manipulation.py 171.3 KB
Newer Older
L
Ligoml 已提交
1
#   Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
# TODO: define functions to manipulate a tensor

myq406450149's avatar
myq406450149 已提交
17
import numpy as np
18

19
import paddle
20
from paddle import _C_ops
21
from paddle.tensor import fill_constant
22
from paddle.utils.inplace_utils import inplace_apis_in_dygraph_only
23 24 25 26 27 28 29

from ..fluid.data_feeder import (
    check_dtype,
    check_type,
    check_variable_and_dtype,
    convert_dtype,
)
30
from ..fluid.framework import Variable
31 32 33 34 35 36 37 38
from ..framework import (
    LayerHelper,
    convert_np_dtype_to_dtype_,
    core,
    dygraph_only,
    in_dygraph_mode,
)
from .creation import _complex_to_real_dtype, _real_to_complex_dtype, zeros
39

40 41
__all__ = []

W
Wilber 已提交
42

43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
def tensor_array_to_tensor(input, axis=1, use_stack=False, name=None):
    r"""
    This function concatenates or stacks all tensors in the input LoDTensorArray
    along the axis mentioned and returns that as the output.

    For Example:

    .. code-block:: text

        Case 1:

            Given:

                input.data = {[[0.6, 0.1, 0.3],
                               [0.5, 0.3, 0.2]],
                              [[1.3],
                               [1.8]],
                              [[2.3, 2.1],
                               [2.5, 2.4]]}

                axis = 1, use_stack = False

            Then:

                output.data = [[0.6, 0.1, 0.3, 1.3, 2.3, 2.1],
                               [0.5, 0.3, 0.2, 1.8, 2.5, 2.4]]

                output_index.data = [3, 1, 2]

        Case 2:

            Given:

                input.data = {[[0.6, 0.1],
                               [0.5, 0.3]],
                              [[0.3, 1.3],
                               [0.2, 1.8]],
                              [[2.3, 2.1],
                               [2.5, 2.4]]}

                axis = 1, use_stack = True

            Then:

                output.data = [[[0.6, 0.1]
                                [0.3, 1.3]
                                [2.3, 2.1],
                               [[0.5, 0.3]
                                [0.2, 1.8]
                                [2.5, 2.4]]]

                output_index.data = [2, 2, 2]

    Args:
        input(TensorArray): A TensorArray variable.
        axis(int): The axis along which the tensors in attr::`input` will be
            concatenated or stacked.
        use_stack(bool): Act as concat_op or stack_op. For stack mode, all
            tensors in the tensor array must have the same shape.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Tensor: The concatenated or stacked tensor variable.
        Tensor: A 1-D tensor variable with int32 data type. The data in this \
            tensor contains all input including tensors' sizes along the axis.

    Examples:
        .. code-block:: python

            import numpy
            import paddle
            x0 = paddle.assign(numpy.random.rand(2, 2).astype("float32"))
            x1 = paddle.assign(numpy.random.rand(2, 2).astype("float32"))
            i = paddle.full(shape=[1], dtype="int64", fill_value=0)
            array = paddle.tensor.array.create_array(dtype='float32')
            paddle.tensor.array.array_write(x0, i, array)
            paddle.tensor.array.array_write(x1, i + 1, array)
            output, output_index = paddle.tensor.manipulation.tensor_array_to_tensor(input=array)
    """
123
    if in_dygraph_mode():
124 125 126 127 128 129 130
        assert isinstance(
            input, list
        ), "The 'input' in tensor_array_to_tensor must be list"
        from paddle import concat, stack

        op = stack if use_stack else concat
        res = op(input, axis=axis)
131
        sizes = paddle.to_tensor(np.array([int(x.shape[axis]) for x in input]))
132
        return res, sizes
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
    else:
        check_type(input, 'input', (list, Variable), 'tensor_array_to_tensor')
        if isinstance(input, list):
            for i, input_x in enumerate(input):
                check_type(
                    input_x,
                    'input[' + str(i) + ']',
                    Variable,
                    'tensor_array_to_tensor',
                )
        helper = LayerHelper('tensor_array_to_tensor', **locals())
        out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype()
        )
        out_index = helper.create_variable_for_type_inference(dtype="int32")
        helper.append_op(
            type='tensor_array_to_tensor',
            inputs={'X': input},
            outputs={'Out': [out], 'OutIndex': [out_index]},
            attrs={'axis': axis, 'use_stack': use_stack},
        )
        return out, out_index
155 156


157 158 159
def cast(x, dtype):
    """

160
    Take in the Tensor :attr:`x` with :attr:`x.dtype` and cast it
161 162 163 164
    to the output with :attr:`dtype`. It's meaningless if the output dtype
    equals the input dtype, but it's fine if you do so.

    Args:
165
        x (Tensor): An input N-D Tensor with data type bool, float16,
166
            float32, float64, int32, int64, uint8.
167
        dtype (np.dtype|str): Data type of the output:
168 169 170
            bool, float16, float32, float64, int8, int32, int64, uint8.

    Returns:
L
Ligoml 已提交
171
        Tensor, A Tensor with the same shape as input's.
172 173 174 175 176 177 178 179 180 181 182 183

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([2, 3, 4], 'float64')
            y = paddle.cast(x, 'uint8')
    """
    if in_dygraph_mode():
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)
184
        return _C_ops.cast(x, dtype)
185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
    else:
        check_variable_and_dtype(
            x,
            'x',
            [
                'bool',
                'float16',
                'float32',
                'float64',
                'int16',
                'int32',
                'int64',
                'uint8',
                'uint16',
            ],
            'cast',
        )
        check_dtype(
            dtype,
            'dtype',
            [
                'bool',
                'float16',
                'float32',
                'float64',
                'int8',
                'int16',
                'int32',
                'int64',
                'uint8',
                'uint16',
            ],
            'cast',
        )
219

220 221 222 223 224 225 226 227 228 229
        helper = LayerHelper('cast', **locals())
        out = helper.create_variable_for_type_inference(
            dtype=dtype, stop_gradient=x.stop_gradient
        )
        helper.append_op(
            type='cast',
            inputs={'X': [x]},
            outputs={'Out': [out]},
            attrs={'in_dtype': x.dtype, 'out_dtype': out.dtype},
        )
230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
        return out


def slice(input, axes, starts, ends):
    """
    This operator produces a slice of ``input`` along multiple axes. Similar to numpy:
    https://docs.scipy.org/doc/numpy/reference/arrays.indexing.html
    Slice uses ``axes``, ``starts`` and ``ends`` attributes to specify the start and
    end dimension for each axis in the list of axes and Slice uses this information
    to slice the input data tensor. If a negative value is passed to
    ``starts`` or ``ends`` such as :math:`-i`,  it represents the reverse position of the
    axis :math:`i-1` (here 0 is the initial position).
    If the value passed to ``starts`` or ``ends`` is greater than n
    (the number of elements in this dimension), it represents n.
    For slicing to the end of a dimension with unknown size, it is recommended
    to pass in INT_MAX. The size of ``axes`` must be equal to ``starts`` and ``ends``.
    Following examples will explain how slice works:

    .. code-block:: text

        Case1:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
                starts = [1, 0]
                ends = [2, 3]
            Then:
                result = [ [5, 6, 7], ]

        Case2:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
                starts = [0, 1]
                ends = [-1, 1000]       # -1 denotes the reverse 0th position of dimension 0.
            Then:
                result = [ [2, 3, 4], ] # result = data[0:1, 1:4]
267

268 269 270 271 272 273 274 275 276 277 278
    Args:
        input (Tensor): A ``Tensor`` . The data type is ``float16``, ``float32``, ``float64``, ``int32`` or ``int64``.
        axes (list|tuple): The data type is ``int32`` . Axes that `starts` and `ends` apply to .
        starts (list|tuple|Tensor): The data type is ``int32`` . If ``starts`` is a list or tuple, the elements of
                it should be integers or Tensors with shape [1]. If ``starts`` is an Tensor, it should be an 1-D Tensor.
                It represents starting indices of corresponding axis in ``axes``.
        ends (list|tuple|Tensor): The data type is ``int32`` . If ``ends`` is a list or tuple, the elements of
                it should be integers or Tensors with shape [1]. If ``ends`` is an Tensor, it should be an 1-D Tensor .
                It represents ending indices of corresponding axis in ``axes``.

    Returns:
L
Ligoml 已提交
279
        Tensor, A ``Tensor``. The data type is same as ``input``.
280 281 282 283 284 285 286 287 288 289 290 291 292

    Examples:
        .. code-block:: python

            import paddle

            input = paddle.rand(shape=[4, 5, 6], dtype='float32')
            # example 1:
            # attr starts is a list which doesn't contain tensor.
            axes = [0, 1, 2]
            starts = [-3, 0, 2]
            ends = [3, 2, 4]
            sliced_1 = paddle.slice(input, axes=axes, starts=starts, ends=ends)
Z
zyfncg 已提交
293
            # sliced_1 is input[1:3, 0:2, 2:4].
294 295 296 297 298

            # example 2:
            # attr starts is a list which contain tensor.
            minus_3 = paddle.full([1], -3, "int32")
            sliced_2 = paddle.slice(input, axes=axes, starts=[minus_3, 0, 2], ends=ends)
Z
zyfncg 已提交
299
            # sliced_2 is input[1:3, 0:2, 2:4].
300 301 302 303 304 305 306 307 308 309
    """
    if in_dygraph_mode():
        attrs = ()
        starts_tensor = None
        ends_tensor = None

        if isinstance(axes, (list, tuple)):
            axes = list(axes)
            if len(axes) == 0:
                raise ValueError(
310 311
                    "Input axes should not be an empty list/tuple."
                )
312 313 314 315 316 317 318 319
            for i in range(len(axes)):
                if axes[i] < 0:
                    axes[i] = max(0, axes[i] + len(input.shape))
                else:
                    axes[i] = min(len(input.shape) - 1, axes[i])

        else:
            raise ValueError(
320 321 322 323
                "Input axes must be a python list or tuple, but reveived {}".format(
                    type(axes)
                )
            )
324

325
        infer_flags = [1 for i in range(len(axes))]
326 327 328 329 330

        tmp_tensor_type = core.eager.Tensor

        if isinstance(starts, (list, tuple)):
            starts = [
331
                item.item(0) if isinstance(item, tmp_tensor_type) else item
332 333 334
                for item in starts
            ]
        elif isinstance(starts, tmp_tensor_type):
335
            tensor_t = starts.numpy(False)
336
            starts = list(tensor_t)
337
            infer_flags = [-1 for i in range(len(axes))]
338 339 340

        if isinstance(ends, (list, tuple)):
            ends = [
341
                item.item(0) if isinstance(item, tmp_tensor_type) else item
342
                for item in ends
343 344
            ]
        elif isinstance(ends, tmp_tensor_type):
345
            tensor_t = ends.numpy(False)
346
            ends = list(tensor_t)
347
            infer_flags = [-1 for i in range(len(axes))]
348

349
        return _C_ops.slice(input, axes, starts, ends, infer_flags, [])
350
    else:
351 352 353 354 355 356 357 358
        if not isinstance(starts, (list, tuple, Variable)):
            raise ValueError(
                "Input starts must be an Variable, python list or tuple."
            )
        if not isinstance(ends, (list, tuple, Variable)):
            raise ValueError(
                "Input ends must be an Variable, python list or tuple."
            )
359

360 361 362 363
        helper = LayerHelper('slice', **locals())

        inputs = {'Input': input}
        attrs = {'axes': axes}
364
        infer_flags = [1 for i in range(len(axes))]
365 366 367 368 369

        # starts
        if isinstance(starts, Variable):
            starts.stop_gradient = True
            inputs['StartsTensor'] = starts
370
            infer_flags = [-1 for i in range(len(axes))]
371 372
        elif isinstance(starts, (list, tuple)):
            attrs['starts'] = []
373 374 375 376
            if paddle.utils._contain_var(starts):
                inputs[
                    'StartsTensorList'
                ] = paddle.utils._convert_to_tensor_list(starts)
377 378 379 380 381 382 383 384
                for i, dim in enumerate(starts):
                    if isinstance(dim, Variable):
                        attrs['starts'].append(-1)
                        infer_flags[i] = -1
                    else:
                        attrs['starts'].append(dim)
            else:
                attrs['starts'] = starts
385

386 387 388 389
        # ends
        if isinstance(ends, Variable):
            ends.stop_gradient = True
            inputs['EndsTensor'] = ends
390
            infer_flags = [-1 for i in range(len(axes))]
391 392
        elif isinstance(ends, (list, tuple)):
            attrs['ends'] = []
393 394 395 396
            if paddle.utils._contain_var(ends):
                inputs['EndsTensorList'] = paddle.utils._convert_to_tensor_list(
                    ends
                )
397 398 399 400 401 402 403 404
                for i, dim in enumerate(ends):
                    if isinstance(dim, Variable):
                        attrs['ends'].append(-1)
                        infer_flags[i] = -1
                    else:
                        attrs['ends'].append(dim)
            else:
                attrs['ends'] = ends
405

406 407 408 409
        # infer_flags
        attrs['infer_flags'] = infer_flags
        out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype('input')
410
        )
411 412
        helper.append_op(
            type='slice', inputs=inputs, attrs=attrs, outputs={'Out': out}
413
        )
414

415
        return out
416 417 418 419 420 421 422 423 424 425 426 427 428 429 430


def transpose(x, perm, name=None):
    """
    Permute the data dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
        x (Tensor): The input Tensor. It is a N-D Tensor of data types bool, float32, float64, int32.
        perm (list|tuple): Permute the input according to the data of perm.
        name (str): The name of this layer. It is optional.

    Returns:
L
Ligoml 已提交
431
        Tensor, A transposed n-D Tensor, with data type being bool, float32, float64, int32, int64.
432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468

    For Example:

        .. code-block:: text

         x = [[[ 1  2  3  4] [ 5  6  7  8] [ 9 10 11 12]]
             [[13 14 15 16] [17 18 19 20] [21 22 23 24]]]
         shape(x) =  [2,3,4]

         # Example 1
         perm0 = [1,0,2]
         y_perm0 = [[[ 1  2  3  4] [13 14 15 16]]
                   [[ 5  6  7  8]  [17 18 19 20]]
                   [[ 9 10 11 12]  [21 22 23 24]]]
         shape(y_perm0) = [3,2,4]

         # Example 2
         perm1 = [2,1,0]
         y_perm1 = [[[ 1 13] [ 5 17] [ 9 21]]
                   [[ 2 14] [ 6 18] [10 22]]
                   [[ 3 15]  [ 7 19]  [11 23]]
                   [[ 4 16]  [ 8 20]  [12 24]]]
         shape(y_perm1) = [4,3,2]

    Examples:

        .. code-block:: python

            import paddle

            x = paddle.randn([2, 3, 4])
            x_transposed = paddle.transpose(x, perm=[1, 0, 2])
            print(x_transposed.shape)
            # [3L, 2L, 4L]

    """
    if in_dygraph_mode():
469
        return _C_ops.transpose(x, perm)
470
    else:
471 472 473 474 475 476 477 478 479 480
        check_variable_and_dtype(
            x,
            'x',
            [
                'bool',
                'float16',
                'float32',
                'float64',
                'int32',
                'int64',
481
                'uint16',
482 483 484 485
                'complex64',
                'complex128',
            ],
            'transpose',
486
        )
487 488 489 490
        check_type(perm, 'perm', (list, tuple), 'transpose')
        if isinstance(perm, tuple):
            perm = list(perm)
        if len(perm) != len(x.shape):
491
            raise ValueError(
492 493
                "Input(perm) is the permutation of dimensions of Input(x), "
                "its length should be equal to dimensions of Input(x), "
494 495 496 497
                "but received dimension of Input(x) is {}, "
                "the length of Input(perm) is {}.".format(
                    len(x.shape), len(perm)
                )
498
            )
499 500 501 502 503 504 505
        for idx, dim in enumerate(perm):
            if dim >= len(x.shape):
                raise ValueError(
                    "Each element in Input(perm) should be less than Input(x)'s dimension, "
                    "but %d-th element in Input(perm) is %d which exceeds Input(x)'s "
                    "dimension %d." % (idx, perm[idx], len(x.shape))
                )
506

507 508 509 510 511 512 513 514 515 516
        helper = LayerHelper('transpose', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        x_shape = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='transpose2',
            inputs={'X': [x]},
            outputs={'Out': [out], 'XShape': [x_shape]},
            attrs={'axis': perm},
        )
        return out
517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533


def unstack(x, axis=0, num=None):
    """
    This layer unstacks input Tensor :code:`x` into several Tensors along :code:`axis`.

    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x)`.
    If :code:`num` is None, it would be inferred from :code:`x.shape[axis]`,
    and if :code:`x.shape[axis]` <= 0 or is unknown, :code:`ValueError` is
    raised.

    Args:
        x (Tensor): Input Tensor. It is a N-D Tensors of data types float32, float64, int32, int64.
        axis (int): The axis along which the input is unstacked.
        num (int|None): The number of output variables.

    Returns:
L
Ligoml 已提交
534
        list(Tensor), The unstacked Tensors list. The list elements are N-D Tensors of data types float32, float64, int32, int64.
535 536 537 538 539 540 541 542 543

    Examples:
        .. code-block:: python

            import paddle
            x = paddle.ones(name='x', shape=[2, 3, 5], dtype='float32')  # create a tensor with shape=[2, 3, 5]
            y = paddle.unstack(x, axis=1)  # unstack with second axis, which results 3 tensors with shape=[2, 5]

    """
544 545 546 547
    if not (-x.ndim <= axis < x.ndim):
        raise ValueError(
            '`axis` must be in the range [-{0}, {0})'.format(x.ndim)
        )
548
    if in_dygraph_mode():
549
        if num is None:
550 551 552
            num = x.shape[axis]
        if num == 0:
            return []
553
        return _C_ops.unstack(x, axis, num)
554 555
    else:
        helper = LayerHelper('unstack', **locals())
556
        if num is None:
557 558 559 560
            if axis is None or x.shape[axis] <= 0:
                raise ValueError('unknown unstack number')
            else:
                num = x.shape[axis]
561

562 563 564
        outs = []
        for _ in range(num):
            outs.append(helper.create_variable_for_type_inference(x.dtype))
565

566 567 568 569 570 571 572
        helper.append_op(
            type='unstack',
            inputs={'X': [x]},
            outputs={'Y': outs},
            attrs={'axis': axis, 'num': num},
        )
        return outs
573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592


def shard_index(input, index_num, nshards, shard_id, ignore_value=-1):
    """
    Reset the values of `input` according to the shard it beloning to.
    Every value in `input` must be a non-negative integer, and
    the parameter `index_num` represents the integer above the maximum
    value of `input`. Thus, all values in `input` must be in the range
    [0, index_num) and each value can be regarded as the offset to the beginning
    of the range. The range is further split into multiple shards. Specifically,
    we first compute the `shard_size` according to the following formula,
    which represents the number of integers each shard can hold. So for the
    i'th shard, it can hold values in the range [i*shard_size, (i+1)*shard_size).
    ::

        shard_size = (index_num + nshards - 1) // nshards

    For each value `v` in `input`, we reset it to a new value according to the
    following formula:
    ::
593

594 595 596 597 598 599 600 601 602 603
        v = v - shard_id * shard_size if shard_id * shard_size <= v < (shard_id+1) * shard_size else ignore_value

    That is, the value `v` is set to the new offset within the range represented by the shard `shard_id`
    if it in the range. Otherwise, we reset it to be `ignore_value`.

    Args:
        input (Tensor): Input tensor with data type int64 or int32. It's last dimension must be 1.
        index_num (int): An integer represents the integer above the maximum value of `input`.
        nshards (int): The number of shards.
        shard_id (int): The index of the current shard.
L
LoneRanger 已提交
604
        ignore_value (int, optional): An integer value out of sharded index range. The default value is -1.
605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621

    Returns:
        Tensor.

