conv_mkldnn_op.cc 51.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

Y
Yu Yang 已提交
15 16
#include "paddle/fluid/framework/data_layout_transform.h"
#include "paddle/fluid/memory/malloc.h"
17 18
#include "paddle/fluid/operators/conv_op.h"
#include "paddle/fluid/platform/mkldnn_helper.h"
X
xiaolil1 已提交
19
#include "paddle/fluid/framework/data_layout_transform.h"
X
xiaolil1 已提交
20
#include <unordered_map>
21 22 23 24

namespace paddle {
namespace operators {

25 26 27 28 29 30 31 32
using framework::DataLayout;
using mkldnn::memory;
using mkldnn::primitive;
using mkldnn::reorder;
using mkldnn::stream;
using platform::to_void_cast;
using platform::GetMKLDNNFormat;

33 34 35 36 37 38 39 40 41 42
class ConvMKLDNNHandler : public platform::MKLDNNHandler {
 public:
  ConvMKLDNNHandler(
      std::shared_ptr<mkldnn::convolution_forward::primitive_desc> conv_pd,
      const platform::MKLDNNDeviceContext& dev_ctx, mkldnn::engine engine,
      const std::string& base_key)
      : platform::MKLDNNHandler(dev_ctx, engine, base_key) {
    conv_pd_ = conv_pd;
  }

43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
  ConvMKLDNNHandler(
      std::shared_ptr<mkldnn::convolution_forward::primitive_desc> conv_pd,
      std::shared_ptr<mkldnn::convolution_backward_data::primitive_desc>
          conv_bwd_data_pd,
      std::shared_ptr<mkldnn::convolution_backward_weights::primitive_desc>
          conv_bwd_weights_pd,
      const platform::MKLDNNDeviceContext& dev_ctx, mkldnn::engine engine,
      const std::string& base_key)
      : platform::MKLDNNHandler(dev_ctx, engine, base_key),
        conv_pd_(conv_pd),
        conv_bwd_weights_pd_(conv_bwd_weights_pd),
        conv_bwd_data_pd_(conv_bwd_data_pd) {
    // If we are in Grad operatgor then update a key with BWD suffix to
    // distinguish from FWD memory primitives
    key_ += "-BWD";
  }

60
  size_t GetDstMemorySize() const {
61 62
    return conv_pd_->dst_primitive_desc().get_size();
  }
Z
Zhang, Guoming 已提交
63 64 65 66 67
  
  mkldnn::memory::format GetDstFormat() const {
    return static_cast<mkldnn::memory::format>(
        conv_pd_->dst_primitive_desc().desc().data.format);
  }
68

69
  size_t GetDiffWeightsMemorySize() const {
70 71 72
    return conv_bwd_weights_pd_->diff_weights_primitive_desc().get_size();
  }

73
  size_t GetDiffSourceMemorySize() const {
74 75 76
    return conv_bwd_data_pd_->diff_src_primitive_desc().get_size();
  }

77 78
  std::shared_ptr<mkldnn::memory> AcquireSrcMemoryFromWeightsPrimitive(
      const std::shared_ptr<mkldnn::memory> user_memory_p,
G
gongweibao 已提交
79
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
80 81 82 83 84 85 86 87
    auto src_pd = conv_bwd_weights_pd_->src_primitive_desc();
    auto user_pd = user_memory_p->get_primitive_desc();
    return this->AcquireMemory(src_pd, user_pd, user_memory_p,
                               "@weights-src_mem_p", pipeline);
  }

  std::shared_ptr<mkldnn::memory> AcquireDiffDstMemoryFromWeightsPrimitive(
      const std::shared_ptr<mkldnn::memory> user_memory_p,
G
gongweibao 已提交
88
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
    auto diff_dst_pd = conv_bwd_weights_pd_->diff_dst_primitive_desc();
    auto user_pd = user_memory_p->get_primitive_desc();
    return this->AcquireMemory(diff_dst_pd, user_pd, user_memory_p,
                               "@weights-diff_dst_mem_p", pipeline);
  }

  std::shared_ptr<mkldnn::memory> AcquireDiffWeightsMemoryFromWeightsPrimitive(
      void* ptr) {
    return this->AcquireMemoryFromPrimitive(
        conv_bwd_weights_pd_->diff_weights_primitive_desc(), ptr,
        "@diff_weights_mem_p");
  }

  std::shared_ptr<mkldnn::memory> AcquireDiffDstMemoryFromDataPrimitive(
      const std::shared_ptr<mkldnn::memory> user_memory_p,
G
gongweibao 已提交
104
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
105 106 107 108 109 110 111 112
    auto diff_dst_pd = conv_bwd_data_pd_->diff_dst_primitive_desc();
    auto user_pd = user_memory_p->get_primitive_desc();
    return this->AcquireMemory(diff_dst_pd, user_pd, user_memory_p,
                               "@data-diff_dst_mem_p", pipeline);
  }

  std::shared_ptr<mkldnn::memory> AcquireWeightsMemoryFromDataPrimitive(
      const std::shared_ptr<mkldnn::memory> user_weights_memory_p,
G
gongweibao 已提交
113
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
114 115 116 117 118 119
    auto weights_pd = conv_bwd_data_pd_->weights_primitive_desc();
    auto user_pd = user_weights_memory_p->get_primitive_desc();
    return this->AcquireMemory(weights_pd, user_pd, user_weights_memory_p,
                               "@data-weights_mem_p", pipeline);
  }

X
xiaolil1 已提交
120

Z
Zhang, Guoming 已提交
121 122 123 124 125 126 127 128 129 130 131 132 133
  std::shared_ptr<mkldnn::memory> AcquireResidualDataMemory(
      const mkldnn::memory::desc& md, void* ptr) {
    return this->AcquireMemory(md, ptr, "@user_residual_data_mem_p");
  }

  std::shared_ptr<mkldnn::memory> AcquireDstMemoryFromResidualDataMemory(
      const std::shared_ptr<mkldnn::memory>& user_residual_memory_p,
      void* dst_ptr,
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
    return this->AcquireMemory(user_residual_memory_p,
                               this->AcquireDstMemoryFromPrimitive(dst_ptr),
                               "@residual_data_mem_p", pipeline);
  }
X
xiaolil1 已提交
134
  
135 136 137 138 139 140
  std::shared_ptr<mkldnn::memory> AcquireDiffSrcMemoryFromDataPrimitive(
      void* ptr) {
    return this->AcquireMemoryFromPrimitive(
        conv_bwd_data_pd_->diff_src_primitive_desc(), ptr, "@diff_src_mem_p");
  }

141 142 143 144 145 146 147
  std::shared_ptr<mkldnn::memory> AcquireDstMemoryFromPrimitive(void* ptr) {
    return this->AcquireMemoryFromPrimitive(conv_pd_->dst_primitive_desc(), ptr,
                                            "@dst_mem_p");
  }

  std::shared_ptr<mkldnn::memory> AcquireSrcMemoryFromPrimitive(
      const std::shared_ptr<mkldnn::memory> user_memory_p,
148
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
149
    auto src_pd = conv_pd_->src_primitive_desc();
150
    auto user_pd = user_memory_p->get_primitive_desc();
151 152 153 154 155 156
    return this->AcquireMemory(src_pd, user_pd, user_memory_p, "@src_mem_p",
                               pipeline);
  }

  std::shared_ptr<mkldnn::memory> AcquireWeightsMemoryFromPrimitive(
      const std::shared_ptr<mkldnn::memory> user_weights_memory_p,
K
Krzysztof Binias 已提交
157
      std::vector<mkldnn::primitive>& pipeline,  // NOLINT
X
xiaolil1 已提交
158 159 160 161
      bool is_persistent = false,
      bool is_INT8 = false,
      std::vector<float> scale_data = {1.0f},
      int mask = 0) { 
162 163 164 165
    auto user_weights_pd = user_weights_memory_p->get_primitive_desc();
    auto weights_pd = conv_pd_->weights_primitive_desc();
    return this->AcquireMemory(weights_pd, user_weights_pd,
                               user_weights_memory_p, "@weights_mem_p",
X
xiaolil1 已提交
166 167
                               pipeline, is_persistent,
                               is_INT8, scale_data, mask);
168 169
  }

