executor.py 106.7 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Z
Zeng Jinle 已提交
15
import logging
16 17
import os
import multiprocessing
C
chengduo 已提交
18
import sys
19
import warnings
D
dzhwinter 已提交
20
import numpy as np
S
rename  
sneaxiy 已提交
21
from .wrapped_decorator import signature_safe_contextmanager
22
from .data_feeder import convert_dtype
23
from .framework import Program, default_main_program, Variable, Operator
24
from .framework import convert_np_dtype_to_dtype_, _apply_pass
L
Leo Chen 已提交
25

26
from . import core
27
from . import unique_name
28
from . import compiler
29
from . import set_flags
30
from .trainer_factory import TrainerFactory
31
from .trainer_factory import FetchHandlerMonitor
32
import copy
33
from . import framework
34
from .incubate.checkpoint import auto_checkpoint as acp
35
from .compiler import _prune_feed_ops
36

R
Ruibiao Chen 已提交
37 38
from functools import lru_cache

T
Tink_Y 已提交
39
__all__ = ['Executor', 'global_scope', 'scope_guard']
Y
Yu Yang 已提交
40

Y
Yu Yang 已提交
41
g_scope = core.Scope()
F
flame 已提交
42 43
InferNativeConfig = core.NativeConfig
InferAnalysisConfig = core.AnalysisConfig
Y
Yu Yang 已提交
44

Y
Yu Yang 已提交
45

Y
Yang Yu 已提交
46
def global_scope():
Y
yuyang18 已提交
47
    """
48 49
    :api_attr: Static Graph

Y
yuyang18 已提交
50 51 52
    Get the global/default scope instance. There are a lot of APIs use
    :code:`global_scope` as its default value, e.g., :code:`Executor.run`

C
chengduo 已提交
53 54 55
    Returns:
        Scope: The global/default scope instance.

56 57 58
    Examples:
        .. code-block:: python

59
          import paddle
60 61
          import numpy

62 63
          paddle.static.global_scope().var("data").get_tensor().set(numpy.ones((2, 2)), paddle.CPUPlace())
          numpy.array(paddle.static.global_scope().find_var("data").get_tensor())
Y
yuyang18 已提交
64
    """
Y
Yang Yu 已提交
65 66 67
    return g_scope


68
def _switch_scope(scope):
Y
Yang Yu 已提交
69 70 71 72 73 74
    global g_scope
    ex = g_scope
    g_scope = scope
    return ex


S
rename  
sneaxiy 已提交
75
@signature_safe_contextmanager
Y
Yang Yu 已提交
76
def scope_guard(scope):
Y
yuyang18 已提交
77
    """
78

79 80 81 82 83 84 85 86 87 88 89 90
    This function switches scope through python `with` statement.
    Scope records the mapping between variable names and variables ( :ref:`api_guide_Variable` ),
    similar to brackets in programming languages.
    If this function is not invoked, all variables and variable names are recorded in the default global scope.
    When users need to create variables with the same name,
    they need to switch scopes through this function
    if they do not want the mapping of variables with the same name to be overwritten.
    After switching through the `with` statement,
    all variables created in the `with` block will be assigned to a new scope.

    Parameters:
        scope: The new scope.
Y
yuyang18 已提交
91

92 93
    Returns:
        None
L
lujun 已提交
94

Y
yuyang18 已提交
95
    Examples:
96

97 98
        .. code-block:: python

99
            import paddle
L
lujun 已提交
100
            import numpy
101
            paddle.enable_static()
Y
yuyang18 已提交
102

103 104 105
            new_scope = paddle.static.Scope()
            with paddle.static.scope_guard(new_scope):
                 paddle.static.global_scope().var("data").get_tensor().set(numpy.ones((2, 2)), paddle.CPUPlace())
L
lujun 已提交
106
            numpy.array(new_scope.find_var("data").get_tensor())
Y
yuyang18 已提交
107
    """
L
lujun 已提交
108

109
    ex = _switch_scope(scope)
110 111 112 113
    try:
        yield
    finally:
        _switch_scope(ex)
Y
Yang Yu 已提交
114 115


116
def as_numpy(tensor, copy=False):
117 118 119
    """
    Convert a Tensor to a numpy.ndarray, its only support Tensor without LoD information.
    For higher dimensional sequence data, please use LoDTensor directly.
120

121
    Examples:
122 123 124 125 126 127 128 129 130 131
        .. code-block:: python

          import paddle.fluid as fluid
          import numpy

          new_scope = fluid.Scope()
          with fluid.scope_guard(new_scope):
              fluid.global_scope().var("data").get_tensor().set(numpy.ones((2, 2)), fluid.CPUPlace())
          tensor = new_scope.find_var("data").get_tensor()
          fluid.executor.as_numpy(tensor) # or numpy.array(new_scope.find_var("data").get_tensor())
132 133 134

    Args:
       tensor(Variable): a instance of Tensor
135
       copy(bool, optional): Whether to use deep copy.
136 137 138 139

    Returns:
        numpy.ndarray
    """
C
chengduo 已提交
140
    if isinstance(tensor, core.LoDTensorArray):
141
        return [as_numpy(t, copy) for t in tensor]
D
dzhwinter 已提交
142
    if isinstance(tensor, list):
143
        return [as_numpy(t, copy) for t in tensor]
D
dzhwinter 已提交
144 145
    assert isinstance(tensor, core.LoDTensor)
    lod = tensor.lod()
146
    if len(lod) > 0:
147 148
        raise RuntimeError(
            "Some of your fetched tensors hold LoD information. \
149 150
            They can not be completely cast to Python ndarray. \
            Please set the parameter 'return_numpy' as 'False' to \
151 152
            return LoDTensor itself directly."
        )
Q
qingqing01 已提交
153
    if tensor._is_initialized():
154 155 156 157
        if copy:
            return np.array(tensor)
        else:
            return np.asarray(tensor)
Q
qingqing01 已提交
158 159
    else:
        return None
D
dzhwinter 已提交
160 161


H
Huihuang Zheng 已提交
162 163 164 165
def dtype_is_compatible_with(first, second):
    """
    Returns True if the first dtype can be compatible the second one.
    Currently, we require the two dtype's have to be same.
166

H
Huihuang Zheng 已提交
167 168
    Args:
        dtype (np.dtype|VarType|str): The type of data: float32, int64, etc.
169

H
Huihuang Zheng 已提交
170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
    Returns:
        True if the two types are same.
    """
    if not isinstance(first, core.VarDesc.VarType):
        first = convert_np_dtype_to_dtype_(first)
    if not isinstance(second, core.VarDesc.VarType):
        second = convert_np_dtype_to_dtype_(second)
    return first == second


def dimension_is_compatible_with(first, second):
    """
    Returns True if the two dimensions are compatible.

    A dimension is compatible with the other if:
    1. The length of the dimensions are same.
T
tianshuo78520a 已提交
186 187
    2. Each non-negative number of the two dimensions are same.
    3. For negative number or 'None' in a dimension, it means unknown so it
H
Huihuang Zheng 已提交
188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
       is compatible with any number.

    Args:
        first (list/tuple): integers representing shape. "None" or negative
            number means unknown.
        second (list/tuple): integers representing shape. "None" or negative
            number means unknown.

    Returns:
        True if the two dimensions are compatible.
    """

    dim_len = len(first)
    if dim_len != len(second):
        return False

    for i in range(dim_len):
        if first[i] is None or first[i] < 0:
            continue
        if second[i] is None or second[i] < 0:
            continue
        if first[i] != second[i]:
            return False

    return True


215
def check_feed_shape_type(var, feed, num_places=1):
H
Huihuang Zheng 已提交
216 217
    """
    Returns True if the variable doesn't require feed check or it is compatible
T
tianshuo78520a 已提交
218
    with the shape and have same dtype as the fed value.
H
Huihuang Zheng 已提交
219 220 221

    A dimension is compatible with the other if:
    1. The length of the dimensions are same.
T
tianshuo78520a 已提交
222 223
    2. Each non-negative number of the two dimensions are same.
    3. For negative number or 'None' in a dimension, it means unknown so it
H
Huihuang Zheng 已提交
224
       is compatible with any number.
225

H
Huihuang Zheng 已提交
226 227
    Args:
        var (Variable): the Variable object
T
tianshuo78520a 已提交
228
        feed (LoDTensor): the fed value, which must be a LoDTensor
229 230
        num_places: an integer value indicating the number of places.
            ParallelExecutor will divide data into devices (CPU/GPU) evenly.
H
Huihuang Zheng 已提交
231 232 233 234 235 236 237
    Returns:
        True if the shape and dtype of variable is compatible with the feed value
    Raises:
        ValueError: if the shape or dtype of the variable is not compatible with
            the feed value
    """
    if var.desc.need_check_feed():
238 239
        diff_shape = core.diff_tensor_shape(feed, var.desc, num_places)
        if diff_shape is not None:
240
            raise ValueError(
T
tianshuo78520a 已提交
241
                'The fed Variable %r should have dimensions = %d, shape = '
242 243 244
                '%r, but received fed shape %r on each device'
                % (var.name, len(var.shape), var.shape, diff_shape)
            )
H
Huihuang Zheng 已提交
245
        if not dtype_is_compatible_with(feed._dtype(), var.dtype):
246 247 248 249 250 251 252 253 254 255
            var_dtype_format = (
                convert_dtype(var.dtype)
                if isinstance(var.dtype, core.VarDesc.VarType)
                else var.dtype
            )
            feed_dtype_format = (
                convert_dtype(feed._dtype())
                if isinstance(feed._dtype(), core.VarDesc.VarType)
                else feed._dtype()
            )
256
            raise ValueError(
257 258 259
                'The data type of fed Variable %r must be %r, but received %r'
                % (var.name, var_dtype_format, feed_dtype_format)
            )
H
Huihuang Zheng 已提交
260 261 262
    return True


263
def has_feed_operators(block, feed_targets, feed_holder_name):
264
    """Check whether the block already has feed operators.
265 266 267 268 269 270 271 272 273 274

    Return false if the block does not have any feed operators.
    If some feed operators have been prepended to the block, check that
    the info contained in these feed operators matches the feed_targets
    and feed_holder_name. Raise exception when any mismatch is found.
    Return true when the block has feed operators with matching info.

    Args:
        block: a block instance (typically global block of a program)
        feed_targets: a dictionary of {feed_target_name: feed_target_data}
X
xuwei06 已提交
275 276
        feed_holder_name: the name of the variable that holds the data of
            all feed targets. The type of this feed_holder variable is
277 278 279
            FEED_MINIBATCH, which is essentially vector<LoDTensor>.

    Returns:
X
xuwei06 已提交
280
        A boolean value that indicates whether a block has feed operators
281 282 283 284 285 286 287 288 289 290
        that match the info contained in feed_targets and feed_holder_name.
    """

    feed_count = 0
    for op in block.ops:
        if op.desc.type() == 'feed':
            feed_count += 1
            assert op.desc.input('X')[0] == feed_holder_name
            feed_target_name = op.desc.output('Out')[0]
            if feed_target_name not in feed_targets:
291 292
                raise Exception(
                    "'feed_targets' does not have {} variable".format(
293 294 295
                        feed_target_name
                    )
                )
296 297 298 299
        else:
            break
    if feed_count > 0 and feed_count != len(feed_targets):
        raise Exception(
300 301
            "Feed operators in program desc do not match 'feed_targets'"
        )
302 303 304
    return feed_count > 0


305 306 307 308
def has_fetch_operators(
    block, fetch_targets, fetch_holder_name, fetch_op='fetch'
):
    """Check whether the block already has fetch operators.
X
xuwei06 已提交
309

310 311 312 313 314 315 316 317 318
    Return false if the block does not have any fetch operators.
    If some fetch operators have been appended to the block, check that
    the info contained in these fetch operators matches the fetch_targets
    and fetch_holder_name. Raise exception when any mismatch is found.
    Return true when the block has fetch operators with matching info.