    Examples:
        .. code-block:: python

            import paddle
            label = paddle.to_tensor([[16], [1]], "int64")
            shard_label = paddle.shard_index(input=label,
                                             index_num=20,
                                             nshards=2,
                                             shard_id=0)
            print(shard_label)
            # [[-1], [1]]
    """
    if in_dygraph_mode():
622 623 624
        return _C_ops.shard_index(
            input, index_num, nshards, shard_id, ignore_value
        )
625 626 627 628 629

    check_variable_and_dtype(input, 'input', ['int64', 'int32'], 'shard_index')
    op_type = 'shard_index'
    helper = LayerHelper(op_type, **locals())
    if shard_id < 0 or shard_id >= nshards:
630 631 632
        raise ValueError(
            'The shard_id(%d) should be in [0, %d)' % (shard_id, nshards)
        )
633 634

    out = helper.create_variable_for_type_inference(dtype=input.dtype)
635 636 637 638 639 640 641 642 643 644 645 646
    helper.append_op(
        type=op_type,
        inputs={'X': [input]},
        outputs={'Out': out},
        attrs={
            'index_num': index_num,
            'nshards': nshards,
            'shard_id': shard_id,
            'ignore_value': ignore_value,
        },
        stop_gradient=True,
    )
647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689
    return out


def crop(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

    .. code-block:: text

        * Case 1 (input is a 2-D Tensor):
            Input:
                X.shape = [3, 5]
                X.data = [[0, 1, 2, 0, 0],
                          [0, 3, 4, 0, 0],
                          [0, 0, 0, 0, 0]]
            Parameters:
                shape = [2, 2]
                offsets = [0, 1]
            Output:
                Out.shape = [2, 2]
                Out.data = [[1, 2],
                            [3, 4]]
        * Case 2 (input is a 3-D Tensor):
            Input:
                X.shape = [2, 3, 4]
                X.data =  [[[0, 1, 2, 3],
                            [0, 5, 6, 7],
                            [0, 0, 0, 0]],
                           [[0, 3, 4, 5],
                            [0, 6, 7, 8],
                            [0, 0, 0, 0]]]
            Parameters:
                shape = [2, 2, -1]
                offsets = [0, 0, 1]
            Output:
                Out.shape = [2, 2, 3]
                Out.data  = [[[1, 2, 3],
                              [5, 6, 7]],
                             [[3, 4, 5],
                              [6, 7, 8]]]

    Parameters:
        x (Tensor): 1-D to 6-D Tensor, the data type is float32, float64, int32 or int64.
690
        shape (list|tuple|Tensor, optional): The output shape is specified
691 692 693 694 695 696 697 698 699 700 701
            by `shape`. Its data type is int32. If a list/tuple, it's length must be
            the same as the dimension size of `x`. If a Tensor, it should be a 1-D Tensor.
            When it is a list, each element can be an integer or a Tensor of shape: [1].
            If Variable contained, it is suitable for the case that the shape may
            be changed each iteration.
        offsets (list|tuple|Variable, optional): Specifies the cropping
            offsets at each dimension. Its data type is int32. If a list/tuple, it's length
            must be the same as the dimension size of `x`. If a Tensor, it should be a 1-D
            Tensor. When it is a list, each element can be an integer or a Tensor of shape: [1].
            If Variable contained, it is suitable for the case that the offsets may be changed
            each iteration. Default: None, the offsets are 0 at each dimension.
702
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
703 704

    Returns:
L
Ligoml 已提交
705
        Tensor, The cropped Tensor has same data type with `x`.
706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735

    Examples:

        .. code-block:: python

            import paddle
            x = paddle.to_tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
            # x.shape = [3, 3]
            # x = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]

            # shape can be a 1-D Tensor or list or tuple.
            shape = paddle.to_tensor([2, 2], dtype='int32')
            # shape = [2, 2]
            # shape = (2, 2)
            out = paddle.crop(x, shape)
            # out.shape = [2, 2]
            # out = [[1,2], [4,5]]

            # offsets can be a 1-D Tensor or list or tuple.
            offsets = paddle.to_tensor([0, 1], dtype='int32')
            # offsets = [1, 0]
            # offsets = (1, 1)
            out = paddle.crop(x, shape, offsets)
            # out.shape = [2, 2]
            # if offsets = [0, 0], out = [[1,2], [4,5]]
            # if offsets = [0, 1], out = [[2,3], [5,6]]
            # if offsets = [1, 0], out = [[4,5], [7,8]]
            # if offsets = [1, 1], out = [[5,6], [8,9]]

    """
736

737
    helper = LayerHelper('crop_tensor', **locals())
738 739 740 741 742 743 744 745 746
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'int32', 'int64'], 'crop_tensor'
    )
    check_type(
        shape, 'shape', (list, tuple, Variable, type(None)), 'crop_tensor'
    )
    check_type(
        offsets, 'offsets', (list, tuple, Variable, type(None)), 'crop_tensor'
    )
747 748 749 750

    if offsets is None:
        offsets = [0] * len(x.shape)

P
PuQing 已提交
751 752 753
    if shape is None:
        shape = x.shape

754
    if in_dygraph_mode():
755
        return _C_ops.crop(x, shape, offsets)
756

757 758 759 760 761 762 763 764
    out = helper.create_variable_for_type_inference(x.dtype)
    ipts = {'X': x}
    attrs = {}

    def _attr_shape_check(shape_val):
        if not isinstance(shape_val, int):
            raise TypeError(
                "Attr(shape)'s dtype of Op(crop_tensor) should be int32, but received: %s."
765 766
                % type(shape_val)
            )
767 768 769
        if shape_val == 0:
            raise ValueError(
                "Attr(shape) of Op(crop_tensor) should not be zero, but received: %s."
770 771
                % str(shape_val)
            )
772 773 774
        if shape_val < -1:
            raise ValueError(
                "When the element in Attr(shape) of Op(crop_tensor) is negative, only -1 is supported, but received: %s."
775 776
                % str(shape_val)
            )
777 778 779 780 781

    def _attr_offsets_check(offset_val):
        if not isinstance(offset_val, int):
            raise TypeError(
                "Attr(offsets)'s dtype of Op(crop_tensor) should be int32, but received: %s."
782 783
                % type(offset_val)
            )
784 785 786
        if offset_val < 0:
            raise ValueError(
                "Attr(offsets) of Op(crop_tensor) should be greater or equal to zero, but received: %s."
787 788
                % str(offset_val)
            )
789 790 791 792 793

    if isinstance(offsets, Variable):
        offsets.stop_gradient = True
        ipts['Offsets'] = offsets
        attrs['offsets'] = [-1] * len(x.shape)
794
    elif paddle.utils._contain_var(offsets):
795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817
        new_offsets_tensor = []
        offsets_attr = []
        for dim in offsets:
            if isinstance(dim, Variable):
                dim.stop_gradient = True
                new_offsets_tensor.append(dim)
                offsets_attr.append(-1)
            else:
                _attr_offsets_check(dim)
                temp_out = helper.create_variable_for_type_inference('int32')
                fill_constant([1], 'int32', dim, force_cpu=True, out=temp_out)
                new_offsets_tensor.append(temp_out)
                offsets_attr.append(dim)
        ipts['OffsetsTensor'] = new_offsets_tensor
        attrs['offsets'] = offsets_attr
    else:
        for offset in offsets:
            _attr_offsets_check(offset)
        attrs['offsets'] = offsets

    if isinstance(shape, Variable):
        shape.stop_gradient = True
        ipts['Shape'] = shape
818
    elif paddle.utils._contain_var(shape):
819 820 821 822 823 824 825 826 827 828
        new_shape_tensor = []
        shape_attr = []
        for dim_size in shape:
            if isinstance(dim_size, Variable):
                dim_size.stop_gradient = True
                new_shape_tensor.append(dim_size)
                shape_attr.append(0)
            else:
                _attr_shape_check(dim_size)
                temp_out = helper.create_variable_for_type_inference('int32')
829 830 831
                fill_constant(
                    [1], 'int32', dim_size, force_cpu=True, out=temp_out
                )
832 833 834 835 836 837 838 839 840
                new_shape_tensor.append(temp_out)
                shape_attr.append(dim_size)
        ipts['ShapeTensor'] = new_shape_tensor
        attrs['shape'] = shape_attr
    else:
        for dim_size in shape:
            _attr_shape_check(dim_size)
        attrs['shape'] = shape

841 842 843 844 845 846
    helper.append_op(
        type='crop_tensor',
        inputs=ipts,
        outputs={'Out': out},
        attrs=None if len(attrs) == 0 else attrs,
    )
847 848 849
    return out


850 851 852 853 854 855 856 857 858
@dygraph_only
def fill_(x, value):
    """
    **Notes**:
        **This API is ONLY available in Dygraph mode**

    This function fill the Tensor with value inplace.

    Args:
859 860
        x (Tensor): ``x`` is the Tensor we want to filled data inplace
        value (Scale): ``value`` is the value to be filled in x
861 862

    Returns:
L
Ligoml 已提交
863
        x(Tensor), Tensor x filled with value inplace
864 865 866 867 868 869 870 871 872 873 874 875 876 877

    Examples:
        .. code-block:: python

            import paddle

            tensor = paddle.to_tensor([0, 1, 2, 3, 4])

            tensor.fill_(0)
            print(tensor.tolist())   #[0, 0, 0, 0, 0]

    """
    if not isinstance(value, (float, int)):
        raise TypeError(
878 879 880
            "The type of 'value'  must be int or float, but received %s."
            % (type(value))
        )
881
    return _C_ops.fill_(x, value)
882 883 884 885 886 887 888 889 890 891 892


@dygraph_only
def zero_(x):
    """
    **Notes**:
        **This API is ONLY available in Dygraph mode**

    This function fill the Tensor with zero inplace.

    Args:
893
        x (Tensor): ``x`` is the Tensor we want to filled with zero inplace
894 895

    Returns:
L
Ligoml 已提交
896
        x (Tensor), Tensor x filled with zero inplace
897 898 899 900 901 902 903 904 905 906 907 908

    Examples:
        .. code-block:: python

            import paddle

            tensor = paddle.to_tensor([0, 1, 2, 3, 4])

            tensor.zero_()
            print(tensor.tolist())   #[0, 0, 0, 0, 0]

    """
909
    return _C_ops.fill_(x, 0.0)
910 911


912 913 914
@dygraph_only
def fill_diagonal_(x, value, offset=0, wrap=False, name=None):
    """
915 916
    Note:
        This API is ONLY available in Dygraph mode.
917

918
    This function fill the value into the x Tensor's diagonal inplace.
919

920 921 922 923 924 925
    Args:
        x(Tensor): ``x`` is the original Tensor
        value(Scale): ``value`` is the value to filled in x
        offset(int,optional): the offset to the main diagonal. Default: 0 (main diagonal).
        wrap(bool,optional): the diagonal 'wrapped' after N columns for tall matrices.
        name(str,optional): Name for the operation (optional, default is None)
926

927
    Returns:
L
Ligoml 已提交
928
        Tensor, Tensor with diagonal filled with value.
929

930 931 932 933 934 935 936
    Examples:
        .. code-block:: python
            import paddle
            x = paddle.ones((4, 3)) * 2
            x.fill_diagonal_(1.0)
            print(x.tolist())   #[[1.0, 2.0, 2.0], [2.0, 1.0, 2.0], [2.0, 2.0, 1.0], [2.0, 2.0, 2.0]]
    """
Z
zhiboniu 已提交
937
    if in_dygraph_mode():
938
        if len(x.shape) == 2:
939 940
            return _C_ops.fill_diagonal_(x, value, offset, wrap)
        return _C_ops.fill_diagonal_(x, value, offset, True)
Z
zhiboniu 已提交
941

942

943 944
def _fill_diagonal_tensor_impl(x, y, offset=0, dim1=0, dim2=1, inplace=False):
    inshape = x.shape
945 946 947 948 949 950 951
    assert dim1 < len(inshape) and dim1 >= -len(
        inshape
    ), 'dim1 should between [-rank,rank) in fill_diagonal_tensor_'
    assert dim2 < len(inshape) and dim2 >= -len(
        inshape
    ), 'dim2 should between [-rank,rank) in fill_diagonal_tensor_'
    assert len(inshape) >= 2, 'Tensor dims should >= 2 in fill_diagonal_tensor_'
952 953 954 955 956 957 958
    dim1 %= len(inshape)
    dim2 %= len(inshape)

    predshape = []
    for i in range(len(inshape)):
        if i != dim1 and i != dim2:
            predshape.append(inshape[i])
959 960 961 962
    diaglen = min(
        min(inshape[dim1], inshape[dim1] + offset),
        min(inshape[dim2], inshape[dim2] - offset),
    )
963
    predshape.append(diaglen)
964
    assert tuple(predshape) == tuple(
965
        y.shape
966
    ), f"the y shape should be {predshape}"
967 968 969 970
    if len(y.shape) == 1:
        y = y.reshape([1, -1])

    if inplace:
971 972
        return _C_ops.fill_diagonal_tensor_(x, y, offset, dim1, dim2)
    return _C_ops.fill_diagonal_tensor(x, y, offset, dim1, dim2)
973 974 975 976


def fill_diagonal_tensor_(x, y, offset=0, dim1=0, dim2=1, name=None):
    """
977 978
    Note:
        This API is ONLY available in Dygraph mode.
979 980 981 982

    This function fill the source Tensor y into the x Tensor's diagonal inplace.

    Args:
983 984 985 986 987 988
        x (Tensor): ``x`` is the original Tensor
        y (Tensor): ``y`` is the Tensor to filled in x
        dim1 (int,optional): first dimension with respect to which to fill diagonal. Default: 0.
        dim2 (int,optional): second dimension with respect to which to fill diagonal. Default: 1.
        offset (int,optional): the offset to the main diagonal. Default: 0 (main diagonal).
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
989 990

    Returns:
L
Ligoml 已提交
991
        Tensor, Tensor with diagonal filled with y.
992 993 994 995 996 997 998 999 1000 1001 1002 1003

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.ones((4, 3)) * 2
            y = paddle.ones((3,))
            x.fill_diagonal_tensor_(y)
            print(x.tolist())   #[[1.0, 2.0, 2.0], [2.0, 1.0, 2.0], [2.0, 2.0, 1.0], [2.0, 2.0, 2.0]]

    """
1004 1005 1006
    return _fill_diagonal_tensor_impl(
        x, y, offset=offset, dim1=dim1, dim2=dim2, inplace=True
    )
1007 1008 1009 1010 1011 1012 1013


def fill_diagonal_tensor(x, y, offset=0, dim1=0, dim2=1, name=None):
    """
    This function fill the source Tensor y into the x Tensor's diagonal.

    Args:
1014 1015 1016 1017 1018 1019
        x (Tensor): ``x`` is the original Tensor
        y (Tensor): ``y`` is the Tensor to filled in x
        dim1 (int,optional): first dimension with respect to which to fill diagonal. Default: 0.
        dim2 (int,optional): second dimension with respect to which to fill diagonal. Default: 1.
        offset (int,optional): the offset to the main diagonal. Default: 0 (main diagonal).
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1020 1021

    Returns:
L
Ligoml 已提交
1022
        Tensor, Tensor with diagonal filled with y.
1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.ones((4, 3)) * 2
            y = paddle.ones((3,))
            nx = x.fill_diagonal_tensor(y)
            print(nx.tolist())   #[[1.0, 2.0, 2.0], [2.0, 1.0, 2.0], [2.0, 2.0, 1.0], [2.0, 2.0, 2.0]]

    """
1035 1036 1037
    return _fill_diagonal_tensor_impl(
        x, y, offset=offset, dim1=dim1, dim2=dim2, inplace=False
    )
1038 1039


Z
zhiboniu 已提交
1040 1041 1042
@dygraph_only
def tolist(x):
    """
1043 1044
    Note:
        This API is ONLY available in Dygraph mode.
Z
zhiboniu 已提交
1045 1046 1047 1048

    This function translate the paddle.Tensor to python list.

    Args:
1049
        x (Tensor): ``x`` is the Tensor we want to translate to list.
Z
zhiboniu 已提交
1050 1051

    Returns:
L
Ligoml 已提交
1052
        list, A list that contain the same value of current Tensor.
Z
zhiboniu 已提交
1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067


    Examples:
        .. code-block:: python

            import paddle

            t = paddle.to_tensor([0,1,2,3,4])
            expectlist = t.tolist()
            print(expectlist)   #[0, 1, 2, 3, 4]

            expectlist = paddle.tolist(t)
            print(expectlist)   #[0, 1, 2, 3, 4]

    """
1068 1069
    # TODO(zhouwei): will remove 0D Tensor.numpy() hack
    return x.numpy(False).tolist()
Z
zhiboniu 已提交
1070 1071


1072 1073 1074
def concat(x, axis=0, name=None):
    """

1075
    Concatenates the input along the axis.
1076 1077

    Args:
1078
        x (list|tuple): ``x`` is a Tensor list or Tensor tuple which is with data type bool, float16,
1079
            float32, float64, int32, int64, int8, uint8. All the Tensors in ``x`` must have same data type.
1080
        axis (int|Tensor, optional): Specify the axis to operate on the input Tensors.
1081
            It's a scalar with data type int or a Tensor with shape [1] and data type int32
1082 1083
            or int64. The effective range is [-R, R), where R is Rank(x). When ``axis < 0``,
            it works the same way as ``axis+R``. Default is 0.
1084
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1085 1086

    Returns:
L
Ligoml 已提交
1087
        Tensor, A Tensor with the same data type as ``x``.
1088 1089 1090

    Examples:
        .. code-block:: python
1091

1092
            import paddle
1093

1094 1095 1096 1097 1098 1099
            x1 = paddle.to_tensor([[1, 2, 3],
                                   [4, 5, 6]])
            x2 = paddle.to_tensor([[11, 12, 13],
                                   [14, 15, 16]])
            x3 = paddle.to_tensor([[21, 22],
                                   [23, 24]])
1100 1101 1102
            zero = paddle.full(shape=[1], dtype='int32', fill_value=0)
            # When the axis is negative, the real axis is (axis + Rank(x))
            # As follow, axis is -1, Rank(x) is 2, the real axis is 1
1103 1104 1105
            out1 = paddle.concat(x=[x1, x2, x3], axis=-1)
            out2 = paddle.concat(x=[x1, x2], axis=0)
            out3 = paddle.concat(x=[x1, x2], axis=zero)
1106 1107 1108 1109 1110 1111 1112 1113 1114
            # out1
            # [[ 1  2  3 11 12 13 21 22]
            #  [ 4  5  6 14 15 16 23 24]]
            # out2 out3
            # [[ 1  2  3]
            #  [ 4  5  6]
            #  [11 12 13]
            #  [14 15 16]]
    """
1115 1116 1117 1118 1119 1120
    input = x
    if in_dygraph_mode():
        if isinstance(axis, Variable):
            axis = axis.item(0)
        if not isinstance(input, Variable):
            input = [t for t in input if t.shape.count(0) == 0]
1121
        return _C_ops.concat(input, axis)
1122 1123
    else:
        check_type(input, 'input', (list, tuple, Variable), 'concat')
1124
        if not isinstance(input, Variable):
1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137
            for id, x in enumerate(input):
                check_variable_and_dtype(
                    x,
                    'input[' + str(id) + ']',
                    [
                        'bool',
                        'float16',
                        'float32',
                        'float64',
                        'int32',
                        'int64',
                        'int8',
                        'unit8',
W
wangzhen38 已提交
1138
                        'uint16',
1139 1140 1141 1142 1143 1144 1145 1146 1147 1148
                    ],
                    'concat',
                )
                if x.dtype != input[0].dtype:
                    raise TypeError(
                        "All the Tensors in the input must have the same data type."
                    )
        else:
            input = [input]
        check_type(axis, 'axis', (int, Variable), 'concat')
1149

1150 1151 1152 1153 1154
        if isinstance(axis, Variable):
            check_dtype(
                axis.dtype,
                'axis',
                ['int32', 'int64'],
1155
                'concat',
1156
                "The data type of axis must be int32 or int64 when axis is a Tensor",
1157
            )
1158

1159 1160 1161
        helper = LayerHelper('concat', **locals())
        out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype()
1162
        )
1163

1164 1165 1166
        if input[0].desc.type() == core.VarDesc.VarType.LOD_TENSOR_ARRAY:
            # NOTE(liym27): Don't remove this if branch!
            # This feature is supported for Dynamic-to-Static, because after transformed, the type of inputs[0]
1167
            # is LOD_TENSOR_ARRAY in some scenarios. And this feature can be used in static graph mode.
1168

1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180
            assert len(input) == 1, (
                "If the elements of 'input' in concat are Variable(LoDTensorArray), "
                "number of the elements must be 1, but received %s."
                % len(input)
            )
            out_index = helper.create_variable_for_type_inference(dtype="int32")
            helper.append_op(
                type='tensor_array_to_tensor',
                inputs={'X': input[0]},
                outputs={'Out': [out], 'OutIndex': [out_index]},
                attrs={'axis': axis, 'use_stack': False},
            )
1181
        else:
1182 1183 1184 1185 1186 1187 1188
            inputs = {'X': input}
            attrs = {}
            if isinstance(axis, Variable):
                axis.stop_gradient = True
                inputs['AxisTensor'] = axis
            else:
                attrs['axis'] = axis
1189

1190 1191 1192 1193 1194 1195 1196
            helper.append_op(
                type='concat',
                inputs=inputs,
                outputs={'Out': [out]},
                attrs=attrs,
            )
        return out
1197 1198


1199 1200
def broadcast_tensors(input, name=None):
    """
1201
    Broadcast a list of tensors following broadcast semantics
1202

1203
    Note:
1204 1205 1206
        If you want know more about broadcasting, please refer to `Introduction to Tensor`_ .

    .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor
1207 1208

    Args:
1209
        input (list|tuple): ``input`` is a Tensor list or Tensor tuple which is with data type bool,
1210 1211
            float16, float32, float64, int32, int64. All the Tensors in ``input`` must have same data type.
            Currently we only support tensors with rank no greater than 5.
1212
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1213 1214

    Returns:
L
Ligoml 已提交
1215
        list(Tensor), The list of broadcasted tensors following the same order as ``input``.
1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228

    Examples:
        .. code-block:: python

            import paddle
            x1 = paddle.rand([1, 2, 3, 4]).astype('float32')
            x2 = paddle.rand([1, 2, 1, 4]).astype('float32')
            x3 = paddle.rand([1, 1, 3, 1]).astype('float32')
            out1, out2, out3 = paddle.broadcast_tensors(input=[x1, x2, x3])
            # out1, out2, out3: tensors broadcasted from x1, x2, x3 with shape [1,2,3,4]
    """

    num_inputs = len(input)
1229
    if in_dygraph_mode():
1230
        return _C_ops.broadcast_tensors(input)
1231 1232 1233
    else:
        check_type(input, 'input', (list, tuple), 'broadcast_tensors')
        if num_inputs < 1:
1234
            raise TypeError(
1235
                "At least 1 tensor is needed to perform broadcast_tensors"
1236
            )
1237

1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249
        # Check input types
        for id, x in enumerate(input):
            check_variable_and_dtype(
                x,
                'input[' + str(id) + ']',
                ['bool', 'float32', 'float64', 'int32', 'int64'],
                'broadcast_tensors',
            )
            if x.dtype != input[0].dtype:
                raise TypeError(
                    "All the Tensors in the input must have the same data type."
                )
1250

1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275
        # Check bcast semantics
        output_shape_r_last_tensor_index = []
        output_shape_r = []

        # Use while loop due to weird behaviour of "range()"
        j = 0
        while j < len(input):
            tensor = input[j]
            shape = list(reversed(tensor.shape))

            i = 0
            while i < len(shape):
                if len(output_shape_r) <= i:
                    output_shape_r.append(shape[i])
                    output_shape_r_last_tensor_index.append(j)
                else:
                    invalid = (
                        output_shape_r[i] != shape[i]
                        and output_shape_r[i] != 1
                        and shape[i] != 1
                    )
                    if invalid:
                        last_index = output_shape_r_last_tensor_index[i]
                        raise TypeError(
                            "Input tensors to broadcast_tensors does not follow bcast semantics"
1276
                            f"Tensor {last_index} conflicts with Tensor {j} in reversed dimension {i}"
1277 1278 1279 1280 1281 1282 1283 1284
                        )
                    if output_shape_r[i] <= shape[i]:
                        output_shape_r[i] = shape[i]
                        output_shape_r_last_tensor_index[i] = j
                i += 1  # while i < len(shape)
            j += 1  # while j < len(input)

        helper = LayerHelper('broadcast_tensors', **locals())
1285
        i = 0
1286 1287 1288 1289 1290
        out = []
        while i < num_inputs:
            out.append(
                helper.create_variable_for_type_inference(
                    dtype=helper.input_dtype()
1291 1292
                )
            )
1293
            i += 1
1294

1295 1296 1297 1298 1299 1300 1301
        inputs = {'X': input}
        helper.append_op(
            type='broadcast_tensors',
            inputs=inputs,
            outputs={'Out': out},
            attrs={},
        )
1302

1303
        return out
1304 1305


Y
yaoxuefeng 已提交
1306
def flip(x, axis, name=None):
W
Wilber 已提交
1307
    """
Y
yaoxuefeng 已提交
1308
    Reverse the order of a n-D tensor along given axis in axis.
W
Wilber 已提交
1309 1310

    Args:
Y
yaoxuefeng 已提交
1311
        x (Tensor): A Tensor(or LoDTensor) with shape :math:`[N_1, N_2,..., N_k]` . The data type of the input Tensor x
W
Wilber 已提交
1312
            should be float32, float64, int32, int64, bool.
R
Roc 已提交
1313
        axis (list|tuple|int): The axis(axes) to flip on. Negative indices for indexing from the end are accepted.
1314
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
W
Wilber 已提交
1315 1316

    Returns:
L
Ligoml 已提交
1317
        Tensor, Tensor or LoDTensor calculated by flip layer. The data type is same with input x.
W
Wilber 已提交
1318 1319 1320 1321 1322

    Examples:
        .. code-block:: python

          import paddle
Y
yaoxuefeng 已提交
1323 1324

          image_shape=(3, 2, 2)
1325
          img = paddle.arange(image_shape[0] * image_shape[1] * image_shape[2]).reshape(image_shape)
R
Roc 已提交
1326 1327
          tmp = paddle.flip(img, [0,1])
          print(tmp) # [[[10,11],[8, 9]], [[6, 7],[4, 5]], [[2, 3],[0, 1]]]
Y
yaoxuefeng 已提交
1328

R
Roc 已提交
1329 1330
          out = paddle.flip(tmp,-1)
          print(out) # [[[11,10],[9, 8]], [[7, 6],[5, 4]], [[3, 2],[1, 0]]]
W
Wilber 已提交
1331
    """
R
Roc 已提交
1332 1333
    if isinstance(axis, int):
        axis = [axis]
H
hong 已提交
1334 1335

    if in_dygraph_mode():
1336
        return _C_ops.flip(x, axis)
1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353
    else:
        helper = LayerHelper("flip", **locals())
        check_type(x, 'X', (Variable), 'flip')
        dtype = helper.input_dtype('x')
        check_dtype(
            dtype,
            'X',
            ['float16', 'float32', 'float64', 'int32', 'int64', 'bool'],
            'flip',
        )
        check_type(axis, 'axis', (list, tuple), 'flip')
        if name is None:
            out = helper.create_variable_for_type_inference(dtype)
        else:
            out = helper.create_variable(
                name=name, dtype=dtype, persistable=False
            )
H
hong 已提交
1354

1355 1356 1357 1358 1359 1360 1361
        helper.append_op(
            type="flip",
            inputs={"X": x},
            outputs={"Out": out},
            attrs={"axis": axis},
        )
        return out
1362 1363


Z
zmxdream 已提交
1364 1365
def rot90(x, k=1, axes=[0, 1], name=None):
    """
1366
    Rotate a n-D tensor by 90 degrees. The rotation direction and times are specified by axes and the absolute value of k. Rotation direction is from axes[0] towards axes[1] if k > 0, and from axes[1] towards axes[0] for k < 0.
Z
zmxdream 已提交
1367 1368 1369

    Args:
        x (Tensor): The input Tensor(or LoDTensor). The data type of the input Tensor x
Z
zmxdream 已提交
1370
            should be float16, float32, float64, int32, int64, bool. float16 is only supported on gpu.
Z
zmxdream 已提交
1371 1372
        k (int, optional): Direction and number of times to rotate, default value: 1.
        axes (list|tuple, optional): Axes to rotate, dimension must be 2. default value: [0, 1].
Z
zmxdream 已提交
1373 1374 1375 1376
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .

