameter server.
        Modify operator input variables if there are variables that
        were split to several blocks.
Y
yi.wu 已提交
911 912 913

        Args:
            endpoint (str): current pserver endpoint.
W
Wu Yi 已提交
914 915
            pserver_program (Program): deprecated, call get_pserver_program first.
            startup_program (Program): deprecated, should pass startup_program
M
minqiyang 已提交
916
                when initalizing
917

Y
yi.wu 已提交
918 919
        Returns:
            Program: parameter server side startup program.
T
typhoonzero 已提交
920
        """
921 922 923
        sys.stderr.write("get_startup_program() is deprecated, call \
get_pserver_programs() to get pserver main and startup \
in a single call.")
W
Wu Yi 已提交
924
        if pserver_program != None:
925 926 927
            sys.stderr.write("passing pserver_program to get_startup_program() \
is deprecated, you can use new API get_pserver_programs() to \
get both pserver main program and startup program.")
W
Wu Yi 已提交
928
        if startup_program != None:
929 930 931
            sys.stderr.write("passing startup_program to get_startup_program() \
is deprecated, use fluid.program_guard() or pass this argument \
to transpile() call.")
W
Wu Yi 已提交
932

T
typhoonzero 已提交
933
        s_prog = Program()
W
Wu Yi 已提交
934
        orig_s_prog = self.startup_program
X
Xin Pan 已提交
935
        s_prog.random_seed = orig_s_prog.random_seed
T
typhoonzero 已提交
936 937 938 939 940 941 942 943 944 945 946
        params = self.param_grad_ep_mapping[endpoint]["params"]

        def _get_splited_name_and_shape(varname):
            for idx, splited_param in enumerate(params):
                pname = splited_param.name
                if same_or_split_var(pname, varname) and varname != pname:
                    return pname, splited_param.shape
            return "", []

        # 1. create vars in pserver program to startup program
        pserver_vars = pserver_program.global_block().vars
947
        created_var_map = collections.OrderedDict()
M
minqiyang 已提交
948
        for _, var in six.iteritems(pserver_vars):
W
Wu Yi 已提交
949
            tmpvar = s_prog.global_block()._clone_variable(var)
T
typhoonzero 已提交
950 951 952 953
            created_var_map[var.name] = tmpvar

        # 2. rename op outputs
        for op in orig_s_prog.global_block().ops:
954
            new_outputs = collections.OrderedDict()
T
typhoonzero 已提交
955 956
            # do not append startup op if var is not on this pserver
            op_on_pserver = False
G
gongweibao 已提交
957 958 959 960 961 962 963 964 965 966
            # TODO(gongwb): remove this line.
            if op.type not in ["recv", "fetch_barrier", "concat"]:
                for key in op.output_names:
                    newname, _ = _get_splited_name_and_shape(op.output(key)[0])
                    if newname:
                        op_on_pserver = True
                        new_outputs[key] = created_var_map[newname]
                    elif op.output(key)[0] in pserver_vars:
                        op_on_pserver = True
                        new_outputs[key] = pserver_vars[op.output(key)[0]]
T
typhoonzero 已提交
967 968

            if op_on_pserver:
969 970 971
                # most startup program ops have no inputs
                new_inputs = self._get_input_map_from_op(pserver_vars, op)

T
typhoonzero 已提交
972 973 974
                if op.type in [
                        "gaussian_random", "fill_constant", "uniform_random"
                ]:
W
Wu Yi 已提交
975
                    op._set_attr("shape", list(new_outputs["Out"].shape))
T
typhoonzero 已提交
976 977 978 979
                s_prog.global_block().append_op(
                    type=op.type,
                    inputs=new_inputs,
                    outputs=new_outputs,
G
gongweibao 已提交
980
                    attrs=op.all_attrs())
W
Wu Yi 已提交
981 982 983 984 985 986 987 988 989
        if self.config.enable_dc_asgd:
            for p, p_bak in self.param_bak_list:
                startup_param_var = s_prog.global_block().vars[p.name]
                startup_tmpvar = s_prog.global_block().vars[p_bak.name]
                # copy init random value to param_bak
                s_prog.global_block().append_op(
                    type="assign",
                    inputs={"X": startup_param_var},
                    outputs={"Out": startup_tmpvar})
990 991

        # add slice vars
T
tangwei12 已提交
992
        s_prog._slice_vars_and_attrs = self._get_slice_vars_and_attrs(endpoint)
993

T
typhoonzero 已提交
994 995
        return s_prog

T
tangwei12 已提交
996 997 998
    def _get_slice_vars_and_attrs(self, endpoint):
        slice_vars_and_attrs = []
        block_suffix = "block"
999
        for param in self.param_grad_ep_mapping[endpoint]["params"]:
T
tangwei12 已提交
1000
            orig_var_name, block_name, _ = self._get_varname_parts(param.name)
T
tangwei12 已提交
1001
            if not block_name:
1002 1003
                continue

T
tangwei12 已提交
1004
            block_idx = int(block_name.split(block_suffix)[1])
1005 1006
            orig_var = self.origin_program.global_block().vars[orig_var_name]

T
tangwei12 已提交
1007
            skip_dim0 = 0
1008 1009
            slice_vars = self.param_var_mapping[orig_var_name]
            for slice_var in slice_vars[:block_idx]:
T
tangwei12 已提交
1010 1011
                skip_dim0 += slice_var.shape[0]
            slice_vars_and_attrs.append([orig_var, skip_dim0, param])
1012

T
tangwei12 已提交
1013
        return slice_vars_and_attrs
1014

1015 1016
    # ====================== private transpiler functions =====================

Y
yi.wu 已提交
1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
    def _update_dist_lookup_table_vars(self, param_list, grad_list,
                                       params_grads):
        # TODO(wuyi): put find a way to put dist lookup table stuff all together.
        # update self.table_param_grad and self.trainer_side_table_grad_list
        program = self.origin_program
        if self.has_distributed_lookup_table:
            param_list = [
                param for param in param_list if param.name != self.table_name
            ]
            grad_list = [
                grad for grad in grad_list
                if grad.name != grad_var_name(self.table_name)
            ]
            self.table_param_grad = [
                param_grad for param_grad in params_grads
                if param_grad[0].name == self.table_name
            ][0]
            table_grad_var = self.table_param_grad[1]
            if self.sync_mode:
                self.trainer_side_table_grad_list = [
                    program.global_block().create_var(
                        name="%s.trainer_%d.pserver_%d" %
                        (table_grad_var.name, self.trainer_id, index),
                        type=table_grad_var.type,
                        shape=table_grad_var.shape,
                        dtype=table_grad_var.dtype)
                    for index in range(len(self.pserver_endpoints))
                ]
            else:
                self.trainer_side_table_grad_list = [
                    program.global_block().create_var(
                        name="%s.pserver_%d" % (table_grad_var.name, index),
                        type=table_grad_var.type,
                        shape=table_grad_var.shape,
                        dtype=table_grad_var.dtype)
                    for index in range(len(self.pserver_endpoints))
                ]
        return param_list, grad_list