    Args:
        block: a block instance (typically global block of a program)
        fetch_targets: a dictionary of {fetch_target_name: fetch_target_data}
X
xuwei06 已提交
319 320 321
        fetch_holder_name: the name of the variable that holds the data of
            all fetch targets. The type of this fetch_holder variable is
            FETCH_LIST, which is essentially vector<LoDTensor>.
322
        fetch_op: the operator name of fetch
323

X
xuwei06 已提交
324 325 326
    Return:
        A boolean value that indicates whether a block has fetch operators
        that match the info contained in fetch_targets and fetch_holder_name.
327 328 329 330
    """

    fetch_count = 0
    for op in block.ops:
331
        if op.desc.type() == fetch_op:
332 333 334 335
            fetch_count += 1
            assert op.desc.output('Out')[0] == fetch_holder_name
            fetch_target_name = op.desc.input('X')[0]
            if fetch_target_name not in [
336
                var.desc.name() for var in fetch_targets
337
            ]:
338 339
                raise Exception(
                    "'fetch_targets' does not have {} variable".format(
340 341 342
                        fetch_target_name
                    )
                )
343 344 345 346
            idx = op.desc.attr('col')
            assert fetch_target_name == fetch_targets[idx].desc.name()
    if fetch_count > 0 and fetch_count != len(fetch_targets):
        raise Exception(
347 348
            "Fetch operators in program desc do not match 'fetch_targets'"
        )
349 350 351
    return fetch_count > 0


352 353 354
def _add_feed_fetch_ops(
    program, feed, fetch_list, feed_var_name, fetch_var_name, use_fetch_v2=False
):
R
Ruibiao Chen 已提交
355 356 357 358 359 360 361 362 363 364
    tmp_program = program.clone()

    global_block = tmp_program.global_block()

    if feed_var_name in global_block.vars:
        feed_var = global_block.var(feed_var_name)
    else:
        feed_var = global_block.create_var(
            name=feed_var_name,
            type=core.VarDesc.VarType.FEED_MINIBATCH,
365 366
            persistable=True,
        )
R
Ruibiao Chen 已提交
367 368 369 370 371 372 373

    if fetch_var_name in global_block.vars:
        fetch_var = global_block.var(fetch_var_name)
    else:
        fetch_var = global_block.create_var(
            name=fetch_var_name,
            type=core.VarDesc.VarType.FETCH_LIST,
374 375
            persistable=True,
        )
R
Ruibiao Chen 已提交
376 377 378 379 380 381

    # prepend feed operators
    if not has_feed_operators(global_block, feed, feed_var_name):
        for i, name in enumerate(feed):
            if global_block.has_var(name):
                out = global_block.var(name)
382 383 384 385 386 387
                global_block._prepend_op(
                    type='feed',
                    inputs={'X': [feed_var]},
                    outputs={'Out': [out]},
                    attrs={'col': i},
                )
R
Ruibiao Chen 已提交
388 389 390
            else:
                warnings.warn(
                    "The variable %s is not found in program. It is not declared or is pruned."
391 392
                    % name
                )
R
Ruibiao Chen 已提交
393 394 395 396 397 398 399

    if use_fetch_v2:
        fetch_op = 'fetch_v2'
    else:
        fetch_op = 'fetch'

    # append fetch_operators
400 401 402
    if not has_fetch_operators(
        global_block, fetch_list, fetch_var_name, fetch_op
    ):
R
Ruibiao Chen 已提交
403 404
        for i, var in enumerate(fetch_list):
            assert isinstance(var, Variable) or isinstance(
405 406 407 408 409 410 411 412
                var, str
            ), "Wrong type for fetch_list[%s]: %s" % (i, type(var))
            global_block.append_op(
                type=fetch_op,
                inputs={'X': [var]},
                outputs={'Out': [fetch_var]},
                attrs={'col': i},
            )
R
Ruibiao Chen 已提交
413 414 415 416

    return tmp_program


417 418 419
def _apply_inplace_addto_pass(
    program, enable_inplace, enable_addto, skip_var_names
):
R
Ruibiao Chen 已提交
420 421 422 423 424 425 426 427
    use_cuda = True if core.is_compiled_with_cuda() else False

    attrs = {"use_cuda": use_cuda, "mem_opt_skip_vars": skip_var_names}
    attr_types = {"use_cuda": "bool", "mem_opt_skip_vars": "list[str]"}

    empty_startup_program = Program()
    if enable_inplace:
        pass_name = "buffer_shared_inplace_pass"
428 429 430
        _apply_pass(
            program, empty_startup_program, pass_name, attrs, attr_types
        )
R
Ruibiao Chen 已提交
431 432
    if enable_addto and use_cuda:
        pass_name = "inplace_addto_op_pass"
433 434 435
        _apply_pass(
            program, empty_startup_program, pass_name, attrs, attr_types
        )
R
Ruibiao Chen 已提交
436 437


W
Wu Yi 已提交
438
def _fetch_var(name, scope=None, return_numpy=True):
X
xuwei06 已提交
439
    """
C
chengduoZH 已提交
440 441 442
    Fetch the value of the variable with the given name from the
    given scope.

X
xuwei06 已提交
443
    Args:
444 445 446 447
        name(str): name of the variable. Typically, only persistable variables
            can be found in the scope used for running the program.
        scope(core.Scope|None): scope object. It should be the scope where
            you pass to Executor.run() when running your program.
C
chengduoZH 已提交
448 449 450 451
            If None, global_scope() will be used. Default None.
        return_numpy(bool): whether convert the tensor to numpy.ndarray.
            Default True.

X
xuwei06 已提交
452 453 454
    Returns:
       LodTensor|numpy.ndarray
    """
455
    assert isinstance(name, str)
X
xuwei06 已提交
456 457
    if scope is None:
        scope = global_scope()
S
sneaxiy 已提交
458
    assert isinstance(scope, core._Scope)
X
xuwei06 已提交
459

460
    var = scope.find_var(_to_name_str(name))
461 462 463
    assert var is not None, (
        "Cannot find " + name + " in scope. Perhaps you need to make the"
        " variable persistable by using var.persistable = True in your"
464 465
        " program."
    )
X
xuwei06 已提交
466 467
    tensor = var.get_tensor()
    if return_numpy:
468
        tensor = as_numpy(tensor, copy=True)
X
xuwei06 已提交
469 470 471
    return tensor


X
polish  
Xin Pan 已提交
472
def _to_name_str(var):
473 474 475 476 477
    def _to_str(var):
        if isinstance(var, Variable):
            return var.desc.name()
        elif isinstance(var, str):
            return var
478
        elif isinstance(var, str):
479 480
            return str(var)
        elif isinstance(var, Operator):
481
            return str(id(var))
482 483 484 485 486 487 488 489 490 491
        else:
            raise TypeError(str(var) + " should be Variable, Operator or str")

    # NOTEz(zhiqiu): The item in fetch_list may be tuple returned by Optimizer.minimize(),
    # see comments in _split_optimize_ops_in_fetch_list for more details.
    if isinstance(var, tuple):
        var = var[0]
    if isinstance(var, list):
        s = [_to_str(item) for item in var]
        return ','.join(s)
X
polish  
Xin Pan 已提交
492
    else:
493
        return _to_str(var)
Q
qiaolongfei 已提交
494 495


496 497
def _prepare_fleet_executor():
    from ..distributed.fleet.proto import fleet_executor_desc_pb2
498

499 500 501 502 503 504 505 506 507 508 509 510 511 512 513
    trainer_endpoints_str = os.getenv("PADDLE_TRAINER_ENDPOINTS", "")
    trainer_endpoints = trainer_endpoints_str.split(',')
    fleet_exe_desc = fleet_executor_desc_pb2.FleetExecutorDesc()
    cur_rank = int(os.getenv("PADDLE_TRAINER_ID", 0))
    fleet_exe_desc.cur_rank = cur_rank
    nrank = len(trainer_endpoints)
    for rank, endpoint in enumerate(trainer_endpoints):
        rank_info = fleet_executor_desc_pb2.RankInfo()
        rank_info.rank = rank
        rank_info.ip_port = endpoint
        fleet_exe_desc.cluster_info.append(rank_info)
    fleet_exe = core.FleetExecutor(fleet_exe_desc.SerializeToString())
    return fleet_exe


L
Leo Chen 已提交
514 515
def _get_strong_program_cache_key_for_new_exe(program, feed, fetch_list):
    return program.desc.cached_hash_str() + _get_program_cache_key(
516 517
        feed, fetch_list
    )
L
Leo Chen 已提交
518 519


520
def _get_strong_program_cache_key(program, feed, fetch_list):
L
Leo Chen 已提交
521
    # TODO(zhiqiu): use hash_str to generate cache key as above
522 523 524 525 526 527
    def _get_varname_from_block(block):
        block_str = []
        for var_name in list(block.vars.keys()):
            block_str.append(var_name)
        return "\n".join(block_str)

528 529 530 531 532 533 534 535 536 537
    inner_program = (
        program._program
        if isinstance(program, compiler.CompiledProgram)
        else program
    )
    return (
        _get_varname_from_block(inner_program.blocks[0])
        + str(id(program))
        + _get_program_cache_key(feed, fetch_list)
    )
538 539


X
polish  
Xin Pan 已提交
540
def _get_program_cache_key(feed, fetch_list):
541 542 543 544 545 546
    feed_var_names = []
    if isinstance(feed, dict):
        feed_var_names = list(feed.keys())
    elif isinstance(feed, list) or isinstance(feed, tuple):
        for i, each in enumerate(feed):
            feed_var_names += list(each.keys())
X
polish  
Xin Pan 已提交
547
    fetch_var_names = list(map(_to_name_str, fetch_list))
Q
qiaolongfei 已提交
548 549 550
    return str(feed_var_names + fetch_var_names)


551
def _as_lodtensor(data, place, dtype=None):
W
Wu Yi 已提交
552
    """
553 554
    Convert numpy.ndarray to Tensor, its only support Tensor without LoD information.
    For higher dimensional sequence data, please use LoDTensor directly.
W
Wu Yi 已提交
555

556 557 558 559 560 561 562
    Examples:
        >>> import paddle.fluid as fluid
        >>> place = fluid.CPUPlace()
        >>> exe = fluid.executor(place)
        >>> data = np.array(size=(100, 200, 300))
        >>> np_outs = map(lambda x: fluid.executor._as_lodtensor(x, place), data)
        >>>     ...
W
Wu Yi 已提交
563

564 565 566 567
    Args:
        data(numpy.ndarray|list|tuple|scalar): a instance of array, scalar, list or tuple
        data(core.Place): the place of created tensor
        dtype(core.VarDesc.VarType|str): the expected data type of created tensor
W
Wu Yi 已提交
568

569 570 571 572
    Returns:
        LoDTensor
    """
    # NOTE(zhiqiu): convert python builtin, like float, int, and list, to numpy ndarray
573
    if not isinstance(data, np.ndarray):
574 575 576 577 578 579 580 581
        assert (
            dtype is not None
        ), 'The dtype should be given when feed data is not np.ndarray'
        dtype = (
            convert_dtype(dtype)
            if isinstance(dtype, core.VarDesc.VarType)
            else dtype
        )
582
        if np.isscalar(data):
583
            data = np.array(data).astype(dtype)
584 585
        elif isinstance(data, (list, tuple)):
            data = np.array(data)
586
            if data.dtype == np.object_:
587 588 589 590 591 592 593 594 595
                raise TypeError(
                    "\n\tFaild to convert input data to a regular ndarray :\n\t* Usually "
                    "this means the input data contains nested lists with different lengths. "
                    "Please consider using 'fluid.create_lod_tensor' to convert it to a LoD-Tensor."
                )
            data = data.astype(dtype)
        else:
            raise TypeError(
                "Convert data of type {} to Tensor is not supported".format(
596 597 598
                    type(data)
                )
            )
599

600
    # convert numpy.ndarray to tensor
W
Wu Yi 已提交
601 602 603 604 605
    tensor = core.LoDTensor()
    tensor.set(data, place)
    return tensor


606
class FetchHandler:
D
Dong Daxiang 已提交
607
    def __init__(self, var_dict=None, period_secs=60):
608
        assert var_dict is not None
D
Dong Daxiang 已提交
609
        self.var_dict = var_dict
610 611
        self.period_secs = period_secs

D
Dong Daxiang 已提交
612 613 614 615 616
    def handler(self, res_dict):
        for key in res_dict:
            if type(res_dict[key]) is np.ndarray:
                sys.stdout.write("{}[0]: {} ".format(key, res_dict[key][0]))
        sys.stdout.write("\n")
617 618 619

    @staticmethod
    def help():
620 621
        print(
            """
D
Dong Daxiang 已提交
622 623 624 625 626 627 628 629
class FetchHandlerExample(FetchHandler):
    def handler(self, res_dict):
        print(res_dict["auc"])
        print("auc: {}, {}".format(res_dict["auc"], time.ctime()))

auc = Variable()
var_dict = {"auc": auc}
handler = FetchHandlerExample(var_dict=var_dict)
630 631
"""
        )
632 633


634
class _StandaloneExecutor:
635
    def __init__(self, place, main_program, scope):
636 637 638
        self._place = core.Place()
        self._place.set_place(place)
        self._main_program = main_program
639
        self._scope = scope
640 641
        self._new_exe = self._create_new_executor()

642
    def run(self, scope, feed_names, fetch_list, return_numpy=True):
643 644
        """
        Args:
645
            feed_names(list): This parameter represents the input names of the model.
646
            fetch_list(list): This parameter represents the Tensors that need to be returned
647
                after the model runs. The default is None.
648 649 650 651 652 653
            return_numpy(bool): This parameter indicates whether convert the fetched Tensors
                (the Tensor specified in the fetch list) to numpy.ndarray. if it is False,
                the type of the return value is a list of :code:`LoDTensor`. The default is True.
        """
        fetch_list = self._check_fetch(fetch_list)

654 655 656
        tensors = self._new_exe.run(
            scope, feed_names, fetch_list
        )._move_to_list()
657 658 659 660 661 662
        if return_numpy:
            return as_numpy(tensors, copy=True)
        else:
            return tensors

    def _create_new_executor(self):
L
Leo Chen 已提交
663
        new_exe = core.StandaloneExecutor(self._place, self._main_program.desc)
664 665 666 667 668

        return new_exe

    def _update_feed(self, feed):
        """
669
        Update the feed dict, remove the feed item which is pruned in program.
670 671

        Notes: This is a very low level API. Users should not use this API
672
        directly.
673 674 675 676 677 678 679 680 681

        Args:
            feed(list|dict): feed dict or list.