    Returns:
L
Ligoml 已提交
1377
        Tensor, Tensor or LoDTensor calculated by rot90 layer. The data type is same with input x.
Z
zmxdream 已提交
1378 1379 1380 1381 1382 1383 1384 1385

    Examples:
        .. code-block:: python

          import paddle

          data = paddle.arange(4)
          data = paddle.reshape(data, (2, 2))
1386
          print(data)
Z
zmxdream 已提交
1387 1388 1389
          #[[0, 1],
          # [2, 3]]

Z
zmxdream 已提交
1390
          y = paddle.rot90(data, 1, [0, 1])
1391
          print(y)
Z
zmxdream 已提交
1392 1393 1394
          #[[1, 3],
          # [0, 2]]

Z
zmxdream 已提交
1395
          y= paddle.rot90(data, -1, [0, 1])
1396
          print(y)
Z
zmxdream 已提交
1397 1398 1399
          #[[2, 0],
          # [3, 1]]

Z
zmxdream 已提交
1400 1401
          data2 = paddle.arange(8)
          data2 = paddle.reshape(data2, (2,2,2))
1402
          print(data2)
Z
zmxdream 已提交
1403 1404 1405 1406 1407
          #[[[0, 1],
          #  [2, 3]],
          # [[4, 5],
          #  [6, 7]]]

Z
zmxdream 已提交
1408
          y = paddle.rot90(data2, 1, [1, 2])
Z
zmxdream 已提交
1409 1410 1411 1412 1413
          print(y)
          #[[[1, 3],
          #  [0, 2]],
          # [[5, 7],
          #  [4, 6]]]
Z
zmxdream 已提交
1414 1415 1416 1417 1418
    """

    helper = LayerHelper("rot90", **locals())
    check_type(x, 'X', (Variable), 'rot90')
    dtype = helper.input_dtype('x')
1419 1420 1421 1422 1423 1424
    check_dtype(
        dtype,
        'X',
        ['float16', 'float32', 'float64', 'int32', 'int64', 'bool'],
        'rot90',
    )
Z
zmxdream 已提交
1425 1426 1427 1428 1429
    check_type(axes, 'axes', (list, tuple), 'rot90')

    input_total_dims = len(x.shape)
    total_rot_dims = len(axes)
    if total_rot_dims != 2:
1430 1431
        raise ValueError(
            "expected total rotation axes == 2, but got axes = {}".format(
1432 1433 1434
                total_rot_dims
            )
        )
Z
zmxdream 已提交
1435
    if input_total_dims < 2:
1436 1437
        raise ValueError(
            "expected total dims >= 2, but got total dims = {}".format(
1438 1439 1440
                input_total_dims
            )
        )
Z
zmxdream 已提交
1441 1442 1443

    if not (axes[0] != axes[1] and abs(axes[0] - axes[1]) != input_total_dims):
        raise ValueError(
1444 1445 1446 1447
            "expected rotation axes to be different, but got axis0 = {}, and axis1 = {}".format(
                axes[0], axes[1]
            )
        )
Z
zmxdream 已提交
1448 1449

    if not (axes[0] < input_total_dims and axes[0] >= -input_total_dims):
1450
        raise ValueError(f"Rotation axis0 out of range, axis0 = {axes[0]}")
Z
zmxdream 已提交
1451
    if not (axes[1] < input_total_dims and axes[1] >= -input_total_dims):
1452
        raise ValueError(f"Rotation axis1 out of range, axis1 = {axes[1]}")
Z
zmxdream 已提交
1453

Z
zmxdream 已提交
1454
    k %= 4
Z
zmxdream 已提交
1455 1456 1457 1458 1459 1460
    if k == 0:
        return x
    if k == 2:
        return flip(flip(x, axes[0]), axes[1])

    axes_list = list(range(0, input_total_dims))
1461 1462 1463 1464
    (axes_list[axes[0]], axes_list[axes[1]]) = (
        axes_list[axes[1]],
        axes_list[axes[0]],
    )
Z
zmxdream 已提交
1465 1466 1467 1468 1469 1470 1471
    if k == 1:
        return transpose(flip(x, axes[1]), axes_list)
    else:
        # k == 3
        return flip(transpose(x, axes_list), axes[1])


1472
def flatten(x, start_axis=0, stop_axis=-1, name=None):
1473
    r"""
1474 1475
    Flattens a contiguous range of axes in a tensor according to start_axis and stop_axis.

1476
    Note:
1477
        The output Tensor will share data with origin Tensor and doesn't have a Tensor copy in ``dygraph`` mode.
1478
        If you want to use the Tensor copy version, please use `Tensor.clone` like ``flatten_clone_x = x.flatten().clone()``.
1479

1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508
    For Example:

    .. code-block:: text

        Case 1:

          Given
            X.shape = (3, 100, 100, 4)

          and
            start_axis = 1
            end_axis = 2

          We get:
            Out.shape = (3, 1000 * 100, 2)

        Case 2:

          Given
            X.shape = (3, 100, 100, 4)

          and
            start_axis = 0
            stop_axis = -1

          We get:
            Out.shape = (3 * 100 * 100 * 4)

    Args:
张春乔 已提交
1509
        x (Tensor): A tensor of number of dimentions >= axis. A tensor with data type float16, float32,
1510
                      float64, int8, int32, int64, uint8.
1511 1512
        start_axis (int): the start axis to flatten
        stop_axis (int): the stop axis to flatten
1513
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1514 1515

    Returns:
L
Ligoml 已提交
1516
        Tensor, A tensor with the contents of the input tensor, with input \
1517 1518 1519 1520 1521 1522 1523 1524 1525 1526
                  axes flattened by indicated start axis and end axis. \
                  A Tensor with data type same as input x.

    Examples:

        .. code-block:: python

            import paddle

            image_shape=(2, 3, 4, 4)
1527

Y
yaoxuefeng 已提交
1528 1529
            x = paddle.arange(end=image_shape[0] * image_shape[1] * image_shape[2] * image_shape[3])
            img = paddle.reshape(x, image_shape)
1530

1531 1532
            out = paddle.flatten(img, start_axis=1, stop_axis=2)
            # out shape is [2, 12, 4]
1533 1534 1535 1536

            # out shares data with img in dygraph mode
            img[0, 0, 0, 0] = -1
            print(out[0, 0, 0]) # [-1]
1537 1538
    """
    if not (isinstance(x, Variable)):
Y
yaoxuefeng 已提交
1539
        raise ValueError("The input x should be a Tensor")
1540 1541

    x_dim = len(x.shape)
1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573
    if x_dim == 0:
        if not (isinstance(start_axis, int)) or start_axis not in [0, -1]:
            raise ValueError(
                "The start_axis should be int, and should be 0 or -1 when the input tensor is a 0D-Tensor"
            )
        if not (isinstance(stop_axis, int)) or stop_axis not in [0, -1]:
            raise ValueError(
                "The stop_axis should be int, and should be 0 or -1 when the input tensor is a 0D-Tensor"
            )
    else:
        if (
            not (isinstance(start_axis, int))
            or (start_axis > x_dim - 1)
            or start_axis < -x_dim
        ):
            raise ValueError(
                "The start_axis should be a int, and in range [-rank(x), rank(x))"
            )
        if (
            not (isinstance(stop_axis, int))
            or (stop_axis > x_dim - 1)
            or stop_axis < -x_dim
        ):
            raise ValueError(
                "The stop_axis should be a int, and in range [-rank(x), rank(x))"
            )
        if start_axis < 0:
            start_axis = start_axis + x_dim
        if stop_axis < 0:
            stop_axis = stop_axis + x_dim
        if start_axis > stop_axis:
            raise ValueError("The stop_axis should be larger than stat_axis")
1574

1575
    if in_dygraph_mode():
1576
        return _C_ops.flatten(x, start_axis, stop_axis)
1577
    else:
W
Weilong Wu 已提交
1578 1579 1580
        check_variable_and_dtype(
            x,
            'x',
X
xiaoguoguo626807 已提交
1581 1582 1583 1584 1585 1586 1587 1588 1589
            [
                'float16',
                'float32',
                'float64',
                'int8',
                'int16',
                'int32',
                'int64',
                'uint8',
1590
                'uint16',
X
xiaoguoguo626807 已提交
1591
            ],
W
Weilong Wu 已提交
1592 1593
            'flatten',
        )
1594 1595 1596 1597 1598 1599 1600 1601
        helper = LayerHelper('flatten', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        x_shape = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='flatten_contiguous_range',
            inputs={"X": x},
            outputs={'Out': out, 'XShape': x_shape},
            attrs={"start_axis": start_axis, "stop_axis": stop_axis},
1602
        )
1603
        return out
1604 1605


1606 1607 1608 1609 1610 1611 1612 1613 1614 1615
@inplace_apis_in_dygraph_only
def flatten_(x, start_axis=0, stop_axis=-1, name=None):
    """
    Inplace version of ``flatten`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_flatten`.
    """
    if not (isinstance(x, Variable)):
        raise ValueError("The input x should be a Tensor")

    x_dim = len(x.shape)
1616 1617 1618 1619 1620
    if (
        not (isinstance(start_axis, int))
        or (start_axis > x_dim - 1)
        or start_axis < -x_dim
    ):
1621
        raise ValueError(
1622 1623 1624 1625 1626 1627 1628
            "The start_axis should be a int, and in range [-rank(x), rank(x))"
        )
    if (
        not (isinstance(stop_axis, int))
        or (stop_axis > x_dim - 1)
        or stop_axis < -x_dim
    ):
1629
        raise ValueError(
1630 1631
            "The stop_axis should be a int, and in range [-rank(x), rank(x))"
        )
1632 1633 1634 1635 1636 1637 1638
    if start_axis < 0:
        start_axis = start_axis + x_dim
    if stop_axis < 0:
        stop_axis = stop_axis + x_dim
    if start_axis > stop_axis:
        raise ValueError("The stop_axis should be larger than stat_axis")

1639
    if in_dygraph_mode():
1640
        return _C_ops.flatten_(x, start_axis, stop_axis)
1641

1642

Y
yaoxuefeng 已提交
1643
def roll(x, shifts, axis=None, name=None):
1644
    """
1645 1646 1647
    Roll the `x` tensor along the given axis(axes). With specific 'shifts', Elements that
    roll beyond the last position are re-introduced at the first according to 'shifts'.
    If a axis is not specified,
1648 1649 1650
    the tensor will be flattened before rolling and then restored to the original shape.

    Args:
Y
yaoxuefeng 已提交
1651
        x (Tensor): The x tensor as input.
1652
        shifts (int|list|tuple): The number of places by which the elements
Y
yaoxuefeng 已提交
1653
                           of the `x` tensor are shifted.
Y
Yuang Liu 已提交
1654
        axis (int|list|tuple, optional): axis(axes) along which to roll. Default: None
C
Chen Long 已提交
1655 1656 1657
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.
                For more information, please refer to :ref:`api_guide_Name` .

1658 1659

    Returns:
L
Ligoml 已提交
1660
        Tensor, A Tensor with same data type as `x`.
1661 1662 1663

    Examples:
        .. code-block:: python
1664

1665 1666
            import paddle

1667 1668 1669
            x = paddle.to_tensor([[1.0, 2.0, 3.0],
                                  [4.0, 5.0, 6.0],
                                  [7.0, 8.0, 9.0]])
Y
yaoxuefeng 已提交
1670
            out_z1 = paddle.roll(x, shifts=1)
Y
yaoxuefeng 已提交
1671
            print(out_z1)
Y
yaoxuefeng 已提交
1672 1673 1674 1675
            #[[9. 1. 2.]
            # [3. 4. 5.]
            # [6. 7. 8.]]
            out_z2 = paddle.roll(x, shifts=1, axis=0)
Y
yaoxuefeng 已提交
1676
            print(out_z2)
Y
yaoxuefeng 已提交
1677 1678 1679
            #[[7. 8. 9.]
            # [1. 2. 3.]
            # [4. 5. 6.]]
Y
Yuang Liu 已提交
1680 1681 1682 1683 1684
            out_z3 = paddle.roll(x, shifts=1, axis=1)
            print(out_z3)
            #[[3. 1. 2.]
            # [6. 4. 5.]
            # [9. 7. 8.]]
1685
    """
Y
yaoxuefeng 已提交
1686
    origin_shape = x.shape
1687 1688
    if type(shifts) == int:
        shifts = [shifts]
Y
yaoxuefeng 已提交
1689 1690 1691 1692
    if type(axis) == int:
        axis = [axis]

    len_origin_shape = len(origin_shape)
1693
    if axis is not None:
Y
yaoxuefeng 已提交
1694 1695 1696
        for i in range(len(axis)):
            if axis[i] >= len_origin_shape or axis[i] < -len_origin_shape:
                raise ValueError(
1697 1698 1699 1700
                    "axis is out of range, it should be in range [{}, {}), but received {}".format(
                        -len_origin_shape, len_origin_shape, axis
                    )
                )
S
sunli 已提交
1701 1702 1703
    else:
        axis = []

F
From00 已提交
1704
    if in_dygraph_mode():
1705
        return _C_ops.roll(x, shifts, axis)
1706
    else:
1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721
        check_variable_and_dtype(
            x,
            'dtype',
            [
                'float16',
                'float32',
                'uint16',
                'float64',
                'int32',
                'int64',
                'complex64',
                'complex128',
            ],
            'roll',
        )
1722 1723
        helper = LayerHelper("roll", **locals())
        check_type(axis, 'axis', (list, tuple), 'roll')
F
From00 已提交
1724

1725
        out = helper.create_variable_for_type_inference(x.dtype)
1726

1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742
        if isinstance(shifts, Variable):
            helper.append_op(
                type='roll',
                inputs={'X': x, "ShiftsTensor": shifts},
                outputs={'Out': out},
                attrs={'axis': axis},
            )
        else:
            check_type(shifts, 'shifts', (list, tuple), 'roll')
            helper.append_op(
                type='roll',
                inputs={'X': x},
                outputs={'Out': out},
                attrs={'axis': axis, 'shifts': shifts},
            )
        return out
1743 1744


L
Leo Chen 已提交
1745
def stack(x, axis=0, name=None):
1746
    """
1747
    Stacks all the input tensors ``x`` along ``axis`` dimemsion.
L
Leo Chen 已提交
1748
    All tensors must be of the same shape and same dtype.
1749 1750 1751

    For example, given N tensors of shape [A, B], if ``axis == 0``, the shape of stacked
    tensor is [N, A, B]; if ``axis == 1``, the shape of stacked
L
Leo Chen 已提交
1752
    tensor is [A, N, B], etc.
1753

1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788

    .. code-block:: text

        Case 1:

          Input:
            x[0].shape = [1, 2]
            x[0].data = [ [1.0 , 2.0 ] ]
            x[1].shape = [1, 2]
            x[1].data = [ [3.0 , 4.0 ] ]
            x[2].shape = [1, 2]
            x[2].data = [ [5.0 , 6.0 ] ]

          Attrs:
            axis = 0

          Output:
            Out.dims = [3, 1, 2]
            Out.data =[ [ [1.0, 2.0] ],
                        [ [3.0, 4.0] ],
                        [ [5.0, 6.0] ] ]


        Case 2:

          Input:
            x[0].shape = [1, 2]
            x[0].data = [ [1.0 , 2.0 ] ]
            x[1].shape = [1, 2]
            x[1].data = [ [3.0 , 4.0 ] ]
            x[2].shape = [1, 2]
            x[2].data = [ [5.0 , 6.0 ] ]


          Attrs:
L
Leo Chen 已提交
1789
            axis = 1 or axis = -2  # If axis = -2, axis = axis+ndim(x[0])+1 = -2+2+1 = 1.
1790 1791 1792 1793 1794 1795 1796 1797

          Output:
            Out.shape = [1, 3, 2]
            Out.data =[ [ [1.0, 2.0]
                          [3.0, 4.0]
                          [5.0, 6.0] ] ]

    Args:
L
Leo Chen 已提交
1798
        x (list[Tensor]|tuple[Tensor]): Input ``x`` can be a ``list`` or ``tuple`` of tensors, the Tensors in ``x``
1799
                                     must be of the same shape and dtype. Supported data types: float32, float64, int32, int64.
L
Leo Chen 已提交
1800
        axis (int, optional): The axis along which all inputs are stacked. ``axis`` range is ``[-(R+1), R+1)``,
1801
                              where ``R`` is the number of dimensions of the first input tensor ``x[0]``.
L
Leo Chen 已提交
1802
                              If ``axis < 0``, ``axis = axis+R+1``. The default value of axis is 0.
1803
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1804

1805
    Returns:
L
Ligoml 已提交
1806
        Tensor, The stacked tensor with same data type as input.
1807

1808
    Example:
1809
        .. code-block:: python
L
Leo Chen 已提交
1810

1811
            import paddle
1812

L
Leo Chen 已提交
1813 1814 1815
            x1 = paddle.to_tensor([[1.0, 2.0]])
            x2 = paddle.to_tensor([[3.0, 4.0]])
            x3 = paddle.to_tensor([[5.0, 6.0]])
1816

L
Leo Chen 已提交
1817 1818
            out = paddle.stack([x1, x2, x3], axis=0)
            print(out.shape)  # [3, 1, 2]
L
Leo Chen 已提交
1819
            print(out)
L
Leo Chen 已提交
1820 1821 1822
            # [[[1., 2.]],
            #  [[3., 4.]],
            #  [[5., 6.]]]
1823

1824 1825 1826 1827 1828 1829
        out = paddle.stack([x1, x2, x3], axis=-2)
        print(out.shape)  # [1, 3, 2]
        print(out)
        # [[[1., 2.],
        #   [3., 4.],
        #   [5., 6.]]]
L
Leo Chen 已提交
1830
    """
1831 1832 1833
    axis = 0 if axis is None else axis

    if in_dygraph_mode():
1834
        return _C_ops.stack(x, axis)
1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853
    else:
        if not isinstance(x, list) and not isinstance(x, tuple):
            # NOTE:(zhiqiu) Only support Variable as input if the Variable is a LOD_TENSOR_ARRAY create by create_array, array_write, array_read, etc.
            # In that case, Variable is array of tensors indeed.
            if (
                isinstance(x, Variable)
                and x.desc.type() == core.VarDesc.VarType.LOD_TENSOR_ARRAY
            ):
                x = [x]
            else:
                raise TypeError(
                    "The type of '%s' in %s must be %s, but received %s"
                    % (
                        'x',
                        'stack',
                        'list[Tensor], tuple[Tensor] or TensorArray',
                        type(x),
                    )
                )
1854

1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867
        helper = LayerHelper('stack', **locals())

        out = helper.create_variable_for_type_inference(x[0].dtype)
        if x[0].desc.type() == core.VarDesc.VarType.LOD_TENSOR_ARRAY:
            assert len(x) == 1, (
                "If the elements of 'x' in stack are Variable(LoDTensorArray), "
                "number of the elements must be 1, but received %s." % len(x)
            )
            out_index = helper.create_variable_for_type_inference(dtype="int32")

            for i in x:
                check_variable_and_dtype(
                    i,
1868
                    'x',
C
ccrrong 已提交
1869 1870 1871 1872 1873 1874 1875 1876
                    [
                        'float16',
                        'float32',
                        'float64',
                        'int32',
                        'int64',
                        'uint16',
                    ],
1877 1878
                    'stack',
                )
1879

1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891
            helper.append_op(
                type='tensor_array_to_tensor',
                inputs={'X': x[0]},
                outputs={'Out': [out], 'OutIndex': [out_index]},
                attrs={'axis': axis, 'use_stack': True},
            )
        else:
            helper.append_op(
                type='stack',
                inputs={'X': x},
                outputs={'Y': out},
                attrs={'axis': axis},
1892 1893
            )

1894
        return out
1895 1896


1897
def split(x, num_or_sections, axis=0, name=None):
1898 1899
    """
    Split the input tensor into multiple sub-Tensors.
1900

1901
    Args:
1902
        x (Tensor): A N-D Tensor. The data type is bool, float16, float32, float64, uint8, int8, int32 or int64.
1903
        num_or_sections (int|list|tuple): If ``num_or_sections`` is an int, then ``num_or_sections``
1904 1905 1906 1907
            indicates the number of equal sized sub-Tensors that the ``x`` will be divided into.
            If ``num_or_sections`` is a list or tuple, the length of it indicates the number of
            sub-Tensors and the elements in it indicate the sizes of sub-Tensors'  dimension orderly.
            The length of the list must not  be larger than the ``x`` 's size of specified ``axis``.
1908
        axis (int|Tensor, optional): The axis along which to split, it can be a scalar with type
1909 1910 1911 1912
            ``int`` or a ``Tensor`` with shape [1] and data type  ``int32`` or ``int64``.
            If :math::`axis < 0`, the axis to split along is :math:`rank(x) + axis`. Default is 0.
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .
1913
    Returns:
L
Ligoml 已提交
1914
        list(Tensor), The list of segmented Tensors.
1915

1916 1917
    Example:
        .. code-block:: python
1918

1919
            import paddle
1920

L
Leo Chen 已提交
1921 1922
            # x is a Tensor of shape [3, 9, 5]
            x = paddle.rand([3, 9, 5])
1923