170 171
  std::shared_ptr<mkldnn::memory> AcquireBiasMemoryFromPrimitive(
      const std::shared_ptr<mkldnn::memory> user_bias_memory_p,
X
xiaolil1 已提交
172
      std::vector<mkldnn::primitive>& pipeline,
X
xiaolil1 已提交
173
      bool is_persistent = false,
X
xiaolil1 已提交
174 175 176
      bool is_INT8 = false,
      std::vector<float> scale_data = {1.0f},
      int mask = 0) {  // NOLINT
177 178 179
    auto user_bias_pd = user_bias_memory_p->get_primitive_desc();
    auto bias_pd = conv_pd_->bias_primitive_desc();
    return this->AcquireMemory(bias_pd, user_bias_pd, user_bias_memory_p,
X
xiaolil1 已提交
180 181
                               "@bias_mem_p", pipeline, is_persistent,
                               is_INT8, scale_data, mask);
182 183
  }

184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
  std::shared_ptr<mkldnn::convolution_forward> AcquireConvolution(
      std::shared_ptr<mkldnn::memory> src_memory_p,
      std::shared_ptr<mkldnn::memory> weights_memory_p,
      std::shared_ptr<mkldnn::memory> dst_memory_p) {
    auto prim_key = key_ + "@conv_p";
    auto conv_p = std::static_pointer_cast<mkldnn::convolution_forward>(
        dev_ctx_.GetBlob(prim_key));
    PADDLE_ENFORCE((conv_p != nullptr) || (is_reusing_ == false),
                   "Fail to find convolution primitive in device context");
    if (conv_p == nullptr) {
      conv_p = std::make_shared<mkldnn::convolution_forward>(
          *conv_pd_, *(src_memory_p), *(weights_memory_p.get()),
          *(dst_memory_p.get()));

      dev_ctx_.SetBlob(prim_key, conv_p);
    } else {
      is_reusing_ = true;
    }
    return conv_p;
  }

205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
  std::shared_ptr<mkldnn::convolution_forward> AcquireConvolution(
      std::shared_ptr<mkldnn::memory> src_memory_p,
      std::shared_ptr<mkldnn::memory> weights_memory_p,
      std::shared_ptr<mkldnn::memory> bias_memory_p,
      std::shared_ptr<mkldnn::memory> dst_memory_p) {
    auto prim_key = key_ + "@conv_p";
    auto conv_p = std::static_pointer_cast<mkldnn::convolution_forward>(
        dev_ctx_.GetBlob(prim_key));
    PADDLE_ENFORCE((conv_p != nullptr) || (is_reusing_ == false),
                   "Fail to find convolution primitive in device context");
    if (conv_p == nullptr) {
      conv_p = std::make_shared<mkldnn::convolution_forward>(
          *conv_pd_, *(src_memory_p), *(weights_memory_p.get()),
          *(bias_memory_p.get()), *(dst_memory_p.get()));

      dev_ctx_.SetBlob(prim_key, conv_p);
    } else {
      is_reusing_ = true;
    }
    return conv_p;
  }

227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
  std::shared_ptr<mkldnn::convolution_backward_weights>
  AcquireConvolutionBackwardWeights(
      std::shared_ptr<mkldnn::memory> src_memory_p,
      std::shared_ptr<mkldnn::memory> diff_dst_memory_p,
      std::shared_ptr<mkldnn::memory> diff_weights_memory_p) {
    auto prim_key = key_ + "@conv_bwd_weights_p";
    auto conv_bwd_weights_p =
        std::static_pointer_cast<mkldnn::convolution_backward_weights>(
            dev_ctx_.GetBlob(prim_key));
    PADDLE_ENFORCE(
        (conv_bwd_weights_p != nullptr) || (is_reusing_ == false),
        "Fail to find convolution bwd weights primitive in device context");
    if (conv_bwd_weights_p == nullptr) {
      // create backward conv primitive for weights
      conv_bwd_weights_p =
          std::make_shared<mkldnn::convolution_backward_weights>(
              *conv_bwd_weights_pd_, *src_memory_p, *diff_dst_memory_p,
              *diff_weights_memory_p);
      dev_ctx_.SetBlob(prim_key, conv_bwd_weights_p);
    } else {
      is_reusing_ = true;
    }
    return conv_bwd_weights_p;
  }

  std::shared_ptr<mkldnn::convolution_backward_data>
  AcquireConvolutionBackwardData(
      std::shared_ptr<mkldnn::memory> diff_dst_memory_p,
      std::shared_ptr<mkldnn::memory> weights_memory_p,
      std::shared_ptr<mkldnn::memory> diff_src_memory_p) {
    auto prim_key = key_ + "@conv_bwd_data_p";
    auto conv_bwd_data_p =
        std::static_pointer_cast<mkldnn::convolution_backward_data>(
            dev_ctx_.GetBlob(prim_key));
    PADDLE_ENFORCE(
        (conv_bwd_data_p != nullptr) || (is_reusing_ == false),
        "Fail to find convolution bwd data primitive in device context");
    if (conv_bwd_data_p == nullptr) {
      conv_bwd_data_p = std::make_shared<mkldnn::convolution_backward_data>(
          *conv_bwd_data_pd_, *diff_dst_memory_p, *weights_memory_p,
          *diff_src_memory_p);
      dev_ctx_.SetBlob(prim_key, conv_bwd_data_p);
    } else {
      is_reusing_ = true;
    }
    return conv_bwd_data_p;
  }

275 276
  // Generate keys for storing/retriving primitives for this operator
  // TODO(jczaja): Make hashing function more optimial
G
gongweibao 已提交
277 278 279 280 281 282
  static std::string GetHash(memory::dims& input_dims,     // NOLINT
                             memory::dims& weights_dims,   // NOLINT
                             std::vector<int>& strides,    // NOLINT
                             std::vector<int>& paddings,   // NOLINT
                             std::vector<int>& dilations,  // NOLINT
                             int groups, const std::string& suffix) {
283 284 285 286 287 288 289
    return dims2str(input_dims) + dims2str(weights_dims) + dims2str(strides) +
           dims2str(paddings) + dims2str(dilations) + std::to_string(groups) +
           suffix;
  }

 private:
  std::shared_ptr<mkldnn::convolution_forward::primitive_desc> conv_pd_;
290 291 292 293
  std::shared_ptr<mkldnn::convolution_backward_weights::primitive_desc>
      conv_bwd_weights_pd_;
  std::shared_ptr<mkldnn::convolution_backward_data::primitive_desc>
      conv_bwd_data_pd_;
294 295
};

296
template <typename T>
297
class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
298 299
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
K
Krzysztof Binias 已提交
300

301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331
    PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()),
                  "It must use CPUPlace.");

    const bool is_test = ctx.Attr<bool>("is_test");

    auto& dev_ctx =
        ctx.template device_context<paddle::platform::MKLDNNDeviceContext>();
    const auto& mkldnn_engine = dev_ctx.GetEngine();

    auto* input = ctx.Input<Tensor>("Input");
    auto* filter = ctx.Input<Tensor>("Filter");
    auto* bias = ctx.HasInput("Bias") ? ctx.Input<Tensor>("Bias") : nullptr;
    auto* output = ctx.Output<Tensor>("Output");