        Returns:
            feed:(list|dict)  updated feed.
        """
        if feed is None:
            feed = {}
682 683 684 685 686 687
        elif isinstance(feed, (list, tuple)):
            assert len(feed) == 1, "Not compiled with data parallel"
            feed = feed[0]

        if not isinstance(feed, dict):
            raise TypeError(
688 689 690
                "feed requires dict as its Parameter. But you passed in %s"
                % (type(feed))
            )
691 692 693 694 695 696 697

        global_block = self._main_program.global_block()
        for feed_name in list(feed.keys()):
            if not global_block.has_var(feed_name):
                feed.pop(feed_name)
                warnings.warn(
                    "The variable %s is not found in program. It is not declared or is pruned."
698 699
                    % feed_name
                )
700 701 702 703 704 705 706 707 708 709 710 711 712

        return feed

    def _check_fetch(self, fetch_list):
        if fetch_list is None:
            fetch_list = []

        res = []
        for fetch_var in fetch_list:
            if isinstance(fetch_var, Variable):
                fetch_var = fetch_var.name
            elif not isinstance(fetch_var, str):
                raise TypeError(
713 714 715 716
                    "Required fetch_var shall be str|Variable, but received {}".format(
                        type(fetch_var).__name__
                    )
                )
717 718 719 720 721

            res.append(fetch_var)
        return res


722 723
class _ExecutorCache:
    class _CachedData:
724 725 726 727 728 729 730 731 732 733
        def __init__(
            self,
            program,
            feed,
            fetch_list,
            feed_var_name,
            fetch_var_name,
            place,
            scope,
        ):
R
Ruibiao Chen 已提交
734 735 736 737 738 739 740 741 742 743 744
            self.program = program
            self.feed = feed
            self.fetch_list = fetch_list
            self.feed_var_name = feed_var_name
            self.fetch_var_name = fetch_var_name
            self.place = place
            self.scope = scope

            # NOTE(Ruibiao): Not all changeable item is considered for key at present,
            # ONLY: program, feed, and fetch_list
            if isinstance(self.program, compiler.CompiledProgram):
745 746 747 748
                if not self.program._program:
                    # The program holds no _program, maybe it is constructed by graph.
                    # Convert graph to program in order to generate key.
                    self.program._program = framework.IrGraph(
749 750
                        self.program._graph
                    ).to_program()
R
Ruibiao Chen 已提交
751 752
                self.key = hash(
                    _get_strong_program_cache_key_for_new_exe(
753 754 755
                        self.program._program, feed, fetch_list
                    )
                )
R
Ruibiao Chen 已提交
756 757 758
            else:
                self.key = hash(
                    _get_strong_program_cache_key_for_new_exe(
759 760 761
                        self.program, feed, fetch_list
                    )
                )
R
Ruibiao Chen 已提交
762 763

        def __eq__(self, other):
764 765 766 767
            return (
                isinstance(other, _ExecutorCache._CachedData)
                and self.key == other.key
            )
R
Ruibiao Chen 已提交
768 769 770 771 772 773 774 775 776

        def __hash__(self):
            return self.key

    def __init__(self):
        # NOTE(Ruibiao): Wrap the lru_cache in constructor so that the cache is local to
        # the _ExecutorCache instance, otherwise a global cache may not be released after
        # the Executor instance deleted
        self._get_cached_program_and_executor = lru_cache(maxsize=8)(
777 778
            self._get_program_and_executor
        )
R
Ruibiao Chen 已提交
779 780 781 782

    def clear(self):
        self._get_cached_program_and_executor.cache_clear()

783 784 785 786 787 788 789 790 791 792
    def get_program_and_executor(
        self,
        program,
        feed,
        fetch_list,
        feed_var_name,
        fetch_var_name,
        place,
        scope,
    ):
R
Ruibiao Chen 已提交
793
        return self._get_cached_program_and_executor(
794 795 796 797 798 799 800 801 802 803
            self._CachedData(
                program,
                feed,
                fetch_list,
                feed_var_name,
                fetch_var_name,
                place,
                scope,
            )
        )
R
Ruibiao Chen 已提交
804 805 806

    def _get_program_and_executor(self, cached_data):
        program = cached_data.program
807 808 809 810 811
        inner_program = (
            program._program
            if isinstance(program, compiler.CompiledProgram)
            else program
        )
R
Ruibiao Chen 已提交
812 813 814 815 816 817 818 819 820
        feed = cached_data.feed
        fetch_list = cached_data.fetch_list
        feed_var_name = cached_data.feed_var_name
        fetch_var_name = cached_data.fetch_var_name
        place = cached_data.place
        scope = cached_data.scope

        # To apply IR pass, compile the Program to IrGraph and convert it back to Program
        if isinstance(program, compiler.CompiledProgram) or isinstance(
821 822 823 824 825 826 827
            program._graph, compiler.CompiledProgram
        ):
            compiled_program = (
                program
                if isinstance(program, compiler.CompiledProgram)
                else program._graph
            )
R
Ruibiao Chen 已提交
828 829
            build_strategy = compiled_program._build_strategy
            # print(f"Program before convert:\n {inner_program}", flush=True)
830 831 832 833 834 835 836 837 838 839
            use_cuda_graph = False
            # When using cuda graph, the cuda graph preparation logic in PE is not
            # executed, but it is processed in the constructor of new executor.
            if (
                build_strategy is not None
                and build_strategy.allow_cuda_graph_capture
            ):
                use_cuda_graph = True
                build_strategy.allow_cuda_graph_capture = False
                set_flags({"FLAGS_new_executor_use_cuda_graph": True})
R
Ruibiao Chen 已提交
840
            compiled_program._compile(scope, place)
841 842
            if use_cuda_graph:
                build_strategy.allow_cuda_graph_capture = True
R
Ruibiao Chen 已提交
843 844 845
            ir_graph = framework.IrGraph(compiled_program._graph)
            converted_program = ir_graph.to_program()

846 847
            if hasattr(inner_program, 'lr_scheduler'):
                converted_program.lr_scheduler = inner_program.lr_scheduler
R
Ruibiao Chen 已提交
848 849 850 851 852 853

            inner_program = converted_program
            # print(f"Program after convert:\n {inner_program}", flush=True)
        else:
            build_strategy = None
            from paddle.incubate.autograd import prim_enabled, prim2orig
854

R
Ruibiao Chen 已提交
855 856 857 858 859
            if prim_enabled() and program == default_main_program():
                prim2orig()

            inner_program = program

860 861 862 863 864 865 866 867
        program = _add_feed_fetch_ops(
            program=inner_program,
            feed=feed,
            fetch_list=fetch_list,
            feed_var_name=feed_var_name,
            fetch_var_name=fetch_var_name,
            use_fetch_v2=True,
        )
R
Ruibiao Chen 已提交
868 869 870

        # standalone executor will apply buffer_shared_inplace_pass and
        # inplace_addto_op_pass to program according to build_strategy
871 872 873 874 875 876 877 878 879 880
        enable_inplace = (
            True
            if build_strategy is None or build_strategy.enable_inplace
            else False
        )
        enable_addto = (
            True
            if build_strategy is not None and build_strategy.enable_addto
            else False
        )
R
Ruibiao Chen 已提交
881 882 883
        if enable_inplace or enable_addto:
            # inplace should skip feed and fetch var
            skip_var_names = eval(_get_program_cache_key(feed, fetch_list))
884 885 886
            _apply_inplace_addto_pass(
                program, enable_inplace, enable_addto, skip_var_names
            )
R
Ruibiao Chen 已提交
887 888 889 890

        new_program = program.clone()
        new_exe = _StandaloneExecutor(place, new_program, scope)
        return new_program, new_exe
891 892


893
class Executor:
894
    """
895 896
    :api_attr: Static Graph

897
    An Executor in Python, supports single/multiple-GPU running,
898
    and single/multiple-CPU running.
C
chengduo 已提交
899 900

    Args:
901
        place(paddle.CPUPlace()|paddle.CUDAPlace(n)|str|None): This parameter represents
902 903 904 905
            which device the executor runs on. When this parameter is None, PaddlePaddle
            will set the default device according to its installation version. If Paddle
            is CPU version, the default device would be set to `CPUPlace()` . If Paddle is
            GPU version, the default device would be set to `CUDAPlace(0)` . Default is None.
906
            If ``place`` is string, it can be ``cpu``, and ``gpu:x``, where ``x``
907 908
            is the index of the GPUs. Note: users only pass one Place or None to initialize
            Executor when using multiple-cards. Other APIs will override the cards. See
909
            `document for multiple-cards <https://www.paddlepaddle.org.cn/documentation/docs/en/develop/guides/01_paddle2.0_introduction/update_en.html#stand-alone-multi-card-launch>`_
C
chengduo 已提交
910 911 912

    Returns:
        Executor
S
Fix doc  
sneaxiy 已提交
913

914
    Examples:
S
Fix doc  
sneaxiy 已提交
915 916
        .. code-block:: python

917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950
            import paddle
            import numpy
            import os

            # Executor is only used in static graph mode
            paddle.enable_static()

            # Set place explicitly.
            # use_cuda = True
            # place = paddle.CUDAPlace(0) if use_cuda else paddle.CPUPlace()
            # exe = paddle.static.Executor(place)

            # If you don't set place, PaddlePaddle sets the default device.
            exe = paddle.static.Executor()

            train_program = paddle.static.Program()
            startup_program = paddle.static.Program()
            with paddle.static.program_guard(train_program, startup_program):
                data = paddle.static.data(name='X', shape=[None, 1], dtype='float32')
                hidden = paddle.static.nn.fc(data, 10)
                loss = paddle.mean(hidden)
                paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)

            # Run the startup program once and only once.
            # Not need to optimize/compile the startup program.
            exe.run(startup_program)

            # Run the main program directly without compile.
            x = numpy.random.random(size=(10, 1)).astype('float32')
            loss_data, = exe.run(train_program, feed={"X": x}, fetch_list=[loss.name])

            # Or, compiled the program and run. See `CompiledProgram`
            # for more details.
            compiled_prog = paddle.static.CompiledProgram(
951
                train_program)
952 953
            loss_data, = exe.run(compiled_prog, feed={"X": x}, fetch_list=[loss.name])

954 955
    """

956 957
    def __init__(self, place=None):
        if place is None:
958 959
            expected_place = framework._current_expected_place()
            self.place = expected_place
960
        else:
961
            self.place = framework._get_paddle_place(place)
Q
qiaolongfei 已提交
962
        self.program_caches = dict()
963
        self.ctx_caches = dict()
964
        self.trainer_caches = dict()
965
        self.scope_caches = dict()
966
        self.micro_scope_cache = dict()
967
        self.var_caches = dict()
968
        self.pruned_program_caches = dict()
969 970 971
        p = core.Place()
        p.set_place(self.place)
        self._default_executor = core.Executor(p)
Y
Yancey1989 已提交
972
        self._closed = False
973
        self.pruned_program_scope_caches = dict()
974
        self._prepare_to_run_called = False
D
dzhwinter 已提交
975

976
        self._auto_checkpoint_name = unique_name.generate(
977 978
            "__auto_checkpoint_executor__"
        )
979

R
Ruibiao Chen 已提交
980
        self._executor_cache = _ExecutorCache()
981

982
        self._fleet_executor = None
983 984 985
        # TODO(liyurui): This option will be removed and always true when the functionality
        # of fleet executor with standalone executor is ready.
        self._fleet_executor_with_standalone = False
986

meteor135's avatar
meteor135 已提交
987 988 989 990 991 992 993
        self.op_role_key = core.op_proto_and_checker_maker.kOpRoleAttrName()

    def _is_optimizer_op(self, op):
        return self.op_role_key in op.attr_names and int(
            op.all_attrs()[self.op_role_key]
        ) & int(core.op_proto_and_checker_maker.OpRole.Optimize)

R
Ruibiao Chen 已提交
994 995 996 997 998 999
    def __del__(self):
        # NOTE(Ruibiao): The manually call of clear is required. Because in Python, executor_cache
        # may not immediately destructed after Executor instance deleted (so does not the _StandaloneExecutor),
        # that brings errors to mkl-dnn unit tests (see ClearMKLDNNCache in interpretercore.cc for why).
        self._executor_cache.clear()

1000 1001 1002
    def _get_scope_cache(self, program_cache_key):
        return self.scope_caches.get(program_cache_key, None)

1003 1004 1005
    def _get_ctx_cache(self, program_cache_key):
        return self.ctx_caches.get(program_cache_key, None)

1006 1007 1008
    def _get_trainer_cache(self, program_cache_key):
        return self.trainer_caches.get(program_cache_key, None)

Q
Qiao Longfei 已提交
1009 1010 1011 1012 1013 1014
    def _get_program_cache(self, program_cache_key):
        return self.program_caches.get(program_cache_key, None)

    def _add_program_cache(self, program_cache_key, program):
        self.program_caches[program_cache_key] = program

1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026
    def _get_pruned_program_cache(self, program_cache_key):
        return self.pruned_program_caches.get(program_cache_key, None)

    def _add_pruned_program_cache(self, program_cache_key, program):
        self.pruned_program_caches[program_cache_key] = program

    def _get_pruned_program_scope_cache(self, program_cache_key):
        return self.pruned_program_scope_caches.get(program_cache_key, None)

    def _add_pruned_program_scope_cache(self, program_cache_key, program):
        self.pruned_program_scope_caches[program_cache_key] = program

1027 1028 1029
    def _add_ctx_cache(self, ctx_cache_key, ctx):
        self.ctx_caches[ctx_cache_key] = ctx

1030 1031 1032
    def _add_trainer_cache(self, trainer_cache_key, ctx):
        self.trainer_caches[trainer_cache_key] = ctx

1033 1034 1035
    def _add_scope_cache(self, scope_cache_key, scope):
        self.scope_caches[scope_cache_key] = scope

1036 1037 1038 1039 1040 1041
    def _add_micro_scopes_cache(self, program_cache_key, micro_scopes: list):
        self.micro_scope_cache[program_cache_key] = micro_scopes

    def _get_micro_scopes_cache(self, program_cache_key):
        return self.micro_scope_cache.get(program_cache_key, None)

1042 1043 1044 1045 1046 1047 1048
    # just for testing, will be removed later
    @lru_cache()
    def _log_force_set_program_cache(self, use_program_cache):
        logging.warning(
            f"use_program_cache is force set to {use_program_cache} by FLAGS_FORCE_USE_PROGRAM_CACHE"
        )

Q
Qiao Longfei 已提交
1049 1050
    def _feed_data(self, program, feed, feed_var_name, scope):
        # feed var to framework
H
Huihuang Zheng 已提交
1051 1052
        global_block = program.global_block()
        for op in global_block.ops:
Q
Qiao Longfei 已提交
1053 1054 1055
            if op.desc.type() == 'feed':
                feed_target_name = op.desc.output('Out')[0]
                cur_feed = feed[feed_target_name]
H
Huihuang Zheng 已提交
1056
                var = global_block.var(feed_target_name)
S
Steffy-zxf 已提交
1057 1058
                if var.dtype != core.VarDesc.VarType.STRINGS:
                    if not isinstance(cur_feed, core.LoDTensor):
1059 1060 1061
                        cur_feed = _as_lodtensor(
                            cur_feed, self.place, var.dtype
                        )
S
Steffy-zxf 已提交
1062
                    check_feed_shape_type(var, cur_feed)
Q
Qiao Longfei 已提交
1063 1064 1065 1066 1067 1068 1069 1070
                idx = op.desc.attr('col')
                core.set_feed_variable(scope, cur_feed, feed_var_name, idx)
            else:
                break

    def _fetch_data(self, fetch_list, fetch_var_name, scope):
        outs = [
            core.get_fetch_variable(scope, fetch_var_name, i)
1071
            for i in range(len(fetch_list))
Q
Qiao Longfei 已提交
1072 1073 1074
        ]
        return outs