G
gongweibao 已提交
1056
    def _init_splited_vars(self):
Y
yi.wu 已提交
1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079
        # update these mappings for further transpile:
        # 1. param_var_mapping: param var name -> [splited params vars]
        # 2. grad_var_mapping: grad var name -> [splited grads vars]
        # 3. grad_param_mapping: grad.blockx -> param.blockx
        # 4. param_grad_ep_mapping: ep -> {"params": [], "grads": []}

        param_list = []
        grad_list = []
        param_grad_set = set()
        for p, g in self.params_grads:
            # skip parameter marked not trainable
            if type(p) == Parameter and p.trainable == False:
                continue
            if p.name not in param_grad_set:
                param_list.append(p)
                param_grad_set.add(p.name)
            if g.name not in param_grad_set:
                grad_list.append(g)
                param_grad_set.add(g.name)

        param_list, grad_list = self._update_dist_lookup_table_vars(
            param_list, grad_list, self.params_grads)

G
gongweibao 已提交
1080
        if self.config.slice_var_up:
Y
yi.wu 已提交
1081 1082
            # when we slice var up into blocks, we will slice the var according to
            # pserver services' count. A pserver may have two or more listening ports.
G
gongweibao 已提交
1083 1084 1085
            grad_blocks = slice_variable(grad_list,
                                         len(self.pserver_endpoints),
                                         self.config.min_block_size)
Y
yi.wu 已提交
1086
            param_blocks = slice_variable(param_list,
G
gongweibao 已提交
1087 1088
                                          len(self.pserver_endpoints),
                                          self.config.min_block_size)
Y
yi.wu 已提交
1089 1090 1091
        else:
            # when we do NOT slice var up into blocks, we will always slice params
            # grads into one block.
G
gongweibao 已提交
1092 1093 1094 1095
            grad_blocks = slice_variable(grad_list, 1,
                                         self.config.min_block_size)
            param_blocks = slice_variable(param_list, 1,
                                          self.config.min_block_size)
Y
yi.wu 已提交
1096 1097
        assert (len(grad_blocks) == len(param_blocks))

1098
        # origin_param_name -> [splited_param_vars]
Y
yi.wu 已提交
1099 1100
        self.param_var_mapping = self._create_vars_from_blocklist(
            self.origin_program, param_blocks)
1101
        # origin_grad_name -> [splited_grad_vars]
Y
yi.wu 已提交
1102 1103 1104 1105
        self.grad_var_mapping = self._create_vars_from_blocklist(
            self.origin_program,
            grad_blocks,
            add_trainer_suffix=self.trainer_num > 1)
1106
        # dict(grad_splited_var -> param_splited_var)
1107
        self.grad_param_mapping = collections.OrderedDict()
Y
yi.wu 已提交
1108 1109 1110
        for g, p in zip(grad_blocks, param_blocks):
            g_name, g_bid, _ = g.split(":")
            p_name, p_bid, _ = p.split(":")
T
tangwei12 已提交
1111
            self.grad_param_mapping[self.grad_var_mapping[g_name][int(g_bid)]] = \
1112
                self.param_var_mapping[p_name][int(p_bid)]
Y
yi.wu 已提交
1113 1114

        # create mapping of endpoint -> split var to create pserver side program
1115
        self.param_grad_ep_mapping = collections.OrderedDict()
Y
yi.wu 已提交
1116 1117 1118 1119 1120 1121 1122 1123 1124
        [
            self.param_grad_ep_mapping.update({
                ep: {
                    "params": [],
                    "grads": []
                }
            }) for ep in self.pserver_endpoints
        ]

1125
    # transpiler function for dis lookup_table
Q
update  
qiaolongfei 已提交
1126 1127
    def _replace_lookup_table_op_with_prefetch(self, program,
                                               pserver_endpoints):
1128
        # 1. replace lookup_table_op with split_ids_op -> prefetch_op -> sum_op
S
seiriosPlus 已提交
1129
        self.all_in_ids_vars = []
Q
qiaolongfei 已提交
1130 1131
        self.all_prefetch_input_vars = []
        self.all_prefetch_output_vars = []
S
seiriosPlus 已提交
1132 1133
        self.all_out_emb_vars = []
        lookup_table_op_index = -1
1134 1135 1136 1137 1138 1139

        continue_search_lookup_table_op = True
        while continue_search_lookup_table_op:
            continue_search_lookup_table_op = False
            all_ops = program.global_block().ops
            for op in all_ops:
Q
Qiao Longfei 已提交
1140 1141
                if op.type == LOOKUP_TABLE_TYPE and self.table_name == op.input(
                        "W")[0]:
1142
                    if not op.attr('is_distributed'):
Q
Qiao Longfei 已提交
1143 1144 1145
                        raise RuntimeError(
                            "lookup_table_op that lookup an distributed embedding table"
                            "should set is_distributed to true")
1146 1147
                    continue_search_lookup_table_op = True

S
seiriosPlus 已提交
1148 1149
                    lookup_table_op_index = lookup_table_op_index if lookup_table_op_index != -1 else list(
                        all_ops).index(op)
1150 1151 1152
                    ids_name = op.input("Ids")
                    out_name = op.output("Out")

Q
qiaolongfei 已提交
1153
                    ids_var = program.global_block().vars[ids_name[0]]
S
seiriosPlus 已提交
1154
                    self.all_in_ids_vars.append(ids_var)
Q
qiaolongfei 已提交
1155 1156

                    out_var = program.global_block().vars[out_name[0]]
S
seiriosPlus 已提交
1157
                    self.all_out_emb_vars.append(out_var)
1158 1159

                    # delete lookup_table_op
1160
                    delete_ops(program.global_block(), [op])
1161 1162 1163
                    # break for loop
                    break