    PADDLE_ENFORCE(input->layout() == DataLayout::kMKLDNN &&
                       input->format() != memory::format::format_undef,
                   "Wrong layout/format set for Input tensor");
    PADDLE_ENFORCE(filter->layout() == DataLayout::kMKLDNN &&
                       filter->format() != memory::format::format_undef,
                   "Wrong layout/format set for Filter tensor");
    PADDLE_ENFORCE(input->dims().size() == 4,
                   "Input must be with 4 dimensions, i.e. NCHW");
    PADDLE_ENFORCE(filter->dims().size() == 4,
                   "Filter must be with 4 dimensions, i.e. OIHW");
    if (bias) {
      PADDLE_ENFORCE(bias->layout() == DataLayout::kMKLDNN &&
                         bias->format() != memory::format::format_undef,
                     "Wrong layout/format set for Bias tensor");
      PADDLE_ENFORCE(bias->dims().size() == 1,
                     "Bias must only have 1 dimension, i.e. X");
    }
332

333 334 335 336 337 338
    std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
    std::vector<int> dilations = ctx.Attr<std::vector<int>>("dilations");
    bool fuse_relu = ctx.Attr<bool>("fuse_relu");
    bool fuse_residual_conn = ctx.Attr<bool>("fuse_residual_connection");
    int groups = ctx.Attr<int>("groups");
339

340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364
    // TODO(tpatejko): add support for dilation
    PADDLE_ENFORCE(
        dilations.size() == 2 && dilations[0] == 1 && dilations[1] == 1,
        "dilation in convolution is not implemented yet");

    const T* input_data = input->data<T>();
    const float* filter_data = filter->data<float>();

    std::vector<int> src_tz = paddle::framework::vectorize2int(input->dims());
    std::vector<int> weights_tz =
        paddle::framework::vectorize2int(filter->dims());
    int g = std::max(groups, 1);
    if (g > 1) {
      int o = weights_tz[0];
      int i = weights_tz[1];
      int h = weights_tz[2];
      int w = weights_tz[3];
      weights_tz.resize(5);
      weights_tz[0] = g;
      weights_tz[1] = o / g;
      weights_tz[2] = i;
      weights_tz[3] = h;
      weights_tz[4] = w;
    }
    std::vector<int> dst_tz = paddle::framework::vectorize2int(output->dims());
365

366 367 368 369 370
    // Get unique name for storing MKLDNN primitives
    const std::string key = ConvMKLDNNHandler::GetHash(
        src_tz, weights_tz, strides, paddings, dilations, groups,
        ctx.op().Output("Output"));
    const std::string key_conv_pd = key + "@conv_pd";
371

372
    bool is_INT8 = ctx.HasInput("Scale_in")? true : false;
X
xiaolil1 已提交
373 374 375 376 377
    
    bool need_s8_to_u8 = false;
    if (fuse_residual_conn && is_INT8 && fuse_relu) {
      need_s8_to_u8 = true;
    }
378

X
xiaolil1 已提交
379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401
    std::shared_ptr<mkldnn::convolution_forward> conv_p;
    std::shared_ptr<mkldnn::memory> src_memory_p;
    std::shared_ptr<mkldnn::memory> dst_memory_p;
    std::vector<primitive> pipeline;
    
    auto prim_key = key + "@conv_p";
    auto dst_key = key + "@dst_mem_p";
    auto src_key = key + "@src_mem_p";
    conv_p = std::static_pointer_cast<mkldnn::convolution_forward>(dev_ctx.GetBlob(prim_key));
    src_memory_p = std::static_pointer_cast<mkldnn::memory>(dev_ctx.GetBlob(src_key));
    dst_memory_p = std::static_pointer_cast<mkldnn::memory>(dev_ctx.GetBlob(dst_key));
    
    if (src_memory_p) {
      src_memory_p->set_data_handle(to_void_cast<T>(input_data));
    }
    
    std::shared_ptr<mkldnn::convolution_forward::primitive_desc> conv_pd;
    conv_pd = std::static_pointer_cast<mkldnn::convolution_forward::primitive_desc>(dev_ctx.GetBlob(key_conv_pd));
    std::shared_ptr<ConvMKLDNNHandler> handler;
    if(conv_pd){
      handler.reset(new ConvMKLDNNHandler(conv_pd, dev_ctx, mkldnn_engine, key));
    }
    if (!is_INT8 && dst_memory_p){
402 403 404
      if (fuse_residual_conn) {
        auto residual_param = ctx.Input<Tensor>("ResidualData");
        auto residual_param_data = residual_param->data<T>();
X
xiaolil1 已提交
405
        if (residual_param->format() != handler->GetDstFormat()) {
406
          auto output_data =
X
xiaolil1 已提交
407
              output->mutable_data<T>(ctx.GetPlace(), ::paddle::memory::Allocator::kDefault, handler->GetDstMemorySize());
408 409 410 411
          auto residual_data_tz =
              paddle::framework::vectorize2int(residual_param->dims());
          auto residual_data_type =
              paddle::framework::ToMKLDNNDataType(residual_param->type());
X
xiaolil1 已提交
412
    
413 414
          auto user_residual_md = platform::MKLDNNMemDesc(
              residual_data_tz, residual_data_type, residual_param->format());
X
xiaolil1 已提交
415
          auto user_residual_memory_p = handler->AcquireResidualDataMemory(
416
              user_residual_md, to_void_cast<T>(residual_param_data));
X
xiaolil1 已提交
417 418
    
          dst_memory_p = handler->AcquireDstMemoryFromResidualDataMemory(
419 420 421 422
              user_residual_memory_p, to_void_cast<T>(output_data), pipeline);
        } else {
          output->ShareDataWith(*residual_param);
          auto output_data = output->mutable_data<T>(ctx.GetPlace());
X
xiaolil1 已提交
423
          dst_memory_p->set_data_handle(to_void_cast<T>(output_data));
X
xiaolil1 已提交
424
        }
425 426
      } else {
        auto output_data =
X
xiaolil1 已提交
427 428
            output->mutable_data<T>(ctx.GetPlace(), ::paddle::memory::Allocator::kDefault, handler->GetDstMemorySize());
        dst_memory_p->set_data_handle(to_void_cast<T>(output_data)); 
429
      }
X
xiaolil1 已提交
430
    }
X
xiaolil1 已提交
431

X
xiaolil1 已提交
432 433 434 435 436 437 438
    if(!is_INT8){
      if(conv_p == nullptr){
        auto user_src_md = platform::MKLDNNMemDesc(
            {src_tz}, platform::MKLDNNGetDataType<T>(), input->format());
        auto user_weights_md = platform::MKLDNNMemDesc(
            {weights_tz}, platform::MKLDNNGetDataType<T>(),
            (g == 1) ? mkldnn::memory::format::oihw : mkldnn::memory::format::goihw);
439

X
xiaolil1 已提交
440 441 442 443 444 445 446
        /* create memory descriptor for convolution without specified format
         * ('any') which lets a primitive (convolution in this case) choose
         * the memory format preferred for best performance
         */
        std::string data_format = ctx.Attr<std::string>("data_format");
        auto chosen_memory_format =
            platform::data_format_to_memory_format(data_format);
X
xiaolil1 已提交
447

X
xiaolil1 已提交
448 449 450 451 452 453
        auto src_md = platform::MKLDNNMemDesc(
            src_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
        auto weights_md = platform::MKLDNNMemDesc(
            weights_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
        std::vector<int> bias_tz;  // TODO(mgallus): avoid empty vector creation.
                                 // Currently used whenever bias is != nullptr.
454

X
xiaolil1 已提交
455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554
        auto dst_md = platform::MKLDNNMemDesc(
            dst_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);