L
Leo Chen 已提交
1924 1925 1926 1927
            out0, out1, out2 = paddle.split(x, num_or_sections=3, axis=1)
            print(out0.shape)  # [3, 3, 5]
            print(out1.shape)  # [3, 3, 5]
            print(out2.shape)  # [3, 3, 5]
1928 1929

            out0, out1, out2 = paddle.split(x, num_or_sections=[2, 3, 4], axis=1)
L
Leo Chen 已提交
1930 1931 1932
            print(out0.shape)  # [3, 2, 5]
            print(out1.shape)  # [3, 3, 5]
            print(out2.shape)  # [3, 4, 5]
1933 1934

            out0, out1, out2 = paddle.split(x, num_or_sections=[2, 3, -1], axis=1)
L
Leo Chen 已提交
1935 1936 1937
            print(out0.shape)  # [3, 2, 5]
            print(out1.shape)  # [3, 3, 5]
            print(out2.shape)  # [3, 4, 5]
1938

L
Leo Chen 已提交
1939
            # axis is negative, the real axis is (rank(x) + axis)=1
1940
            out0, out1, out2 = paddle.split(x, num_or_sections=3, axis=-2)
L
Leo Chen 已提交
1941 1942 1943
            print(out0.shape)  # [3, 3, 5]
            print(out1.shape)  # [3, 3, 5]
            print(out2.shape)  # [3, 3, 5]
1944
    """
1945 1946
    input = x
    dim = axis
1947
    if in_dygraph_mode():
1948 1949 1950 1951 1952
        if isinstance(dim, Variable):
            dim = dim.item(0)
        assert len(input.shape) + dim >= 0, "(rank(x) + axis) must >= 0"
        dim = (len(input.shape) + dim) if dim < 0 else dim

1953
        if isinstance(num_or_sections, (list, tuple)):
1954
            if paddle.utils._contain_var(num_or_sections):
1955 1956
                for index, item in enumerate(num_or_sections):
                    if isinstance(item, Variable):
1957
                        num_or_sections[index] = num_or_sections[index].item()
1958
        elif not isinstance(num_or_sections, int):
1959 1960
            raise TypeError(
                "The type of 'num_or_sections' in split must be int, list or tuple in imperative mode, but "
1961 1962
                "received %s." % (type(num_or_sections))
            )
1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973
        if isinstance(num_or_sections, int):
            return _C_ops.split_with_num(input, num_or_sections, dim)
        else:
            return _C_ops.split(input, num_or_sections, dim)
    else:
        check_variable_and_dtype(
            input,
            'input',
            [
                'bool',
                'float16',
1974
                'uint16',
1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989
                'float32',
                'float64',
                'int32',
                'int64',
                'uint8',
                'int8',
            ],
            'split',
        )
        check_type(
            num_or_sections, 'num_or_sections', (list, int, tuple), 'split'
        )
        check_type(dim, 'dim', (int, Variable), 'split')
        if isinstance(dim, Variable):
            check_dtype(dim.dtype, 'dim', ['int32', 'int64'], 'split')
1990

1991
        helper = LayerHelper('split', **locals())
1992

1993 1994 1995 1996 1997
        input_shape = input.shape
        inputs = {'X': input}
        attrs = {
            'num': num_or_sections if isinstance(num_or_sections, int) else 0
        }
1998

1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016
        def _get_SectionsTensorList(one_list):
            tensor_list = []
            unk_dim_idx = -1
            for idx, dim_size in enumerate(one_list):
                if isinstance(dim_size, Variable):
                    dim_size.stop_gradient = True
                    tensor_list.append(dim_size)
                else:
                    assert isinstance(dim_size, int)
                    if dim_size == -1:
                        assert unk_dim_idx == -1, (
                            "Only one value of 'num_or_section' in split can "
                            "be -1. But received num_or_section[%d] is also -1."
                            % idx
                        )
                        unk_dim_idx = idx
                    temp_out = helper.create_variable_for_type_inference(
                        'int32'
2017
                    )
2018 2019 2020 2021 2022
                    fill_constant(
                        [1], 'int32', dim_size, force_cpu=True, out=temp_out
                    )
                    tensor_list.append(temp_out)
            return tensor_list
2023

2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047
        if isinstance(dim, Variable):
            dim.stop_gradient = True
            inputs['AxisTensor'] = dim
        else:
            assert len(input.shape) + dim >= 0, "(rank(x) + axis) must >= 0"
            dim = (len(input_shape) + dim) if dim < 0 else dim
            attrs['axis'] = dim

        if isinstance(num_or_sections, int):
            assert num_or_sections > 1, 'num_or_sections must be more than 1.'
            if isinstance(dim, int) and input_shape[dim] > 0:
                assert input_shape[dim] % num_or_sections == 0, (
                    "The input's size along the split dimension "
                    "must be evenly divisible by Attr(num_or_sections). "
                    "But %d is not evenly divisible by %d. "
                    % (num_or_sections, input_shape[dim])
                )
            num = num_or_sections
        else:
            if isinstance(dim, int) and input_shape[dim] > 0:
                assert (
                    len(num_or_sections) <= input_shape[dim]
                ), 'len(num_or_sections) must not be more than input.shape[dim].'
            num = len(num_or_sections)
2048 2049 2050 2051
            attrs['sections'] = [
                -1 if isinstance(ele, Variable) else ele
                for ele in num_or_sections
            ]
2052
            if paddle.utils._contain_var(num_or_sections):
2053 2054 2055 2056 2057 2058 2059
                inputs['SectionsTensorList'] = _get_SectionsTensorList(
                    num_or_sections
                )

        outs = [
            helper.create_variable_for_type_inference(
                dtype=helper.input_dtype()
2060
            )
2061 2062 2063 2064
            for i in range(num)
        ]
        helper.append_op(
            type='split', inputs=inputs, outputs={'Out': outs}, attrs=attrs
2065
        )
2066
        return outs
2067 2068


2069 2070 2071
def vsplit(x, num_or_sections, name=None):
    """
    Split the input tensor into multiple sub-Tensors along the vertical axis, which is equivalent to ``paddle.split`` with ``axis=0``.
2072

2073 2074
    Args:
        x (Tensor): A Tensor whose dimension must be greater than 1. The data type is bool, float16, float32, float64, uint8, int8, int32 or int64.
2075
        num_or_sections (int|list|tuple): If ``num_or_sections`` is an int, then ``num_or_sections``
2076 2077 2078 2079 2080 2081 2082 2083
            indicates the number of equal sized sub-Tensors that the ``x`` will be divided into.
            If ``num_or_sections`` is a list or tuple, the length of it indicates the number of
            sub-Tensors and the elements in it indicate the sizes of sub-Tensors'  dimension orderly.
            The length of the list must not  be larger than the ``x`` 's size of axis 0.
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .
    Returns:
        list[Tensor], The list of segmented Tensors.
2084

2085 2086
    Example:
        .. code-block:: python
2087

2088
            import paddle
2089

2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105
            # x is a Tensor of shape [8, 6, 7]
            x = paddle.rand([8, 6, 7])
            out0, out1, out2 = paddle.vsplit(x, num_or_sections=2)
            print(out0.shape)  # [4, 6, 7]
            print(out1.shape)  # [4, 6, 7]
            out0, out1, out2 = paddle.vsplit(x, num_or_sections=[1, 3, 4])
            print(out0.shape)  # [1, 6, 7]
            print(out1.shape)  # [3, 6, 7]
            print(out2.shape)  # [4, 6, 7]
            out0, out1, out2 = paddle.vsplit(x, num_or_sections=[2, 3, -1])
            print(out0.shape)  # [2, 6, 7]
            print(out1.shape)  # [3, 6, 7]
            print(out2.shape)  # [3, 6, 7]
    """
    if x.ndim < 2:
        raise ValueError(
2106 2107 2108 2109
            "The input tensor's dimension must be greater than 1, but got {}".format(
                x.ndim
            )
        )
2110 2111 2112
    return split(x, num_or_sections, axis=0, name=name)


L
Leo Chen 已提交
2113
def squeeze(x, axis=None, name=None):
2114
    """
2115 2116 2117 2118
    Squeeze the dimension(s) of size 1 of input tensor x's shape.

    Note that the output Tensor will share data with origin Tensor and doesn't have a
    Tensor copy in ``dygraph`` mode. If you want to use the Tensor copy version,
2119
    please use `Tensor.clone` like ``squeeze_clone_x = x.squeeze().clone()``.
2120

2121 2122
    If axis is provided, it will remove the dimension(s) by given axis that of size 1.
    If the dimension of given axis is not of size 1, the dimension remain unchanged.
L
Leo Chen 已提交
2123
    If axis is not provided, all dims equal of size 1 will be removed.
2124 2125 2126 2127 2128 2129

    .. code-block:: text

        Case1:

          Input:
L
Leo Chen 已提交
2130 2131
            x.shape = [1, 3, 1, 5]  # If axis is not provided, all dims equal of size 1 will be removed.
            axis = None
2132
          Output:
L
Leo Chen 已提交
2133
            out.shape = [3, 5]
2134 2135 2136 2137

        Case2:

          Input:
L
Leo Chen 已提交
2138 2139 2140 2141
            x.shape = [1, 3, 1, 5]  # If axis is provided, it will remove the dimension(s) by given axis that of size 1.
            axis = 0
          Output:
            out.shape = [3, 1, 5]
2142

L
Leo Chen 已提交
2143 2144 2145
        Case4:

          Input:
2146
            x.shape = [1, 3, 1, 5]  # If the dimension of one given axis (3) is not of size 1, the dimension remain unchanged.
L
Leo Chen 已提交
2147
            axis = [0, 2, 3]
2148
          Output:
L
Leo Chen 已提交
2149
            out.shape = [3, 5]
2150

L
Leo Chen 已提交
2151
        Case4:
2152 2153

          Input:
2154
            x.shape = [1, 3, 1, 5]  # If axis is negative, axis = axis + ndim (number of dimensions in x).
L
Leo Chen 已提交
2155
            axis = [-2]
2156
          Output:
L
Leo Chen 已提交
2157
            out.shape = [1, 3, 5]
2158 2159

    Args:
2160
        x (Tensor): The input Tensor. Supported data type: float32, float64, bool, int8, int32, int64.
2161
        axis (int|list|tuple, optional): An integer or list/tuple of integers, indicating the dimensions to be squeezed. Default is None.
2162 2163 2164
                          The range of axis is :math:`[-ndim(x), ndim(x))`.
                          If axis is negative, :math:`axis = axis + ndim(x)`.
                          If axis is None, all the dimensions of x of size 1 will be removed.
2165 2166 2167
        name (str, optional): Please refer to :ref:`api_guide_Name`, Default None.

    Returns:
L
Ligoml 已提交
2168
        Tensor, Squeezed Tensor with the same data type as input Tensor.
2169 2170 2171

    Examples:
        .. code-block:: python
2172

2173
            import paddle
2174

L
Leo Chen 已提交
2175 2176
            x = paddle.rand([5, 1, 10])
            output = paddle.squeeze(x, axis=1)
2177 2178

            print(x.shape)  # [5, 1, 10]
L
Leo Chen 已提交
2179
            print(output.shape)  # [5, 10]
2180

2181 2182 2183 2184
            # output shares data with x in dygraph mode
            x[0, 0, 0] = 10.
            print(output[0, 0]) # [10.]

2185
    """
L
Leo Chen 已提交
2186 2187 2188 2189 2190 2191
    if axis is None:
        axis = []
    elif isinstance(axis, int):
        axis = [axis]
    elif isinstance(axis, tuple):
        axis = list(axis)
2192

2193 2194 2195
    input = x
    axes = axis
    if in_dygraph_mode():
2196
        return _C_ops.squeeze(input, axes)
2197 2198 2199 2200 2201 2202 2203
    else:
        helper = LayerHelper("squeeze", **locals())
        check_variable_and_dtype(
            input,
            'input',
            [
                'float16',
2204
                'uint16',
2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215
                'float32',
                'float64',
                'bool',
                'int8',
                'int32',
                'int64',
                'complex64',
                'complex128',
            ],
            'squeeze',
        )
2216

2217 2218 2219 2220
        check_type(axes, 'axis/axes', (int, list, tuple, Variable), 'squeeze')
        attrs = {}
        if isinstance(axes, Variable):
            axes.stop_gradient = True
2221
            attrs["axes"] = axes
2222
        elif isinstance(axes, (list, tuple)):
2223 2224
            if paddle.utils._contain_var(axes):
                attrs["axes"] = paddle.utils._convert_to_tensor_list(axes)
2225 2226
            else:
                attrs["axes"] = axes
2227

2228 2229 2230 2231 2232 2233 2234 2235
        out = helper.create_variable_for_type_inference(dtype=input.dtype)
        x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
        helper.append_op(
            type="squeeze2",
            inputs={"X": input},
            attrs=attrs,
            outputs={"Out": out, "XShape": x_shape},
        )
2236

2237
        return out
2238 2239


2240
@inplace_apis_in_dygraph_only
2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252
def squeeze_(x, axis=None, name=None):
    """
    Inplace version of ``squeeze`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_paddle_tensor_squeeze`.
    """
    if axis is None:
        axis = []
    elif isinstance(axis, int):
        axis = [axis]
    elif isinstance(axis, tuple):
        axis = list(axis)

2253 2254 2255
    input = x
    axes = axis
    if in_dygraph_mode():
2256
        return _C_ops.squeeze_(input, axes)
2257 2258


2259 2260 2261 2262 2263 2264 2265 2266
def unique_consecutive(
    x,
    return_inverse=False,
    return_counts=False,
    axis=None,
    dtype="int64",
    name=None,
):
Z
Zman 已提交
2267
    """
D
duanboqiang 已提交
2268 2269
    Eliminates all but the first element from every consecutive group of equivalent elements.

2270
    Note:
Z
Zman 已提交
2271 2272
        This function is different from :ref:`api_paddle_unique` in the sense that this function
        only eliminates consecutive duplicate values. This semantics is similar to :ref:`api_paddle_unique` in C++.
D
duanboqiang 已提交
2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287

    Args:
        x(Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        return_inverse(bool, optional): If True, also return the indices for where elements in
            the original input ended up in the returned unique consecutive tensor. Default is False.
        return_counts(bool, optional): If True, also return the counts for each unique consecutive element.
            Default is False.
        axis(int, optional): The axis to apply unique consecutive. If None, the input will be flattened.
            Default is None.
        dtype(np.dtype|str, optional): The data type `inverse` tensor: int32 or int64.
            Default: int64.
        name(str, optional): Name for the operation. For more information, please refer to
            :ref:`api_guide_Name`. Default is None.

    Returns:
Z
Zman 已提交
2288 2289 2290 2291 2292 2293
        - out (Tensor), the unique consecutive tensor for x.
        - inverse (Tensor), the element of the input tensor corresponds to
            the index of the elements in the unique consecutive tensor for x.
            inverse is provided only if return_inverse is True.
        - counts (Tensor), the counts of the every unique consecutive element in the input tensor.
            counts is provided only if return_counts is True.
D
duanboqiang 已提交
2294 2295 2296 2297

    Example:
        .. code-block:: python

2298
            import paddle
D
duanboqiang 已提交
2299 2300

            x = paddle.to_tensor([1, 1, 2, 2, 3, 1, 1, 2])
2301
            output = paddle.unique_consecutive(x) #
2302 2303 2304 2305
            print(output)
            # Tensor(shape=[5], dtype=int64, place=Place(gpu:0), stop_gradient=True,
            #        [1, 2, 3, 1, 2])

D
duanboqiang 已提交
2306
            _, inverse, counts = paddle.unique_consecutive(x, return_inverse=True, return_counts=True)
2307 2308 2309 2310 2311 2312
            print(inverse)
            # Tensor(shape=[8], dtype=int64, place=Place(gpu:0), stop_gradient=True,
            #        [0, 0, 1, 1, 2, 3, 3, 4])
            print(counts)
            # Tensor(shape=[5], dtype=int64, place=Place(gpu:0), stop_gradient=True,
            #        [2, 2, 1, 2, 1])
D
duanboqiang 已提交
2313 2314

            x = paddle.to_tensor([[2, 1, 3], [3, 0, 1], [2, 1, 3], [2, 1, 3]])
2315
            output = paddle.unique_consecutive(x, axis=0) #
2316 2317 2318 2319 2320
            print(output)
            # Tensor(shape=[3, 3], dtype=int64, place=Place(gpu:0), stop_gradient=True,
            #        [[2, 1, 3],
            #         [3, 0, 1],
            #         [2, 1, 3]])
D
duanboqiang 已提交
2321 2322

            x = paddle.to_tensor([[2, 1, 3], [3, 0, 1], [2, 1, 3], [2, 1, 3]])
2323
            output = paddle.unique_consecutive(x, axis=0) #
2324 2325 2326 2327 2328
            print(output)
            # Tensor(shape=[3, 3], dtype=int64, place=Place(gpu:0), stop_gradient=True,
            #        [[2, 1, 3],
            #         [3, 0, 1],
            #         [2, 1, 3]])
D
duanboqiang 已提交
2329 2330 2331 2332 2333 2334 2335
    """

    if axis is None:
        axis = []
    else:
        axis = [axis]
    attr_dtype = convert_np_dtype_to_dtype_(dtype)
2336
    if in_dygraph_mode():
2337
        out, inverse, counts = _C_ops.unique_consecutive(
2338 2339
            x, return_inverse, return_counts, axis, attr_dtype
        )
2340 2341 2342 2343 2344 2345 2346 2347
        outs = [out]
        if return_inverse:
            outs.append(inverse)
        if return_counts:
            outs.append(counts)
        if len(outs) == 1:
            return outs[0]
        return tuple(outs)
2348 2349
    else:
        check_variable_and_dtype(
2350
            x,
2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368
            "input",
            ['float32', 'float64', 'int32', 'int64'],
            'unique_consecutive',
        )
        check_type(return_inverse, 'return_inverse', bool, 'unique_consecutive')
        check_type(return_counts, 'return_counts', bool, 'unique_consecutive')
        check_dtype(dtype, 'dtype', ['int32', 'int64'], 'unique_consecutive')
        if len(axis) != 0:
            check_type(axis[0], 'axis', int, 'unique_consecutive')
        helper = LayerHelper('unique_consecutive', **locals())
        attrs = {
            'dtype': attr_dtype,
            "return_inverse": return_inverse,
            "return_counts": return_counts,
            "axis": axis,
        }
        out = helper.create_variable_for_type_inference(
            dtype=x.dtype, stop_gradient=True
2369
        )
2370 2371 2372 2373 2374 2375 2376
        inverse = helper.create_variable_for_type_inference(
            dtype=attr_dtype, stop_gradient=True
        )
        counts = helper.create_variable_for_type_inference(
            dtype=attr_dtype, stop_gradient=True
        )
        outputs = {"Out": out, "Index": inverse, "Counts": counts}
D
duanboqiang 已提交
2377 2378 2379 2380 2381
        outs = [out]
        if return_inverse:
            outs.append(inverse)
        if return_counts:
            outs.append(counts)
2382 2383 2384 2385 2386 2387
        helper.append_op(
            type="unique_consecutive",
            inputs={"X": x},
            attrs=attrs,
            outputs=outputs,
        )
D
duanboqiang 已提交
2388 2389 2390 2391 2392
        if len(outs) == 1:
            return outs[0]
        return tuple(outs)


2393 2394 2395 2396 2397 2398 2399 2400 2401
def unique(
    x,
    return_index=False,
    return_inverse=False,
    return_counts=False,
    axis=None,
    dtype="int64",
    name=None,
):
2402
    r"""
Z
Zhang Ting 已提交
2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413
    Returns the unique elements of `x` in ascending order.

    Args:
        x(Tensor): The input tensor, it's data type should be float32, float64, int32, int64.
        return_index(bool, optional): If True, also return the indices of the input tensor that
            result in the unique Tensor.
        return_inverse(bool, optional): If True, also return the indices for where elements in
            the original input ended up in the returned unique tensor.
        return_counts(bool, optional): If True, also return the counts for each unique element.
        axis(int, optional): The axis to apply unique. If None, the input will be flattened.
            Default: None.
Z
Zhang Ting 已提交
2414 2415
        dtype(np.dtype|str, optional): The date type of `indices` or `inverse` tensor: int32 or int64.
            Default: int64.
Z
Zhang Ting 已提交
2416 2417 2418
        name(str, optional): Name for the operation. For more information, please refer to
            :ref:`api_guide_Name`. Default: None.

2419
    Returns:
2420
        tuple (out, indices, inverse, counts). `out` is the unique tensor for `x`. `indices` is \
Z
Zhang Ting 已提交
2421 2422 2423 2424 2425
            provided only if `return_index` is True. `inverse` is provided only if `return_inverse` \
            is True. `counts` is provided only if `return_counts` is True.

    Examples:
        .. code-block:: python
2426

Z
Zhang Ting 已提交
2427 2428
            import paddle

2429
            x = paddle.to_tensor([2, 3, 3, 1, 5, 3])
Z
Zhang Ting 已提交
2430
            unique = paddle.unique(x)
2431 2432 2433 2434
            print(unique)
            # Tensor(shape=[4], dtype=int64, place=Place(gpu:0), stop_gradient=True,
            #        [1, 2, 3, 5])

Z
Zhang Ting 已提交
2435
            _, indices, inverse, counts = paddle.unique(x, return_index=True, return_inverse=True, return_counts=True)
2436 2437 2438 2439 2440 2441 2442 2443 2444
            print(indices)
            # Tensor(shape=[4], dtype=int64, place=Place(gpu:0), stop_gradient=True,
            #        [3, 0, 1, 4])
            print(inverse)
            # Tensor(shape=[6], dtype=int64, place=Place(gpu:0), stop_gradient=True,
            #        [1, 2, 2, 0, 3, 2])
            print(counts)
            # Tensor(shape=[4], dtype=int64, place=Place(gpu:0), stop_gradient=True,
            #        [1, 1, 3, 1])
Z
Zhang Ting 已提交
2445

2446
            x = paddle.to_tensor([[2, 1, 3], [3, 0, 1], [2, 1, 3]])
Z
Zhang Ting 已提交
2447
            unique = paddle.unique(x)
2448 2449 2450
            print(unique)
            # Tensor(shape=[4], dtype=int64, place=Place(gpu:0), stop_gradient=True,
            #        [0, 1, 2, 3])
Z
Zhang Ting 已提交
2451 2452

            unique = paddle.unique(x, axis=0)
2453 2454 2455 2456
            print(unique)
            # Tensor(shape=[2, 3], dtype=int64, place=Place(gpu:0), stop_gradient=True,
            #        [[2, 1, 3],
            #         [3, 0, 1]])
Z
Zhang Ting 已提交
2457 2458 2459 2460 2461
    """
    if axis is None:
        axis = []
    else:
        axis = [axis]
Z
Zhang Ting 已提交
2462
    attr_dtype = convert_np_dtype_to_dtype_(dtype)
2463 2464 2465 2466
    if in_dygraph_mode():
        out, indices, inverse, counts = _C_ops.unique(
            x, return_index, return_inverse, return_counts, axis, attr_dtype
        )
Z
Zhang Ting 已提交
2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478
        outs = [out]
        if return_index:
            outs.append(indices)
        if return_inverse:
            outs.append(inverse)
        if return_counts:
            outs.append(counts)

        if len(outs) == 1:
            return outs[0]

        return tuple(outs)
2479 2480
    else:
        check_variable_and_dtype(
2481 2482 2483 2484
            x,
            "input",
            ['float16', 'uint16', 'float32', 'float64', 'int32', 'int64'],
            'unique',
2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526
        )
        check_type(return_index, 'return_index', bool, 'unique')
        check_type(return_inverse, 'return_inverse', bool, 'unique')
        check_type(return_counts, 'return_counts', bool, 'unique')
        check_dtype(dtype, 'dtype', ['int32', 'int64'], 'unique')
        if len(axis) != 0:
            check_type(axis[0], 'axis', int, 'unique')

        helper = LayerHelper('unique', **locals())
        attrs = {
            'dtype': attr_dtype,
            "return_index": return_index,
            "return_inverse": return_inverse,
            "return_counts": return_counts,
            "axis": axis,
            "is_sorted": True,
        }
        out = helper.create_variable_for_type_inference(
            dtype=x.dtype, stop_gradient=True
        )
        indices = helper.create_variable_for_type_inference(
            dtype=attr_dtype, stop_gradient=True
        )
        inverse = helper.create_variable_for_type_inference(
            dtype=attr_dtype, stop_gradient=True
        )
        counts = helper.create_variable_for_type_inference(
            dtype=attr_dtype, stop_gradient=True
        )
        outputs = {
            "Out": out,
            "Indices": indices,
            "Index": inverse,
            "Counts": counts,
        }
        outs = [out]
        if return_index:
            outs.append(indices)
        if return_inverse:
            outs.append(inverse)
        if return_counts:
            outs.append(counts)
Z
Zhang Ting 已提交
2527

2528 2529 2530
        helper.append_op(
            type="unique", inputs={"X": x}, attrs=attrs, outputs=outputs
        )
Z
Zhang Ting 已提交
2531

2532 2533
        if len(outs) == 1:
            return outs[0]
Z
Zhang Ting 已提交
2534

2535
        return tuple(outs)
Z
Zhang Ting 已提交
2536 2537


2538
def unsqueeze(x, axis, name=None):
2539
    """
2540 2541 2542
    Insert single-dimensional entries to the shape of input Tensor ``x``. Takes one
    required argument axis, a dimension or list of dimensions that will be inserted.
    Dimension indices in axis are as seen in the output tensor.
2543

2544 2545
    Note that the output Tensor will share data with origin Tensor and doesn't have a
    Tensor copy in ``dygraph`` mode. If you want to use the Tensor copy version,
2546 2547
    please use `Tensor.clone` like ``unsqueeze_clone_x = x.unsqueeze(-1).clone()``.