S
seiriosPlus 已提交
1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209
        for index in range(len(self.pserver_endpoints)):
            in_var = program.global_block().create_var(
                name=str("prefetch_compress_in_tmp_" + str(index)),
                type=self.all_in_ids_vars[0].type,
                shape=self.all_in_ids_vars[0].shape,
                dtype=self.all_in_ids_vars[0].dtype)
            self.all_prefetch_input_vars.append(in_var)

            out_var = program.global_block().create_var(
                name=str("prefetch_compress_out_tmp_" + str(index)),
                type=self.all_out_emb_vars[0].type,
                shape=self.all_out_emb_vars[0].shape,
                dtype=self.all_out_emb_vars[0].dtype)
            self.all_prefetch_output_vars.append(out_var)

        # insert split_ids_op
        program.global_block()._insert_op(
            index=lookup_table_op_index,
            type="split_ids",
            inputs={'Ids': self.all_in_ids_vars},
            outputs={"Out": self.all_prefetch_input_vars})

        # insert prefetch_op
        program.global_block()._insert_op(
            index=lookup_table_op_index + 1,
            type="prefetch",
            inputs={'X': self.all_prefetch_input_vars},
            outputs={"Out": self.all_prefetch_output_vars},
            attrs={
                "epmap": pserver_endpoints,
                # FIXME(qiao) temporarily disable this config because prefetch
                # is not act as other rpc op, it's more like a forward op
                # RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
            })

        # insert concat_op
        program.global_block()._insert_op(
            index=lookup_table_op_index + 2,
            type="merge_ids",
            inputs={
                'Ids': self.all_in_ids_vars,
                'Rows': self.all_prefetch_input_vars,
                'X': self.all_prefetch_output_vars
            },
            outputs={"Out": self.all_out_emb_vars})

Y
Yancey1989 已提交
1210
    def _split_table_grad_and_add_send_vars(self, program, pserver_endpoints):
1211
        # 2. add split_ids_op and send_op to send gradient to pservers
1212

1213 1214
        # there should only be one table_name
        all_ops = program.global_block().ops
T
typhoonzero 已提交
1215
        table_grad_name = grad_var_name(self.table_name)
1216 1217 1218 1219
        for op in all_ops:
            if table_grad_name in op.output_arg_names:
                op_index = list(all_ops).index(op)
                # insert split_ids_op
W
Wu Yi 已提交
1220
                program.global_block()._insert_op(
1221 1222 1223 1224 1225
                    index=op_index + 1,
                    type="split_ids",
                    inputs={
                        'Ids': [program.global_block().vars[table_grad_name]]
                    },
T
tangwei12 已提交
1226 1227
                    outputs={"Out": self.trainer_side_table_grad_list},
                    attrs={RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE})
W
Wu Yi 已提交
1228
                program.global_block()._insert_op(
1229
                    index=op_index + 2,
1230
                    type="send",
1231
                    inputs={'X': self.trainer_side_table_grad_list},
1232 1233 1234 1235 1236
                    outputs={
                        'Out':
                        [self.grad_name_to_send_dummy_out[self.table_name]]
                        if self.sync_mode else []
                    },
Y
Yancey1989 已提交
1237
                    attrs={
1238
                        "sync_mode": not self.sync_mode,
Y
Yancey1989 已提交
1239
                        "epmap": pserver_endpoints,
W
Wu Yi 已提交
1240
                        "trainer_id": self.trainer_id,
W
Wu Yi 已提交
1241 1242 1243 1244 1245
                        RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
                        OP_ROLE_VAR_ATTR_NAME: [
                            self.grad_name_to_param_name[table_grad_name],
                            table_grad_name
                        ]
Y
Yancey1989 已提交
1246
                    })
1247 1248 1249 1250 1251 1252
                break

    def _create_prefetch_block(self, pserver_index, pserver_program,
                               optimize_block):
        # STEP: create prefetch block
        table_var = pserver_program.global_block().vars[self.table_name]
Q
qiaolongfei 已提交
1253
        prefetch_var_name_to_block_id = []
S
seiriosPlus 已提交
1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278
        prefetch_block = pserver_program._create_block(optimize_block.idx)
        trainer_ids = self.all_prefetch_input_vars[pserver_index]
        pserver_ids = pserver_program.global_block().create_var(
            name=trainer_ids.name,
            type=trainer_ids.type,
            shape=trainer_ids.shape,
            dtype=trainer_ids.dtype)
        trainer_out = self.all_prefetch_output_vars[pserver_index]
        pserver_out = pserver_program.global_block().create_var(
            name=trainer_out.name,
            type=trainer_out.type,
            shape=trainer_out.shape,
            dtype=trainer_out.dtype)
        prefetch_block.append_op(
            type="lookup_sparse_table",
            inputs={'Ids': pserver_ids,
                    "W": table_var},
            outputs={"Out": pserver_out},
            attrs={
                "is_sparse": True,  # has no effect on lookup_table op
                "is_distributed": True,
                "padding_idx": -1
            })
        prefetch_var_name_to_block_id.append(trainer_ids.name + ":" + str(
            prefetch_block.idx))
Q
qiaolongfei 已提交
1279
        return prefetch_var_name_to_block_id
1280 1281

    def _create_table_optimize_block(self, pserver_index, pserver_program,
1282
                                     pre_block_idx, grad_to_block_id):
1283
        # STEP: create table optimize block
1284
        table_opt_block = pserver_program._create_block(pre_block_idx)
1285
        # create table param and grad var in pserver program
1286 1287
        # create table optimize block in pserver program
        table_opt_op = [
Q
Qiao Longfei 已提交
1288 1289
            op for op in self.optimize_ops if 'Param' in op.input_names and
            op.input("Param")[0] == self.table_name
1290 1291
        ][0]

Y
Yancey1989 已提交
1292 1293
        origin_param_var = self.origin_program.global_block().vars[
            self.table_name]
T
tangwei12 已提交
1294

T
tangwei12 已提交
1295
        zero_dim = int(
T
bug fix  
tangwei12 已提交
1296 1297
            math.ceil(origin_param_var.shape[0] / float(
                len(self.pserver_endpoints))))
T
tangwei12 已提交
1298 1299 1300
        table_shape = list(origin_param_var.shape)
        table_shape[0] = zero_dim