        // create a conv primitive descriptor and save it for usage in backward
        if (bias) {
          bias_tz = paddle::framework::vectorize2int(bias->dims());
          auto bias_md = platform::MKLDNNMemDesc(
              bias_tz, platform::MKLDNNGetDataType<T>(), memory::format::x);
          conv_pd = ConvFwdPrimitiveDesc(src_md, weights_md, bias_md, dst_md,
                                         strides, paddings, mkldnn_engine,
                                         fuse_relu, fuse_residual_conn);
        } else {
          conv_pd =
              ConvFwdPrimitiveDesc(src_md, weights_md, dst_md, strides, paddings,
                                   mkldnn_engine, fuse_relu, fuse_residual_conn);
        }
        // Save conv_pd/src_memory/weights_memory for backward pass
        dev_ctx.SetBlob(key_conv_pd, conv_pd);

        handler.reset(new ConvMKLDNNHandler(conv_pd, dev_ctx, mkldnn_engine, key));

        // create mkldnn memory from input tensors (data/weights)
        auto user_src_memory_p =
            handler->AcquireSrcMemory(user_src_md, to_void_cast<T>(input_data));
        auto user_weights_memory_p = handler->AcquireWeightsMemory(
            user_weights_md, to_void_cast<float>(filter_data));

        // create reorder primitive if the input format is not the preferred one
        src_memory_p =
            handler->AcquireSrcMemoryFromPrimitive(user_src_memory_p, pipeline);
        auto weights_memory_p = handler->AcquireWeightsMemoryFromPrimitive(
            user_weights_memory_p, pipeline, is_test);

        if (fuse_residual_conn) {
          auto residual_param = ctx.Input<Tensor>("ResidualData");
          auto residual_param_data = residual_param->data<T>();

          PADDLE_ENFORCE(
              residual_param_data != nullptr,
              "Provide data if you want MKLDNN conv+elementwise_add fusion");
          PADDLE_ENFORCE_EQ(output->dims(), residual_param->dims(),
                            "Output and elementwise parameter need to have the "
                            "same dimension sizes");

          if (residual_param->format() != handler->GetDstFormat()) {
            auto output_data =
                output->mutable_data<T>(ctx.GetPlace(), ::paddle::memory::Allocator::kDefault, handler->GetDstMemorySize());
            auto residual_data_tz =
                paddle::framework::vectorize2int(residual_param->dims());
            auto residual_data_type =
                paddle::framework::ToMKLDNNDataType(residual_param->type());

            auto user_residual_md = platform::MKLDNNMemDesc(
                residual_data_tz, residual_data_type, residual_param->format());
            auto user_residual_memory_p = handler->AcquireResidualDataMemory(
                user_residual_md, to_void_cast<T>(residual_param_data));

            dst_memory_p = handler->AcquireDstMemoryFromResidualDataMemory(
                user_residual_memory_p, to_void_cast<T>(output_data), pipeline);
          } else {
            output->ShareDataWith(*residual_param);
            auto output_data = output->mutable_data<T>(ctx.GetPlace());
            dst_memory_p =
                handler->AcquireDstMemoryFromPrimitive(to_void_cast<T>(output_data));
          }
        } else {
          auto output_data =
              output->mutable_data<T>(ctx.GetPlace(), ::paddle::memory::Allocator::kDefault, handler->GetDstMemorySize());
          dst_memory_p =
              handler->AcquireDstMemoryFromPrimitive(to_void_cast<T>(output_data));
        }

        // create convolution op primitive
        if (bias) {
          const T* bias_data = bias->data<T>();
          auto user_bias_md = platform::MKLDNNMemDesc(
              {bias_tz}, platform::MKLDNNGetDataType<T>(), memory::format::x);
          auto user_bias_memory_p =
              handler->AcquireBiasMemory(user_bias_md, to_void_cast<T>(bias_data));

          auto bias_memory_p =
              handler->AcquireBiasMemoryFromPrimitive(user_bias_memory_p, pipeline, is_test);
          conv_p = handler->AcquireConvolution(src_memory_p, weights_memory_p,
                                              bias_memory_p, dst_memory_p);
        } else {
          conv_p = handler->AcquireConvolution(src_memory_p, weights_memory_p,
                                              dst_memory_p);
        }
        // push primitive to stream and wait until it's executed
        pipeline.push_back(*conv_p);
        stream(stream::kind::eager).submit(pipeline).wait();

        output->set_layout(DataLayout::kMKLDNN);
        output->set_format(GetMKLDNNFormat(*dst_memory_p));
      } else { 
        pipeline.push_back(*conv_p);
        stream(stream::kind::eager).submit(pipeline).wait();
    
        output->set_layout(DataLayout::kMKLDNN);
        output->set_format(GetMKLDNNFormat(*dst_memory_p));
X
xiaolil1 已提交
555
      }
X
xiaolil1 已提交
556
    } else{
X
xiaolil1 已提交
557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583
      if(conv_p == nullptr){
        auto* scale_in = ctx.HasInput("Scale_in") ? ctx.Input<Tensor>("Scale_in") : nullptr;
        auto* scale_in_eltwise = ctx.HasInput("Scale_in_eltwise")? ctx.Input<Tensor>("Scale_in_eltwise") : nullptr;
        auto* scale_weights = ctx.HasInput("Scale_weights")? ctx.Input<Tensor>("Scale_weights") : nullptr;
        auto* scale_out = ctx.HasInput("Scale_out")? ctx.Input<Tensor>("Scale_out") : nullptr;

        bool is_multi_channel = (scale_weights->memory_size() > 1) ? true : false;

        static std::unordered_map<std::string, std::vector<float>> scale_map;

        bool scale_reuse = true;
        auto scale_in_key = key + "@scale_in";
        auto scale_weights_key = key + "@scale_weights";
        auto scale_out_key = key + "@scale_out";
        auto output_shift_scale_key = key + "@output_shift_scale";
        auto sum_scale_key = key + "@sum_scale";
        auto scale_in_eltwise_key = key + "@scale_in_eltwise";
        std::vector<float> scale_in_data;
        std::vector<float> scale_out_data;
        std::vector<float> scale_weights_data;
        std::vector<float> scale_in_eltwise_data;
        std::vector<float> output_shift_scale;
        std::vector<float> sum_scale = {1.0f};
        std::vector<float> none_scale = {0};

        if (GetScaleMap(scale_map, scale_in_key) == none_scale){
          scale_reuse = false;
X
xiaolil1 已提交
584 585
        }

X
xiaolil1 已提交
586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623
        if(!scale_reuse){
          int count = is_multi_channel? (g>1? weights_tz[1]*weights_tz[0] : weights_tz[0]) : 1; 
          scale_in_data = {*(scale_in->data<float>())};
          scale_weights_data.resize(count);
          #pragma omp parallel for if (count > 1)
          for(int i=0; i<count; i++){
            scale_weights_data[i] =*(scale_weights->data<float>() + i);
          }
          scale_out_data = {*(scale_out->data<float>())};
          output_shift_scale.resize(count);
          #pragma omp parallel for if (count > 1)
          for(int i=0; i<count; i++){
            if(scale_weights_data[i] == 0.0)
              output_shift_scale[i] = scale_out_data[0];
            else 
              output_shift_scale[i] = scale_out_data[0] / (scale_in_data[0] * scale_weights_data[i]);
          }
          if(fuse_residual_conn){
            scale_in_eltwise_data = {*(scale_in_eltwise->data<float>())};
            sum_scale[0] = scale_out_data[0] / scale_in_eltwise_data[0];
            SetScaleMap(scale_map, scale_in_eltwise_key, scale_in_eltwise_data);
          }

