manipulation.py 171.0 KB
Newer Older
L
Ligoml 已提交
1
#   Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
# TODO: define functions to manipulate a tensor

myq406450149's avatar
myq406450149 已提交
17
import numpy as np
18

19
import paddle
20
from paddle import _C_ops
21
from paddle.tensor import fill_constant
22
from paddle.utils.inplace_utils import inplace_apis_in_dygraph_only
23 24 25 26 27 28 29

from ..fluid.data_feeder import (
    check_dtype,
    check_type,
    check_variable_and_dtype,
    convert_dtype,
)
30
from ..fluid.framework import Variable
31 32 33 34 35 36 37 38
from ..framework import (
    LayerHelper,
    convert_np_dtype_to_dtype_,
    core,
    dygraph_only,
    in_dygraph_mode,
)
from .creation import _complex_to_real_dtype, _real_to_complex_dtype, zeros
39

40 41
__all__ = []

W
Wilber 已提交
42

43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
def tensor_array_to_tensor(input, axis=1, use_stack=False, name=None):
    r"""
    This function concatenates or stacks all tensors in the input LoDTensorArray
    along the axis mentioned and returns that as the output.

    For Example:

    .. code-block:: text

        Case 1:

            Given:

                input.data = {[[0.6, 0.1, 0.3],
                               [0.5, 0.3, 0.2]],
                              [[1.3],
                               [1.8]],
                              [[2.3, 2.1],
                               [2.5, 2.4]]}

                axis = 1, use_stack = False

            Then:

                output.data = [[0.6, 0.1, 0.3, 1.3, 2.3, 2.1],
                               [0.5, 0.3, 0.2, 1.8, 2.5, 2.4]]

                output_index.data = [3, 1, 2]

        Case 2:

            Given:

                input.data = {[[0.6, 0.1],
                               [0.5, 0.3]],
                              [[0.3, 1.3],
                               [0.2, 1.8]],
                              [[2.3, 2.1],
                               [2.5, 2.4]]}

                axis = 1, use_stack = True

            Then:

                output.data = [[[0.6, 0.1]
                                [0.3, 1.3]
                                [2.3, 2.1],
                               [[0.5, 0.3]
                                [0.2, 1.8]
                                [2.5, 2.4]]]

                output_index.data = [2, 2, 2]

    Args:
        input(TensorArray): A TensorArray variable.
        axis(int): The axis along which the tensors in attr::`input` will be
            concatenated or stacked.
        use_stack(bool): Act as concat_op or stack_op. For stack mode, all
            tensors in the tensor array must have the same shape.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Tensor: The concatenated or stacked tensor variable.
        Tensor: A 1-D tensor variable with int32 data type. The data in this \
            tensor contains all input including tensors' sizes along the axis.

    Examples:
        .. code-block:: python

            import numpy
            import paddle
            x0 = paddle.assign(numpy.random.rand(2, 2).astype("float32"))
            x1 = paddle.assign(numpy.random.rand(2, 2).astype("float32"))
            i = paddle.full(shape=[1], dtype="int64", fill_value=0)
            array = paddle.tensor.array.create_array(dtype='float32')
            paddle.tensor.array.array_write(x0, i, array)
            paddle.tensor.array.array_write(x1, i + 1, array)
            output, output_index = paddle.tensor.manipulation.tensor_array_to_tensor(input=array)
    """
123
    if in_dygraph_mode():
124 125 126 127 128 129 130
        assert isinstance(
            input, list
        ), "The 'input' in tensor_array_to_tensor must be list"
        from paddle import concat, stack

        op = stack if use_stack else concat
        res = op(input, axis=axis)
131
        sizes = paddle.to_tensor(np.array([int(x.shape[axis]) for x in input]))
132
        return res, sizes
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
    else:
        check_type(input, 'input', (list, Variable), 'tensor_array_to_tensor')
        if isinstance(input, list):
            for i, input_x in enumerate(input):
                check_type(
                    input_x,
                    'input[' + str(i) + ']',
                    Variable,
                    'tensor_array_to_tensor',
                )
        helper = LayerHelper('tensor_array_to_tensor', **locals())
        out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype()
        )
        out_index = helper.create_variable_for_type_inference(dtype="int32")
        helper.append_op(
            type='tensor_array_to_tensor',
            inputs={'X': input},
            outputs={'Out': [out], 'OutIndex': [out_index]},
            attrs={'axis': axis, 'use_stack': use_stack},
        )
        return out, out_index
155 156


157 158 159
def cast(x, dtype):
    """

160
    Take in the Tensor :attr:`x` with :attr:`x.dtype` and cast it
161 162 163 164
    to the output with :attr:`dtype`. It's meaningless if the output dtype
    equals the input dtype, but it's fine if you do so.

    Args:
165
        x (Tensor): An input N-D Tensor with data type bool, float16,
166
            float32, float64, int32, int64, uint8.
167
        dtype (np.dtype|str): Data type of the output:
168 169 170
            bool, float16, float32, float64, int8, int32, int64, uint8.