Y
Yancey1989 已提交
1301 1302
        param_var = pserver_program.global_block().create_var(
            name=origin_param_var.name,
T
tangwei12 已提交
1303
            shape=table_shape,
Y
Yancey1989 已提交
1304 1305 1306
            dtype=origin_param_var.dtype,
            type=core.VarDesc.VarType.SELECTED_ROWS,
            persistable=True)
1307

1308 1309
        # parameter must be selected rows
        param_var.desc.set_type(core.VarDesc.VarType.SELECTED_ROWS)
W
Wu Yi 已提交
1310
        grad_var = pserver_program.global_block()._clone_variable(
T
typhoonzero 已提交
1311
            self.origin_program.global_block().vars[grad_var_name(
1312
                self.table_name)])
1313

1314 1315 1316
        lr_var = pserver_program.global_block()._clone_variable(
            self.origin_program.global_block().vars[table_opt_op.input(
                "LearningRate")[0]])
1317

1318 1319 1320
        if self.sync_mode:
            # create grad vars in pserver program
            table_grad_var = self.table_param_grad[1]
1321
            pserver_side_table_grad_list = [
1322 1323 1324 1325 1326 1327 1328 1329 1330
                pserver_program.global_block().create_var(
                    name="%s.trainer_%d.pserver_%d" %
                    (table_grad_var.name, index, pserver_index),
                    type=table_grad_var.type,
                    shape=table_grad_var.shape,
                    dtype=table_grad_var.dtype)
                for index in range(self.trainer_num)
            ]

1331
            # append sum op for pserver_side_table_grad_list
1332 1333
            table_opt_block.append_op(
                type="sum",
1334
                inputs={"X": pserver_side_table_grad_list},
1335 1336
                outputs={"Out": [grad_var]},
                attrs={"use_mkldnn": False})
1337 1338
        else:
            # in async_mode, for table gradient, it also need to be splited to each parameter server
1339
            origin_grad_name = grad_var.name
1340 1341
            splited_grad_name = self.trainer_side_table_grad_list[
                pserver_index].name
1342 1343
            if not splited_grad_name.startswith(origin_grad_name):
                raise ValueError("origin_grad_var: " + splited_grad_name +
1344
                                 " grad_var:" + grad_var.name)
W
Wu Yi 已提交
1345
            grad_var = pserver_program.global_block()._rename_var(
1346
                origin_grad_name, splited_grad_name)
1347 1348 1349 1350 1351 1352 1353

        inputs = {
            "Param": [param_var],
            "Grad": [grad_var],
            "LearningRate": [lr_var]
        }
        outputs = {"ParamOut": [param_var]}
1354
        # only support sgd now
1355 1356 1357
        logging.warn(
            "distribute lookup table only support sgd optimizer, change it's optimizer to sgd instead of "
            + table_opt_op.type)
1358
        table_opt_block.append_op(type="sgd", inputs=inputs, outputs=outputs)
1359

1360 1361 1362
        # add table parameter gradient and it's block id to grad_to_block_id
        grad_to_block_id.append(grad_var.name + ":" + str(table_opt_block.idx))

1363 1364
        return table_opt_block

T
tangwei12 已提交
1365 1366 1367 1368 1369
    def _create_checkpoint_save_block(self, pserver_program, pre_block_idx):
        """
        create a new block to handle save checkpoint.
        """

T
tangwei12 已提交
1370
        pserver_program.global_block().create_var(
T
tangwei12 已提交
1371
            name="kLookupTablePath",
T
tangwei12 已提交
1372 1373
            persistable=True,
            type=core.VarDesc.VarType.RAW)
T
tangwei12 已提交
1374

W
Wu Yi 已提交
1375
        checkpoint_save_block = pserver_program._create_block(pre_block_idx)
T
tangwei12 已提交
1376
        # this 'file_path' do not be used in save lookup table variable
T
tangwei12 已提交
1377 1378 1379 1380
        checkpoint_save_block.append_op(
            type='save',
            inputs={'X': [self.table_name]},
            outputs={},
T
tangwei12 已提交
1381
            attrs={'file_path': "none"})
T
tangwei12 已提交
1382 1383 1384

        return checkpoint_save_block.idx

T
typhoonzero 已提交
1385 1386 1387 1388 1389
    def _create_vars_from_blocklist(self,
                                    program,
                                    block_list,
                                    add_trainer_suffix=False):
        """
1390
        Create vars for each split.
T
typhoonzero 已提交
1391 1392
        NOTE: only grads need to be named for different trainers, use
              add_trainer_suffix to rename the grad vars.
1393 1394 1395 1396
        Args:
            program (ProgramDesc): ProgramDesc which gradients blong.
            block_list (list[(varname, block_id, block_size)]): List of gradient blocks.
            add_trainer_suffix (Bool): Add trainer suffix to new variable's name if set True.
1397
        Returns:
1398
            var_mapping (collections.OrderedDict(varname->[new_varname_variable])):A dict mapping
1399
                from original var name to each var split.
T
typhoonzero 已提交
1400
        """
1401 1402

        # varname->[(block_id, current_block_size)]
1403
        block_map = collections.OrderedDict()
1404

1405
        var_mapping = collections.OrderedDict()
T
typhoonzero 已提交
1406 1407
        for block_str in block_list:
            varname, offset, size = block_str.split(":")
1408
            if varname not in block_map:
T
typhoonzero 已提交
1409
                block_map[varname] = []
1410
            block_map[varname].append((int(offset), int(size)))
Y
yi.wu 已提交
1411

M
minqiyang 已提交
1412
        for varname, splited in six.iteritems(block_map):
T
typhoonzero 已提交
1413
            orig_var = program.global_block().var(varname)
T
typhoonzero 已提交
1414
            if len(splited) == 1:
1415
                if self.sync_mode and add_trainer_suffix:
T
typhoonzero 已提交
1416
                    new_var_name = "%s.trainer_%d" % \
T
tangwei12 已提交
1417
                                   (orig_var.name, self.trainer_id)
W
Wu Yi 已提交
1418
                    program.global_block()._rename_var(varname, new_var_name)
T
typhoonzero 已提交
1419 1420 1421 1422 1423
                    var_mapping[varname] = \
                        [program.global_block().var(new_var_name)]
                else:
                    var_mapping[varname] = \
                        [program.global_block().var(orig_var.name)]
T
typhoonzero 已提交
1424
                continue
T
typhoonzero 已提交
1425
            var_mapping[varname] = []
T
typhoonzero 已提交
1426 1427 1428 1429
            orig_shape = orig_var.shape
            orig_dim1_flatten = 1
            if len(orig_shape) >= 2:
                orig_dim1_flatten = reduce(lambda x, y: x * y, orig_shape[1:])
T
typhoonzero 已提交
1430