1075 1076
    @classmethod
    def _split_optimize_ops_in_fetch_list(cls, fetch_list):
1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087
        """
        Split optimize_ops from fetch_list, which provided to specify program prunning.
        Args:
            fetch_list(list): The original fetch_list.
            Possible types of fetch_list are:
                fetch_list = ['loss']
                fetch_list = [[sgd, sgd], 'loss']
                fetch_list = [([sgd, sgd], [(param, grad)]), 'loss']

        Returns:
            optimize_ops(list): The optimize operators splited from fetch_list.
1088
            fetch_list(list):  The updated fetch_list which does not contain optimize operators.
1089 1090 1091 1092 1093 1094 1095 1096 1097 1098
        """
        _optimize_ops = []
        _fetch_list = []

        def _get_targets(_optimize_ops, _fetch_list, item):
            if isinstance(item, Operator):
                if item._is_optimize_op():
                    _optimize_ops.append(item)
                else:
                    raise TypeError(
1099 1100 1101 1102 1103 1104 1105
                        "The operator in fetch_list is not an optimize_op"
                    )
            elif (
                isinstance(item, Variable)
                or isinstance(item, str)
                or isinstance(item, str)
            ):
1106 1107 1108
                _fetch_list.append(item)
            else:
                raise TypeError(
1109
                    "The item in fetch_list should be str, variable or optimize_op, but received %s.",
1110 1111
                    type(item),
                )
1112

1113
        for index, item in enumerate(fetch_list):
1114 1115 1116 1117 1118 1119 1120
            # NOTE(zhiqiu): to support (optimizer_ops, param_and_grads) and optimizer_ops in fetch_list
            # we should handle tuple and list in fetch_list.
            # TODO(zhiqiu): find a better way to handle that.
            if isinstance(item, list):
                for i in item:
                    _get_targets(_optimize_ops, _fetch_list, i)
            elif isinstance(item, tuple):
1121 1122
                if not isinstance(item[0], (list, tuple)):
                    raise TypeError(
1123 1124 1125 1126
                        "Requires fetch_list[{}][0] shall be one of (list, tuple) when type(fetch_list[{}]) is `tuple`, but received fetch_list[{}][0]'s type is `{}`.".format(
                            index, index, index, type(item[0]).__name__
                        )
                    )
1127 1128 1129 1130 1131 1132 1133
                for i in item[0]:
                    _get_targets(_optimize_ops, _fetch_list, i)
            else:
                _get_targets(_optimize_ops, _fetch_list, item)

        return _fetch_list, _optimize_ops

1134
    @classmethod
1135 1136 1137
    def _prune_program(
        cls, program, feed=None, fetch_list=None, optimize_ops=None
    ):
1138 1139
        """
        Prune operators and variables which are not needed to generate
1140 1141 1142
        :code:`fetch_list` and optimize operators.
        Prune operators and variables which are needed
        to generate variables to be feeded.
1143 1144

        Notes: This is a very low level API. Users should not use this API
1145
        directly.
1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195

        Args:
            program(Program): the origin program
            feed(list|dict): feed dict or list.
            fetch_list(list|Variable): A list of variables need to be fetched
            optimize_ops(list[Operator]): A list of optimizer operators

        Returns:
            Program:  A new, pruned program.
        """
        compiled = isinstance(program, compiler.CompiledProgram)
        if compiled:
            if program._program:
                origin_program = program._program
            else:
                warnings.warn(
                    "The program holds no _program, maybe it is constructed by graph, which can't be pruned yet."
                )
                return
        else:
            origin_program = program

        feed_names = []
        if isinstance(feed, dict):
            feed_names = list(feed.keys())
        elif isinstance(feed, list) or isinstance(feed, tuple):
            for i, each in enumerate(feed):
                feed_names += list(each.keys())

        # if optimize_ops is [], all optimize ops in the program is used.
        if not optimize_ops:
            for block in origin_program.blocks:
                for op in block.ops:
                    if op._is_optimize_op():
                        optimize_ops.append(op)

        targets = fetch_list + optimize_ops
        pruned_program = origin_program._prune_with_input(feed_names, targets)

        if compiled:
            # for compiled program, update the underlying program, re-generate graph,
            # and reset the flag so it can be compiled again.
            program._program = pruned_program
            program._graph = core.Graph(pruned_program.desc)
            program._compiled = False
        else:
            program = pruned_program

        return program

1196 1197
    @classmethod
    def _update_feed(cls, program, feed):
1198
        """
1199
        Update the feed dict, remove the feed item which is pruned in program.
1200 1201

        Notes: This is a very low level API. Users should not use this API
1202
        directly.
1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218

        Args:
            program(Program): the pruned program.
            feed(list|dict): feed dict or list.

        Returns:
            feed:(list|dict)  updated feed.
        """
        compiled = isinstance(program, compiler.CompiledProgram)
        if compiled:
            if program._program:
                global_block = program._program.global_block()
            else:
                warnings.warn(
                    "The program holds no _program, maybe it is constructed by graph."
                )
1219
                return feed
1220 1221 1222 1223 1224 1225 1226 1227 1228
        else:
            global_block = program.global_block()

        if isinstance(feed, dict):
            for feed_name in list(feed.keys()):
                if not global_block.has_var(feed_name):
                    feed.pop(feed_name)
                    warnings.warn(
                        "The variable %s is not found in program. It is not declared or is pruned."
1229 1230
                        % feed_name
                    )
1231 1232 1233 1234 1235 1236 1237 1238

        elif isinstance(feed, list) or isinstance(feed, tuple):
            for i, each in enumerate(feed):
                for feed_name in list(each.keys()):
                    if not global_block.has_var(feed_name):
                        each.pop(feed_name)
                        warnings.warn(
                            "The variable %s is not found in program. It is not declared or is pruned."
1239 1240
                            % feed_name
                        )
1241 1242
        return feed

S
Fix doc  
sneaxiy 已提交
1243 1244 1245 1246 1247 1248
    '''
    TODO(typhoonzero): Define "no longer use" meaning? Can user create
    a new Executor for the same program and run?
    TODO(panyx0718): Why ParallelExecutor doesn't have close?
    '''

Y
Yancey1989 已提交
1249 1250
    def close(self):
        """
C
chengduo 已提交
1251 1252 1253
        Close the executor. This interface is used for distributed training (PServers mode).
        This executor can not be used after calling the interface, because
        this interface releases resources associated with the current Trainer.
Y
Yancey1989 已提交
1254

C
chengduo 已提交
1255 1256
        Returns:
            None
1257 1258 1259 1260

        Examples:
            .. code-block:: python

1261
              import paddle
1262

1263 1264
              cpu = paddle.CPUPlace()
              exe = paddle.static.Executor(cpu)
1265 1266
              # execute training or testing
              exe.close()
Y
Yancey1989 已提交
1267
        """
1268
        if not self._closed:
Y
Yancey1989 已提交
1269
            self._closed = True
1270 1271 1272 1273
            for k, trainer_instance in self.trainer_caches.items():
                self._default_executor.release_trainer(trainer_instance)
                del trainer_instance
            self._default_executor.close()
Y
Yancey1989 已提交
1274

1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286
    def run(
        self,
        program=None,
        feed=None,
        fetch_list=None,
        feed_var_name='feed',
        fetch_var_name='fetch',
        scope=None,
        return_numpy=True,
        use_program_cache=False,
        use_prune=False,
    ):
1287
        """
C
chengduo 已提交
1288 1289 1290
        Run the specified :code:`Program` or :code:`CompiledProgram`. It should be noted that the executor
        will execute all the operators in :code:`Program` or :code:`CompiledProgram` without pruning some
        operators of the :code:`Program` or :code:`CompiledProgram` according to fetch_list. And you could
1291 1292
        specify the scope to store the :code:`Tensor` during the executor running if the scope
        is not set, the executor will use the global scope, i.e. :code:`paddle.static.global_scope()`.
1293

C
chengduo 已提交
1294 1295 1296
        Args:
            program(Program|CompiledProgram): This parameter represents the :code:`Program` or
                :code:`CompiledProgram` to be executed. If this parameter is not provided, that
1297
                parameter is None, the program will be set to :code:`paddle.static.default_main_program()`.
C
chengduo 已提交
1298
                The default is None.
1299
            feed(list|dict): This parameter represents the input Tensors of the model.
C
chengduo 已提交
1300
                If it is single card training, the feed is dict type, and if it is multi-card
1301
                training, the parameter feed can be dict or list of Tensors. If the
C
chengduo 已提交
1302 1303 1304 1305 1306 1307 1308
                parameter type is dict, the data in the feed will be split and sent to
                multiple devices (CPU/GPU), that is to say, the input data will be evenly
                sent to different devices, so you should make sure the number of samples of
                the current mini-batch must be greater than the number of places;
                if the parameter type is list, those data are copied directly to each device,
                so the length of this list should be equal to the number of places.
                The default is None.
1309
            fetch_list(list): This parameter represents the Tensors that need to be returned
1310
                after the model runs. The default is None.
1311
            feed_var_name(str): This parameter represents the name of the input Tensor of
C
chengduo 已提交
1312
                the feed operator. The default is "feed".
1313
            fetch_var_name(str): This parameter represents the name of the output Tensor of
C
chengduo 已提交
1314
                the fetch operator. The default is "fetch".
1315
            scope(Scope): the scope used to run this program, you can switch
1316 1317 1318
                it to different scope. default is :code:`paddle.static.global_scope()`
            return_numpy(bool): This parameter indicates whether convert the fetched Tensors
                (the Tensor specified in the fetch list) to numpy.ndarray. if it is False,
C
chengduo 已提交
1319 1320 1321
                the type of the return value is a list of :code:`LoDTensor`. The default is True.
            use_program_cache(bool): This parameter indicates whether the input :code:`Program` is cached.
                If the parameter is True, the model may run faster in the following cases:
1322 1323
                the input program is :code:`paddle.static.Program`, and the parameters(program, feed Tensor name
                and fetch_list Tensor) of this interface remains unchanged during running.
C
chengduo 已提交
1324
                The default is False.
1325
            use_prune(bool): This parameter indicates whether the input :code:`Program` will be pruned.
1326
                If the parameter is True, the program will be pruned accroding to the given feed and fetch_list,
1327 1328
                which means the operators and variables in program that generate :code:`feed` and are not
                needed to generate :code:`fetch_list` will be pruned. The default is False, which means the
1329
                program will not pruned and all the operators and variables will be executed during running.
1330
                Note that if the tuple returned from :code:`Optimizer.minimize()` is passed to :code:`fetch_list`,
1331
                :code:`use_prune` will be overrided to True, and the program will be pruned.
1332

C
chengduo 已提交
1333 1334 1335 1336
        Returns:

            List: The fetched result list.

1337
        Examples:
1338
            .. code-block:: python
1339
                :name: code-example-1
1340

1341 1342
                import paddle
                import numpy
1343

1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354
                # First create the Executor.
                paddle.enable_static()
                place = paddle.CPUPlace()  # paddle.CUDAPlace(0)
                exe = paddle.static.Executor(place)

                data = paddle.static.data(name='X', shape=[None, 1], dtype='float32')
                hidden = paddle.static.nn.fc(data, 10)
                loss = paddle.mean(hidden)
                adam = paddle.optimizer.Adam()
                adam.minimize(loss)
                i = paddle.zeros(shape=[1], dtype='int64')
1355
                array = paddle.tensor.array_write(x=loss, i=i)
1356

1357 1358
                # Run the startup program once and only once.
                exe.run(paddle.static.default_startup_program())
1359

1360 1361 1362 1363 1364
                x = numpy.random.random(size=(10, 1)).astype('float32')
                loss_val, array_val = exe.run(feed={'X': x},
                                              fetch_list=[loss.name, array.name])
                print(array_val)
                # [array([0.02153828], dtype=float32)]
Z
Zhen Wang 已提交
1365 1366

            .. code-block:: python
1367
                :name: code-example-2
Z
Zhen Wang 已提交
1368

1369
                # required: gpu
1370
                import paddle
Z
Zhen Wang 已提交
1371 1372 1373
                import numpy as np

                # First create the Executor.
1374 1375 1376
                paddle.enable_static()
                place = paddle.CUDAPlace(0)
                exe = paddle.static.Executor(place)
Z
Zhen Wang 已提交
1377

1378
                data = paddle.static.data(name='X', shape=[None, 1], dtype='float32')
Z
Zhen Wang 已提交
1379
                class_dim = 2
1380 1381 1382
                prediction = paddle.static.nn.fc(data, class_dim)
                loss = paddle.mean(prediction)
                adam = paddle.optimizer.Adam()
Z
Zhen Wang 已提交
1383 1384 1385
                adam.minimize(loss)

                # Run the startup program once and only once.
1386 1387 1388
                exe.run(paddle.static.default_startup_program())
                build_strategy = paddle.static.BuildStrategy()
                binary = paddle.static.CompiledProgram(
1389
                    paddle.static.default_main_program(), build_strategy=build_strategy)
Z
Zhen Wang 已提交
1390 1391 1392
                batch_size = 6
                x = np.random.random(size=(batch_size, 1)).astype('float32')

1393 1394 1395
                prediction, = exe.run(binary,
                                      feed={'X': x},
                                    fetch_list=[prediction.name])
Z
Zhen Wang 已提交
1396 1397
                # If the user uses two GPU cards to run this python code, the printed result will be
                # (6, class_dim). The first dimension value of the printed result is the batch_size.
1398 1399 1400
                print("The prediction shape: {}".format(
                    np.array(prediction).shape))
                print(prediction)
1401