2548
    Args:
2549
        x (Tensor): The input Tensor to be unsqueezed. Supported data type: float32, float64, bool, int8, int32, int64.
2550 2551
        axis (int|list|tuple|Tensor): Indicates the dimensions to be inserted. The data type is ``int32`` .
                                    If ``axis`` is a list or tuple, the elements of it should be integers or Tensors with shape [1].
2552 2553 2554
                                    If ``axis`` is a Tensor, it should be an 1-D Tensor .
                                    If ``axis`` is negative, ``axis = axis + ndim(x) + 1``.
        name (str|None): Name for this layer. Please refer to :ref:`api_guide_Name`, Default None.
2555 2556

    Returns:
L
Ligoml 已提交
2557
        Tensor, Unsqueezed Tensor with the same data type as input Tensor.
2558 2559 2560

    Examples:
        .. code-block:: python
2561

2562 2563
            import paddle

2564 2565
            x = paddle.rand([5, 10])
            print(x.shape)  # [5, 10]
2566

2567 2568
            out1 = paddle.unsqueeze(x, axis=0)
            print(out1.shape)  # [1, 5, 10]
2569 2570

            out2 = paddle.unsqueeze(x, axis=[0, 2])
2571
            print(out2.shape)  # [1, 5, 1, 10]
2572

L
Leo Chen 已提交
2573
            axis = paddle.to_tensor([0, 1, 2])
2574
            out3 = paddle.unsqueeze(x, axis=axis)
2575
            print(out3.shape)  # [1, 1, 1, 5, 10]
2576 2577 2578 2579 2580 2581

            # out1, out2, out3 share data with x in dygraph mode
            x[0, 0] = 10.
            print(out1[0, 0, 0]) # [10.]
            print(out2[0, 0, 0, 0]) # [10.]
            print(out3[0, 0, 0, 0, 0]) # [10.]
2582

2583
    """
2584 2585
    input = x
    axes = axis
2586
    if in_dygraph_mode():
2587 2588 2589
        if isinstance(axes, int):
            axes = [axes]
        elif isinstance(axes, Variable):
2590
            axes = axes.tolist()
2591 2592
        elif isinstance(axes, (list, tuple)):
            axes = [
2593
                item.item(0) if isinstance(item, Variable) else item
2594 2595
                for item in axes
            ]
2596
        return _C_ops.unsqueeze(input, axes)
2597 2598 2599 2600 2601 2602 2603
    else:
        check_type(axes, 'axis/axes', (int, list, tuple, Variable), 'unsqueeze')
        check_variable_and_dtype(
            input,
            'input',
            [
                'float16',
2604
                'uint16',
2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619
                'float32',
                'float64',
                'bool',
                'int8',
                'int16',
                'int32',
                'int64',
                'complex64',
                'complex128',
            ],
            'unsqueeze',
        )
        helper = LayerHelper("unsqueeze2", **locals())
        inputs = {"X": input}
        attrs = {}
2620

2621 2622 2623 2624 2625 2626
        if isinstance(axes, int):
            axes = [axes]
        if isinstance(axes, Variable):
            axes.stop_gradient = True
            inputs["AxesTensor"] = axes
        elif isinstance(axes, (list, tuple)):
2627 2628 2629 2630
            if paddle.utils._contain_var(axes):
                inputs["AxesTensorList"] = paddle.utils._convert_to_tensor_list(
                    axes
                )
2631 2632
            else:
                attrs["axes"] = axes
2633

2634 2635 2636 2637 2638 2639 2640 2641
        out = helper.create_variable_for_type_inference(dtype=input.dtype)
        x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
        helper.append_op(
            type="unsqueeze2",
            inputs=inputs,
            attrs=attrs,
            outputs={"Out": out, "XShape": x_shape},
        )
2642

2643
        return out
2644 2645


2646
@inplace_apis_in_dygraph_only
2647 2648 2649 2650 2651
def unsqueeze_(x, axis, name=None):
    """
    Inplace version of ``unsqueeze`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_paddle_tensor_unsqueeze`.
    """
2652 2653 2654 2655 2656
    input = x
    axes = axis
    if isinstance(axes, int):
        axes = [axes]
    elif isinstance(axes, Variable):
2657
        axes = axes.tolist()
2658 2659
    elif isinstance(axes, (list, tuple)):
        axes = [
2660
            item.item(0) if isinstance(item, Variable) else item
2661
            for item in axes
2662
        ]
2663
    return _C_ops.unsqueeze_(input, axes)
2664 2665


2666
def gather(x, index, axis=None, name=None):
2667
    """
2668 2669
    Output is obtained by gathering entries of ``axis``
    of ``x`` indexed by ``index`` and concatenate them together.
2670 2671 2672 2673 2674 2675

    .. code-block:: text


                Given:

2676
                x = [[1, 2],
2677 2678 2679
                     [3, 4],
                     [5, 6]]

2680 2681
                index = [1, 2]
                axis=[0]
2682 2683 2684

                Then:

2685
                out = [[3, 4],
2686
                       [5, 6]]
2687

2688
    Args:
2689
        x (Tensor): The source input tensor with rank>=1. Supported data type is
2690 2691
            int32, int64, float32, float64 and uint8 (only for CPU),
            float16 (only for GPU).
2692
        index (Tensor): The index input tensor with rank=0 or rank=1. Data type is int32 or int64.
2693
        axis (Tensor|int, optional): The axis of input to be gathered, it's can be int or a Tensor with data type is int32 or int64. The default value is None, if None, the ``axis`` is 0.
2694 2695
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .
2696 2697

    Returns:
2698
        output (Tensor), If the index is a 1-D tensor, the output is a tensor with the same shape as ``x``. If the index is a 0-D tensor, the output will reduce the dimension where the axis pointing.
2699

2700 2701 2702 2703 2704 2705
    Examples:

        .. code-block:: python

            import paddle

2706 2707
            input = paddle.to_tensor([[1,2],[3,4],[5,6]])
            index = paddle.to_tensor([0,1])
2708 2709
            output = paddle.gather(input, index, axis=0)
            # expected output: [[1,2],[3,4]]
2710
    """
2711 2712
    if axis is None:
        axis = 0
2713

2714
    if in_dygraph_mode():
2715
        return _C_ops.gather(x, index, axis)
2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729
    else:
        check_variable_and_dtype(
            x,
            'x',
            [
                'float16',
                'float32',
                'float64',
                'int16',
                'int32',
                'int64',
                'uint8',
            ],
            'gather',
2730
        )
2731
        check_variable_and_dtype(index, 'index', ['int32', 'int64'], 'gather')
2732

2733 2734
        if isinstance(axis, Variable):
            check_variable_and_dtype(axis, 'axis', ['int32', 'int64'], 'gather')
2735

2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752
        helper = LayerHelper('gather', **locals())
        dtype = helper.input_dtype('x')
        out = helper.create_variable_for_type_inference(dtype)
        if not isinstance(axis, Variable):
            helper.append_op(
                type="gather",
                inputs={"X": x, "Index": index},
                attrs={'axis': axis, 'overwrite': False},
                outputs={"Out": out},
            )
        else:
            helper.append_op(
                type="gather",
                inputs={"X": x, "Index": index, "Axis": axis},
                attrs={"overwrite": False},
                outputs={"Out": out},
            )
2753

2754
        return out
myq406450149's avatar
myq406450149 已提交
2755 2756 2757 2758


def unbind(input, axis=0):
    """
S
swtkiwi 已提交
2759

myq406450149's avatar
myq406450149 已提交
2760
    Removes a tensor dimension, then split the input tensor into multiple sub-Tensors.
2761

myq406450149's avatar
myq406450149 已提交
2762
    Args:
L
Leo Chen 已提交
2763
        input (Tensor): The input variable which is an N-D Tensor, data type being bool, float16, float32, float64, int32 or int64.
2764
        axis (int32|int64, optional): A scalar with type ``int32|int64`` shape [1]. The dimension along which to unbind.
2765
            If :math:`axis < 0`, the dimension to unbind along is :math:`rank(input) + axis`. Default is 0.
myq406450149's avatar
myq406450149 已提交
2766
    Returns:
L
Ligoml 已提交
2767
        list(Tensor), The list of segmented Tensor variables.
myq406450149's avatar
myq406450149 已提交
2768 2769 2770

    Example:
        .. code-block:: python
2771

myq406450149's avatar
myq406450149 已提交
2772
            import paddle
2773

C
Chen Long 已提交
2774 2775
            # input is a Tensor which shape is [3, 4, 5]
            input = paddle.rand([3, 4, 5])
2776

2777
            [x0, x1, x2] = paddle.unbind(input, axis=0)
myq406450149's avatar
myq406450149 已提交
2778 2779 2780
            # x0.shape [4, 5]
            # x1.shape [4, 5]
            # x2.shape [4, 5]
C
Chen Long 已提交
2781

2782
            [x0, x1, x2, x3] = paddle.unbind(input, axis=1)
myq406450149's avatar
myq406450149 已提交
2783 2784 2785 2786 2787
            # x0.shape [3, 5]
            # x1.shape [3, 5]
            # x2.shape [3, 5]
            # x3.shape [3, 5]
    """
2788 2789 2790 2791 2792 2793 2794 2795 2796 2797
    if not isinstance(axis, (int)):
        raise TypeError(
            "The type of 'axis'  must be int, but received %s." % (type(axis))
        )

    if axis not in range(-input.ndim, input.ndim):
        raise ValueError(
            f'The axis must in range({-input.ndim}, {input.ndim}).'
        )

2798
    if in_dygraph_mode():
2799
        return _C_ops.unbind(input, axis)
2800 2801 2802 2803 2804 2805 2806 2807 2808 2809
    else:
        if isinstance(axis, np.generic):
            axis = np.asscalar(axis)
        input_shape = input.shape
        axis_ = axis if axis >= 0 else len(input_shape) + axis
        num = input_shape[axis_]
        helper = LayerHelper("unbind", **locals())
        check_type(input, 'input', (Variable), 'unbind')
        dtype = helper.input_dtype()
        check_dtype(
张春乔 已提交
2810 2811
            dtype,
            'unbind',
2812 2813 2814 2815 2816 2817 2818 2819 2820
            [
                'bool',
                'float16',
                'uint16',
                'float32',
                'float64',
                'int32',
                'int64',
            ],
张春乔 已提交
2821
            'unbind',
2822
        )
2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835
        outs = [
            helper.create_variable_for_type_inference(
                dtype=helper.input_dtype()
            )
            for i in range(num)
        ]
        helper.append_op(
            type="unbind",
            inputs={"X": input},
            outputs={"Out": outs},
            attrs={"axis": axis},
        )
        return outs
L
lilong12 已提交
2836 2837


S
ShenLiang 已提交
2838 2839 2840 2841
def scatter(x, index, updates, overwrite=True, name=None):
    """
    **Scatter Layer**
    Output is obtained by updating the input on selected indices based on updates.
2842

S
ShenLiang 已提交
2843
    .. code-block:: python
2844

H
hg-1099255210 已提交
2845
        import paddle
S
ShenLiang 已提交
2846
        #input:
H
hg-1099255210 已提交
2847 2848
        x = paddle.to_tensor([[1, 1], [2, 2], [3, 3]], dtype='float32')
        index = paddle.to_tensor([2, 1, 0, 1], dtype='int64')
S
ShenLiang 已提交
2849 2850
        # shape of updates should be the same as x
        # shape of updates with dim > 1 should be the same as input
H
hg-1099255210 已提交
2851
        updates = paddle.to_tensor([[1, 1], [2, 2], [3, 3], [4, 4]], dtype='float32')
S
ShenLiang 已提交
2852 2853 2854 2855
        overwrite = False
        # calculation:
        if not overwrite:
            for i in range(len(index)):
H
hg-1099255210 已提交
2856
                x[index[i]] = paddle.zeros([2])
S
ShenLiang 已提交
2857 2858 2859 2860 2861 2862
        for i in range(len(index)):
            if (overwrite):
                x[index[i]] = updates[i]
            else:
                x[index[i]] += updates[i]
        # output:
H
hg-1099255210 已提交
2863
        out = paddle.to_tensor([[3, 3], [6, 6], [1, 1]])
S
ShenLiang 已提交
2864 2865
        out.shape # [3, 2]

2866
    **NOTICE**: The order in which updates are applied is nondeterministic,
S
ShenLiang 已提交
2867 2868 2869 2870
    so the output will be nondeterministic if index contains duplicates.

    Args:
        x (Tensor): The input N-D Tensor with ndim>=1. Data type can be float32, float64.
2871 2872
        index (Tensor): The index is a 1-D or 0-D Tensor. Data type can be int32, int64. The length of index cannot exceed updates's length, and the value in index cannot exceed input's length.
        updates (Tensor): Update input with updates parameter based on index. When the index is a 1-D tensor, the updates shape should be the same as input, and dim value with dim > 1 should be the same as input. When the index is a 0-D tensor, the updates should be a (N-1)-D tensor, the ith dim of the updates should be queal with the (i+1)th dim of the input.
H
hg-1099255210 已提交
2873
        overwrite (bool, optional): The mode that updating the output when there are same indices.
2874

S
sunzhongkai588 已提交
2875
            If True, use the overwrite mode to update the output of the same index,
H
hg-1099255210 已提交
2876
            if False, use the accumulate mode to update the output of the same index. Default value is True.
2877

S
ShenLiang 已提交
2878
        name(str, optional): The default value is None. Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name` .
2879

S
ShenLiang 已提交
2880
    Returns:
L
Ligoml 已提交
2881
        Tensor, The output is a Tensor with the same shape as x.
S
ShenLiang 已提交
2882 2883 2884

    Examples:
        .. code-block:: python
2885

S
ShenLiang 已提交
2886 2887
            import paddle

2888 2889 2890
            x = paddle.to_tensor([[1, 1], [2, 2], [3, 3]], dtype='float32')
            index = paddle.to_tensor([2, 1, 0, 1], dtype='int64')
            updates = paddle.to_tensor([[1, 1], [2, 2], [3, 3], [4, 4]], dtype='float32')
2891

S
ShenLiang 已提交
2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911
            output1 = paddle.scatter(x, index, updates, overwrite=False)
            # [[3., 3.],
            #  [6., 6.],
            #  [1., 1.]]

            output2 = paddle.scatter(x, index, updates, overwrite=True)
            # CPU device:
            # [[3., 3.],
            #  [4., 4.],
            #  [1., 1.]]
            # GPU device maybe have two results because of the repeated numbers in index
            # result 1:
            # [[3., 3.],
            #  [4., 4.],
            #  [1., 1.]]
            # result 2:
            # [[3., 3.],
            #  [2., 2.],
            #  [1., 1.]]
    """
J
Jiabin Yang 已提交
2912
    if in_dygraph_mode():
2913
        return _C_ops.scatter(x, index, updates, overwrite)
J
Jiabin Yang 已提交
2914
    else:
2915 2916 2917
        check_variable_and_dtype(
            x,
            'dtype',
Z
zxcd 已提交
2918
            ['float32', 'float64', 'float16', 'int32', 'int64', 'uint16'],
2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930
            'scatter',
        )
        check_type(overwrite, 'overwrite', bool, 'scatter')
        helper = LayerHelper('scatter', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type="scatter",
            inputs={"X": x, "Ids": index, "Updates": updates},
            attrs={'overwrite': overwrite},
            outputs={"Out": out},
        )
        return out
S
ShenLiang 已提交
2931 2932


2933
@inplace_apis_in_dygraph_only
2934 2935 2936 2937 2938
def scatter_(x, index, updates, overwrite=True, name=None):
    """
    Inplace version of ``scatter`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_paddle_tensor_scatter`.
    """
2939
    return _C_ops.scatter_(x, index, updates, overwrite)
2940 2941


2942
def scatter_nd_add(x, index, updates, name=None):
2943
    r"""
2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984

    Output is obtained by applying sparse addition to a single value
    or slice in a Tensor.

    :attr:`x` is a Tensor with ndim :math:`R`
    and :attr:`index` is a Tensor with ndim :math:`K` . Thus, :attr:`index`
    has shape :math:`[i_0, i_1, ..., i_{K-2}, Q]` where :math:`Q \leq R` . :attr:`updates`
    is a Tensor with ndim :math:`K - 1 + R - Q` and its
    shape is :math:`index.shape[:-1] + x.shape[index.shape[-1]:]` .

    According to the :math:`[i_0, i_1, ..., i_{K-2}]` of :attr:`index` ,
    add the corresponding :attr:`updates` slice to the :attr:`x` slice
    which is obtained by the last one dimension of :attr:`index` .

    .. code-block:: text

        Given:

        * Case 1:
            x = [0, 1, 2, 3, 4, 5]
            index = [[1], [2], [3], [1]]
            updates = [9, 10, 11, 12]

          we get:

            output = [0, 22, 12, 14, 4, 5]

        * Case 2:
            x = [[65, 17], [-14, -25]]
            index = [[], []]
            updates = [[[-1, -2], [1, 2]],
                       [[3, 4], [-3, -4]]]
            x.shape = (2, 2)
            index.shape = (2, 0)
            updates.shape = (2, 2, 2)

          we get:

            output = [[67, 19], [-16, -27]]

    Args:
Z
Zeng Jinle 已提交
2985
        x (Tensor): The x input. Its dtype should be int32, int64, float32, float64.
2986 2987 2988 2989 2990 2991 2992
        index (Tensor): The index input with ndim > 1 and index.shape[-1] <= x.ndim.
                          Its dtype should be int32 or int64 as it is used as indexes.
        updates (Tensor): The updated value of scatter_nd_add op, and it must have the same dtype
                            as x. It must have the shape index.shape[:-1] + x.shape[index.shape[-1]:].
        name (str|None): The output tensor name. If set None, the layer will be named automatically.

    Returns:
L
Ligoml 已提交
2993
        output (Tensor), The output is a tensor with the same shape and dtype as x.
2994 2995 2996 2997 2998 2999 3000 3001 3002

    Examples:

        .. code-block:: python

            import paddle

            x = paddle.rand(shape=[3, 5, 9, 10], dtype='float32')
            updates = paddle.rand(shape=[3, 9, 10], dtype='float32')
C
Chen Long 已提交
3003 3004 3005
            index = paddle.to_tensor([[1, 1],
                                    [0, 1],
                                    [1, 3]], dtype='int64')
3006

3007
            output = paddle.scatter_nd_add(x, index, updates)
C
Chen Long 已提交
3008 3009
            print(output.shape)
            # [3, 5, 9, 10]
3010
    """
3011
    if in_dygraph_mode():
3012
        return _C_ops.scatter_nd_add(x, index, updates)
3013
    else:
3014 3015
        if x.dtype != updates.dtype:
            raise ValueError("x and updates must have same data type.")
3016

3017 3018 3019 3020 3021 3022 3023 3024 3025
        helper = LayerHelper('scatter_nd_add', **locals())
        dtype = helper.input_dtype(input_param_name='x')
        output = helper.create_variable_for_type_inference(dtype)
        helper.append_op(
            type="scatter_nd_add",
            inputs={"X": x, "Index": index, "Updates": updates},
            outputs={"Out": output},
        )
        return output
3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041


def scatter_nd(index, updates, shape, name=None):
    """
    **Scatter_nd Layer**

    Output is obtained by scattering the :attr:`updates` in a new tensor according
    to :attr:`index` . This op is similar to :code:`scatter_nd_add`, except the
    tensor of :attr:`shape` is zero-initialized. Correspondingly, :code:`scatter_nd(index, updates, shape)`
    is equal to :code:`scatter_nd_add(paddle.zeros(shape, updates.dtype), index, updates)` .
    If :attr:`index` has repeated elements, then the corresponding updates are accumulated.
    Because of the numerical approximation issues, the different order of repeated elements
    in :attr:`index` may cause different results. The specific calculation method can be
    seen :code:`scatter_nd_add` . This op is the inverse of the :code:`gather_nd` op.

    Args:
3042
        index (Tensor): The index input with ndim >= 1 and index.shape[-1] <= len(shape).
3043 3044 3045 3046 3047 3048 3049
                          Its dtype should be int32 or int64 as it is used as indexes.
        updates (Tensor): The updated value of scatter_nd op. Its dtype should be float32, float64.
                            It must have the shape index.shape[:-1] + shape[index.shape[-1]:]
        shape(tuple|list): Shape of output tensor.
        name (str|None): The output Tensor name. If set None, the layer will be named automatically.