T
typhoonzero 已提交
1431
            for i, block in enumerate(splited):
T
typhoonzero 已提交
1432
                size = block[1]
M
minqiyang 已提交
1433
                rows = size // orig_dim1_flatten
T
typhoonzero 已提交
1434 1435 1436
                splited_shape = [rows]
                if len(orig_shape) >= 2:
                    splited_shape.extend(orig_shape[1:])
T
typhoonzero 已提交
1437
                new_var_name = ""
1438
                if self.sync_mode and add_trainer_suffix:
T
typhoonzero 已提交
1439
                    new_var_name = "%s.block%d.trainer_%d" % \
T
tangwei12 已提交
1440
                                   (varname, i, self.trainer_id)
T
typhoonzero 已提交
1441 1442
                else:
                    new_var_name = "%s.block%d" % \
T
tangwei12 已提交
1443
                                   (varname, i)
T
typhoonzero 已提交
1444
                var = program.global_block().create_var(
T
typhoonzero 已提交
1445 1446
                    name=new_var_name,
                    persistable=False,
T
typhoonzero 已提交
1447
                    dtype=orig_var.dtype,
1448
                    type=orig_var.type,
T
typhoonzero 已提交
1449
                    shape=splited_shape)  # flattend splited var
T
typhoonzero 已提交
1450
                var_mapping[varname].append(var)
W
Wu Yi 已提交
1451
            program.global_block()._sync_with_cpp()
T
typhoonzero 已提交
1452
        return var_mapping
T
done  
typhoonzero 已提交
1453

1454
    def _clone_var(self, block, var, persistable=True):
T
done  
typhoonzero 已提交
1455 1456 1457 1458 1459 1460
        return block.create_var(
            name=var.name,
            shape=var.shape,
            dtype=var.dtype,
            type=var.type,
            lod_level=var.lod_level,
1461
            persistable=persistable)
T
done  
typhoonzero 已提交
1462

Y
Yancey1989 已提交
1463
    def _insert_split_op(self, program, orig_var, index, splited_vars):
Y
update  
Yancey1989 已提交
1464 1465 1466 1467
        if orig_var.type == core.VarDesc.VarType.SELECTED_ROWS:
            height_sections = []
            for v in splited_vars:
                height_sections.append(v.shape[0])
Q
Qiao Longfei 已提交
1468
            sparse_param_name = self.grad_name_to_param_name[orig_var.name]
Q
Qiao Longfei 已提交
1469
            if self._is_input_of_remote_sparse_update_op(sparse_param_name):
Q
Qiao Longfei 已提交
1470 1471
                self.sparse_param_to_height_sections[
                    sparse_param_name] = height_sections
W
Wu Yi 已提交
1472
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
1473 1474 1475 1476
                index=index + 1,
                type="split_selected_rows",
                inputs={"X": orig_var},
                outputs={"Out": splited_vars},
1477 1478 1479 1480
                attrs={
                    "height_sections": height_sections,
                    RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE
                })
Y
update  
Yancey1989 已提交
1481 1482 1483 1484
        elif orig_var.type == core.VarDesc.VarType.LOD_TENSOR:
            sections = []
            for v in splited_vars:
                sections.append(v.shape[0])
W
Wu Yi 已提交
1485
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
1486 1487 1488 1489
                index=index + 1,
                type="split_byref",
                inputs={"X": orig_var},
                outputs={"Out": splited_vars},
1490 1491 1492 1493
                attrs={
                    "sections": sections,
                    RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE
                })
Y
update  
Yancey1989 已提交
1494 1495 1496
        else:
            AssertionError("Variable type should be in set "
                           "[LOD_TENSOR, SELECTED_ROWS]")
T
done  
typhoonzero 已提交
1497

T
typhoonzero 已提交
1498 1499 1500 1501
    def _get_optimizer_input_shape(self, op_type, varkey, orig_shape,
                                   param_shape):
        """
        Returns the shape for optimizer inputs that need to be reshaped when
1502
        Param and Grad is split to multiple servers.
T
typhoonzero 已提交
1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514
        """
        # HACK(typhoonzero): Should use functions of corresponding optimizer in
        # optimizer.py to get the shape, do not  bind this in the transpiler.
        if op_type == "adam":
            if varkey in ["Moment1", "Moment2"]:
                return param_shape
        elif op_type == "adagrad":
            if varkey == "Moment":
                return param_shape
        elif op_type == "adamax":
            if varkey in ["Moment", "InfNorm"]:
                return param_shape
1515
        elif op_type in ["momentum", "lars_momentum"]:
T
typhoonzero 已提交
1516 1517
            if varkey == "Velocity":
                return param_shape
W
Wu Yi 已提交
1518 1519
        elif op_type == "rmsprop":
            if varkey in ["Moment", "MeanSquare"]:
T
typhoonzero 已提交
1520
                return param_shape
1521 1522 1523
        elif op_type == "decayed_adagrad":
            if varkey == "Moment":
                return param_shape
1524 1525 1526
        elif op_type == "ftrl":
            if varkey in ["SquaredAccumulator", "LinearAccumulator"]:
                return param_shape
T
typhoonzero 已提交
1527 1528
        elif op_type == "sgd":
            pass
1529 1530 1531 1532
        else:
            raise ValueError(
                "Not supported optimizer for distributed training: %s" %
                op_type)
T
typhoonzero 已提交
1533 1534
        return orig_shape