Z
Zhen Wang 已提交
1402
                # Out:
1403
                # The prediction shape: (6, 2)
Z
Zhen Wang 已提交
1404 1405 1406 1407 1408 1409
                # [[-0.37789783 -0.19921964]
                #  [-0.3577645  -0.18863106]
                #  [-0.24274671 -0.12814042]
                #  [-0.24635398 -0.13003758]
                #  [-0.49232286 -0.25939852]
                #  [-0.44514108 -0.2345845 ]]
1410

1411
        """
1412 1413
        # Temporary FLAGS, just for testing the performance of program cache
        force_use_program_cache = os.environ.get(
1414 1415
            'FLAGS_FORCE_USE_PROGRAM_CACHE', None
        )
1416 1417
        if force_use_program_cache is not None:
            use_program_cache = force_use_program_cache in [
1418 1419 1420 1421 1422
                1,
                '1',
                True,
                'True',
                'true',
1423
            ]
1424
            self._log_force_set_program_cache(use_program_cache)
1425

1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438
        res = self._run_impl(
            program=program,
            feed=feed,
            fetch_list=fetch_list,
            feed_var_name=feed_var_name,
            fetch_var_name=fetch_var_name,
            scope=scope,
            return_numpy=return_numpy,
            use_program_cache=use_program_cache,
            use_prune=use_prune,
        )
        core.update_autotune_status()
        return res
C
chengduo 已提交
1439

1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451
    def _run_impl(
        self,
        program,
        feed,
        fetch_list,
        feed_var_name,
        fetch_var_name,
        scope,
        return_numpy,
        use_program_cache,
        use_prune,
    ):
Y
Yancey1989 已提交
1452 1453 1454
        if self._closed:
            raise RuntimeError("Attempted to use a closed Executor")

C
chengduo 已提交
1455
        use_default_main_program = program is None
1456 1457
        if program is None:
            program = default_main_program()
1458

1459
        fetch_list = self._check_fetch_list(fetch_list)
1460 1461

        if isinstance(program, Program) and program._pipeline_opt:
L
LiYuRio 已提交
1462
            if "fleet_opt" in program._pipeline_opt:
1463 1464
                # Move prepare here for port conflict with nccl in startup program
                if self._fleet_executor is None:
1465 1466 1467 1468 1469 1470
                    # Temporary manual enable standalone executor for fleet executor,
                    # delete this code after the FLAGS is removed.
                    if 'tasks' in program._pipeline_opt["fleet_opt"]:
                        set_flags(
                            {"FLAGS_fleet_executor_with_standalone": True}
                        )
1471
                    self._fleet_executor = _prepare_fleet_executor()
1472 1473 1474 1475
                return self._run_using_fleet_executor(
                    program=program,
                    feed=feed,
                    fetch_list=fetch_list,
1476
                    with_standalone_executor=self._fleet_executor_with_standalone,
1477
                    return_numpy=return_numpy,
1478
                )
1479 1480 1481
            if "startup_program" in program._pipeline_opt:
                program = program._pipeline_opt["startup_program"]
            else:
1482 1483 1484 1485 1486
                return self._run_pipeline(
                    program,
                    fetch_list=fetch_list,
                    use_program_cache=use_program_cache,
                )
1487 1488

        if isinstance(program, Program) and program._heter_pipeline_opt:
1489
            # print("program._heter_pipeline_opt: {}".format(
1490
            #    program._heter_pipeline_opt))
1491
            ## change default executor
1492 1493 1494 1495 1496 1497
            heter_place = program._heter_pipeline_opt["heter_place"]
            heter_place = framework._get_paddle_place(heter_place)
            p = core.Place()
            p.set_place(heter_place)
            self._default_executor = core.Executor(p)
            # TODO(zhangminxu): support heterps pipeline training using exe.run
1498
            if "startup_program" in program._heter_pipeline_opt:
1499
                # print("get startup_program from _pipeline_opt")
1500 1501
                program = program._heter_pipeline_opt["startup_program"]

1502 1503 1504 1505
        if (
            isinstance(program, Program)
            and len(program.global_block().ops) == 0
        ):
C
chengduo 已提交
1506
            if use_default_main_program:
1507 1508 1509 1510
                error_info = (
                    "Now you are using default_main_program, "
                    "but there are no operators in the program to be executed. "
                    "Please ensure you create model correctly or you can pass "
1511
                    "the Program or the CompiledProgram manually."
1512
                )
1513
            else:
1514 1515 1516
                error_info = (
                    "There are no operators in the program to be executed. "
                    "If you pass Program manually, please use fluid.program_guard "
1517
                    "to ensure the current Program is being used."
1518
                )
C
chengduo 已提交
1519
            warnings.warn(error_info)
1520

1521 1522
        if scope is None:
            scope = global_scope()
1523

1524 1525 1526 1527
        # use_prune can be overrided by putting optimize_ops in fetch_list
        _origin_fetch_list = fetch_list
        _origin_program = program
        fetch_list, optimize_ops = self._split_optimize_ops_in_fetch_list(
1528 1529
            fetch_list
        )
1530 1531 1532
        if optimize_ops:
            use_prune = True
        if use_prune:
1533 1534 1535
            cache_key = _get_strong_program_cache_key(
                program, feed, _origin_fetch_list
            )
1536 1537 1538 1539
            cached_pruned_program = self._get_pruned_program_cache(cache_key)
            if cached_pruned_program is None:
                if isinstance(program, compiler.CompiledProgram):
                    program_scope_cache = self._get_pruned_program_scope_cache(
1540 1541
                        str(id(_origin_program))
                    )
1542 1543 1544 1545
                    # copy the original program, so it can be cached.
                    program = copy.copy(program)
                    # share the local scopes for same original CompiledProgram.
                    program._share_vars_from = program_scope_cache
1546 1547 1548 1549 1550 1551
                    if (
                        self._get_pruned_program_scope_cache(
                            str(id(_origin_program))
                        )
                        is None
                    ):
1552
                        self._add_pruned_program_scope_cache(
1553 1554 1555 1556 1557
                            str(id(_origin_program)), program
                        )
                pruned_program = self._prune_program(
                    program, feed, fetch_list, optimize_ops
                )
1558 1559 1560 1561 1562 1563 1564
                self._add_pruned_program_cache(cache_key, pruned_program)
            else:
                pruned_program = cached_pruned_program

            feed = self._update_feed(pruned_program, feed)
            program = pruned_program

1565
        def _can_use_interpreter_core(program, place):
1566 1567 1568
            compiled = isinstance(
                program, compiler.CompiledProgram
            ) or isinstance(program._graph, compiler.CompiledProgram)
1569
            if compiled:
1570 1571 1572 1573 1574
                compiled_program = (
                    program
                    if isinstance(program, compiler.CompiledProgram)
                    else program._graph
                )
1575

1576
                # Unsupported case 1: inference
1577
                if compiled_program._is_inference:
1578 1579
                    warnings.warn(
                        "Standalone executor is not used for inference",
1580 1581
                        UserWarning,
                    )
1582
                    return False
1583

1584
            return True
1585

1586
        if _can_use_interpreter_core(program, self.place):
1587

1588 1589 1590 1591 1592 1593 1594 1595
            if feed is None:
                feed = {}
            elif isinstance(feed, (list, tuple)):
                assert len(feed) == 1, "Not compiled with data parallel"
                feed = feed[0]
            if not isinstance(feed, dict):
                raise TypeError(
                    "feed requires dict as its Parameter. But you passed in %s"
1596 1597
                    % (type(feed))
                )
1598 1599
            feed = self._update_feed(program, feed)

1600 1601 1602 1603 1604 1605 1606 1607 1608 1609
            stored_flag = {}
            if isinstance(program, compiler.CompiledProgram) or isinstance(
                program._graph, compiler.CompiledProgram
            ):
                compiled_program = (
                    program
                    if isinstance(program, compiler.CompiledProgram)
                    else program._graph
                )
                build_strategy = compiled_program._build_strategy
1610
                if build_strategy is not None and build_strategy.sequential_run:
1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622
                    schedule_flag = [
                        'FLAGS_new_executor_serial_run',
                        'FLAGS_new_executor_sequential_run',
                    ]
                    for flag in schedule_flag:
                        value = os.getenv(flag, False)
                        if isinstance(value, str):
                            value = value.lower()
                            value = True if value == 'true' else False
                        stored_flag[flag] = bool(value)
                    set_flags({f: True for f in schedule_flag})

1623
            program, new_exe = self._executor_cache.get_program_and_executor(
1624 1625 1626 1627 1628 1629 1630 1631
                program,
                feed,
                fetch_list,
                feed_var_name,
                fetch_var_name,
                self.place,
                scope,
            )
1632 1633

            self._feed_data(program, feed, feed_var_name, scope)
1634
            if hasattr(program, 'lr_scheduler'):
1635
                from paddle.optimizer.lr import LRScheduler
1636 1637

                assert isinstance(
1638
                    program.lr_scheduler, LRScheduler
1639
                ), "must be LRScheduler"
1640 1641 1642
                lr_scheduler = program.lr_scheduler
                lr_value = lr_scheduler()
                lr_var = program.global_block().vars[lr_scheduler._var_name]
1643
                data = np.array([lr_value]).astype(convert_dtype(lr_var.dtype))
1644
                tensor = core.get_variable_tensor(scope, lr_scheduler._var_name)
1645 1646
                # NOTE(dev): `tensor.set(data, self.place)` always call TensorCopySync that is a blocking behavior. So we use `_copy_from` to replace it.
                cpu_tensor = _as_lodtensor(data, core.CPUPlace())
1647 1648 1649 1650 1651 1652 1653
                if core.is_cuda_graph_capturing():
                    warnings.warn(
                        "Caution!!! When capturing CUDA Graph, the learning rate scheduler would not "
                        "take any effect! Please set the learning rate manually before each batch!"
                    )
                elif core.is_compiled_with_ipu():
                    # for ipu, tensor is allocated on cpu
1654 1655 1656 1657
                    tensor._copy_from(cpu_tensor, tensor._place())
                else:
                    tensor._copy_from(cpu_tensor, self.place)

1658
            ret = new_exe.run(
1659 1660
                scope, list(feed.keys()), fetch_list, return_numpy
            )
1661 1662
            set_flags(stored_flag)
            return ret
1663

X
polish  
Xin Pan 已提交
1664
        compiled = isinstance(program, compiler.CompiledProgram)
H
Huihuang Zheng 已提交
1665

1666
        # Check if paddle.static.data() variable no feed data
1667 1668 1669 1670 1671 1672
        if use_prune:
            if compiled:
                global_block = program._program.global_block()
            else:
                global_block = program.global_block()
            for varname in global_block.vars:
1673
                vardesc = global_block.desc.find_var(varname.encode())
1674 1675
                varobj = global_block.vars[varname]

1676 1677 1678 1679 1680 1681 1682 1683 1684
                if (
                    vardesc.persistable() == False
                    and vardesc.type() == core.VarDesc.VarType.LOD_TENSOR
                    and vardesc.need_check_feed() == True
                    and varobj.stop_gradient == True
                    and varobj.is_data == True
                    and varobj.belong_to_optimizer == False
                    and varname not in feed
                ):
1685 1686
                    raise ValueError('Need feed data for variable %s' % varname)

1687 1688
        acp._auto_checkpoint(self, program)

1689
        program._compile(scope, self.place)
1690 1691 1692 1693
        assert (
            program._is_inference
        ), f"Program must have _is_inference = True, but get {program._is_inference}"
        return self._run_inference(program._executor, feed)
1694

X
Xin Pan 已提交
1695 1696
    def _run_inference(self, exe, feed):
        return exe.run(feed)
D
dongdaxiang 已提交
1697

1698
    def _check_fetch_list(self, fetch_list):
1699
        is_fetch_var = lambda var: isinstance(var, (Variable, str))
1700 1701
        is_tuple_list = lambda var: isinstance(var, (tuple, list))

1702 1703 1704 1705
        if fetch_list is None:
            return []
        if is_fetch_var(fetch_list):
            return [fetch_list]
1706

1707 1708 1709
        assert is_tuple_list(fetch_list), (
            "Currently , The fetch_list type only should be list or tuple, \n"
            "but the input type is {}. For more information please refer to \n"
1710
            "the executor.run(...).".format(type(fetch_list))
1711
        )
1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724

        res = []
        for i, var in enumerate(fetch_list):
            if is_fetch_var(var):
                res.append(var)
            # such as [x, 'mean_out', loss]
            elif is_tuple_list(var):
                if all(is_fetch_var(v) for v in var):
                    res.extend(list(var))
                else:
                    res.append(var)
            else:
                raise TypeError(
1725 1726 1727 1728
                    "Require fetch_list[{}] 's type shall be one of (Variable, str), but received {}.".format(
                        i, type(var).__name__
                    )
                )
1729 1730 1731

        return res

1732
    def _dump_debug_info(self, program=None, trainer=None):
Z
ziyoujiyi 已提交
1733 1734
        with open(str(id(program)) + "_train_desc.prototxt", "w") as fout:
            fout.write(str(trainer))
1735
        if program._fleet_opt and "fleet_desc" in program._fleet_opt:
1736 1737 1738
            with open("fleet_desc.prototxt", "w") as fout:
                fout.write(str(program._fleet_opt["fleet_desc"]))