    Returns:
L
Ligoml 已提交
3050
        output (Tensor), The output is a tensor with the same type as :attr:`updates` .
3051 3052 3053 3054 3055 3056 3057

    Examples:

        .. code-block:: python

            import paddle

3058 3059 3060
            index = paddle.to_tensor([[1, 1],
                                    [0, 1],
                                    [1, 3]], dtype="int64")
3061 3062 3063 3064 3065 3066
            updates = paddle.rand(shape=[3, 9, 10], dtype='float32')
            shape = [3, 5, 9, 10]

            output = paddle.scatter_nd(index, updates, shape)
    """
    return scatter_nd_add(zeros(shape, updates.dtype), index, updates, name)
3067 3068


3069 3070 3071
def chunk(x, chunks, axis=0, name=None):
    """
    Split the input tensor into multiple sub-Tensors.
3072

3073 3074 3075
    Args:
        x (Tensor): A N-D Tensor. The data type is bool, float16, float32, float64, int32 or int64.
        chunks(int): The number of tensor to be split along the certain axis.
3076
        axis (int|Tensor, optional): The axis along which to split, it can be a scalar with type
3077 3078 3079 3080 3081
            ``int`` or a ``Tensor`` with shape [1] and data type  ``int32`` or ``int64``.
            If :math::`axis < 0`, the axis to split along is :math:`rank(x) + axis`. Default is 0.
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .
    Returns:
L
Ligoml 已提交
3082
        list(Tensor), The list of segmented Tensors.
3083

3084
    Examples:
3085
        .. code-block:: python
3086

3087
            import paddle
3088

3089
            x = paddle.rand([3, 9, 5])
3090

3091
            out0, out1, out2 = paddle.chunk(x, chunks=3, axis=1)
3092 3093 3094 3095
            # out0.shape [3, 3, 5]
            # out1.shape [3, 3, 5]
            # out2.shape [3, 3, 5]

3096

3097 3098 3099 3100 3101 3102 3103 3104
            # axis is negative, the real axis is (rank(x) + axis) which real
            # value is 1.
            out0, out1, out2 = paddle.chunk(x, chunks=3, axis=-2)
            # out0.shape [3, 3, 5]
            # out1.shape [3, 3, 5]
            # out2.shape [3, 3, 5]
    """
    check_type(chunks, 'chunks', (int), 'chunk')
3105
    return split(x, num_or_sections=chunks, axis=axis, name=name)
3106 3107


L
lilong12 已提交
3108 3109
def tile(x, repeat_times, name=None):
    """
L
lilong12 已提交
3110 3111

    Construct a new Tensor by repeating ``x`` the number of times given by ``repeat_times``.
3112
    After tiling, the value of the i'th dimension of the output is equal to ``x.shape[i]*repeat_times[i]``.
L
lilong12 已提交
3113 3114 3115

    Both the number of dimensions of ``x`` and the number of elements in ``repeat_times`` should be less than or equal to 6.

L
lilong12 已提交
3116
    Args:
I
Infinity_lee 已提交
3117
        x (Tensor): The input tensor, its data type should be bool, float16, float32, float64, int32 or int64.
3118
        repeat_times (list|tuple|Tensor): The number of repeating times. If repeat_times is a list or tuple, all its elements
L
lilong12 已提交
3119 3120 3121
            should be integers or 1-D Tensors with the data type int32. If repeat_times is a Tensor, it should be an 1-D Tensor with the data type int32.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

L
lilong12 已提交
3122
    Returns:
3123
        N-D Tensor. The data type is the same as ``x``. The size of the i-th dimension is equal to ``x[i] * repeat_times[i]``.
L
lilong12 已提交
3124

L
lilong12 已提交
3125 3126
    Examples:
        .. code-block:: python
L
lilong12 已提交
3127

L
lilong12 已提交
3128
            import paddle
L
lilong12 已提交
3129

3130
            data = paddle.to_tensor([1, 2, 3], dtype='int32')
L
lilong12 已提交
3131
            out = paddle.tile(data, repeat_times=[2, 1])
3132 3133 3134 3135
            print(out)
            # Tensor(shape=[2, 3], dtype=int32, place=Place(gpu:0), stop_gradient=True,
            #        [[1, 2, 3],
            #         [1, 2, 3]])
L
lilong12 已提交
3136

3137
            out = paddle.tile(data, repeat_times=(2, 2))
3138 3139 3140 3141
            print(out)
            # Tensor(shape=[2, 6], dtype=int32, place=Place(gpu:0), stop_gradient=True,
            #        [[1, 2, 3, 1, 2, 3],
            #         [1, 2, 3, 1, 2, 3]])
L
lilong12 已提交
3142

3143
            repeat_times = paddle.to_tensor([1, 2], dtype='int32')
L
lilong12 已提交
3144
            out = paddle.tile(data, repeat_times=repeat_times)
3145 3146 3147
            print(out)
            # Tensor(shape=[1, 6], dtype=int32, place=Place(gpu:0), stop_gradient=True,
            #        [[1, 2, 3, 1, 2, 3]])
L
lilong12 已提交
3148
    """
H
hong 已提交
3149
    if in_dygraph_mode():
3150
        if isinstance(repeat_times, core.eager.Tensor):
3151 3152 3153
            assert (
                repeat_times.ndim == 1
            ), "Only support ndim == 1 while repeat_times is a Tensor."
3154
            repeat_times = repeat_times.tolist()
3155

3156
        return _C_ops.tile(x, repeat_times)
3157
    else:
3158 3159 3160 3161 3162
        check_type(
            repeat_times, 'repeat_times', (list, tuple, Variable), 'tile'
        )
        if isinstance(repeat_times, Variable):
            assert (
J
JYChen 已提交
3163 3164
                repeat_times.numel() == 1
            ), 'repeat_times must be a Tensor with one element.'
3165 3166 3167 3168
        else:
            for elem in repeat_times:
                if isinstance(elem, Variable):
                    assert (
J
JYChen 已提交
3169 3170
                        elem.numel() == 1
                    ), 'Elements in repeat_times must be Tensor with one element or integers.'
3171 3172 3173 3174
                else:
                    type_tuple = (int, np.int32, np.int64)
                    assert isinstance(
                        elem, type_tuple
J
JYChen 已提交
3175
                    ), 'Elements in repeat_times must be Tensor with one element or integers.'
3176

3177
        check_variable_and_dtype(
I
Infinity_lee 已提交
3178 3179
            x,
            'x',
Y
yangjianfengo1 已提交
3180 3181 3182
            [
                'bool',
                'float16',
Y
yangjianfengo1 已提交
3183
                'uint16',
Y
yangjianfengo1 已提交
3184 3185 3186 3187 3188
                'float32',
                'float64',
                'int32',
                'int64',
            ],
I
Infinity_lee 已提交
3189
            'tile',
3190
        )
3191 3192 3193 3194 3195 3196
        if convert_dtype(x.dtype) == 'bool' and not x.stop_gradient:
            raise ValueError(
                "When the date type is bool for the input 'x' of tile op, you "
                "must set its stop_gradient to be True by "
                "some_var.stop_gradient == True supporting some_var is the input."
            )
3197

3198
        helper = LayerHelper('tile', **locals())
L
lilong12 已提交
3199

3200 3201
        inputs = {"X": [x]}
        attrs = {}
L
lilong12 已提交
3202

3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220
        def get_attr_repeat_times(list_repeat_times):
            attrs_repeat_times = []
            for idx, times in enumerate(list_repeat_times):
                if isinstance(times, Variable):
                    attrs_repeat_times.append(-1)
                else:
                    attrs_repeat_times.append(times)
                    assert (
                        times > 0
                    ), "All elements in repeat_times must be positive for tile."
            return attrs_repeat_times

        if isinstance(repeat_times, Variable):
            repeat_times.stop_gradient = True
            inputs['RepeatTimes'] = repeat_times
            attrs['repeat_times'] = [-1]
        elif isinstance(repeat_times, (list, tuple)):
            attrs['repeat_times'] = get_attr_repeat_times(repeat_times)
3221 3222 3223 3224
            if paddle.utils._contain_var(repeat_times):
                inputs[
                    'repeat_times_tensor'
                ] = paddle.utils._convert_to_tensor_list(repeat_times)
L
lilong12 已提交
3225

3226 3227 3228 3229 3230 3231
        dtype = helper.input_dtype(input_param_name='x')
        out = helper.create_variable_for_type_inference(dtype)
        helper.append_op(
            type='tile', inputs=inputs, outputs={'Out': out}, attrs=attrs
        )
        return out
3232 3233


L
lilong12 已提交
3234 3235 3236 3237 3238
def expand_as(x, y, name=None):
    """

    Expand the input tensor ``x`` to the same shape as the input tensor ``y``.

3239
    Both the number of dimensions of ``x`` and ``y`` must be less than or equal to 6, and the number of dimensions of ``y`` must be greather than or equal to that of ``x``. The dimension to expand must have a value of 0.
L
lilong12 已提交
3240 3241 3242

    Args:
        x (Tensor): The input tensor, its data type is bool, float32, float64, int32 or int64.
3243
        y (Tensor): The input tensor that gives the shape to expand to.
L
lilong12 已提交
3244 3245 3246
        name (str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
L
Ligoml 已提交
3247
        N-D Tensor, A Tensor with the same shape as ``y``. The data type is the same as ``x``.
L
lilong12 已提交
3248 3249 3250 3251 3252 3253

    Examples:
        .. code-block:: python

            import paddle

3254 3255
            data_x = paddle.to_tensor([1, 2, 3], 'int32')
            data_y = paddle.to_tensor([[1, 2, 3], [4, 5, 6]], 'int32')
L
lilong12 已提交
3256
            out = paddle.expand_as(data_x, data_y)
3257 3258 3259 3260
            print(out)
            # Tensor(shape=[2, 3], dtype=int32, place=Place(gpu:0), stop_gradient=True,
            #        [[1, 2, 3],
            #         [1, 2, 3]])
L
lilong12 已提交
3261
    """
H
hong 已提交
3262
    if in_dygraph_mode():
3263
        return _C_ops.expand_as(x, None, y.shape)
3264 3265 3266 3267 3268 3269 3270 3271
    else:
        check_variable_and_dtype(
            x,
            'x',
            ['bool', 'float32', 'float64', 'int32', 'int64'],
            'expand_as',
        )
        check_type(y, 'y', Variable, 'expand_as')
H
hong 已提交
3272

3273 3274 3275 3276 3277 3278 3279 3280
        if convert_dtype(x.dtype) == 'bool' and not x.stop_gradient:
            raise ValueError(
                "When the data type of input 'x' for expand_as is bool, "
                "you must set its stop_gradient to be False by "
                "some_var.stop_gradient = True, supporting "
                "some_var as the input 'x'."
            )
        inputs = {"X": [x], "Y": [y]}
L
lilong12 已提交
3281

3282 3283 3284 3285 3286 3287 3288 3289
        helper = LayerHelper('expand_as', **locals())
        dtype = helper.input_dtype(input_param_name='x')
        out = helper.create_variable_for_type_inference(dtype)
        helper.append_op(
            type='expand_as_v2',
            inputs=inputs,
            attrs={'target_shape': y.shape},
            outputs={'Out': out},
3290
        )
3291
        return out
L
lilong12 已提交
3292 3293


3294 3295 3296 3297 3298
def broadcast_to(x, shape, name=None):
    """

    Broadcast the input tensor to a given shape.

3299
    Both the number of dimensions of ``x`` and the number of elements in ``shape`` should be less than or equal to 6. The dimension to broadcast to must have a value 0.
3300 3301 3302


    Args:
张春乔 已提交
3303
        x (Tensor): The input tensor, its data type is bool, float16, float32, float64, int32 or int64.
3304
        shape (list|tuple|Tensor): The result shape after broadcasting. The data type is int32. If shape is a list or tuple, all its elements
3305
            should be integers or 0-D or 1-D Tensors with the data type int32. If shape is a Tensor, it should be an 1-D Tensor with the data type int32.
3306
            The value -1 in shape means keeping the corresponding dimension unchanged.
3307
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
3308
    Returns:
L
Ligoml 已提交
3309
        N-D Tensor, A Tensor with the given shape. The data type is the same as ``x``.
3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320

    Examples:
        .. code-block:: python

            import paddle

            data = paddle.to_tensor([1, 2, 3], dtype='int32')
            out = paddle.broadcast_to(data, shape=[2, 3])
            print(out)
            # [[1, 2, 3], [1, 2, 3]]
    """
3321
    if in_dygraph_mode():
3322
        return _C_ops.expand(x, shape)
3323
    else:
3324 3325 3326
        if isinstance(shape, Variable):
            assert len(shape.shape) == 1, 'shape must be an 1-D Tensor.'
        else:
3327
            type_tuple = (int, np.int32, np.int64)
3328 3329 3330 3331 3332 3333 3334 3335 3336
            for elem in shape:
                if isinstance(elem, Variable):
                    assert (
                        len(elem.shape) == 1
                    ), 'Elements in shape must be 1-D Tensors or integers.'
                else:
                    assert isinstance(
                        elem, type_tuple
                    ), 'Elements in shape must be 1-D Tensors or integers.'
3337

3338 3339 3340
        check_variable_and_dtype(
            x,
            'x',
X
xiaoguoguo626807 已提交
3341
            ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
3342
            'broadcast_to',
3343
        )
3344 3345 3346 3347 3348 3349 3350 3351
        check_type(shape, 'shape', (list, tuple, Variable), 'broadcast_to')
        if convert_dtype(x.dtype) == 'bool' and not x.stop_gradient:
            raise ValueError(
                "When the data type of input 'x' for broadcast_to is bool, "
                "you must set its stop_gradient to be False by "
                "some_var.stop_gradient = True, supporting "
                "some_var as the input."
            )
3352

3353 3354
        inputs = {"X": [x]}
        attrs = {}
3355

3356
        helper = LayerHelper('expand', **locals())
3357

3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368
        def get_attr_expand_shape(list_expand_shape):
            attrs_expand_shape = []
            for idx, shape in enumerate(list_expand_shape):
                if isinstance(shape, Variable):
                    attrs_expand_shape.append(-1)
                else:
                    attrs_expand_shape.append(shape)
                    assert (
                        shape > 0 or shape == -1
                    ), "All elements in shape of broadcast_to must be positive or -1."
            return attrs_expand_shape
3369

3370 3371 3372 3373 3374
        if isinstance(shape, Variable):
            shape.stop_gradient = True
            inputs['Shape'] = shape
        elif isinstance(shape, (list, tuple)):
            attrs['shape'] = get_attr_expand_shape(shape)
3375 3376 3377 3378
            if paddle.utils._contain_var(shape):
                inputs[
                    'expand_shapes_tensor'
                ] = paddle.utils._convert_to_tensor_list(shape)
3379

3380 3381 3382 3383 3384 3385
        dtype = helper.input_dtype(input_param_name='x')
        out = helper.create_variable_for_type_inference(dtype)
        helper.append_op(
            type='expand_v2', inputs=inputs, outputs={'Out': out}, attrs=attrs
        )
        return out
3386 3387


3388 3389 3390 3391 3392
def expand(x, shape, name=None):
    """

    Expand the input tensor to a given shape.

3393
    Both the number of dimensions of ``x`` and the number of elements in ``shape`` should be less than or equal to 6. And the number of dimensions of ``x`` should be less than the number of elements in ``shape``. The dimension to expand must have a value 0.
3394 3395

    Args:
C
Chen Long 已提交
3396
        x (Tensor): The input Tensor, its data type is bool, float32, float64, int32 or int64.
L
lilong12 已提交
3397
        shape (list|tuple|Tensor): The result shape after expanding. The data type is int32. If shape is a list or tuple, all its elements
3398
            should be integers or 0-D or 1-D Tensors with the data type int32. If shape is a Tensor, it should be an 1-D Tensor with the data type int32.
L
lilong12 已提交
3399
            The value -1 in shape means keeping the corresponding dimension unchanged.
3400 3401 3402
        name (str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` .

    Returns:
L
Ligoml 已提交
3403
        N-D Tensor, A Tensor with the given shape. The data type is the same as ``x``.
3404 3405 3406 3407 3408 3409

    Examples:
        .. code-block:: python

            import paddle

3410
            data = paddle.to_tensor([1, 2, 3], dtype='int32')
L
lilong12 已提交
3411
            out = paddle.expand(data, shape=[2, 3])
3412
            print(out)
3413 3414
            # [[1, 2, 3], [1, 2, 3]]
    """
H
hong 已提交
3415
    if in_dygraph_mode():
3416
        return _C_ops.expand(x, shape)
3417
    else:
3418
        if isinstance(shape, Variable):
J
JYChen 已提交
3419
            assert shape.numel() == 1, 'shape must be a Tensor with one element'
3420 3421 3422 3423
        else:
            for elem in shape:
                if isinstance(elem, Variable):
                    assert (
J
JYChen 已提交
3424 3425
                        elem.numel() == 1
                    ), 'Elements in shape must be Tensor with one element or integers.'
3426 3427 3428 3429
                else:
                    type_tuple = (int, np.int32, np.int64)
                    assert isinstance(
                        elem, type_tuple
J
JYChen 已提交
3430
                    ), 'Elements in shape must be Tensor with one element or integers.'
3431

3432 3433 3434
        check_variable_and_dtype(
            x,
            'x',
3435 3436 3437 3438 3439 3440 3441 3442 3443
            [
                'bool',
                'float16',
                'float32',
                'float64',
                'int32',
                'int64',
                'uint16',
            ],
3444
            'expand',
3445
        )
3446 3447 3448 3449 3450 3451 3452 3453
        check_type(shape, 'shape', (list, tuple, Variable), 'expand')
        if convert_dtype(x.dtype) == 'bool' and not x.stop_gradient:
            raise ValueError(
                "When the data type of input 'x' for expand is bool, "
                "you must set its stop_gradient to be False by "
                "some_var.stop_gradient = True, supporting "
                "some_var as the input."
            )
3454

3455 3456
        inputs = {"X": [x]}
        attrs = {}
3457

3458
        helper = LayerHelper('expand', **locals())
3459

3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470
        def get_attr_expand_shape(list_expand_shape):
            attrs_expand_shape = []
            for idx, shape in enumerate(list_expand_shape):
                if isinstance(shape, Variable):
                    attrs_expand_shape.append(-2)
                else:
                    attrs_expand_shape.append(shape)
                    assert (
                        shape > 0 or shape == -1
                    ), "All elements in shape of expand must be positive or -1."
            return attrs_expand_shape
3471

3472 3473 3474 3475 3476
        if isinstance(shape, Variable):
            shape.stop_gradient = True
            inputs['Shape'] = shape
        elif isinstance(shape, (list, tuple)):
            attrs['shape'] = get_attr_expand_shape(shape)
3477 3478 3479 3480
            if paddle.utils._contain_var(shape):
                inputs[
                    'expand_shapes_tensor'
                ] = paddle.utils._convert_to_tensor_list(shape)
3481

3482 3483 3484 3485 3486 3487
        dtype = helper.input_dtype(input_param_name='x')
        out = helper.create_variable_for_type_inference(dtype)
        helper.append_op(
            type='expand_v2', inputs=inputs, outputs={'Out': out}, attrs=attrs
        )
        return out
L
lilong12 已提交
3488 3489


3490 3491
def reshape(x, shape, name=None):
    """
3492
    Changes the shape of ``x`` without changing its data.
3493

3494
    Note that the output Tensor will share data with origin Tensor and doesn't
3495 3496
    have a Tensor copy in ``dygraph`` mode.
    If you want to use the Tensor copy version, please use `Tensor.clone` like
3497 3498
    ``reshape_clone_x = x.reshape([-1]).clone()``.

3499 3500
    Some tricks exist when specifying the target shape.

3501
        - 1. -1 means the value of this dimension is inferred from the total element number of x and remaining dimensions. Thus one and only one dimension can be set -1.
3502

3503
        - 2. 0 means the actual dimension value is going to be copied from the corresponding dimension of x. The index of 0s in shape can not exceed the dimension of x.
3504 3505 3506

    Here are some examples to explain it.

3507
        - 1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape is [6, 8], the reshape operator will transform x into a 2-D tensor with shape [6, 8] and leaving x's data unchanged.
3508

3509
        - 2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape specified is [2, 3, -1, 2], the reshape operator will transform x into a 4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this case, one dimension of the target shape is set to -1, the value of this dimension is inferred from the total element number of x and remaining dimensions.
3510

3511
        - 3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case, besides -1, 0 means the actual dimension value is going to be copied from the corresponding dimension of x.
3512 3513

    Args:
3514 3515
        x (Tensor): An N-D Tensor. The data type is ``float32``, ``float64``, ``int32``, ``int64`` or ``bool``
        shape (list|tuple|Tensor): Define the target shape. At most one dimension of the target shape can be -1.
3516
                        The data type is ``int32`` . If ``shape`` is a list or tuple, the elements of it should be integers or Tensors with shape [].
3517
                        If ``shape`` is an Tensor, it should be an 1-D Tensor .
3518
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
3519 3520

    Returns:
L
Ligoml 已提交
3521
        Tensor, A reshaped Tensor with the same data type as ``x``.
3522 3523 3524 3525 3526 3527

    Examples:
        .. code-block:: python

            import paddle

3528 3529
            x = paddle.rand([2, 4, 6], dtype="float32")
            positive_four = paddle.full([1], 4, "int32")
3530

3531 3532 3533
            out = paddle.reshape(x, [-1, 0, 3, 2])
            print(out)
            # the shape is [2,4,3,2].
3534

3535 3536
            out = paddle.reshape(x, shape=[positive_four, 12])
            print(out)
3537
            # the shape of out_2 is [4, 12].
3538

3539
            shape_tensor = paddle.to_tensor([8, 6], dtype=paddle.int32)
3540
            out = paddle.reshape(x, shape=shape_tensor)
3541
            print(out.shape)
3542
            # the shape is [8, 6].
3543 3544 3545 3546 3547
            # out shares data with x in dygraph mode
            x[0, 0, 0] = 10.
            print(out[0, 0])
            # the value is [10.]