          //scale reuse
          SetScaleMap(scale_map, scale_in_key, scale_in_data);
          SetScaleMap(scale_map, scale_weights_key, scale_weights_data);
          SetScaleMap(scale_map, scale_out_key, scale_out_data);
          SetScaleMap(scale_map, output_shift_scale_key, output_shift_scale);
          SetScaleMap(scale_map, sum_scale_key, sum_scale);
        } else{
          scale_in_data = GetScaleMap(scale_map, scale_in_key);
          scale_out_data = GetScaleMap(scale_map, scale_out_key);
          scale_weights_data = GetScaleMap(scale_map, scale_weights_key);
          if(fuse_residual_conn){
            scale_in_eltwise_data = GetScaleMap(scale_map, scale_in_eltwise_key);
          }
          output_shift_scale = GetScaleMap(scale_map, output_shift_scale_key);
          sum_scale = GetScaleMap(scale_map, sum_scale_key); 
624
        }
625

X
xiaolil1 已提交
626
        std::vector<primitive> pipeline;
627

X
xiaolil1 已提交
628 629 630 631 632
        auto user_src_md = platform::MKLDNNMemDesc(
                {src_tz}, paddle::framework::ToMKLDNNDataType(input->type()), input->format());
        auto user_weights_md = platform::MKLDNNMemDesc(
                {weights_tz}, platform::MKLDNNGetDataType<float>(),
                (g == 1) ? mkldnn::memory::format::oihw : mkldnn::memory::format::goihw);
633
  
X
xiaolil1 已提交
634 635 636 637 638 639 640
        /* create memory descriptor for convolution without specified format
         * ('any') which lets a primitive (convolution in this case) choose
         * the memory format preferred for best performance
        */
        std::string data_format = ctx.Attr<std::string>("data_format");
        auto chosen_memory_format = 
            platform::data_format_to_memory_format(data_format);
641
  
X
xiaolil1 已提交
642
        auto bias_tz = paddle::framework::vectorize2int(bias->dims());
643

X
xiaolil1 已提交
644 645 646 647
        auto src_md = platform::MKLDNNMemDesc(
            src_tz, memory::data_type::u8, chosen_memory_format);
        auto weights_md = platform::MKLDNNMemDesc(
            weights_tz, memory::data_type::s8, chosen_memory_format);
648

X
xiaolil1 已提交
649 650 651
        auto dst_dt = fuse_relu?
            paddle::framework::ToMKLDNNDataType(std::type_index(typeid(unsigned char)))
            : paddle::framework::ToMKLDNNDataType(std::type_index(typeid(signed char)));
652

X
xiaolil1 已提交
653 654 655 656 657
        if(fuse_residual_conn){
          auto residual = ctx.Input<Tensor>("ResidualData");
          auto residual_dt = paddle::framework::ToMKLDNNDataType(residual->type());
          if(dst_dt != residual_dt)
            dst_dt = residual_dt;
658
        }
X
xiaolil1 已提交
659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677
        auto dst_md = platform::MKLDNNMemDesc(dst_tz, dst_dt, chosen_memory_format);

        // create a conv primitive descriptor and save it for usage in backward
        if (bias) {
          auto bias_md = platform::MKLDNNMemDesc(
              bias_tz, memory::data_type::s32, memory::format::x);
          conv_pd = ConvFwdPrimitiveDesc(src_md, weights_md, bias_md, dst_md,
                                         strides, paddings, mkldnn_engine,
                                         fuse_relu, fuse_residual_conn,
                                         output_shift_scale, sum_scale[0], is_test);
        } else {
          conv_pd =
              ConvFwdPrimitiveDesc(src_md, weights_md, dst_md, strides, paddings,
                                   mkldnn_engine, fuse_relu, fuse_residual_conn,
                                   output_shift_scale, sum_scale[0], is_test);
        }
        // Save conv_pd/src_memory/weights_memory for backward pass
        dev_ctx.SetBlob(key_conv_pd, conv_pd);

X
xiaolil1 已提交
678
        handler.reset(new ConvMKLDNNHandler(conv_pd, dev_ctx, mkldnn_engine, key));
X
xiaolil1 已提交
679 680 681

        // create mkldnn memory from input tensors (data/weights)
        auto user_src_memory_p =
X
xiaolil1 已提交
682 683
            handler->AcquireSrcMemory(user_src_md, to_void_cast<T>(input_data));
        auto user_weights_memory_p = handler->AcquireWeightsMemory(
X
xiaolil1 已提交
684 685 686 687
            user_weights_md, to_void_cast<float>(filter_data));

        // create reorder primitive if the input format is not the preferred one
        src_memory_p =
X
xiaolil1 已提交
688
            handler->AcquireSrcMemoryFromPrimitive(user_src_memory_p, pipeline);
X
xiaolil1 已提交
689 690 691
            
        std::shared_ptr<mkldnn::memory> weights_memory_p;
        int mask_reorder = is_multi_channel? ((g!= 1) ? (1<<1)+(1<<0) : 1<<0) : 0;
X
xiaolil1 已提交
692
           weights_memory_p = handler->AcquireWeightsMemoryFromPrimitive(
X
xiaolil1 已提交
693 694 695 696 697 698 699 700
           user_weights_memory_p, pipeline, is_test, is_INT8, scale_weights_data, mask_reorder);

        if(fuse_residual_conn) {
          auto residual_param = ctx.Input<Tensor>("ResidualData");
          PADDLE_ENFORCE_EQ(output->dims(), residual_param->dims(),
                "Output and elementwise parameter need to have the "
                "same dimension sizes");
          auto residual_dt = paddle::framework::ToMKLDNNDataType(residual_param->type());
X
xiaolil1 已提交
701
          PADDLE_ENFORCE_EQ(residual_param->format(), handler->GetDstFormat(),
X
xiaolil1 已提交
702 703 704 705 706
                "Conv input dimension and filter dimension should be the same.");
          output->ShareDataWith(*residual_param);
          if(residual_dt == mkldnn::memory::data_type::u8){
            uint8_t* output_data = output->mutable_data<uint8_t>(ctx.GetPlace());
            dst_memory_p =
X
xiaolil1 已提交
707
                handler->AcquireDstMemoryFromPrimitive(to_void_cast<uint8_t>(output_data));
X
xiaolil1 已提交
708 709 710
          } else{
            int8_t* output_data = output->mutable_data<int8_t>(ctx.GetPlace());
            dst_memory_p =
X
xiaolil1 已提交
711
                handler->AcquireDstMemoryFromPrimitive(to_void_cast<int8_t>(output_data));
X
xiaolil1 已提交
712 713 714
          }
        } else {
          if(fuse_relu){
X
xiaolil1 已提交
715
            uint8_t* output_data = output->mutable_data<uint8_t>(ctx.GetPlace(), ::paddle::memory::Allocator::kDefault, handler->GetDstMemorySize());
X
xiaolil1 已提交
716
            dst_memory_p =
X
xiaolil1 已提交
717
                handler->AcquireDstMemoryFromPrimitive(to_void_cast<uint8_t>(output_data));
X
xiaolil1 已提交
718
          } else{
X
xiaolil1 已提交
719
            int8_t* output_data = output->mutable_data<int8_t>(ctx.GetPlace(), ::paddle::memory::Allocator::kDefault, handler->GetDstMemorySize());
X
xiaolil1 已提交
720
            dst_memory_p =
X
xiaolil1 已提交
721
                handler->AcquireDstMemoryFromPrimitive(to_void_cast<int8_t>(output_data));
X
xiaolil1 已提交
722
          }
X
xiaolil1 已提交
723
        }
724