1739 1740 1741 1742 1743 1744
    def _adjust_pipeline_resource(self, pipeline_opt, dataset, pipeline_num):
        filelist_length = len(dataset.dataset.get_filelist())
        if filelist_length < pipeline_num:
            pipeline_num = filelist_length
            print(
                "Pipeline training: setting the pipeline num to %d is enough because there are only %d files"
1745 1746
                % (filelist_length, filelist_length)
            )
1747 1748 1749
        if filelist_length < pipeline_num * pipeline_opt["concurrency_list"][0]:
            print(
                "Pipeline training: setting the 1st element in concurrency_list to %d is enough because there are only %d files"
1750 1751 1752 1753 1754
                % (filelist_length // pipeline_num, filelist_length)
            )
            pipeline_opt["concurrency_list"][0] = (
                filelist_length // pipeline_num
            )
1755 1756 1757
        dataset.set_thread(pipeline_opt["concurrency_list"][0] * pipeline_num)
        return pipeline_num

meteor135's avatar
meteor135 已提交
1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888
    def split_program_by_device(self, program):
        ops_list = []
        type_list = []
        pre = None
        type_cpu = "cpu"
        for op in program.global_block().ops:
            if self._is_optimizer_op(op):
                break
            if op.has_attr("op_device"):
                cur_attr = (
                    op.attr("op_device")
                    if op.attr("op_device") != ""
                    else type_cpu
                )
                if pre is None or pre != cur_attr:
                    ops_list.append([])
                    type_list.append(cur_attr)
                ops_list[-1].append(op)
                pre = cur_attr
        l = len(type_list)
        i = 0
        type_heter = None
        while i < l:
            while i < l and type_list[i] == type_cpu:
                i += 1
            if i == l:
                break

            type_heter = type_list[i]
            i += 1
            start = i
            valid = True
            while i < l and type_list[i] != type_heter:
                if type_list[i] != type_cpu:
                    valid = False
                    break
                i += 1

            if i == l:
                break
            elif not valid:
                continue

            for j in range(start, i):
                for op in ops_list[j]:
                    op._set_attr("op_device", type_heter)
                type_list[j] = type_heter
                j += 1

        pre = None
        merged_ops_list = []
        merged_type_list = []
        for i in range(l):
            if pre is None or pre != type_list[i]:
                merged_ops_list.append([])
                merged_type_list.append(type_list[i])
            merged_ops_list[-1].extend(ops_list[i])
            pre = type_list[i]

        data_vars = set()
        for k in program.global_block().vars:
            var = program.global_block().var(k)
            if not var.persistable:
                data_vars.add(var.name)

        l = len(merged_ops_list)
        inputs_pre = set()
        outputs_pre = set()
        in_from_pre = [[] for i in range(l)]
        for i in range(l):
            inputs = set()
            outputs = set()
            for op in merged_ops_list[i]:
                for input in op.input_names:
                    for tmp in op.input(input):
                        if tmp not in outputs:
                            inputs.add(tmp)
                for output in op.output_names:
                    for tmp in op.output(output):
                        outputs.add(tmp)
            if i == 0:
                in_from_pre[i] = []
            elif i == 1:
                in_from_pre[i] = (outputs_pre | data_vars) & inputs
            else:
                in_from_pre[i] = outputs_pre & inputs
            inputs_pre = copy.deepcopy(inputs)
            outputs_pre = copy.deepcopy(outputs)

        l = len(in_from_pre)
        start_list = []
        end_list = []
        send_list = [[] for i in range(l)]
        sum = 0
        program_list = []
        for i in range(l):
            start_list.append(sum)
            end_list.append(sum + len(merged_ops_list[i]) - 1)
            sum += len(merged_ops_list[i])
            if i < l - 1:
                send_list[i].extend(list(in_from_pre[i + 1]))
            prog = program.clone()
            if merged_type_list[i] != type_cpu:
                prog = prog._prune_with_input(
                    list(in_from_pre[i]), list(send_list[i])
                )
                program_list.append(prog)
            else:
                program_list.append(prog)
        recv_list = [list(i) for i in in_from_pre]
        found = False
        heter_index = None
        for i in range(len(merged_type_list)):
            t = merged_type_list[i]
            if t != type_cpu:
                if found:
                    print("only one region of program can be heter")
                found = True
                heter_index = i
        if heter_index is None:
            print("warning: non heter program")
            return None
        else:
            return [
                start_list[heter_index],
                end_list[heter_index],
                send_list[heter_index],
                recv_list[heter_index],
                program_list[heter_index],
            ]

1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899
    def _prepare_trainer(
        self,
        program=None,
        dataset=None,
        scope=None,
        thread=0,
        debug=False,
        fetch_list=None,
        fetch_info=None,
        print_period=100,
    ):
T
Thunderbrook 已提交
1900
        is_heter = 0
T
Thunderbrook 已提交
1901
        use_ps_gpu = 0
T
Thunderbrook 已提交
1902 1903 1904
        if not program._fleet_opt is None:
            if program._fleet_opt.get("worker_class", "") == "HeterCpuWorker":
                is_heter = 1
T
Thunderbrook 已提交
1905
            if program._fleet_opt.get("trainer", "") == "HeterXpuTrainer":
T
Thunderbrook 已提交
1906
                is_heter = 1
T
Thunderbrook 已提交
1907 1908
            if program._fleet_opt.get("use_ps_gpu", False):
                use_ps_gpu = True
D
dongdaxiang 已提交
1909 1910 1911 1912
        if scope is None:
            scope = global_scope()
        if fetch_list is None:
            fetch_list = []
D
dongdaxiang 已提交
1913 1914 1915
        if fetch_info is None:
            fetch_info = []
        assert len(fetch_list) == len(fetch_info)
D
dongdaxiang 已提交
1916
        compiled = isinstance(program, compiler.CompiledProgram)
T
Thunderbrook 已提交
1917
        if is_heter:
meteor135's avatar
meteor135 已提交
1918
            ret = self.split_program_by_device(program)
D
dongdaxiang 已提交
1919
        if not compiled:
H
hutuxian 已提交
1920 1921 1922
            # TODO: Need a better way to distinguish and specify different execution mode
            if program._pipeline_opt:
                trainer = TrainerFactory()._create_trainer(
1923 1924
                    program._pipeline_opt
                )
1925 1926
            elif program._heter_pipeline_opt:
                trainer = TrainerFactory()._create_trainer(
1927 1928
                    program._heter_pipeline_opt
                )
H
hutuxian 已提交
1929 1930
            else:
                trainer = TrainerFactory()._create_trainer(program._fleet_opt)
1931
                trainer._set_thread_barrier(program._is_distributed)
1932
            trainer._set_program(program)
T
Thunderbrook 已提交
1933 1934
            if is_heter:
                trainer._set_heter_info(ret)
1935
        else:
H
hutuxian 已提交
1936 1937
            if program._pipeline_opt:
                trainer = TrainerFactory()._create_trainer(
1938 1939
                    program.program._pipeline_opt
                )
1940 1941
            elif program._heter_pipeline_opt:
                trainer = TrainerFactory()._create_trainer(
1942 1943
                    program.program._heter_pipeline_opt
                )
H
hutuxian 已提交
1944 1945
            else:
                trainer = TrainerFactory()._create_trainer(
1946 1947
                    program.program._fleet_opt
                )
1948
            trainer._set_program(program.program)
H
hutuxian 已提交
1949

1950
        if thread <= 0:
T
Thunderbrook 已提交
1951 1952 1953
            if use_ps_gpu:
                trainer._set_thread(len(program._fleet_opt["worker_places"]))
            elif dataset.thread_num <= 0:
D
dongdaxiang 已提交
1954
                raise RuntimeError(
1955
                    "You should set thread num first, either in Dataset"
1956 1957
                    "or in Executor.train_from_dataset"
                )
D
dongdaxiang 已提交
1958
            else:
1959
                trainer._set_thread(dataset.thread_num)
1960
        else:
1961
            trainer._set_thread(thread)
H
hutuxian 已提交
1962

1963 1964
        trainer._set_debug(debug)
        trainer._set_fetch_var_and_info(fetch_list, fetch_info, print_period)
1965
        return scope, trainer
1966

1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979
    def _run_from_dataset(
        self,
        program=None,
        dataset=None,
        scope=None,
        thread=0,
        is_infer=False,
        debug=False,
        fetch_list=None,
        fetch_info=None,
        print_period=100,
        fetch_handler=None,
    ):
1980 1981
        if program._pipeline_opt is not None:
            import paddle
1982

1983 1984
            if dataset is not None:
                raise RuntimeError("dataset should be None for pipeline mode")
1985
            # The following fake dataset is created to call
1986 1987 1988 1989 1990
            # the _prepare_trainer api, and it is meaningless.
            data_vars = []
            for var in program.global_block().vars.values():
                if var.is_data:
                    data_vars.append(var)
K
Kim Yann 已提交
1991
            if core.is_compiled_with_custom_device('npu'):
1992
                dataset = paddle.fluid.DatasetFactory().create_dataset(
1993 1994
                    'InMemoryDataset'
                )
1995 1996
            else:
                dataset = paddle.fluid.DatasetFactory().create_dataset(
1997 1998
                    'FileInstantDataset'
                )
1999 2000 2001 2002
            dataset.set_batch_size(1)
            dataset.set_thread(1)
            dataset.set_filelist(['None'])
            dataset.set_use_var(data_vars)
2003 2004
        elif program._heter_pipeline_opt is not None:
            stage_id = program._heter_pipeline_opt["pipeline_stage"]
2005
            # print("test_fl_stage_id: {}".format(stage_id))
2006
            heter_place = program._heter_pipeline_opt["heter_place"]
2007
            if stage_id != 0:
2008 2009
                if "is_fl_mode" not in program._heter_pipeline_opt:
                    import paddle
2010

2011 2012
                    if dataset is not None:
                        raise RuntimeError(
2013 2014
                            "dataset should be None for heter pipeline mode"
                        )
2015
                    # The following fake dataset is created to call
2016 2017 2018 2019 2020 2021
                    # the _prepare_trainer api, and it is meaningless.
                    data_vars = []
                    for var in program.global_block().vars.values():
                        if var.is_data:
                            data_vars.append(var)
                    dataset = paddle.fluid.DatasetFactory().create_dataset(
2022 2023
                        'InMemoryDataset'
                    )
2024 2025 2026 2027
                    dataset.set_batch_size(1)
                    dataset.set_thread(1)
                    dataset.set_filelist(['None'])
                    dataset.set_use_var(data_vars)
2028 2029 2030
            else:
                if dataset is None:
                    raise RuntimeError(
2031 2032
                        "dataset is need and should be initialized"
                    )
2033 2034 2035 2036 2037
            ## change default executor
            heter_place = framework._get_paddle_place(heter_place)
            p = core.Place()
            p.set_place(heter_place)
            self._default_executor = core.Executor(p)
2038 2039 2040
        else:
            if dataset is None:
                raise RuntimeError("dataset is need and should be initialized")
2041 2042

        dataset._prepare_to_run()
2043 2044
        real_fetch_list = []
        if program._pipeline_opt:
2045
            real_program = program._pipeline_opt["section_program"]
2046 2047 2048 2049 2050 2051 2052 2053
            for fetch_var in fetch_list:
                if isinstance(fetch_var, Variable):
                    fetch_var_name = fetch_var.name
                else:
                    fetch_var_name = fetch_var
                if fetch_var_name in real_program.global_block().vars:
                    real_fetch_list.append(fetch_var)

R
Ruibiao Chen 已提交
2054
            program._pipeline_opt["section_program"] = _add_feed_fetch_ops(
2055 2056 2057 2058
                program=program._pipeline_opt["section_program"],
                feed=[],
                fetch_list=real_fetch_list,
                feed_var_name='feed',
2059 2060
                fetch_var_name='fetch',
            )
2061 2062 2063 2064 2065 2066 2067
            main_block = program._pipeline_opt["section_program"].block(0)
            for op in main_block.ops:
                # set the op_role of fetch op to Optimize to avoid
                # erase the fetched vars by gc for pipeline
                if op.type == 'fetch':
                    op._set_attr(
                        'op_role',
2068 2069
                        core.op_proto_and_checker_maker.OpRole.Optimize,
                    )
2070
            fetch_list = None
2071 2072 2073 2074 2075 2076 2077 2078 2079 2080
        scope, trainer = self._prepare_trainer(
            program=program,
            dataset=dataset,
            scope=scope,
            thread=thread,
            debug=debug,
            fetch_list=fetch_list,
            fetch_info=fetch_info,
            print_period=print_period,
        )
2081 2082 2083 2084

        trainer._set_infer(is_infer)
        trainer._gen_trainer_desc()

2085
        if program._pipeline_opt is None:
2086 2087
            if program._heter_pipeline_opt is None:
                self._dump_debug_info(program=program, trainer=trainer)
T
Thunderbrook 已提交
2088 2089 2090
        # warning if dataset not set psgpu in psgpu mode
        if dataset.use_ps_gpu is False and trainer.proto_desc.use_ps_gpu:
            logging.warning("dataset should call set_use_ps_gpu in PsGpu mode")
2091

T
tangwei12 已提交
2092
        dataset._dynamic_adjust_before_train(trainer.proto_desc.thread_num)
2093

2094
        if program._heter_pipeline_opt is None:
2095 2096 2097 2098 2099
            trainer_instance = (
                self._default_executor.init_for_dataset(  # -->InitForDataset
                    program.desc, trainer._desc(), scope, dataset.dataset
                )
            )
2100 2101
        else:
            # cache trainer instance for heterps pipeline training
2102
            if fetch_list is None:
2103 2104 2105 2106 2107
                fetch_list = []
            cache_key = _get_strong_program_cache_key(program, None, fetch_list)
            trainer_instance = self._get_trainer_cache(cache_key)
            if trainer_instance is None:
                trainer_instance = self._default_executor.init_for_dataset(
2108 2109 2110
                    program.desc, trainer._desc(), scope, dataset.dataset
                )
                # print("test_fl_ps - trainer_desc: {}\n".format(trainer))
2111 2112 2113
                self._add_trainer_cache(cache_key, trainer_instance)
            else:
                trainer_instance.ResetDataset(dataset.dataset)
2114