3548
    """
3549 3550
    if in_dygraph_mode():
        if isinstance(shape, (list, tuple)):
3551 3552 3553 3554 3555 3556 3557 3558
            new_shape = []
            for ele in shape:
                if isinstance(ele, core.eager.Tensor):
                    new_shape.append(ele.item())
                else:
                    new_shape.append(ele)

            if new_shape == x.shape:
3559 3560
                out = x
            else:
3561
                out = _C_ops.reshape(x, new_shape)
3562
        elif isinstance(shape, core.eager.Tensor):
3563
            shape.stop_gradient = True
3564
            out = _C_ops.reshape(x, shape)
3565 3566 3567
        else:
            raise ValueError(
                "shape must be an instance of `list`, `tuple` or `Variable`,"
3568 3569
                " got '{}.'".format(type(shape))
            )
3570

3571
        return out
3572
    else:
3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588
        check_variable_and_dtype(
            x,
            'x',
            [
                'float16',
                'float32',
                'float64',
                'int16',
                'int32',
                'int64',
                'bool',
                'uint16',
            ],
            'reshape',
        )
        check_type(shape, 'shape', (list, tuple, Variable), 'reshape')
3589

3590 3591 3592 3593 3594 3595
        def get_attr_shape(list_shape):
            unk_dim_idx = -1
            attrs_shape = []
            for dim_idx, dim_size in enumerate(list_shape):
                if isinstance(dim_size, Variable):
                    attrs_shape.append(-1)
3596
                else:
3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633
                    attrs_shape.append(dim_size)
                    if dim_size == -1:
                        assert unk_dim_idx == -1, (
                            "Only one dimension value of 'shape' in reshape can "
                            "be -1. But received shape[%d] is also -1.\n"
                            "\n\t# N = x.shape()[2]\t\t# N is an int. "
                            "(NOT recommend under @to_static)\n\tN = paddle.shape(x)[2]\t\t"
                            "# N is a Tensor. (Recommend)\n\tz = paddle.reshape([N, -1, 4])"
                            "\t# z.shape is [-1, -1, 4]\n\n"
                            "    If your target shape in Reshape represents dynamic shape, "
                            "please turn it into a Tensor under @to_static. See above example for details."
                            % dim_idx
                        )
                        unk_dim_idx = dim_idx
                    elif dim_size == 0:
                        assert dim_idx < len(x.shape), (
                            "The index of 0 in `shape` must be less than "
                            "the input tensor X's dimensions. "
                            "But received shape[%d] = 0, X's dimensions = %d."
                            % (dim_idx, len(x.shape))
                        )
                    else:
                        assert dim_size > 0, (
                            "Each dimension value of 'shape' in reshape must not "
                            "be negative except one unknown dimension. "
                            "But received shape[%d] = %s."
                            % (dim_idx, str(dim_size))
                        )
            return attrs_shape

        inputs = {"X": x}
        attrs = {}
        if isinstance(shape, Variable):
            shape.stop_gradient = True
            inputs["Shape"] = shape
        elif isinstance(shape, (list, tuple)):
            attrs["shape"] = get_attr_shape(shape)
3634 3635 3636 3637
            if paddle.utils._contain_var(shape):
                inputs['ShapeTensor'] = paddle.utils._convert_to_tensor_list(
                    shape
                )
3638

3639
        helper = LayerHelper("reshape2", **locals())
3640 3641 3642 3643 3644 3645 3646
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        x_shape = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type="reshape2",
            inputs=inputs,
            attrs=attrs,
            outputs={"Out": out, "XShape": x_shape},
3647
        )
3648

3649
        return out
3650 3651


3652
@inplace_apis_in_dygraph_only
3653 3654 3655 3656 3657
def reshape_(x, shape, name=None):
    """
    Inplace version of ``reshape`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_paddle_tensor_reshape`.
    """
3658 3659 3660 3661
    if in_dygraph_mode():
        tmp_tensor_type = core.eager.Tensor
        if isinstance(shape, (list, tuple)):
            shape = [
3662
                item.item(0) if isinstance(item, tmp_tensor_type) else item
3663
                for item in shape
3664
            ]
3665 3666 3667 3668
            if shape == x.shape:
                out = x
            else:
                out = _C_ops.reshape_(x, shape)
3669 3670
        elif isinstance(shape, tmp_tensor_type):
            shape.stop_gradient = True
3671
            out = _C_ops.reshape_(x, shape)
3672 3673 3674
        else:
            raise ValueError(
                "shape must be an instance of `list`, `tuple` or `Variable`,"
3675 3676
                " got '{}.'".format(type(shape))
            )
3677

3678
        return out
3679 3680


3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699
def gather_nd(x, index, name=None):
    """

    This function is actually a high-dimensional extension of :code:`gather`
    and supports for simultaneous indexing by multiple axes. :attr:`index` is a
    K-dimensional integer tensor, which is regarded as a (K-1)-dimensional
    tensor of :attr:`index` into :attr:`input`, where each element defines
    a slice of params:

    .. math::

        output[(i_0, ..., i_{K-2})] = input[index[(i_0, ..., i_{K-2})]]

    Obviously, :code:`index.shape[-1] <= input.rank` . And, the output tensor has
    shape :code:`index.shape[:-1] + input.shape[index.shape[-1]:]` .

    .. code-block:: text

            Given:
3700 3701 3702 3703 3704 3705 3706
                x =  [[[ 0,  1,  2,  3],
                       [ 4,  5,  6,  7],
                       [ 8,  9, 10, 11]],
                      [[12, 13, 14, 15],
                       [16, 17, 18, 19],
                       [20, 21, 22, 23]]]
                x.shape = (2, 3, 4)
3707 3708 3709 3710

            * Case 1:
                index = [[1]]

3711 3712
                gather_nd(x, index)
                         = [x[1, :, :]]
3713 3714 3715 3716 3717 3718 3719
                         = [[12, 13, 14, 15],
                            [16, 17, 18, 19],
                            [20, 21, 22, 23]]

            * Case 2:
                index = [[0,2]]

3720 3721
                gather_nd(x, index)
                         = [x[0, 2, :]]
3722 3723 3724 3725 3726
                         = [8, 9, 10, 11]

            * Case 3:
                index = [[1, 2, 3]]

3727 3728
                gather_nd(x, index)
                         = [x[1, 2, 3]]
3729 3730 3731
                         = [23]

    Args:
张春乔 已提交
3732
        x (Tensor): The input Tensor which it's data type should be bool, float16, float32, float64, int32, int64.
3733 3734
        index (Tensor): The index input with rank > 1, index.shape[-1] <= input.rank.
                        Its dtype should be int32, int64.
3735
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
3736 3737

    Returns:
L
Ligoml 已提交
3738
        output (Tensor), A tensor with the shape index.shape[:-1] + input.shape[index.shape[-1]:]
3739

3740 3741 3742
    Examples:

        .. code-block:: python
3743

3744
            import paddle
3745

3746 3747 3748
            x = paddle.to_tensor([[[1, 2], [3, 4], [5, 6]],
                                  [[7, 8], [9, 10], [11, 12]]])
            index = paddle.to_tensor([[0, 1]])
3749

3750 3751 3752
            output = paddle.gather_nd(x, index) #[[3, 4]]

    """
3753
    if in_dygraph_mode():
3754
        return _C_ops.gather_nd(x, index)
3755
    else:
3756 3757 3758
        check_variable_and_dtype(
            x,
            'x',
张春乔 已提交
3759 3760 3761
            [
                'bool',
                'float16',
3762
                'uint16',
张春乔 已提交
3763 3764 3765 3766 3767 3768
                'float32',
                'float64',
                'int16',
                'int32',
                'int64',
            ],
3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782
            'gather_np',
        )
        check_variable_and_dtype(
            index, 'index', ['int32', 'int64'], 'gather_np'
        )
        helper = LayerHelper('gather_nd', **locals())
        dtype = helper.input_dtype()
        output = helper.create_variable_for_type_inference(dtype)
        helper.append_op(
            type="gather_nd",
            inputs={"X": x, "Index": index},
            outputs={"Out": output},
        )
        return output
3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830


def strided_slice(x, axes, starts, ends, strides, name=None):
    """
    This operator produces a slice of ``x`` along multiple axes. Similar to numpy:
    https://docs.scipy.org/doc/numpy/reference/arrays.indexing.html
    Slice uses ``axes``, ``starts`` and ``ends`` attributes to specify the start and
    end dimension for each axis in the list of axes and Slice uses this information
    to slice the input data tensor. If a negative value is passed to
    ``starts`` or ``ends`` such as :math:`-i`,  it represents the reverse position of the
    axis :math:`i-1` th(here 0 is the initial position). The ``strides`` represents steps of
    slicing and if the ``strides`` is negative, slice operation is in the opposite direction.
    If the value passed to ``starts`` or ``ends`` is greater than n
    (the number of elements in this dimension), it represents n.
    For slicing to the end of a dimension with unknown size, it is recommended
    to pass in INT_MAX. The size of ``axes`` must be equal to ``starts`` , ``ends`` and ``strides``.
    Following examples will explain how strided_slice works:

    .. code-block:: text

        Case1:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
                starts = [1, 0]
                ends = [2, 3]
                strides = [1, 1]
            Then:
                result = [ [5, 6, 7], ]

        Case2:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
                starts = [0, 1]
                ends = [2, 0]
                strides = [1, -1]
            Then:
                result = [ [8, 7, 6], ]
        Case3:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
                starts = [0, 1]
                ends = [-1, 1000]
                strides = [1, 3]
            Then:
                result = [ [2], ]
3831

3832
    Args:
3833
        x (Tensor): An N-D ``Tensor``. The data type is ``bool``, ``float16``, ``float32``, ``float64``, ``int32`` or ``int64``.
3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844
        axes (list|tuple): The data type is ``int32`` . Axes that `starts` and `ends` apply to.
                            It's optional. If it is not provides, it will be treated as :math:`[0,1,...,len(starts)-1]`.
        starts (list|tuple|Tensor): The data type is ``int32`` . If ``starts`` is a list or tuple, the elements of                                                                                          it should be integers or Tensors with shape [1]. If ``starts`` is an Tensor, it should be an 1-D Tensor.                                                                                    It represents starting indices of corresponding axis in ``axes``.
        ends (list|tuple|Tensor): The data type is ``int32`` . If ``ends`` is a list or tuple, the elements of
                it should be integers or Tensors with shape [1]. If ``ends`` is an Tensor, it should be an 1-D Tensor .                                                                                     It represents ending indices of corresponding axis in ``axes``.
        strides (list|tuple|Tensor): The data type is ``int32`` . If ``strides`` is a list or tuple, the elements of
                it should be integers or Tensors with shape [1]. If ``strides`` is an Tensor, it should be an 1-D Tensor .                                                                                  It represents slice step of corresponding axis in ``axes``.
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.
                        For more information, please refer to :ref:`api_guide_Name` .

    Returns:
L
Ligoml 已提交
3845
        Tensor, A ``Tensor`` with the same dimension as ``x``. The data type is same as ``x``.
3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859

    Examples:
        .. code-block:: python

            import paddle
            x = paddle.zeros(shape=[3,4,5,6], dtype="float32")
            # example 1:
            # attr starts is a list which doesn't contain Tensor.
            axes = [1, 2, 3]
            starts = [-3, 0, 2]
            ends = [3, 2, 4]
            strides_1 = [1, 1, 1]
            strides_2 = [1, 1, 2]
            sliced_1 = paddle.strided_slice(x, axes=axes, starts=starts, ends=ends, strides=strides_1)
3860
            # sliced_1 is x[:, 1:3:1, 0:2:1, 2:4:1].
3861 3862
            # example 2:
            # attr starts is a list which contain tensor Tensor.
3863
            minus_3 = paddle.full(shape=[1], fill_value=-3, dtype='int32')
3864 3865 3866
            sliced_2 = paddle.strided_slice(x, axes=axes, starts=[minus_3, 0, 2], ends=ends, strides=strides_2)
            # sliced_2 is x[:, 1:3:1, 0:2:1, 2:4:2].
    """
3867
    if in_dygraph_mode():
3868
        return _C_ops.strided_slice(x, axes, starts, ends, strides)
3869 3870
    else:
        helper = LayerHelper('strided_slice', **locals())
3871

3872 3873 3874
        check_variable_and_dtype(
            x,
            'x',
3875 3876 3877 3878 3879 3880 3881 3882 3883
            [
                'bool',
                'float16',
                'uint16',
                'float32',
                'float64',
                'int32',
                'int64',
            ],
3884 3885 3886 3887 3888 3889 3890 3891 3892 3893
            'strided_slice',
        )
        check_type(axes, 'axes', (list, tuple), 'strided_slice')
        check_type(starts, 'starts', (list, tuple, Variable), 'strided_slice')
        check_type(ends, 'ends', (list, tuple, Variable), 'strided_slice')
        check_type(strides, 'strides', (list, tuple, Variable), 'strided_slice')

        def check_list_elements_dtype(list_input, input_name):
            if isinstance(list_input, Variable):
                check_dtype(
W
wanghuancoder 已提交
3894 3895 3896 3897
                    list_input.dtype,
                    input_name,
                    ['int32', 'int64'],
                    'strided_slice',
3898
                )
3899
            else:
3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927
                for i, var in enumerate(list_input):
                    var_name = input_name + '[' + str(i) + ']'
                    if isinstance(var, Variable):
                        check_dtype(
                            var.dtype, var_name, ['int32'], 'strided_slice'
                        )

        check_list_elements_dtype(axes, 'axes')
        check_list_elements_dtype(starts, 'starts')
        check_list_elements_dtype(ends, 'ends')
        check_list_elements_dtype(strides, 'strides')

        def get_new_list_tensor(old_list):
            new_list_tensor = []
            for dim in old_list:
                if isinstance(dim, Variable):
                    dim.stop_gradient = True
                    new_list_tensor.append(dim)
                else:
                    assert isinstance(dim, int)
                    temp_out = helper.create_variable_for_type_inference(
                        'int32'
                    )
                    fill_constant(
                        [1], 'int32', dim, force_cpu=True, out=temp_out
                    )
                    new_list_tensor.append(temp_out)
            return new_list_tensor
3928 3929

        inputs = {'Input': x}
3930
        attrs = {'axes': axes}
3931
        infer_flags = [1 for i in range(len(axes))]
3932 3933 3934 3935 3936 3937
        # starts
        if isinstance(starts, Variable):
            starts.stop_gradient = True
            inputs['StartsTensor'] = starts
        elif isinstance(starts, (list, tuple)):
            attrs['starts'] = []
3938
            if paddle.utils._contain_var(starts):
3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954
                inputs['StartsTensorList'] = get_new_list_tensor(starts)
                for i, dim in enumerate(starts):
                    if isinstance(dim, Variable):
                        attrs['starts'].append(-1)
                        infer_flags[i] = -1
                    else:
                        attrs['starts'].append(dim)
            else:
                attrs['starts'] = starts

        # ends
        if isinstance(ends, Variable):
            ends.stop_gradient = True
            inputs['EndsTensor'] = ends
        elif isinstance(ends, (list, tuple)):
            attrs['ends'] = []
3955
            if paddle.utils._contain_var(ends):
3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971
                inputs['EndsTensorList'] = get_new_list_tensor(ends)
                for i, dim in enumerate(ends):
                    if isinstance(dim, Variable):
                        attrs['ends'].append(-1)
                        infer_flags[i] = -1
                    else:
                        attrs['ends'].append(dim)
            else:
                attrs['ends'] = ends

        # strides
        if isinstance(strides, Variable):
            strides.stop_gradient = True
            inputs['StridesTensor'] = strides
        elif isinstance(strides, (list, tuple)):
            attrs['strides'] = []
3972
            if paddle.utils._contain_var(strides):
3973 3974 3975 3976 3977 3978 3979 3980 3981 3982
                inputs['StridesTensorList'] = get_new_list_tensor(strides)
                for i, dim in enumerate(strides):
                    if isinstance(dim, Variable):
                        attrs['strides'].append(-1)
                        infer_flags[i] = -1
                    else:
                        attrs['strides'].append(dim)
            else:
                attrs['strides'] = strides
        attrs['infer_flags'] = infer_flags
3983 3984 3985 3986 3987 3988 3989 3990 3991
        out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype('x')
        )
        helper.append_op(
            type='strided_slice',
            inputs=inputs,
            attrs=attrs,
            outputs={'Out': out},
        )
3992

3993
        return out
F
From00 已提交
3994 3995 3996 3997


def tensordot(x, y, axes=2, name=None):
    r"""
3998
    This function computes a contraction, which sum the product of elements from two tensors along the given axes.
F
From00 已提交
3999 4000

    Args:
4001
        x (Tensor): The left tensor for contraction with data type ``float16`` or ``float32`` or ``float64``.
F
From00 已提交
4002 4003 4004
        y (Tensor): The right tensor for contraction with the same data type as ``x``.
        axes (int|tuple|list|Tensor, optional):  The axes to contract for ``x`` and ``y``, defaulted to integer ``2``.

4005
            1. It could be a non-negative integer ``n``,
F
From00 已提交
4006
               in which the function will sum over the last ``n`` axes of ``x`` and the first ``n`` axes of ``y`` in order.
4007 4008

            2. It could be a 1-d tuple or list with data type ``int``, in which ``x`` and ``y`` will be contracted along the same given axes.
F
From00 已提交
4009
               For example, ``axes`` =[0, 1] applies contraction along the first two axes for ``x`` and the first two axes for ``y``.
4010 4011 4012 4013

            3. It could be a tuple or list containing one or two 1-d tuple|list|Tensor with data type ``int``.
               When containing one tuple|list|Tensor, the data in tuple|list|Tensor specified the same axes for ``x`` and ``y`` to contract.
               When containing two tuple|list|Tensor, the first will be applied to ``x`` and the second to ``y``.
F
From00 已提交
4014
               When containing more than two tuple|list|Tensor, only the first two axis sequences will be used while the others will be ignored.
4015 4016 4017

            4. It could be a tensor, in which the ``axes`` tensor will be translated to a python list
               and applied the same rules described above to determine the contraction axes.
F
From00 已提交
4018
               Note that the ``axes`` with Tensor type is ONLY available in Dygraph mode.
4019
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.
F
From00 已提交
4020 4021
                             For more information, please refer to :ref:`api_guide_Name` .

4022
    Return:
L
Ligoml 已提交
4023
        Output (Tensor), The contraction result with the same data type as ``x`` and ``y``.
F
From00 已提交
4024
        In general, :math:`output.ndim = x.ndim + y.ndim - 2 \times n_{axes}`, where :math:`n_{axes}` denotes the number of axes to be contracted.
4025

F
From00 已提交
4026
    NOTES:
4027
        1. This function supports tensor broadcast,
F
From00 已提交
4028
           the size in the corresponding dimensions of ``x`` and ``y`` should be equal, or applies to the broadcast rules.
4029 4030 4031 4032 4033
        2. This function also supports axes expansion,
           when the two given axis sequences for ``x`` and ``y`` are of different lengths,
           the shorter sequence will expand the same axes as the longer one at the end.
           For example, if ``axes`` =[[0, 1, 2, 3], [1, 0]],
           the axis sequence for ``x`` is [0, 1, 2, 3],
F
From00 已提交
4034
           while the corresponding axis sequences for ``y`` will be expanded from [1, 0] to [1, 0, 2, 3].
4035

F
From00 已提交
4036 4037 4038 4039 4040 4041 4042 4043
    Examples:
        .. code-block:: python

            import paddle

            data_type = 'float64'

            # For two 2-d tensor x and y, the case axes=0 is equivalent to outer product.
4044
            # Note that tensordot supports empty axis sequence, so all the axes=0, axes=[], axes=[[]], and axes=[[],[]] are equivalent cases.
F
From00 已提交
4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105
            x = paddle.arange(4, dtype=data_type).reshape([2, 2])
            y = paddle.arange(4, dtype=data_type).reshape([2, 2])
            z = paddle.tensordot(x, y, axes=0)
            # z = [[[[0., 0.],
            #        [0., 0.]],
            #
            #       [[0., 1.],
            #        [2., 3.]]],
            #
            #
            #      [[[0., 2.],
            #        [4., 6.]],
            #
            #       [[0., 3.],
            #        [6., 9.]]]]


            # For two 1-d tensor x and y, the case axes=1 is equivalent to inner product.
            x = paddle.arange(10, dtype=data_type)
            y = paddle.arange(10, dtype=data_type)
            z1 = paddle.tensordot(x, y, axes=1)
            z2 = paddle.dot(x, y)
            # z1 = z2 = [285.]


            # For two 2-d tensor x and y, the case axes=1 is equivalent to matrix multiplication.
            x = paddle.arange(6, dtype=data_type).reshape([2, 3])
            y = paddle.arange(12, dtype=data_type).reshape([3, 4])
            z1 = paddle.tensordot(x, y, axes=1)
            z2 = paddle.matmul(x, y)
            # z1 = z2 =  [[20., 23., 26., 29.],
            #             [56., 68., 80., 92.]]


            # When axes is a 1-d int list, x and y will be contracted along the same given axes.
            # Note that axes=[1, 2] is equivalent to axes=[[1, 2]], axes=[[1, 2], []], axes=[[1, 2], [1]], and axes=[[1, 2], [1, 2]].
            x = paddle.arange(24, dtype=data_type).reshape([2, 3, 4])
            y = paddle.arange(36, dtype=data_type).reshape([3, 3, 4])
            z = paddle.tensordot(x, y, axes=[1, 2])
            # z =  [[506. , 1298., 2090.],
            #       [1298., 3818., 6338.]]


            # When axes is a list containing two 1-d int list, the first will be applied to x and the second to y.
            x = paddle.arange(60, dtype=data_type).reshape([3, 4, 5])
            y = paddle.arange(24, dtype=data_type).reshape([4, 3, 2])
            z = paddle.tensordot(x, y, axes=([1, 0], [0, 1]))
            # z =  [[4400., 4730.],
            #       [4532., 4874.],
            #       [4664., 5018.],
            #       [4796., 5162.],
            #       [4928., 5306.]]


            # Thanks to the support of axes expansion, axes=[[0, 1, 3, 4], [1, 0, 3, 4]] can be abbreviated as axes= [[0, 1, 3, 4], [1, 0]].
            x = paddle.arange(720, dtype=data_type).reshape([2, 3, 4, 5, 6])
            y = paddle.arange(720, dtype=data_type).reshape([3, 2, 4, 5, 6])
            z = paddle.tensordot(x, y, axes=[[0, 1, 3, 4], [1, 0]])
            # z = [[23217330., 24915630., 26613930., 28312230.],
            #      [24915630., 26775930., 28636230., 30496530.],
            #      [26613930., 28636230., 30658530., 32680830.],
4106
            #      [28312230., 30496530., 32680830., 34865130.]]
F
From00 已提交
4107 4108
    """
    op_type = 'tensordot'
4109
    input_dtype = ['float16', 'float32', 'float64']
F
From00 已提交
4110 4111 4112 4113 4114 4115

    check_variable_and_dtype(x, 'x', input_dtype, op_type)
    check_variable_and_dtype(y, 'y', input_dtype, op_type)
    check_type(axes, 'axes', (int, tuple, list, Variable), op_type)

    def _var_to_list(var):
4116
        if in_dygraph_mode():
F
From00 已提交
4117 4118
            return tolist(var)
        raise TypeError(
4119 4120 4121
            "The 'axes' with type 'Tensor' in "
            + op_type
            + " is not available in static graph mode, "
F
From00 已提交
4122 4123 4124 4125 4126 4127 4128
            "please convert its type to int|Tuple|List, or use dynamic graph mode."
        )

    axes_x = []
    axes_y = []
    if np.issubdtype(type(axes), np.integer):
        assert axes >= 0, (
4129 4130 4131 4132
            "The 'axes' in "
            + op_type
            + f" should not be negative, but received axes={axes}."
        )
F
From00 已提交
4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171
        axes_x = range(x.ndim - axes, x.ndim)
        axes_y = range(axes)
    else:
        if isinstance(axes, Variable):
            axes = _var_to_list(axes)

        if not axes or np.issubdtype(type(axes[0]), np.integer):
            axes_x = axes
        else:
            axes_x = axes[0]
            if len(axes) > 1:
                axes_y = axes[1]

            if isinstance(axes_x, Variable):
                axes_x = _var_to_list(axes_x)
            if isinstance(axes_y, Variable):
                axes_y = _var_to_list(axes_y)

    axes_x, axes_y = list(axes_x), list(axes_y)
    len_axes_x, len_axes_y = len(axes_x), len(axes_y)
    if len_axes_x < len_axes_y:
        axes_x.extend(axes_y[len_axes_x:])
    elif len_axes_y < len_axes_x:
        axes_y.extend(axes_x[len_axes_y:])

    shape_x, shape_y = list(x.shape), list(y.shape)
    need_contracted_dim_x = np.zeros((x.ndim), dtype=bool)
    need_contracted_dim_y = np.zeros((y.ndim), dtype=bool)
    contraction_size = 1
    for i in range(len(axes_x)):
        dim_x, dim_y = axes_x[i], axes_y[i]
        sx, sy = shape_x[dim_x], shape_y[dim_y]
        if sx == 1:
            shape_y[dim_y] = 1
            y = y.sum(dim_y).reshape(shape_y)
        elif sy == 1:
            shape_x[dim_x] = 1
            x = x.sum(dim_x).reshape(shape_x)
        else:
4172 4173 4174 4175 4176
            assert sx == sy, (
                "The dimensional size for 'x' and 'y' in "
                + op_type
                + f" should match each other, but 'x' has size {sx} in dim {dim_x} while 'y' has size {sy} in dim {dim_y}."
            )
F
From00 已提交
4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203

        need_contracted_dim_x[dim_x] = True
        need_contracted_dim_y[dim_y] = True
        contraction_size *= shape_x[dim_x]

    perm_x = []
    perm_y = []
    shape_out = []
    not_contraction_size_x = 1
    not_contraction_size_y = 1
    for i in range(x.ndim):
        if not need_contracted_dim_x[i]:
            perm_x.append(i)
            shape_out.append(shape_x[i])
            not_contraction_size_x *= shape_x[i]
    perm_x.extend(axes_x)
    perm_y.extend(axes_y)
    for i in range(y.ndim):
        if not need_contracted_dim_y[i]:
            perm_y.append(i)
            shape_out.append(shape_y[i])
            not_contraction_size_y *= shape_y[i]

    if not shape_out:
        shape_out = [1]

    x = x.transpose(perm=perm_x).reshape(
4204 4205
        [not_contraction_size_x, contraction_size]
    )
F
From00 已提交
4206
    y = y.transpose(perm=perm_y).reshape(
4207 4208
        [contraction_size, not_contraction_size_y]
    )
F
From00 已提交
4209 4210
    out = x.matmul(y).reshape(shape_out)
    return out
4211 4212 4213


def as_complex(x, name=None):
4214 4215
    """Transform a real tensor to a complex tensor.