X
xiaolil1 已提交
725 726 727 728 729 730 731 732
        // create convolution op primitive
        std::vector<float> scale_bias_data;
        auto scale_bias_key = key + "@scale_bias";
        if (bias) {
          const float* bias_data = bias->data<float>();
          auto user_bias_md = platform::MKLDNNMemDesc(
              {bias_tz}, platform::MKLDNNGetDataType<float>(), memory::format::x);
          auto user_bias_memory_p =
X
xiaolil1 已提交
733
              handler->AcquireBiasMemory(user_bias_md, to_void_cast<float>(bias_data));
X
xiaolil1 已提交
734 735 736 737 738 739 740 741 742 743 744 745
          std::shared_ptr<mkldnn::memory>  bias_memory_p;
          int mask_reorder = is_multi_channel? 1<<0 : 1;
          if(!scale_reuse){
            int count = is_multi_channel? (g>1? weights_tz[1]*weights_tz[0] : weights_tz[0]) : 1;
            scale_bias_data.resize(count);
            #pragma omp parallel for if (count > 1)
            for(int i=0; i<count; i++){
              scale_bias_data[i] = scale_in_data[0] * scale_weights_data[i];
            }
            SetScaleMap(scale_map, scale_bias_key, scale_bias_data);
          } else{
            scale_bias_data = GetScaleMap(scale_map, scale_bias_key);
746
          }
X
xiaolil1 已提交
747
          bias_memory_p =
X
xiaolil1 已提交
748 749
              handler->AcquireBiasMemoryFromPrimitive(user_bias_memory_p, pipeline, is_test, is_INT8, scale_bias_data, mask_reorder);
          conv_p = handler->AcquireConvolution(src_memory_p, weights_memory_p,
X
xiaolil1 已提交
750 751
                                              bias_memory_p, dst_memory_p);
        } else {
X
xiaolil1 已提交
752
          conv_p = handler->AcquireConvolution(src_memory_p, weights_memory_p,
X
xiaolil1 已提交
753
                                              dst_memory_p);
754
        }
755

X
xiaolil1 已提交
756

X
xiaolil1 已提交
757 758 759
          // push primitive to stream and wait until it's executed
        pipeline.push_back(*conv_p);
        stream(stream::kind::eager).submit(pipeline).wait();
760

X
xiaolil1 已提交
761 762 763
        if(need_s8_to_u8){
          output->mutable_data<uint8_t>(ctx.GetPlace());
        }
764

X
xiaolil1 已提交
765 766 767 768 769 770 771 772 773
        output->set_layout(DataLayout::kMKLDNN);
        output->set_format(GetMKLDNNFormat(*dst_memory_p));
      } else {
        pipeline.push_back(*conv_p);
        stream(stream::kind::eager).submit(pipeline).wait();
      
        if (need_s8_to_u8) {
          output->mutable_data<uint8_t>(ctx.GetPlace());
        }
X
xiaolil1 已提交
774

X
xiaolil1 已提交
775 776 777
        output->set_layout(DataLayout::kMKLDNN);
        output->set_format(GetMKLDNNFormat(*dst_memory_p));
      }
778
    }
779
  }
780

781
 private:
X
xiaolil1 已提交
782

X
xiaolil1 已提交
783 784
    void SetScaleMap(std::unordered_map<std::string, std::vector<float>> &scale_map,
                       const std::string& name, std::vector<float> scale_data) const {
X
xiaolil1 已提交
785 786
      auto it = scale_map.find(name);
      if (it == scale_map.end()) {
X
xiaolil1 已提交
787
        scale_map[name] = scale_data;  // create new blob
X
xiaolil1 已提交
788
      } else {
X
xiaolil1 已提交
789
        (*it).second = scale_data;  // set data to existing blob
X
xiaolil1 已提交
790 791 792 793
      }
      return;
    }

X
xiaolil1 已提交
794
    std::vector<float> GetScaleMap(std::unordered_map<std::string, std::vector<float>> &scale_map,
X
xiaolil1 已提交
795 796 797 798 799
         const std::string& name) const {
      auto it = scale_map.find(name);
      if (it != scale_map.end()) {
        return (*it).second;
      }
X
xiaolil1 已提交
800
      return {0};
801 802
    }

Z
Zhang, Guoming 已提交
803
    mkldnn::primitive_attr CreatePostOps(bool fuse_relu, bool fuse_residual_conn,
X
xiaolil1 已提交
804
                          const std::vector<float> output_shift_scale, float sum_scale) const {
805 806
      mkldnn::primitive_attr conv_attr;
      mkldnn::post_ops post_operations;
807
    // Fusion with Elementwise layer relies on adding a sum post-operation with
Z
Zhang, Guoming 已提交
808 809 810 811
    // the scale parameter. It is assumed that when fuse_residual_connection is
    // true, the output tensor contains the data coming from residual
    // connection. The result of this post_op is:
    // Output = scale * Output + Conv_Out.
X
xiaolil1 已提交
812
      int mask = output_shift_scale.size() > 1 ? 1<<1 : 0;
813
      conv_attr.set_output_scales(mask, output_shift_scale);
Z
Zhang, Guoming 已提交
814
      if (fuse_residual_conn) {
815 816 817 818 819
        post_operations.append_sum(sum_scale);
      }
      if (fuse_relu) {
        constexpr float scale = 1.0f;
        constexpr float negative_slope = 0.0f;
820
        constexpr float placeholder = 1.0f; //beta
821 822 823 824 825
        post_operations.append_eltwise(scale, mkldnn::algorithm::eltwise_relu,
                                       negative_slope, placeholder);
      }
      conv_attr.set_post_ops(post_operations);
      return conv_attr;
826
    }
827

X
xiaolil1 已提交
828
      mkldnn::primitive_attr CreatePostOps(bool fuse_relu, bool fuse_residual_conn) const {
829 830 831 832

      mkldnn::primitive_attr conv_attr;
      mkldnn::post_ops post_operations;
      // Fusion with Elementwise layer relies on adding a sum post-operation with
X
xiaolil1 已提交
833
      // the scale parameter. It is assumed that when fuse_residual_conn is true, the
834 835
      // Output tensor contains the data coming from residual connection. The
      // result of this post_op is: Output = scale * Output + Conv_Out.
X
xiaolil1 已提交
836
      if (fuse_residual_conn) {
837 838 839 840 841 842 843 844 845 846 847 848 849
        post_operations.append_sum(1.0f);
      }
      // Fusion with ReLU layer is executed through the PostOps feature. Create a
      // PostOps object and configure it to execute an eltwise relu operation.
      if (fuse_relu) {
        constexpr float scale = 1.0f;
        constexpr float negative_slope = 0.0f;
        constexpr float placeholder = 0.0f;
        post_operations.append_eltwise(scale, mkldnn::algorithm::eltwise_relu,
                                       negative_slope, placeholder);
      }
      conv_attr.set_post_ops(post_operations);
      return conv_attr;
850
    }
M
Michal Gallus 已提交
851

Z
Zhang, Guoming 已提交
852
    std::unique_ptr<mkldnn::convolution_forward::primitive_desc>
853 854 855 856
    ConvFwdPrimitiveDesc(const memory::desc& src, const memory::desc& weights,
                         const memory::desc& dst, const std::vector<int>& strides,
                         const std::vector<int>& paddings,
                         const mkldnn::engine& engine, const bool fuse_relu,
Z
Zhang, Guoming 已提交
857
                         const bool fuse_residual_conn,
X
xiaolil1 已提交
858
                         const std::vector<float> output_shift_scale, const float sum_scale, bool is_test) const {
859 860 861
      memory::dims stride_dims = {strides[0], strides[1]};
      memory::dims padding_dims = {paddings[0], paddings[1]};

X
xiaolil1 已提交
862 863
      auto propagation = is_test ? mkldnn::prop_kind::forward_scoring : mkldnn::prop_kind::forward_training;