T
tangwei12 已提交
2115 2116 2117 2118 2119 2120
        if fetch_handler is not None:
            scope0 = trainer_instance.get_worker_scope(0)
            fetch_monitor = FetchHandlerMonitor(scope0, fetch_handler)
            fetch_monitor.start()
            self._default_executor.run_from_dataset(trainer_instance)
            fetch_monitor.stop()
2121 2122
            if program._heter_pipeline_opt is None:
                self._default_executor.release_trainer(trainer_instance)
T
tangwei12 已提交
2123 2124
        else:
            self._default_executor.run_from_dataset(trainer_instance)
2125 2126
            if program._heter_pipeline_opt is None:
                self._default_executor.release_trainer(trainer_instance)
T
tangwei12 已提交
2127 2128

        dataset._dynamic_adjust_after_train()
2129
        dataset._finish_to_run()
2130 2131 2132 2133
        if real_fetch_list:
            arr = scope.find_var('fetch').get_fetch_list()
            tensors = arr._move_to_list()
            return as_numpy(tensors)
T
tangwei12 已提交
2134

2135 2136
        return None

2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150
    def _prepare_pipeline_ctx(
        self,
        program=None,
        dataset=None,
        scope=None,
        thread=0,
        is_infer=False,
        debug=False,
        fetch_list=None,
        fetch_info=None,
        print_period=100,
        fetch_handler=None,
        use_program_cache=False,
    ):
2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167
        assert program._pipeline_opt is not None
        assert dataset is None, "dataset should be None for pipeline mode"

        cache_key = _get_strong_program_cache_key(program, None, fetch_list)
        ctx = self._get_ctx_cache(cache_key)
        if use_program_cache and ctx is not None:
            return ctx

        import paddle

        # The following fake dataset is created to call
        # the _prepare_trainer api, and it is meaningless.
        def _get_dataset():
            data_vars = []
            for var in program.global_block().vars.values():
                if var.is_data:
                    data_vars.append(var)
K
Kim Yann 已提交
2168
            if core.is_compiled_with_custom_device('npu'):
2169
                dataset = paddle.fluid.DatasetFactory().create_dataset(
2170 2171
                    'InMemoryDataset'
                )
2172 2173
            else:
                dataset = paddle.fluid.DatasetFactory().create_dataset(
2174 2175
                    'FileInstantDataset'
                )
2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195
            dataset.set_batch_size(1)
            dataset.set_thread(1)
            dataset.set_filelist(['None'])
            dataset.set_use_var(data_vars)
            dataset._prepare_to_run()
            return dataset

        dataset = _get_dataset()

        def _get_real_program_fetch_list():
            real_program = program._pipeline_opt["section_program"]
            real_fetch_list = []
            for fetch_var in fetch_list:
                if isinstance(fetch_var, Variable):
                    fetch_var_name = fetch_var.name
                else:
                    fetch_var_name = fetch_var
                if fetch_var_name in real_program.global_block().vars:
                    real_fetch_list.append(fetch_var)

2196 2197 2198 2199 2200 2201 2202
            real_program = _add_feed_fetch_ops(
                program=real_program,
                feed=[],
                fetch_list=real_fetch_list,
                feed_var_name='feed',
                fetch_var_name='fetch',
            )
2203 2204 2205 2206 2207 2208 2209
            main_block = real_program.block(0)
            for op in main_block.ops:
                # set the op_role of fetch op to Optimize to avoid
                # erase the fetched vars by gc for pipeline
                if op.type == 'fetch':
                    op._set_attr(
                        'op_role',
2210 2211
                        core.op_proto_and_checker_maker.OpRole.Optimize,
                    )
2212 2213 2214 2215 2216 2217 2218
            return real_program, real_fetch_list

        real_program, real_fetch_list = _get_real_program_fetch_list()

        program._pipeline_opt["section_program"] = real_program
        fetch_list = None

2219 2220 2221 2222 2223 2224 2225 2226 2227 2228
        scope, trainer = self._prepare_trainer(
            program=program,
            dataset=dataset,
            scope=scope,
            thread=thread,
            debug=debug,
            fetch_list=fetch_list,
            fetch_info=fetch_info,
            print_period=print_period,
        )
2229 2230 2231 2232 2233 2234 2235

        trainer._set_infer(is_infer)
        trainer._gen_trainer_desc()

        # NOTE: only for debug, very slow
        # self._dump_debug_info(program=program, trainer=trainer)

T
Thunderbrook 已提交
2236 2237 2238
        # warning if dataset not set psgpu in psgpu mode
        if dataset.use_ps_gpu is False and trainer.proto_desc.use_ps_gpu:
            logging.warning("dataset should call set_use_ps_gpu in PsGpu mode")
2239 2240 2241
        dataset._dynamic_adjust_before_train(trainer.proto_desc.thread_num)

        trainer_desc = trainer._desc()  # slow, cache
2242
        trainer_instance = self._default_executor.init_for_dataset(
2243 2244
            program.desc, trainer_desc, scope, dataset.dataset
        )
2245 2246

        ctx = [scope, real_fetch_list, trainer_instance]
2247 2248
        if use_program_cache:
            self._add_ctx_cache(cache_key, ctx)
2249

2250 2251
        return ctx

2252 2253 2254 2255 2256 2257
    def _prepare_fleet_executor_carrier(
        self,
        carrier_id="",
        program=None,
        scope=None,
        fleet_opt=None,
L
LiYuRio 已提交
2258
        micro_scope_list=[],
2259 2260 2261 2262 2263 2264 2265
        with_standalone_executor=False,
    ):
        num_micro_batches = (
            fleet_opt["num_micro_batches"]
            if "num_micro_batches" in fleet_opt
            else 1
        )
2266
        cur_rank = int(os.getenv("PADDLE_TRAINER_ID", 0))
2267
        trainer_endpoints = os.getenv("PADDLE_TRAINER_ENDPOINTS", "").split(',')
2268
        nrank = len(trainer_endpoints)
2269

2270 2271
        assert 'scheduler' in fleet_opt or 'tasks' in fleet_opt, (
            "Fleet executor need configuration for scheduler, you can choose from 1F1B or Origin. "
2272
            "Or you can provide a list of task nodes to init fleet executor directly."
2273
        )
2274
        if 'tasks' in fleet_opt:
2275 2276 2277 2278
            assert 'task_id_to_rank' in fleet_opt, (
                "If you provide tasks to init fleet executor,"
                " task_id_to_rank should also be provided."
            )
2279 2280 2281
            print('fleet executor will use user defined task nodes')
            tasks = [task.task_node() for task in fleet_opt['tasks']]
            task_id_to_rank = fleet_opt['task_id_to_rank']
2282
        else:
2283 2284
            scheduler = fleet_opt['scheduler']
            if scheduler == '1F1B':
2285 2286 2287 2288 2289 2290 2291 2292 2293
                from paddle.distributed.fleet.fleet_executor_utils import (
                    run1f1b,
                )

                if (
                    "dist_strategy" not in fleet_opt
                    or "pp_degree" not in fleet_opt["dist_strategy"]
                    or fleet_opt["dist_strategy"]["pp_degree"] == 1
                ):
2294 2295
                    warnings.warn("Using 1F1B scheduler with pp_degree == 1.")
                tasks, task_id_to_rank = run1f1b(
2296 2297 2298 2299 2300 2301 2302
                    program,
                    cur_rank,
                    fleet_opt.get('num_micro_batches', 1),
                    fleet_opt.get('dist_strategy', {}),
                    nrank,
                    with_standalone_executor,
                )
2303 2304
            elif scheduler == 'Origin':
                from paddle.distributed.fleet.fleet_executor_utils import origin
2305 2306 2307 2308 2309 2310 2311 2312

                if (
                    "dist_strategy" in fleet_opt
                    and "pp_degree" in fleet_opt["dist_strategy"]
                ):
                    assert (
                        fleet_opt["dist_strategy"]["pp_degree"] == 1
                    ), "For pipeline mode, the scheduler should be 1F1B instead of Origin."
2313
                if "num_micro_batches" in fleet_opt:
2314 2315 2316
                    assert (
                        fleet_opt["num_micro_batches"] == 1
                    ), "For origin scheduler mode, the num micro batches should be 1."
2317 2318
                tasks, task_id_to_rank = origin(program, cur_rank)
            else:
2319 2320 2321
                raise "Fleet_executor only supports 1F1B and Origin scheduler, " "but received " + str(
                    scheduler
                ) + "."
2322 2323 2324
            # NOTE: have to hold these vars, otherwise will be destructed
            fleet_opt['tasks'] = tasks
            fleet_opt['task_id_to_rank'] = task_id_to_rank
2325 2326
        place = core.Place()
        place.set_place(self.place)
L
LiYuRio 已提交
2327

2328 2329 2330
        inference_root_scope_vars = (
            fleet_opt["fetch_var"] if "fetch_var" in fleet_opt else []
        )
2331 2332 2333 2334 2335 2336 2337 2338
        self._fleet_executor.init(
            carrier_id,
            program.desc,
            scope,
            place,
            num_micro_batches,
            tasks,
            task_id_to_rank,
2339
            inference_root_scope_vars,
L
LiYuRio 已提交
2340
            micro_scope_list,
2341 2342 2343 2344 2345 2346 2347 2348 2349 2350
        )

    def _run_using_fleet_executor(
        self,
        program=None,
        feed=None,
        feed_var_name="feed",
        fetch_var_name="fetch",
        fetch_list=None,
        with_standalone_executor=False,
2351
        return_numpy=True,
2352
    ):
2353 2354
        cache_key = _get_strong_program_cache_key(program, feed, fetch_list)
        cached_program = self._get_program_cache(cache_key)
2355
        cached_scope = self._get_scope_cache(cache_key)
2356 2357
        micro_cached_scopes = self._get_micro_scopes_cache(cache_key)
        fleet_opt = program._pipeline_opt["fleet_opt"]
2358 2359 2360
        if cached_scope is None:
            cached_scope = global_scope()
            self._add_scope_cache(cache_key, cached_scope)
2361 2362 2363 2364 2365 2366 2367 2368 2369
        if micro_cached_scopes is None:
            micro_cached_scopes = []
            if (
                "inference_generation" in fleet_opt
                and fleet_opt["inference_generation"]
            ):
                for _ in range(int(fleet_opt["num_micro_batches"])):
                    micro_cached_scopes.append(cached_scope.new_scope())
                self._add_micro_scopes_cache(cache_key, micro_cached_scopes)
2370
        if cached_program is None:
2371 2372 2373
            assert (
                program._pipeline_opt
            ), "program should have _pipeline_opt to start carrier"
2374
            real_feed = [] if feed is None else feed
2375 2376 2377
            real_program = program
            if "section_program" in program._pipeline_opt:
                real_program = program._pipeline_opt["section_program"]
2378 2379 2380 2381 2382 2383 2384
            cached_program = _add_feed_fetch_ops(
                program=real_program,
                feed=real_feed,
                fetch_list=fetch_list,
                feed_var_name=feed_var_name,
                fetch_var_name=fetch_var_name,
            )
2385 2386 2387 2388 2389 2390 2391
            main_block = cached_program.block(0)
            for op in main_block.ops:
                # set the op_role of fetch op to Optimize to avoid
                # erase the fetched vars by gc for pipeline
                if op.type == 'fetch':
                    op._set_attr(
                        'op_role',
2392 2393
                        core.op_proto_and_checker_maker.OpRole.Optimize,
                    )
2394
            self._add_program_cache(cache_key, cached_program)
2395
            fleet_opt = program._pipeline_opt["fleet_opt"]
2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406
            if 'tasks' in fleet_opt:
                # Insert feed/fetch op for cloned program in each task node,
                # these ops has already been inserted into the origin program.
                # To avoid every task nodes all have feed/fetch ops,
                # only insert feed ops into the first task node,
                # then insert fetch ops into the last task node.

                # Insert feed ops
                feed_task = fleet_opt['tasks'][0]
                print("Inserting feed ops for task", feed_task.task_id())
                feed_program = feed_task.get_program()
2407 2408 2409 2410 2411
                feed_program = self._add_feed_ops(
                    program=feed_program,
                    feed=real_feed,
                    feed_var_name=feed_var_name,
                )
2412 2413 2414 2415 2416 2417 2418 2419 2420
                feed_task.set_program(feed_program)

                # Insert fetch ops
                fetch_task = fleet_opt['tasks'][-1]
                print("Inserting fetch ops for task", fetch_task.task_id())
                fetch_program = fetch_task.get_program()
                fetch_program = self._add_fetch_ops(
                    program=fetch_program,
                    fetch_list=fetch_list,
2421 2422
                    fetch_var_name=fetch_var_name,
                )
2423 2424 2425 2426 2427 2428 2429
                main_block = fetch_program.block(0)
                for op in main_block.ops:
                    # set the op_role of fetch op to Optimize to avoid
                    # erase the fetched vars by gc for pipeline
                    if op.type == 'fetch':
                        op._set_attr(
                            'op_role',
2430 2431
                            core.op_proto_and_checker_maker.OpRole.Optimize,
                        )
2432 2433
                fetch_task.set_program(fetch_program)

L
LiYuRio 已提交
2434 2435 2436 2437 2438 2439 2440 2441
            micro_scope_list = []
            if (
                "inference_generation" in fleet_opt
                and fleet_opt["inference_generation"]
            ):
                for i in range(int(fleet_opt["num_micro_batches"])):
                    micro_scope_list.append(cached_scope.new_scope())

2442 2443 2444 2445 2446
            self._prepare_fleet_executor_carrier(
                cache_key,
                program=cached_program,
                scope=cached_scope,
                fleet_opt=fleet_opt,
2447
                micro_scope_list=micro_cached_scopes,
2448 2449
                with_standalone_executor=with_standalone_executor,
            )
2450