1535 1536
    def _get_varname_parts(self, varname):
        # returns origin, blockid, trainerid
T
typhoonzero 已提交
1537
        orig_var_name = ""
1538 1539 1540 1541 1542 1543 1544 1545 1546 1547
        trainer_part = ""
        block_part = ""
        trainer_idx = varname.find(".trainer_")
        if trainer_idx >= 0:
            trainer_part = varname[trainer_idx + 1:]
        else:
            trainer_idx = len(varname)
        block_index = varname.find(".block")
        if block_index >= 0:
            block_part = varname[block_index + 1:trainer_idx]
T
typhoonzero 已提交
1548
        else:
1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570
            block_index = len(varname)
        orig_var_name = varname[0:min(block_index, trainer_idx)]
        return orig_var_name, block_part, trainer_part

    def _orig_varname(self, varname):
        orig, _, _ = self._get_varname_parts(varname)
        return orig

    def _append_pserver_grad_merge_ops(self, optimize_block,
                                       grad_varname_for_block, endpoint,
                                       grad_to_block_id, origin_program):
        program = optimize_block.program
        pserver_block = program.global_block()
        grad_block = None
        for g in self.param_grad_ep_mapping[endpoint]["grads"]:
            if self._orig_varname(g.name) == \
                    self._orig_varname(grad_varname_for_block):
                grad_block = g
                break
        if not grad_block:
            # do not append this op if current endpoint
            # is not dealing with this grad block
1571
            return None
1572 1573 1574 1575
        orig_varname, block_name, trainer_name = self._get_varname_parts(
            grad_block.name)
        if block_name:
            merged_var_name = '.'.join([orig_varname, block_name])
T
typhoonzero 已提交
1576
        else:
1577
            merged_var_name = orig_varname
1578 1579

        merged_var = pserver_block.vars[merged_var_name]
1580 1581 1582
        grad_to_block_id.append(merged_var.name + ":" + str(optimize_block.idx))
        if self.sync_mode and self.trainer_num > 1:
            vars2merge = []
1583
            for i in range(self.trainer_num):
1584
                per_trainer_name = "%s.trainer_%d" % \
T
tangwei12 已提交
1585
                                   (merged_var_name, i)
1586 1587 1588 1589
                vars2merge.append(pserver_block.vars[per_trainer_name])
            optimize_block.append_op(
                type="sum",
                inputs={"X": vars2merge},
1590 1591
                outputs={"Out": merged_var},
                attrs={"use_mkldnn": False})
Q
qiaolongfei 已提交
1592 1593 1594 1595 1596
            optimize_block.append_op(
                type="scale",
                inputs={"X": merged_var},
                outputs={"Out": merged_var},
                attrs={"scale": 1.0 / float(self.trainer_num)})
1597
        return merged_var
T
typhoonzero 已提交
1598

W
Wu Yi 已提交
1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660
    def _append_dc_asgd_ops(self, block, param_var, grad_var):
        # NOTE: can not use grammar candy here, should put ops in specific block
        local_param_bak = block.create_var(
            name="%s.local_bak" % param_var.name,
            shape=param_var.shape,
            type=param_var.type,
            dtype=param_var.dtype,
            persistable=False)
        # trainer_id_var is block local
        trainer_id_var = block.create_var(
            name="@TRAINER_ID@",
            type=core.VarDesc.VarType.LOD_TENSOR,
            dtype=core.VarDesc.VarType.INT64,
            shape=[1],
            persistable=False)

        # ref_inputs = [x[1] for x in self.param_bak_list]
        ref_inputs = []
        for p, p_bak in self.param_bak_list:
            if p.name == param_var.name:
                ref_inputs.append(p_bak)
        block.append_op(
            type="ref_by_trainer_id",
            inputs={"X": ref_inputs,
                    "TrainerId": trainer_id_var},
            outputs={"Out": local_param_bak})

        def __create_temp_var__():
            return block.create_var(
                name=unique_name.generate("tmp_dc_output"),
                shape=param_var.shape,
                type=param_var.type,
                dtype=param_var.dtype,
                persistable=False)

        o1 = __create_temp_var__()
        block.append_op(
            type="elementwise_sub",
            inputs={"X": param_var,
                    "Y": local_param_bak},
            outputs={"Out": o1})
        o2 = __create_temp_var__()
        block.append_op(
            type="elementwise_mul",
            inputs={"X": o1,
                    "Y": grad_var},
            outputs={"Out": o2})
        o3 = __create_temp_var__()
        block.append_op(
            type="elementwise_mul",
            inputs={"X": o2,
                    "Y": grad_var},
            outputs={"Out": o3})
        # TODO(typhoonzero): append scale
        o4 = __create_temp_var__()
        block.append_op(
            type="elementwise_add",
            inputs={"X": grad_var,
                    "Y": o3},
            outputs={"Out": o4})
        return o4

1661
    def _append_pserver_ops(self, optimize_block, opt_op, endpoint,
1662
                            grad_to_block_id, origin_program, merged_var):
1663
        program = optimize_block.program
T
typhoonzero 已提交
1664
        pserver_block = program.global_block()
1665
        new_inputs = collections.OrderedDict()
W
Wu Yi 已提交
1666 1667 1668 1669 1670 1671 1672 1673 1674 1675

        def _get_param_block(opt_op):
            # param is already created on global program
            param_block = None
            for p in self.param_grad_ep_mapping[endpoint]["params"]:
                if same_or_split_var(p.name, opt_op.input("Param")[0]):
                    param_block = p
                    break
            return param_block

W
Wu Yi 已提交
1676 1677 1678 1679
        if self.config.enable_dc_asgd:
            param_var = _get_param_block(opt_op)
            dc = self._append_dc_asgd_ops(optimize_block, param_var, merged_var)

T
typhoonzero 已提交
1680
        for key in opt_op.input_names:
T
typhoonzero 已提交
1681
            if key == "Grad":
W
Wu Yi 已提交
1682 1683 1684 1685
                if self.config.enable_dc_asgd:
                    new_inputs[key] = dc
                else:
                    new_inputs[key] = merged_var
T
typhoonzero 已提交
1686
            elif key == "Param":
W
Wu Yi 已提交
1687
                param_block = _get_param_block(opt_op)
T
typhoonzero 已提交
1688 1689
                if not param_block:
                    return
T
typhoonzero 已提交
1690
                tmpvar = pserver_block.create_var(
T
typhoonzero 已提交
1691
                    name=param_block.name,
T
typhoonzero 已提交
1692
                    persistable=True,
T
typhoonzero 已提交
1693 1694 1695
                    dtype=param_block.dtype,
                    shape=param_block.shape)
                new_inputs[key] = tmpvar
1696
            elif key == "LearningRate":
1697
                # learning rate variable has already be created by non-optimize op,
1698
                # don't create it once again.
1699
                lr_varname = opt_op.input(key)[0]
1700
                if lr_varname in pserver_block.vars:
1701 1702 1703 1704 1705 1706 1707 1708 1709
                    new_inputs[key] = pserver_block.vars[opt_op.input(key)[0]]
                else:
                    origin_var = origin_program.global_block().vars[lr_varname]
                    tmpvar = pserver_block.create_var(
                        name=origin_var.name,
                        persistable=origin_var.persistable,
                        dtype=origin_var.dtype,
                        shape=origin_var.shape)
                    new_inputs[key] = tmpvar
T
typhoonzero 已提交
1710