864
      auto conv_desc = mkldnn::convolution_forward::desc(
X
xiaolil1 已提交
865
          propagation, mkldnn::convolution_direct, src, weights,
866 867 868 869
          dst, stride_dims, padding_dims, padding_dims,
          mkldnn::padding_kind::zero);

      mkldnn::primitive_attr conv_attr =
Z
Zhang, Guoming 已提交
870
          CreatePostOps(fuse_relu, fuse_residual_conn, output_shift_scale, sum_scale);
871 872 873 874 875 876

      auto p_conv_pd = new mkldnn::convolution_forward::primitive_desc(
          conv_desc, conv_attr, engine);

      return std::unique_ptr<mkldnn::convolution_forward::primitive_desc>(
          p_conv_pd);
877
    }
M
Michal Gallus 已提交
878

879
  std::unique_ptr<mkldnn::convolution_forward::primitive_desc>
880 881 882 883
    ConvFwdPrimitiveDesc(const memory::desc& src, const memory::desc& weights,
                         const memory::desc& dst, const std::vector<int>& strides,
                         const std::vector<int>& paddings,
                         const mkldnn::engine& engine, const bool fuse_relu,
884
                         const bool fuse_residual_conn, bool is_test=false) const{
885 886
      memory::dims stride_dims = {strides[0], strides[1]};
      memory::dims padding_dims = {paddings[0], paddings[1]};
X
xiaolil1 已提交
887
 
888
      auto propagation = is_test ? mkldnn::prop_kind::forward_scoring : mkldnn::prop_kind::forward_training; //Fix propagation bug for FP32 inference.
X
xiaolil1 已提交
889
 
890
      auto conv_desc = mkldnn::convolution_forward::desc(
X
xiaolil1 已提交
891
          propagation, mkldnn::convolution_direct, src, weights,
892 893 894
          dst, stride_dims, padding_dims, padding_dims,
          mkldnn::padding_kind::zero);
  
Z
Zhang, Guoming 已提交
895
      mkldnn::primitive_attr conv_attr = CreatePostOps(fuse_relu, fuse_residual_conn);
896 897 898 899 900 901 902
  
      auto p_conv_pd = new mkldnn::convolution_forward::primitive_desc(
          conv_desc, conv_attr, engine);
  
      return std::unique_ptr<mkldnn::convolution_forward::primitive_desc>(
          p_conv_pd);
    }
903 904

  std::unique_ptr<mkldnn::convolution_forward::primitive_desc>
905 906 907 908 909
    ConvFwdPrimitiveDesc(const memory::desc& src, const memory::desc& weights,
                         const memory::desc& bias, const memory::desc& dst,
                         const std::vector<int>& strides,
                         const std::vector<int>& paddings,
                         const mkldnn::engine& engine, const bool fuse_relu,
Z
Zhang, Guoming 已提交
910
                         const bool fuse_residual_conn,
X
xiaolil1 已提交
911
                         const std::vector<float> output_shift_scale, const float sum_scale, bool is_test) const {
912 913 914
      memory::dims stride_dims = {strides[0], strides[1]};
      memory::dims padding_dims = {paddings[0], paddings[1]};

X
xiaolil1 已提交
915 916
      auto propagation = is_test ? mkldnn::prop_kind::forward_scoring : mkldnn::prop_kind::forward_training;

917
      auto conv_desc = mkldnn::convolution_forward::desc(
X
xiaolil1 已提交
918
          propagation, mkldnn::convolution_direct, src, weights,
919 920 921 922
          bias, dst, stride_dims, padding_dims, padding_dims,
          mkldnn::padding_kind::zero);

      mkldnn::primitive_attr conv_attr = 
Z
Zhang, Guoming 已提交
923
          CreatePostOps(fuse_relu, fuse_residual_conn, output_shift_scale, sum_scale);
924 925 926 927 928 929 930 931 932 933 934 935 936 937

      auto p_conv_pd = new mkldnn::convolution_forward::primitive_desc(
          conv_desc, conv_attr, engine);

      return std::unique_ptr<mkldnn::convolution_forward::primitive_desc>(
          p_conv_pd);
    }

  std::unique_ptr<mkldnn::convolution_forward::primitive_desc>
    ConvFwdPrimitiveDesc(const memory::desc& src, const memory::desc& weights,
                         const memory::desc& bias, const memory::desc& dst,
                         const std::vector<int>& strides,
                         const std::vector<int>& paddings,
                         const mkldnn::engine& engine, const bool fuse_relu,
938
                         const bool fuse_residual_conn, bool is_test=false) const{
939 940 941
      memory::dims stride_dims = {strides[0], strides[1]};
      memory::dims padding_dims = {paddings[0], paddings[1]};

942
      auto propagation = is_test ? mkldnn::prop_kind::forward_scoring : mkldnn::prop_kind::forward_training; //Fix propagation bug for FP32 inference.
X
xiaolil1 已提交
943

944
      auto conv_desc = mkldnn::convolution_forward::desc(
X
xiaolil1 已提交
945
          propagation, mkldnn::convolution_direct, src, weights,
946 947 948
          bias, dst, stride_dims, padding_dims, padding_dims,
          mkldnn::padding_kind::zero);

Z
Zhang, Guoming 已提交
949
      mkldnn::primitive_attr conv_attr = CreatePostOps(fuse_relu, fuse_residual_conn);
950 951 952 953 954 955 956

      auto p_conv_pd = new mkldnn::convolution_forward::primitive_desc(
          conv_desc, conv_attr, engine);

      return std::unique_ptr<mkldnn::convolution_forward::primitive_desc>(
          p_conv_pd);
    }
957 958 959
};

template <typename T>
960
class ConvMKLDNNGradOpKernel : public paddle::framework::OpKernel<T> {
961 962 963 964 965
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
    PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()),
                   "It must use CPUPlace.");

966 967
    auto& dev_ctx =
        ctx.template device_context<platform::MKLDNNDeviceContext>();
968 969 970 971 972 973 974 975 976 977
    const auto& mkldnn_engine = dev_ctx.GetEngine();

    const Tensor* input = ctx.Input<Tensor>("Input");
    const Tensor* filter = ctx.Input<Tensor>("Filter");
    const Tensor* output = ctx.Input<Tensor>("Output");
    const Tensor* output_grad =
        ctx.Input<Tensor>(framework::GradVarName("Output"));
    Tensor* input_grad = ctx.Output<Tensor>(framework::GradVarName("Input"));
    Tensor* filter_grad = ctx.Output<Tensor>(framework::GradVarName("Filter"));

978 979 980 981 982 983 984 985 986 987 988 989 990
    PADDLE_ENFORCE(input->layout() == DataLayout::kMKLDNN &&
                       input->format() != memory::format::format_undef,
                   "Wrong layout/format set for Input tensor");
    PADDLE_ENFORCE(filter->layout() == DataLayout::kMKLDNN &&
                       filter->format() != memory::format::format_undef,
                   "Wrong layout/format set for Filter tensor");
    PADDLE_ENFORCE(output->layout() == DataLayout::kMKLDNN &&
                       output->format() != memory::format::format_undef,
                   "Wrong layout/format set for Output tensor");
    PADDLE_ENFORCE(output_grad->layout() == DataLayout::kMKLDNN &&
                       output_grad->format() != memory::format::format_undef,
                   "Wrong layout/format set for output_grad tensor");

991 992 993 994
    PADDLE_ENFORCE(
        !ctx.Attr<bool>("is_test"),
        "is_test attribute should be set to False in training phase.");