2451
        if feed:
2452 2453 2454
            # NOTE: don't have to traverse programs in task nodes,
            # since they all sub program of cached program and
            # cached program is also added feed fetch var
2455
            self._feed_data(cached_program, feed, feed_var_name, cached_scope)
2456 2457

        from paddle.optimizer.lr import LRScheduler
2458

2459 2460 2461 2462 2463
        if hasattr(program, 'lr_scheduler'):
            lr_scheduler = program.lr_scheduler
            assert isinstance(lr_scheduler, LRScheduler), "must be LRScheduler"
            lr_value = lr_scheduler()
            lr_var = program.global_block().vars[lr_scheduler._var_name]
2464
            data = np.array([lr_value]).astype(convert_dtype(lr_var.dtype))
2465
            tensor = core.get_variable_tensor(
2466
                cached_scope, lr_scheduler._var_name
2467
            )
2468 2469
            tensor.set(data, self.place)

2470
        self._fleet_executor.run(cache_key)
L
LiYuRio 已提交
2471 2472 2473 2474 2475 2476
        if "fetch_var" in fleet_opt:
            # If we speed up the generation in evaluation, we need to generate
            # multiple queries at the same time. Each query will in separate scope in order
            # not mix up. It indicate that final result will in multiple scopes and need to
            # fetch each.
            result_list = []
2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497
            for scope in micro_cached_scopes:
                scope_result_list = []
                for varname in fleet_opt["fetch_var"]:
                    tensor = None
                    try:
                        tensor = core.get_variable_tensor(scope, varname)
                        if return_numpy:
                            tensor = as_numpy(tensor)
                    except:
                        var = scope.find_var(varname)
                        tensor = var.get_lod_tensor_array()
                        if return_numpy:
                            tensor = as_numpy(tensor)
                        else:
                            tensor = [t for t in tensor]

                    if tensor:
                        scope_result_list.append(tensor)

                if scope_result_list:
                    result_list.append(scope_result_list)
L
LiYuRio 已提交
2498 2499
            return result_list

2500 2501 2502 2503
        if fetch_list:
            arr = cached_scope.find_var(fetch_var_name).get_fetch_list()
            tensors = arr._move_to_list()
            return as_numpy(tensors)
L
LiYuRio 已提交
2504 2505
        return None

2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516
    def _add_feed_ops(self, program, feed, feed_var_name):
        tmp_program = program.clone()

        global_block = tmp_program.global_block()

        if feed_var_name in global_block.vars:
            feed_var = global_block.var(feed_var_name)
        else:
            feed_var = global_block.create_var(
                name=feed_var_name,
                type=core.VarDesc.VarType.FEED_MINIBATCH,
2517 2518
                persistable=True,
            )
2519 2520 2521 2522 2523 2524

        # prepend feed operators
        if not has_feed_operators(global_block, feed, feed_var_name):
            for i, name in enumerate(feed):
                if global_block.has_var(name):
                    out = global_block.var(name)
2525 2526 2527 2528 2529 2530
                    global_block._prepend_op(
                        type='feed',
                        inputs={'X': [feed_var]},
                        outputs={'Out': [out]},
                        attrs={'col': i},
                    )
2531 2532 2533
                else:
                    warnings.warn(
                        "The variable %s is not found in program. It is not declared or is pruned."
2534 2535
                        % name
                    )
2536 2537 2538

        return tmp_program

2539
    @classmethod
2540 2541 2542
    def _add_fetch_ops(
        cls, program, fetch_list, fetch_var_name, use_fetch_v2=False
    ):
2543 2544 2545 2546 2547 2548 2549 2550 2551 2552
        tmp_program = program.clone()

        global_block = tmp_program.global_block()

        if fetch_var_name in global_block.vars:
            fetch_var = global_block.var(fetch_var_name)
        else:
            fetch_var = global_block.create_var(
                name=fetch_var_name,
                type=core.VarDesc.VarType.FETCH_LIST,
2553 2554
                persistable=True,
            )
2555 2556 2557 2558 2559 2560 2561

        if use_fetch_v2:
            fetch_op = 'fetch_v2'
        else:
            fetch_op = 'fetch'

        # append fetch_operators
2562 2563 2564
        if not has_fetch_operators(
            global_block, fetch_list, fetch_var_name, fetch_op
        ):
2565 2566
            for i, var in enumerate(fetch_list):
                assert isinstance(var, Variable) or isinstance(
2567 2568 2569 2570 2571 2572 2573 2574
                    var, str
                ), "Wrong type for fetch_list[%s]: %s" % (i, type(var))
                global_block.append_op(
                    type=fetch_op,
                    inputs={'X': [var]},
                    outputs={'Out': [fetch_var]},
                    attrs={'col': i},
                )
2575 2576 2577

        return tmp_program

2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588
    @classmethod
    def _remove_fetch_ops(cls, program, fetch_op_name='fetch'):
        tmp_program = program.clone()
        global_block = tmp_program.global_block()
        op_num = len(global_block.ops)
        for idx in reversed(range(op_num)):
            if global_block.ops[idx].type == fetch_op_name:
                global_block._remove_op(idx)

        return tmp_program

2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615
    def _run_pipeline(
        self,
        program=None,
        dataset=None,
        scope=None,
        thread=0,
        is_infer=False,
        debug=False,
        fetch_list=None,
        fetch_info=None,
        print_period=100,
        fetch_handler=None,
        use_program_cache=False,
    ):
        scope, real_fetch_list, trainer_instance = self._prepare_pipeline_ctx(
            program,
            dataset,
            scope,
            thread,
            is_infer,
            debug,
            fetch_list,
            fetch_info,
            print_period,
            fetch_handler,
            use_program_cache,
        )
2616

2617
        from paddle.optimizer.lr import LRScheduler
2618

2619 2620 2621 2622 2623
        if hasattr(program, 'lr_scheduler'):
            lr_scheduler = program.lr_scheduler
            assert isinstance(lr_scheduler, LRScheduler), "must be LRScheduler"
            lr_value = lr_scheduler()
            lr_var = program.global_block().vars[lr_scheduler._var_name]
2624
            data = np.array([lr_value]).astype(convert_dtype(lr_var.dtype))
2625
            tensor = core.get_variable_tensor(scope, lr_scheduler._var_name)
2626 2627
            tensor.set(data, self.place)

2628 2629
        self._default_executor.run_from_dataset(trainer_instance)

2630 2631 2632
        if not use_program_cache:
            self._default_executor.release_trainer(trainer_instance)

2633 2634 2635 2636 2637 2638 2639
        if real_fetch_list:
            arr = scope.find_var('fetch').get_fetch_list()
            tensors = arr._move_to_list()
            return as_numpy(tensors)

        return None

2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651
    def infer_from_dataset(
        self,
        program=None,
        dataset=None,
        scope=None,
        thread=0,
        debug=False,
        fetch_list=None,
        fetch_info=None,
        print_period=100,
        fetch_handler=None,
    ):
2652
        """
2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663
        Infer from a pre-defined Dataset. Dataset is defined in paddle.fluid.dataset.
        Given a program, either a program or compiled program, infer_from_dataset will
        consume all data samples in dataset. Input scope can be given by users. By default,
        scope is global_scope(). The total number of thread run in training is `thread`.
        Thread number used in training will be minimum value of threadnum in Dataset and
        the value of thread in this interface. Debug can be set so that executor will display
        Run-Time for all operators and the throughputs of current infer task.

        The document of infer_from_dataset is almost the same as train_from_dataset,
        except that in distributed training, push gradients will be disabled in infer_from_dataset.
        infer_from_dataset() can be used for evaluation in multi-threadvery easily.
2664

2665 2666
        Args:
            program(Program|CompiledProgram): the program that needs to be run,
2667
                if not provided, then default_main_program (not compiled) will be used.
2668
            dataset(paddle.fluid.Dataset): dataset created outside this function,
2669 2670
                a user should provide a well-defined dataset before calling this function.
                Please check the document of Dataset if needed. default is None
2671
            scope(Scope): the scope used to run this program, you can switch it to different scope
2672 2673 2674
                for each run. default is global_scope
            thread(int): number of thread a user wants to run in this function. Default is 0, which
                means using thread num of dataset
2675
            debug(bool): whether a user wants to run infer_from_dataset, default is False
2676
            fetch_list(Tensor List): fetch Tensor list, each Tensor will be printed during
2677
                training, default is None
2678
            fetch_info(String List): print information for each Tensor, default is None
2679
            print_period(int): the number of mini-batches for each print, default is 100
2680
            fetch_handler(FetchHandler): a user define class for fetch output.
2681

2682 2683 2684 2685
        Returns:
            None

        Examples:
2686 2687

            .. code-block:: python
2688

2689
                import paddle
2690

2691 2692 2693 2694 2695 2696
                paddle.enable_static()
                place = paddle.CPUPlace()  # you can set place = paddle.CUDAPlace(0) to use gpu
                exe = paddle.static.Executor(place)
                x = paddle.static.data(name="x", shape=[None, 10, 10], dtype="int64")
                y = paddle.static.data(name="y", shape=[None, 1], dtype="int64", lod_level=1)
                dataset = paddle.fluid.DatasetFactory().create_dataset()
2697
                dataset.set_use_var([x, y])
2698
                dataset.set_thread(1)
2699 2700
                # you should set your own filelist, e.g. filelist = ["dataA.txt"]
                filelist = []
2701
                dataset.set_filelist(filelist)
2702 2703 2704
                exe.run(paddle.static.default_startup_program())
                exe.infer_from_dataset(program=paddle.static.default_main_program(),
                                       dataset=dataset)
2705

2706
        """
2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739
        return self._run_from_dataset(
            program,
            dataset,
            scope,
            thread,
            True,
            debug,
            fetch_list,
            fetch_info,
            print_period,
            fetch_handler,
        )

    def start_heter_trainer(
        self,
        program=None,
        scope=None,
        debug=False,
        fetch_list=None,
        fetch_info=None,
        print_period=100,
        fetch_handler=None,
    ):
        scope, trainer = self._prepare_trainer(
            program=program,
            dataset=None,
            scope=scope,
            thread=1,
            debug=debug,
            fetch_list=fetch_list,
            fetch_info=fetch_info,
            print_period=print_period,
        )
T
Thunderbrook 已提交
2740

2741
        trainer._set_infer(False)
T
Thunderbrook 已提交
2742 2743 2744 2745 2746
        trainer._gen_trainer_desc()

        self._dump_debug_info(program=program, trainer=trainer)

        trainer_instance = self._default_executor.init_for_dataset(
2747 2748
            program.desc, trainer._desc(), scope, None
        )
T
Thunderbrook 已提交
2749

2750
        # if fetch_handler is not None:
T
Thunderbrook 已提交
2751 2752 2753 2754 2755 2756
        #    scope0 = trainer_instance.get_worker_scope(0)
        #    fetch_monitor = FetchHandlerMonitor(scope0, fetch_handler)
        #    fetch_monitor.start()
        #    self._default_executor.run_from_dataset(trainer_instance)
        #    fetch_monitor.stop()
        #    self._default_executor.release_trainer(trainer_instance)
2757
        # else:
T
Thunderbrook 已提交
2758 2759

        self._default_executor.run_from_dataset(trainer_instance)
2760
        # self._default_executor.release_trainer(trainer_instance)
T
Thunderbrook 已提交
2761 2762 2763

        return trainer_instance

2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775
    def train_from_dataset(
        self,
        program=None,
        dataset=None,
        scope=None,
        thread=0,
        debug=False,
        fetch_list=None,
        fetch_info=None,
        print_period=100,
        fetch_handler=None,
    ):
2776 2777 2778 2779 2780 2781 2782 2783
        """
        Train from a pre-defined Dataset. Dataset is defined in paddle.fluid.dataset.
        Given a program, either a program or compiled program, train_from_dataset will
        consume all data samples in dataset. Input scope can be given by users. By default,
        scope is global_scope(). The total number of thread run in training is `thread`.
        Thread number used in training will be minimum value of threadnum in Dataset and
        the value of thread in this interface. Debug can be set so that executor will display
        Run-Time for all operators and the throughputs of current training task.
2784

2785 2786 2787 2788
        Note: train_from_dataset will destroy all resources created within executor for each run.

        Args:
            program(Program|CompiledProgram): the program that needs to be run,
2789
                if not provided, then default_main_program (not compiled) will be used.
2790
            dataset(paddle.fluid.Dataset): dataset created outside this function,
2791 2792
                a user should provide a well-defined dataset before calling this function.
                Please check the document of Dataset if needed.
2793
            scope(Scope): the scope used to run this program, you can switch it to different scope
2794 2795 2796
                for each run. default is global_scope
            thread(int): number of thread a user wants to run in this function. Default is 0, which
                means using thread num of dataset
2797
            debug(bool): whether a user wants to run train_from_dataset
2798
            fetch_list(Tensor List): fetch Tensor list, each variable will be printed
2799
                during training
2800
            fetch_info(String List): print information for each Tensor, its length should be equal
2801 2802
                to fetch_list
            print_period(int): the number of mini-batches for each print, default is 100
2803
            fetch_handler(FetchHandler): a user define class for fetch output.
2804 2805 2806

        Returns:
            None
2807

2808
        Examples:
2809

2810 2811
            .. code-block:: python

2812
              import paddle
2813

2814 2815 2816 2817 2818 2819
              paddle.enable_static()
              place = paddle.CPUPlace() # you can set place = paddle.CUDAPlace(0) to use gpu
              exe = paddle.static.Executor(place)
              x = paddle.static.data(name="x", shape=[None, 10, 10], dtype="int64")
              y = paddle.static.data(name="y", shape=[None, 1], dtype="int64", lod_level=1)
              dataset = paddle.fluid.DatasetFactory().create_dataset()
2820
              dataset.set_use_var([x, y])
2821
              dataset.set_thread(1)
2822 2823
              # you should set your own filelist, e.g. filelist = ["dataA.txt"]
              filelist = []
2824
              dataset.set_filelist(filelist)
2825 2826
              exe.run(paddle.static.default_startup_program())
              exe.train_from_dataset(program=paddle.static.default_main_program(),
2827
                                     dataset=dataset)
2828 2829

        """
2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841
        return self._run_from_dataset(
            program,
            dataset,
            scope,
            thread,
            False,
            debug,
            fetch_list,
            fetch_info,
            print_period,
            fetch_handler,
        )