T
typhoonzero 已提交
1711
        for key in opt_op.input_names:
1712
            new_shape = None
W
Wu Yi 已提交
1713
            if key in ["Param", "Grad", "LearningRate"]:
T
typhoonzero 已提交
1714
                continue
1715
            var = self.origin_program.global_block().vars[opt_op.input(key)[0]]
T
typhoonzero 已提交
1716 1717 1718 1719
            # update accumulator variable shape
            param_shape = new_inputs["Param"].shape
            new_shape = self._get_optimizer_input_shape(opt_op.type, key,
                                                        var.shape, param_shape)
T
typhoonzero 已提交
1720
            tmpvar = pserver_block.create_var(
T
typhoonzero 已提交
1721 1722 1723 1724 1725
                name=var.name,
                persistable=var.persistable,
                dtype=var.dtype,
                shape=new_shape)
            new_inputs[key] = tmpvar
T
typhoonzero 已提交
1726

1727
        # change output's ParamOut variable
1728 1729
        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, opt_op)
1730
        outputs["ParamOut"] = new_inputs["Param"]
1731
        optimize_block.append_op(
T
typhoonzero 已提交
1732 1733
            type=opt_op.type,
            inputs=new_inputs,
T
typhoonzero 已提交
1734
            outputs=outputs,
G
gongweibao 已提交
1735
            attrs=opt_op.all_attrs())
T
typhoonzero 已提交
1736

1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747
    def _get_pserver_grad_param_var(self, var, var_dict):
        """
        Return pserver side grad/param variable, return None
        if the variable is not grad/param, e.g.

            a@GRAD -> a@GRAD.block0
            a@GRAD -> a@GRAD (a is not splited)
            fc_0.w_0 -> fc_0.w_0.block_0
            fc_0.w_0 -> fc_0.w_0 (weight is not splited)
            _generated_var_123 -> None
        """
1748
        grad_block = None
M
minqiyang 已提交
1749
        for _, g in six.iteritems(var_dict):
1750
            if self._orig_varname(g.name) == self._orig_varname(var.name):
1751
                # skip per trainer vars
1752
                if g.name.find(".trainer_") == -1:
1753 1754 1755 1756 1757
                    # only param or grads have splited blocks
                    if self._orig_varname(g.name) in self.grad_name_to_param_name or\
                        self._orig_varname(g.name) in self.param_name_to_grad_name:
                        grad_block = g
                        break
1758 1759
        return grad_block

Q
Qiyang Min 已提交
1760 1761 1762
    def _clone_lr_op(self, program, block, op):
        inputs = self._get_input_map_from_op(
            self.origin_program.global_block().vars, op)
M
minqiyang 已提交
1763
        for key, varlist in six.iteritems(inputs):
Q
Qiyang Min 已提交
1764 1765 1766 1767
            if not isinstance(varlist, list):
                varlist = [varlist]
            for var in varlist:
                if var not in program.global_block().vars:
W
Wu Yi 已提交
1768
                    block._clone_variable(var)
Q
Qiyang Min 已提交
1769 1770 1771

        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, op)
M
minqiyang 已提交
1772
        for key, varlist in six.iteritems(outputs):
Q
Qiyang Min 已提交
1773 1774 1775 1776
            if not isinstance(varlist, list):
                varlist = [varlist]
            for var in varlist:
                if var not in program.global_block().vars:
W
Wu Yi 已提交
1777
                    block._clone_variable(var)
Q
Qiyang Min 已提交
1778

Y
Yancey1989 已提交
1779
        return block.append_op(
G
gongweibao 已提交
1780
            type=op.type, inputs=inputs, outputs=outputs, attrs=op.all_attrs())
Q
Qiyang Min 已提交
1781 1782

    def _append_pserver_non_opt_ops(self, optimize_block, opt_op):
1783
        program = optimize_block.program
1784
        # Append the ops for parameters that do not need to be optimized/updated
1785 1786
        inputs = self._get_input_map_from_op(
            self.origin_program.global_block().vars, opt_op)
M
minqiyang 已提交
1787
        for key, varlist in six.iteritems(inputs):
1788 1789
            if not isinstance(varlist, list):
                varlist = [varlist]
1790 1791 1792
            for i in range(len(varlist)):
                var = varlist[i]
                # for ops like clipping and weight decay, get the splited var (xxx.block0)
1793
                # for inputs/outputs
1794
                grad_block = self._get_pserver_grad_param_var(
1795 1796
                    var, program.global_block().vars)
                if grad_block:
1797
                    varlist[i] = grad_block
1798
                elif var.name not in program.global_block().vars:
1799 1800 1801 1802 1803
                    tmpvar = program.global_block()._clone_variable(var)
                    varlist[i] = tmpvar
                else:
                    varlist[i] = program.global_block().vars[var.name]
            inputs[key] = varlist
T
typhoonzero 已提交
1804

1805 1806
        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, opt_op)
M
minqiyang 已提交
1807
        for key, varlist in six.iteritems(outputs):
1808 1809
            if not isinstance(varlist, list):
                varlist = [varlist]
1810 1811 1812
            for i in range(len(varlist)):
                var = varlist[i]
                grad_block = self._get_pserver_grad_param_var(
1813 1814
                    var, program.global_block().vars)
                if grad_block:
1815
                    varlist[i] = grad_block
1816
                elif var.name not in program.global_block().vars:
1817 1818 1819 1820 1821
                    tmpvar = program.global_block()._clone_variable(var)
                    varlist[i] = tmpvar
                else:
                    varlist[i] = program.global_block().vars[var.name]
            outputs[key] = varlist
1822

Y
Yancey1989 已提交
1823
        return optimize_block.append_op(
T
typhoonzero 已提交
1824
            type=opt_op.type,
T
typhoonzero 已提交
1825 1826
            inputs=inputs,
            outputs=outputs,
G
gongweibao 已提交
1827
            attrs=opt_op.all_attrs())
T
typhoonzero 已提交
1828