995 996 997 998
    if (!input_grad && !filter_grad) return;

    std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
999 1000
    std::vector<int> dilations = ctx.Attr<std::vector<int>>("dilations");
    int groups = ctx.Attr<int>("groups");
1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012

    const T* input_data = input->data<T>();
    const T* filter_data = filter->data<T>();
    const T* output_grad_data = output_grad->data<T>();
    T* input_grad_data = nullptr;
    T* filter_grad_data = nullptr;

    std::vector<int> src_tz = paddle::framework::vectorize2int(input->dims());
    std::vector<int> weights_tz =
        paddle::framework::vectorize2int(filter->dims());
    std::vector<int> dst_tz = paddle::framework::vectorize2int(output->dims());

1013
    // Get an unique name from "argument" name of "Output" variable
J
Jacek Czaja 已提交
1014
    // as well as attributes of primitive to be created
1015 1016 1017 1018 1019 1020
    // This name will be used as key when saving info into device context
    const std::string key =
        ConvMKLDNNHandler::GetHash(src_tz, weights_tz, strides, paddings,
                                   dilations, groups, ctx.op().Input("Output"));

    const std::string key_conv_pd = key + "@conv_pd";
1021
    std::vector<primitive> pipeline;
1022

1023 1024 1025 1026 1027 1028 1029
    // Create user memory descriptors
    auto user_src_md = platform::MKLDNNMemDesc(
        {src_tz}, platform::MKLDNNGetDataType<T>(), input->format());
    auto user_weights_md = platform::MKLDNNMemDesc(
        {weights_tz}, platform::MKLDNNGetDataType<T>(), filter->format());
    auto user_diff_dst_md = platform::MKLDNNMemDesc(
        {dst_tz}, platform::MKLDNNGetDataType<T>(), output_grad->format());
1030 1031 1032 1033 1034

    /* create memory descriptor for conv backward without specified format
     * ('any') which lets a primitive (conv backward in this case) choose
     * the memory format preferred for best performance
     */
1035 1036 1037 1038
    std::string data_format = ctx.Attr<std::string>("data_format");
    auto chosen_memory_format =
        platform::data_format_to_memory_format(data_format);

1039
    auto src_md = platform::MKLDNNMemDesc(
1040
        src_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
1041
    auto diff_src_md = platform::MKLDNNMemDesc(
1042
        src_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
1043
    auto weights_md = platform::MKLDNNMemDesc(
1044
        weights_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
1045
    auto diff_weights_md = platform::MKLDNNMemDesc(
1046
        weights_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
1047
    auto diff_dst_md = platform::MKLDNNMemDesc(
1048
        dst_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
1049

1050
    // Retrieve conv_pd from device context
1051 1052 1053
    auto conv_pd =
        std::static_pointer_cast<mkldnn::convolution_forward::primitive_desc>(
            dev_ctx.GetBlob(key_conv_pd));
1054 1055 1056
    PADDLE_ENFORCE(conv_pd != nullptr,
                   "Fail to find conv_pd in device context");

1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082
    // create backward convolution weights primitive descriptor
    auto conv_bwd_weights_desc = mkldnn::convolution_backward_weights::desc(
        mkldnn::convolution_direct, src_md, diff_weights_md, diff_dst_md,
        strides, paddings, paddings, mkldnn::padding_kind::zero);
    auto conv_bwd_weights_pd =
        std::make_shared<mkldnn::convolution_backward_weights::primitive_desc>(
            conv_bwd_weights_desc, mkldnn_engine, *conv_pd);

    // create backward convolution data primitive descriptor
    auto conv_bwd_data_desc = mkldnn::convolution_backward_data::desc(
        mkldnn::convolution_direct, diff_src_md, weights_md, diff_dst_md,
        strides, paddings, paddings, mkldnn::padding_kind::zero);
    auto conv_bwd_data_pd =
        std::make_shared<mkldnn::convolution_backward_data::primitive_desc>(
            conv_bwd_data_desc, mkldnn_engine, *conv_pd);

    ConvMKLDNNHandler handler(conv_pd, conv_bwd_data_pd, conv_bwd_weights_pd,
                              dev_ctx, mkldnn_engine, key);

    // create mkldnn memory from input tensors (data/weights)
    auto user_src_memory_p =
        handler.AcquireSrcMemory(user_src_md, to_void_cast<T>(input_data));
    auto user_weights_memory_p = handler.AcquireWeightsMemory(
        user_weights_md, to_void_cast<T>(filter_data));
    auto user_diff_dst_memory_p = handler.AcquireDiffDstMemory(
        user_diff_dst_md, to_void_cast<T>(output_grad_data));
1083 1084
    // create backward conv primitive for weights
    if (filter_grad) {
1085 1086
      auto src_memory_p = handler.AcquireSrcMemoryFromWeightsPrimitive(
          user_src_memory_p, pipeline);
1087

1088 1089 1090 1091
      auto diff_dst_memory_4filter_p =
          handler.AcquireDiffDstMemoryFromWeightsPrimitive(
              user_diff_dst_memory_p, pipeline);

1092
      const size_t size = handler.GetDiffWeightsMemorySize();
Y
Yu Yang 已提交
1093 1094
      filter_grad_data = filter_grad->mutable_data<T>(
          ctx.GetPlace(), paddle::memory::Allocator::kDefault, size);
1095

1096 1097 1098 1099 1100 1101 1102 1103 1104
      auto diff_weights_memory_p =
          handler.AcquireDiffWeightsMemoryFromWeightsPrimitive(
              reinterpret_cast<void*>(filter_grad_data));

      auto conv_bwd_weights_p = handler.AcquireConvolutionBackwardWeights(
          src_memory_p, diff_dst_memory_4filter_p, diff_weights_memory_p);

      // push primitive to stream and wait until it's executed
      pipeline.push_back(*conv_bwd_weights_p);
1105 1106

      filter_grad->set_layout(DataLayout::kMKLDNN);
1107
      filter_grad->set_format(GetMKLDNNFormat(*diff_weights_memory_p));
1108 1109 1110
    }

    if (input_grad) {
1111 1112 1113 1114 1115 1116 1117
      auto weights_memory_p = handler.AcquireWeightsMemoryFromDataPrimitive(
          user_weights_memory_p, pipeline);

      auto diff_dst_memory_4data_p =
          handler.AcquireDiffDstMemoryFromDataPrimitive(user_diff_dst_memory_p,
                                                        pipeline);

1118
      const size_t size = handler.GetDiffSourceMemorySize();
Y
Yu Yang 已提交
1119 1120
      input_grad_data = input_grad->mutable_data<T>(
          ctx.GetPlace(), paddle::memory::Allocator::kDefault, size);
1121

1122 1123 1124 1125 1126 1127 1128
      auto diff_src_memory_p = handler.AcquireDiffSrcMemoryFromDataPrimitive(
          reinterpret_cast<void*>(input_grad_data));

      auto conv_bwd_data_p = handler.AcquireConvolutionBackwardData(
          diff_dst_memory_4data_p, weights_memory_p, diff_src_memory_p);

      pipeline.push_back(*conv_bwd_data_p);
1129 1130

      input_grad->set_layout(DataLayout::kMKLDNN);
1131
      input_grad->set_format(GetMKLDNNFormat(*diff_src_memory_p));
1132
    }
1133
    stream(stream::kind::eager).submit(pipeline).wait();
1134 1135 1136 1137 1138 1139 1140 1141 1142
  }  // Compute()
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

REGISTER_OP_KERNEL(conv2d, MKLDNN, ::paddle::platform::CPUPlace,
X
xiaolil1 已提交
1143 1144
                   ops::ConvMKLDNNOpKernel<float>,
                   ops::ConvMKLDNNOpKernel<uint8_t>);
1145 1146

REGISTER_OP_KERNEL(conv2d_grad, MKLDNN, ::paddle::platform::CPUPlace,
1147
                   ops::ConvMKLDNNGradOpKernel<float>);