4216 4217 4218
    The data type of the input tensor is 'float32' or 'float64', and the data
    type of the returned tensor is 'complex64' or 'complex128', respectively.

4219
    The shape of the input tensor is ``(* ,2)``, (``*`` means arbitary shape), i.e.
4220 4221 4222 4223 4224 4225 4226 4227
    the size of the last axis shoule be 2, which represent the real and imag part
    of a complex number. The shape of the returned tensor is ``(*,)``.

    Args:
        x (Tensor): The input tensor. Data type is 'float32' or 'float64'.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
L
Ligoml 已提交
4228
        Tensor, The output. Data type is 'complex64' or 'complex128', with the same precision as the input.
4229

4230 4231 4232 4233 4234 4235
    Examples:
        .. code-block:: python

            import paddle
            x = paddle.arange(12, dtype=paddle.float32).reshape([2, 3, 2])
            y = paddle.as_complex(x)
4236
            print(y)
4237

4238 4239 4240
            # Tensor(shape=[2, 3], dtype=complex64, place=Place(gpu:0), stop_gradient=True,
            #        [[1j      , (2+3j)  , (4+5j)  ],
            #         [(6+7j)  , (8+9j)  , (10+11j)]])
4241
    """
4242 4243
    if in_dygraph_mode():
        return _C_ops.as_complex(x)
4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257
    else:
        check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'as_complex')
        op_type = "as_complex"
        helper = LayerHelper(op_type, **locals())
        inputs = {"X": x}
        out = helper.create_variable_for_type_inference(
            dtype=_real_to_complex_dtype(x.dtype)
        )
        outputs = {"Out": out}
        attrs = {}
        helper.append_op(
            type=op_type, inputs=inputs, attrs=attrs, outputs=outputs
        )
        return out
4258 4259 4260


def as_real(x, name=None):
4261 4262 4263
    """Transform a complex tensor to a real tensor.

    The data type of the input tensor is 'complex64' or 'complex128', and the data
4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274
    type of the returned tensor is 'float32' or 'float64', respectively.

    When the shape of the input tensor is ``(*, )``, (``*`` means arbitary shape),
    the shape of the output tensor is ``(*, 2)``, i.e. the shape of the output is
    the shape of the input appended by an extra ``2``.

    Args:
        x (Tensor): The input tensor. Data type is 'complex64' or 'complex128'.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
L
Ligoml 已提交
4275
        Tensor, The output. Data type is 'float32' or 'float64', with the same precision as the input.
4276

4277 4278 4279 4280 4281 4282 4283
    Examples:
        .. code-block:: python

            import paddle
            x = paddle.arange(12, dtype=paddle.float32).reshape([2, 3, 2])
            y = paddle.as_complex(x)
            z = paddle.as_real(y)
4284
            print(z)
4285

4286 4287 4288 4289
            # Tensor(shape=[2, 3, 2], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [[[0. , 1. ],
            #          [2. , 3. ],
            #          [4. , 5. ]],
4290

4291 4292 4293
            #         [[6. , 7. ],
            #          [8. , 9. ],
            #          [10., 11.]]])
4294
    """
4295 4296
    if in_dygraph_mode():
        return _C_ops.as_real(x)
4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307
    else:
        check_variable_and_dtype(x, 'x', ['complex64', 'complex128'], 'as_real')
        op_type = "as_real"
        helper = LayerHelper(op_type, **locals())
        inputs = {"X": x}
        out = helper.create_variable_for_type_inference(
            dtype=_complex_to_real_dtype(x.dtype)
        )
        outputs = {"Out": out}
        helper.append_op(type=op_type, inputs=inputs, outputs=outputs)
        return out
4308 4309


K
kuizhiqing 已提交
4310 4311 4312 4313 4314 4315 4316 4317 4318
def repeat_interleave(x, repeats, axis=None, name=None):
    """

    Returns a new tensor which repeats the ``x`` tensor along dimension ``axis`` using
    the entries in ``repeats`` which is a int or a Tensor.

    Args:
        x (Tensor): The input Tensor to be operated. The data of ``x`` can be one of float32, float64, int32, int64.
        repeats (Tensor or int): The number of repetitions for each element. repeats is broadcasted to fit the shape of the given axis.
4319
        axis (int, optional): The dimension in which we manipulate. Default: None, the output tensor is flatten.
K
kuizhiqing 已提交
4320 4321 4322 4323 4324
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.

    Returns:
L
Ligoml 已提交
4325
        Tensor, A Tensor with same data type as ``x``.
K
kuizhiqing 已提交
4326

4327 4328 4329 4330 4331
    Examples:
        .. code-block:: python

            import paddle

K
kuizhiqing 已提交
4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349
            x = paddle.to_tensor([[1, 2, 3], [4, 5, 6]])
            repeats  = paddle.to_tensor([3, 2, 1], dtype='int32')

            paddle.repeat_interleave(x, repeats, 1)
            # [[1, 1, 1, 2, 2, 3],
            #  [4, 4, 4, 5, 5, 6]]

            paddle.repeat_interleave(x, 2, 0)
            # [[1, 2, 3], [1, 2, 3], [4, 5, 6], [4, 5, 6]]

            paddle.repeat_interleave(x, 2, None)
            # [1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6]
    """

    if axis is None:
        x = paddle.flatten(x)
        axis = 0

S
seemingwang 已提交
4350 4351
    if in_dygraph_mode():
        if isinstance(repeats, Variable):
4352 4353
            return _C_ops.repeat_interleave_with_tensor_index(x, repeats, axis)
        return _C_ops.repeat_interleave(x, repeats, axis)
K
kuizhiqing 已提交
4354 4355

    helper = LayerHelper("repeat_interleave", **locals())
4356 4357 4358 4359 4360 4361
    check_variable_and_dtype(
        x,
        'x',
        ['float32', 'float64', 'int32', 'int64'],
        'paddle.tensor.manipulation.repeat_interleave',
    )
K
kuizhiqing 已提交
4362 4363 4364

    out = helper.create_variable_for_type_inference(x.dtype)

4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376
    helper.append_op(
        type='repeat_interleave',
        inputs={
            'X': x,
            'RepeatsTensor': repeats if isinstance(repeats, Variable) else None,
        },
        outputs={'Out': out},
        attrs={
            'dim': axis,
            'Repeats': repeats if isinstance(repeats, int) else 0,
        },
    )
K
kuizhiqing 已提交
4377 4378 4379
    return out


4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393
def moveaxis(x, source, destination, name=None):
    """
    Move the axis of tensor from ``source`` position to ``destination`` position.

    Other axis that have not been moved remain their original order.

    Args:
        x (Tensor): The input Tensor. It is a N-D Tensor of data types bool, int32, int64, float32, float64, complex64, complex128.
        source(int|tuple|list): ``source`` position of axis that will be moved. Each element must be unique and integer.
        destination(int|tuple|list(int)): ``destination`` position of axis that has been moved. Each element must be unique and integer.
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
L
Ligoml 已提交
4394
        Tensor, A new tensor whose axis have been moved.
4395 4396 4397

    Examples:
        .. code-block:: python
4398

4399 4400 4401 4402 4403 4404 4405
            import paddle

            x = paddle.ones([3, 2, 4])
            paddle.moveaxis(x, [0, 1], [1, 2]).shape
            # [4, 3, 2]

            x = paddle.ones([2, 3])
4406
            paddle.moveaxis(x, 0, 1).shape # equivalent to paddle.t(x)
4407
            # [3, 2]
4408 4409 4410 4411 4412
    """
    src = [source] if isinstance(source, int) else source
    dst = [destination] if isinstance(destination, int) else destination

    assert len(src) == len(
4413 4414
        dst
    ), "'source' must have the same number with 'destination'"
4415

4416
    if len(src) != len(set(src)):
4417
        raise ValueError("Each elemment of 'source' must be unique!")
4418
    if len(dst) != len(set(dst)):
4419 4420 4421 4422 4423 4424 4425 4426 4427 4428
        raise ValueError("Each elemment of 'destination' must be unique!")

    ndim = len(x.shape)

    # perm is the new order after move axis
    perm = list(range(ndim))
    src_dims = list(range(ndim))
    dst_dims = list(range(ndim))

    for i, axis in enumerate(zip(src, dst)):
4429 4430 4431
        assert isinstance(
            axis[0], int
        ), "Each elemment of 'source' must be integer."
4432
        if axis[0] < 0:
4433 4434 4435
            assert (
                axis[0] >= -ndim
            ), "'source' must be in the range of [-{0}, {0})".format(ndim)
4436 4437
            src[i] += ndim
        else:
4438 4439 4440
            assert (
                axis[0] < ndim
            ), "'source' must be in the range of [-{0}, {0})".format(ndim)
4441

4442 4443 4444
        assert isinstance(
            axis[1], int
        ), "Each elemment of 'source' must be integer."
4445
        if axis[1] < 0:
4446 4447 4448
            assert (
                axis[1] >= -ndim
            ), "'source' must be in the range of [-{0}, {0})".format(ndim)
4449 4450
            dst[i] += ndim
        else:
4451 4452 4453
            assert (
                axis[1] < ndim
            ), "'source' must be in the range of [-{0}, {0})".format(ndim)
4454 4455 4456 4457 4458 4459 4460
        perm[dst[i]] = src[i]
        src_dims.remove(src[i])
        dst_dims.remove(dst[i])

    for i in range(len(src_dims)):
        perm[dst_dims[i]] = src_dims[i]

4461
    if in_dygraph_mode():
4462
        out = _C_ops.transpose(x, perm)
4463
        return out
4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479
    else:
        check_variable_and_dtype(
            x,
            'x',
            [
                'bool',
                'float16',
                'float32',
                'float64',
                'int32',
                'int64',
                'complex64',
                'complex128',
            ],
            'moveaxis',
        )
4480

4481 4482 4483 4484 4485 4486 4487 4488 4489
        helper = LayerHelper('moveaxis', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        x_shape = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='transpose2',
            inputs={'X': [x]},
            outputs={'Out': [out], 'XShape': [x_shape]},
            attrs={'axis': perm},
        )
4490 4491
        return out

4492

4493 4494 4495
def non_negative_axis(arr, axis):
    ndim = len(arr.shape)
    if axis >= 0:
4496 4497 4498
        assert (
            axis < ndim
        ), "'axis'  must be in the range of [-{0}, {0})".format(ndim)
4499
    else:
4500 4501 4502
        assert (
            axis >= -ndim
        ), "'axis'  must be in the range of [-{0}, {0})".format(ndim)
4503 4504 4505 4506 4507 4508
        axis += ndim

    return axis


def infer_broadcast_shape(arr, indices, axis):
4509
    # This function is used in take/put_along_axis
4510 4511 4512 4513 4514 4515 4516 4517 4518 4519
    broadcast_shape_list = list(arr.shape)
    broadcast_shape_list[axis] = list(indices.shape)[axis]
    broadcast_shape = tuple(broadcast_shape_list)
    for i in range(len(arr.shape)):
        if arr.shape[i] < indices.shape[i]:
            # if indices matrix has larger size than arr matrix, do not broadcast.
            return None
    return broadcast_shape


4520 4521 4522 4523 4524
def take_along_axis(arr, indices, axis):
    """
    Take values from the input array by given indices matrix along the designated axis.

    Args:
4525
        arr (Tensor) : The input Tensor. Supported data types are float32 and float64.
4526
        indices (Tensor) : Indices to take along each 1d slice of arr. This must match the dimension of arr,
4527
            and need to broadcast against arr. Supported data type are int and int64.
4528
        axis (int) : The axis to take 1d slices along.
4529

4530
    Returns:
L
Ligoml 已提交
4531
        Tensor, The indexed element, same dtype with arr
4532

4533 4534 4535 4536 4537
    Examples:
        .. code-block:: python

            import paddle

4538 4539
            x = paddle.to_tensor([[1, 2, 3], [4, 5, 6], [7,8,9]])
            index = paddle.to_tensor([[0]])
4540 4541 4542 4543 4544
            axis = 0
            result = paddle.take_along_axis(x, index, axis)
            print(result)
            # [[1, 2, 3]]
    """
4545
    if len(arr.shape) != len(indices.shape):
4546
        raise ValueError(
4547 4548
            "`indices` and `arr` must have the same number of dimensions!"
        )
4549 4550 4551 4552 4553
    axis = non_negative_axis(arr, axis)
    broadcast_shape = infer_broadcast_shape(arr, indices, axis)
    if not broadcast_shape:
        # if indices matrix have larger size than arr, arr should broadcast into indices shape.
        broadcast_shape = indices.shape
4554
    if in_dygraph_mode():
4555
        indices = paddle.broadcast_to(indices, broadcast_shape)
4556 4557 4558 4559
        broadcast_shape_list = list(broadcast_shape)
        broadcast_shape_list[axis] = list(arr.shape)[axis]
        broadcast_shape = tuple(broadcast_shape_list)
        arr = paddle.broadcast_to(arr, broadcast_shape)
4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585
        return _C_ops.take_along_axis(arr, indices, axis)
    else:
        check_variable_and_dtype(
            arr,
            'x',
            ['float16', 'float32', 'float64', 'int32', 'int64', 'uint8'],
            'take_along_axis',
        )
        check_variable_and_dtype(
            indices, 'index', ['int32', 'int64'], 'take_along_axis'
        )
        indices = paddle.broadcast_to(indices, broadcast_shape)
        broadcast_shape_list = list(broadcast_shape)
        broadcast_shape_list[axis] = list(arr.shape)[axis]
        broadcast_shape = tuple(broadcast_shape_list)
        arr = paddle.broadcast_to(arr, broadcast_shape)
        helper = LayerHelper('take_along_axis', **locals())
        dtype = helper.input_dtype()
        result = helper.create_variable_for_type_inference(dtype)
        helper.append_op(
            type="take_along_axis",
            inputs={"Input": arr, "Index": indices},
            attrs={"Axis": axis},
            outputs={"Result": result},
        )
        return result
4586 4587 4588 4589 4590 4591 4592 4593 4594 4595


def put_along_axis(arr, indices, values, axis, reduce='assign'):
    """
    Put values into the destination array by given indices matrix along the designated axis.

    Args:
        arr (Tensor) : The Destination Tensor. Supported data types are float32 and float64.
        indices (Tensor) : Indices to put along each 1d slice of arr. This must match the dimension of arr,
            and need to broadcast against arr. Supported data type are int and int64.
4596
        axis (int) : The axis to put 1d slices along.
G
gouzil 已提交
4597 4598 4599
        reduce (str, optional): The reduce operation, default is 'assign', support 'add', 'assign', 'mul' and 'multiply'.

    Returns:
L
Ligoml 已提交
4600
        Tensor, The indexed element, same dtype with arr
4601

4602 4603 4604 4605 4606
    Examples:
        .. code-block:: python

            import paddle

4607 4608
            x = paddle.to_tensor([[10, 30, 20], [60, 40, 50]])
            index = paddle.to_tensor([[0]])
4609 4610 4611 4612 4613 4614 4615 4616
            value = 99
            axis = 0
            result = paddle.put_along_axis(x, index, value, axis)
            print(result)
            # [[99, 99, 99],
            # [60, 40, 50]]

    """
4617
    if len(arr.shape) != len(indices.shape):
4618
        raise ValueError(
4619 4620
            "`indices` and `arr` must have the same number of dimensions!"
        )
4621 4622
    axis = non_negative_axis(arr, axis)
    broadcast_shape = infer_broadcast_shape(arr, indices, axis)
4623
    if in_dygraph_mode():
4624 4625 4626 4627 4628
        values = (
            paddle.to_tensor(values)
            if not isinstance(values, paddle.Tensor)
            else values
        )
4629 4630 4631
        if broadcast_shape:
            indices = paddle.broadcast_to(indices, broadcast_shape)
        values = paddle.broadcast_to(values, indices.shape)
4632 4633 4634 4635 4636 4637 4638
        return _C_ops.put_along_axis(arr, indices, values, axis, reduce)
    else:
        check_variable_and_dtype(
            arr,
            'x',
            ['float16', 'float32', 'float64', 'int32', 'int64', 'uint8'],
            'put_along_axis',
4639
        )
4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655
        check_variable_and_dtype(
            indices, 'index', ['int32', 'int64'], 'put_along_axis'
        )
        if broadcast_shape:
            indices = paddle.broadcast_to(indices, broadcast_shape)
        values = paddle.broadcast_to(values, indices.shape)
        helper = LayerHelper('put_along_axis', **locals())
        dtype = helper.input_dtype()
        result = helper.create_variable_for_type_inference(dtype)
        helper.append_op(
            type="put_along_axis",
            inputs={"Input": arr, "Index": indices, "Value": values},
            attrs={"Axis": axis, "Reduce": reduce},
            outputs={"Result": result},
        )
        return result
4656 4657 4658 4659 4660


@inplace_apis_in_dygraph_only
def put_along_axis_(arr, indices, values, axis, reduce='assign'):
    r"""
4661
    Inplace version of ``put_along_axis`` API, the output Tensor will be inplaced with input ``arr``.
4662 4663
    Please refer to :ref:`api_tensor_put_along_axis`.
    """
4664
    if len(arr.shape) != len(indices.shape):
4665
        raise ValueError(
4666 4667
            "`indices` and `arr` must have the same number of dimensions!"
        )
4668 4669
    axis = non_negative_axis(arr, axis)
    broadcast_shape = infer_broadcast_shape(arr, indices, axis)
4670 4671 4672 4673 4674
    values = (
        paddle.to_tensor(values)
        if not isinstance(values, paddle.Tensor)
        else values
    )
4675 4676 4677
    if broadcast_shape:
        indices = paddle.broadcast_to(indices, broadcast_shape)
    values = paddle.broadcast_to(values, indices.shape)
4678
    return _C_ops.put_along_axis_(arr, indices, values, axis, reduce)
4679 4680


L
Li Min 已提交
4681 4682 4683 4684 4685 4686 4687 4688
def index_add(x, index, axis, value, name=None):
    """
    Adds the elements of the input tensor with value tensor by selecting the indices in the order given in index.

    Args:
        x (Tensor) : The Destination Tensor. Supported data types are int32, int64, float16, float32, float64.
        index (Tensor): The 1-D Tensor containing the indices to index.
            The data type of ``index`` must be int32 or int64.
4689
        axis (int): The dimension in which we index.
L
Li Min 已提交
4690 4691 4692 4693
        value (Tensor): The tensor used to add the elements along the target axis.
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.

    Returns:
L
Ligoml 已提交
4694
        Tensor, same dimention and dtype with x.
L
Li Min 已提交
4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705

    Examples:
        .. code-block:: python

            # required: gpu
            import paddle

            input_tensor = paddle.to_tensor(paddle.ones((3, 3)), dtype="float32")
            index = paddle.to_tensor([0, 2], dtype="int32")
            value = paddle.to_tensor([[1, 1, 1], [1, 1, 1]], dtype="float32")
            outplace_res = paddle.index_add(input_tensor, index, 0, value)
4706 4707 4708 4709 4710
            print(outplace_res)
            # Tensor(shape=[3, 3], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [[2., 2., 2.],
            #         [1., 1., 1.],
            #         [2., 2., 2.]])
L
Li Min 已提交
4711 4712 4713 4714 4715 4716
    """
    if in_dygraph_mode():
        return _C_ops.index_add(x, index, value, axis)

    helper = LayerHelper("index_add", **locals())
    check_variable_and_dtype(
4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727
        x,
        'x',
        ['float16', 'float32', 'float64', 'int32', 'int64'],
        'paddle.tensor.manipulation.index_add',
    )
    check_variable_and_dtype(
        index,
        'index',
        ['int32', 'int64'],
        'paddle.tensor.manipulation.index_add',
    )
L
Li Min 已提交
4728
    check_variable_and_dtype(
4729 4730 4731 4732 4733
        value,
        'add_value',
        ['float16', 'float32', 'float64', 'int32', 'int64'],
        'paddle.tensor.manipulation.index_add',
    )
L
Li Min 已提交
4734 4735 4736

    out = helper.create_variable_for_type_inference(x.dtype)

4737 4738 4739 4740 4741 4742 4743 4744 4745 4746
    helper.append_op(
        type='index_add',
        inputs={
            'X': x,
            'Index': index,
            'AddValue': value,
        },
        outputs={'Out': out},
        attrs={'axis': axis},
    )
L
Li Min 已提交
4747 4748 4749 4750 4751 4752 4753
    return out


@inplace_apis_in_dygraph_only
def index_add_(x, index, axis, value, name=None):
    """
    Inplace version of ``index_add`` API, the output Tensor will be inplaced with input ``x``.
4754
    Please refer to :ref:`api_paddle_index_add`.
4755

L
Li Min 已提交
4756 4757 4758 4759 4760 4761 4762 4763 4764 4765
    Examples:
        .. code-block:: python

            # required: gpu
            import paddle

            input_tensor = paddle.to_tensor(paddle.ones((3, 3)), dtype="float32")
            index = paddle.to_tensor([0, 2], dtype="int32")
            value = paddle.to_tensor([[1, 1], [1, 1], [1, 1]], dtype="float32")
            inplace_res = paddle.index_add_(input_tensor, index, 1, value)
4766 4767 4768 4769 4770
            print(inplace_res)
            # Tensor(shape=[3, 3], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [[2., 1., 2.],
            #         [2., 1., 2.],
            #         [2., 1., 2.]])
L
Li Min 已提交
4771 4772 4773 4774
    """
    return _C_ops.index_add_(x, index, value, axis)


4775 4776 4777 4778 4779 4780 4781
# TODO(dev): We need avoid implementing it by this way.
__METHODS = {
    'fill_': fill_,
    'zero_': zero_,
    'fill_diagonal_': fill_diagonal_,
    'fill_diagonal_tensor_': fill_diagonal_tensor_,
    "fill_diagonal_tensor": fill_diagonal_tensor,
4782
    'tolist': tolist,
4783 4784 4785
}
for name, func in __METHODS.items():
    setattr(core.eager.Tensor, name, func)