1829 1830 1831 1832
    def _is_op_connected(self, op1, op2):
        # If one op's input is another op's output or
        # one op's output is another op's input, we say
        # the two operator is connected.
Q
qiaolongfei 已提交
1833
        if set(op1.desc.output_arg_names()) & set(op2.desc.input_arg_names()) or \
T
tangwei12 已提交
1834
                set(op1.desc.input_arg_names()) & set(op2.desc.output_arg_names()):
1835 1836 1837 1838 1839 1840
            return True
        return False

    def _create_ufind(self, optimize_ops):
        # Create a unit find data struct by optimize ops
        ufind = UnionFind(optimize_ops)
1841 1842
        for i in range(len(optimize_ops)):
            for j in range(i, len(optimize_ops)):
1843 1844 1845 1846 1847 1848
                op1 = optimize_ops[i]
                op2 = optimize_ops[j]
                if self._is_op_connected(op1, op2):
                    ufind.union(op1, op2)
        return ufind

1849
    def _is_optimizer_op(self, op):
T
typhoonzero 已提交
1850
        if "Param" in op.input_names and \
T
tangwei12 已提交
1851
                "LearningRate" in op.input_names:
1852 1853 1854 1855 1856 1857 1858
            return True
        return False

    def _is_opt_op_on_pserver(self, endpoint, op):
        param_names = [
            p.name for p in self.param_grad_ep_mapping[endpoint]["params"]
        ]
T
typhoonzero 已提交
1859
        if op.input("Param")[0] in param_names:
1860 1861 1862
            return True
        else:
            for n in param_names:
T
typhoonzero 已提交
1863
                param = op.input("Param")[0]
T
typhoonzero 已提交
1864
                if same_or_split_var(n, param) and n != param:
1865 1866 1867
                    return True
            return False

T
typhoonzero 已提交
1868
    def _get_input_map_from_op(self, varmap, op):
1869
        """Returns a dict from op input name to the vars in varmap."""
1870
        iomap = collections.OrderedDict()
T
typhoonzero 已提交
1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881
        for key in op.input_names:
            vars = []
            for varname in op.input(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap

    def _get_output_map_from_op(self, varmap, op):
1882
        """Returns a dict from op output name to the vars in varmap."""
1883
        iomap = collections.OrderedDict()
T
typhoonzero 已提交
1884 1885 1886 1887 1888 1889 1890 1891 1892
        for key in op.output_names:
            vars = []
            for varname in op.output(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap
1893 1894

    def _get_lr_ops(self):
1895 1896 1897
        lr_ops = []
        block = self.origin_program.global_block()
        for op in block.ops:
X
fix  
Xin Pan 已提交
1898 1899 1900 1901
            role_id = int(op.attr(RPC_OP_ROLE_ATTR_NAME))
            if role_id == int(LR_SCHED_OP_ROLE_ATTR_VALUE) or \
                role_id == int(LR_SCHED_OP_ROLE_ATTR_VALUE) | \
                    int(OPT_OP_ROLE_ATTR_VALUE):
1902 1903 1904 1905 1906
                lr_ops.append(op)
                log("append lr op: ", op.type)
        return lr_ops

    def _get_lr_ops_deprecated(self):
1907 1908 1909 1910
        lr_ops = []
        # find learning rate variables by optimize op
        lr_vars = set()
        for op in self.optimize_ops:
1911
            if self._is_optimizer_op(op):
1912 1913 1914 1915
                lr_vars.add(op.input("LearningRate")[0])

        find_ops = []
        # find ops which output is lr var
1916
        block = self.origin_program.global_block()
1917 1918 1919 1920 1921
        for op in block.ops:
            if set(op.output_arg_names) & lr_vars:
                find_ops.append(op)
        # make a union find struct by the ops in default_main_program
        ufind = UnionFind(block.ops)
1922

1923 1924 1925 1926 1927
        for op1 in block.ops:
            for op2 in block.ops:
                # NOTE: we need to skip all optimize ops, since it is connected
                # with forward/backward ops and lr ops, we only need the lr ops.
                if op1 != op2 and self._is_op_connected(op1, op2) and \
T
tangwei12 已提交
1928
                        not self._is_optimizer_op(op1) and not self._is_optimizer_op(op2):
1929 1930 1931 1932 1933 1934
                    ufind.union(op1, op2)
        # find all ops which is related with lr var
        for op1 in block.ops:
            for op2 in find_ops:
                if ufind.is_connected(op1, op2):
                    lr_ops.append(op1)
1935 1936
                    # we only need to append op for once
                    break
1937
        return lr_ops
Y
Yancey1989 已提交
1938

W
Wu Yi 已提交
1939 1940 1941 1942 1943
    def _is_opt_role_op(self, op):
        # NOTE: depend on oprole to find out whether this op is for
        # optimize
        op_maker = core.op_proto_and_checker_maker
        optimize_role = core.op_proto_and_checker_maker.OpRole.Optimize
G
gongweibao 已提交
1944 1945
        if op_maker.kOpRoleAttrName() in op.attr_names and \
                int(op.all_attrs()[op_maker.kOpRoleAttrName()]) == int(optimize_role):
W
Wu Yi 已提交
1946 1947 1948
            return True
        return False

Y
Yancey1989 已提交
1949
    def _get_optimize_pass(self):
1950
        """
1951
        Get optimizer operators, parameters and gradients from origin_program
1952 1953 1954 1955
        Returns:
            opt_ops (list): optimize operators.
            params_grads (dict): paramter->gradient.
        """
Y
Yancey1989 已提交
1956 1957 1958
        block = self.origin_program.global_block()
        opt_ops = []
        params_grads = []
1959 1960
        # tmp set to dedup
        optimize_params = set()
1961
        origin_var_dict = self.origin_program.global_block().vars
Y
Yancey1989 已提交
1962
        for op in block.ops:
W
Wu Yi 已提交
1963
            if self._is_opt_role_op(op):
Y
Yancey1989 已提交
1964
                opt_ops.append(op)
1965 1966 1967 1968 1969 1970
                if op.attr(OP_ROLE_VAR_ATTR_NAME):
                    param_name = op.attr(OP_ROLE_VAR_ATTR_NAME)[0]
                    grad_name = op.attr(OP_ROLE_VAR_ATTR_NAME)[1]
                    if not param_name in optimize_params:
                        optimize_params.add(param_name)
                        log("adding param_grad pair: ", param_name, grad_name)
1971 1972
                        params_grads.append([
                            origin_var_dict[param_name],
1973
                            origin_var_dict[grad_name]
1974
                        ])
Y
Yancey1989 已提交
1975 1976 1977
            else:
                pass
        return opt_ops, params_grads