    Returns:
L
Ligoml 已提交
171
        Tensor, A Tensor with the same shape as input's.
172 173 174 175 176 177 178 179 180 181 182 183

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([2, 3, 4], 'float64')
            y = paddle.cast(x, 'uint8')
    """
    if in_dygraph_mode():
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)
184
        return _C_ops.cast(x, dtype)
185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
    else:
        check_variable_and_dtype(
            x,
            'x',
            [
                'bool',
                'float16',
                'float32',
                'float64',
                'int16',
                'int32',
                'int64',
                'uint8',
                'uint16',
            ],
            'cast',
        )
        check_dtype(
            dtype,
            'dtype',
            [
                'bool',
                'float16',
                'float32',
                'float64',
                'int8',
                'int16',
                'int32',
                'int64',
                'uint8',
                'uint16',
            ],
            'cast',
        )
219

220 221 222 223 224 225 226 227 228 229
        helper = LayerHelper('cast', **locals())
        out = helper.create_variable_for_type_inference(
            dtype=dtype, stop_gradient=x.stop_gradient
        )
        helper.append_op(
            type='cast',
            inputs={'X': [x]},
            outputs={'Out': [out]},
            attrs={'in_dtype': x.dtype, 'out_dtype': out.dtype},
        )
230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
        return out


def slice(input, axes, starts, ends):
    """
    This operator produces a slice of ``input`` along multiple axes. Similar to numpy:
    https://docs.scipy.org/doc/numpy/reference/arrays.indexing.html
    Slice uses ``axes``, ``starts`` and ``ends`` attributes to specify the start and
    end dimension for each axis in the list of axes and Slice uses this information
    to slice the input data tensor. If a negative value is passed to
    ``starts`` or ``ends`` such as :math:`-i`,  it represents the reverse position of the
    axis :math:`i-1` (here 0 is the initial position).
    If the value passed to ``starts`` or ``ends`` is greater than n
    (the number of elements in this dimension), it represents n.
    For slicing to the end of a dimension with unknown size, it is recommended
    to pass in INT_MAX. The size of ``axes`` must be equal to ``starts`` and ``ends``.
    Following examples will explain how slice works:

    .. code-block:: text

        Case1:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
                starts = [1, 0]
                ends = [2, 3]
            Then:
                result = [ [5, 6, 7], ]

        Case2:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
                starts = [0, 1]
                ends = [-1, 1000]       # -1 denotes the reverse 0th position of dimension 0.
            Then:
                result = [ [2, 3, 4], ] # result = data[0:1, 1:4]
267

268 269 270 271 272 273 274 275 276 277 278
    Args:
        input (Tensor): A ``Tensor`` . The data type is ``float16``, ``float32``, ``float64``, ``int32`` or ``int64``.
        axes (list|tuple): The data type is ``int32`` . Axes that `starts` and `ends` apply to .
        starts (list|tuple|Tensor): The data type is ``int32`` . If ``starts`` is a list or tuple, the elements of
                it should be integers or Tensors with shape [1]. If ``starts`` is an Tensor, it should be an 1-D Tensor.
                It represents starting indices of corresponding axis in ``axes``.
        ends (list|tuple|Tensor): The data type is ``int32`` . If ``ends`` is a list or tuple, the elements of
                it should be integers or Tensors with shape [1]. If ``ends`` is an Tensor, it should be an 1-D Tensor .
                It represents ending indices of corresponding axis in ``axes``.

    Returns:
L
Ligoml 已提交
279
        Tensor, A ``Tensor``. The data type is same as ``input``.
280 281 282 283 284 285 286 287 288 289 290 291 292

    Examples:
        .. code-block:: python

            import paddle

            input = paddle.rand(shape=[4, 5, 6], dtype='float32')
            # example 1:
            # attr starts is a list which doesn't contain tensor.
            axes = [0, 1, 2]
            starts = [-3, 0, 2]
            ends = [3, 2, 4]
            sliced_1 = paddle.slice(input, axes=axes, starts=starts, ends=ends)
Z
zyfncg 已提交
293
            # sliced_1 is input[1:3, 0:2, 2:4].
294 295 296 297 298

            # example 2:
            # attr starts is a list which contain tensor.
            minus_3 = paddle.full([1], -3, "int32")
            sliced_2 = paddle.slice(input, axes=axes, starts=[minus_3, 0, 2], ends=ends)
Z
zyfncg 已提交
299
            # sliced_2 is input[1:3, 0:2, 2:4].
300 301 302 303 304 305 306 307 308 309
    """
    if in_dygraph_mode():
        attrs = ()
        starts_tensor = None
        ends_tensor = None

        if isinstance(axes, (list, tuple)):
            axes = list(axes)
            if len(axes) == 0:
                raise ValueError(
310 311
                    "Input axes should not be an empty list/tuple."
                )
312 313 314 315 316 317 318 319
            for i in range(len(axes)):
                if axes[i] < 0:
                    axes[i] = max(0, axes[i] + len(input.shape))
                else:
                    axes[i] = min(len(input.shape) - 1, axes[i])

        else:
            raise ValueError(
320 321 322 323
                "Input axes must be a python list or tuple, but reveived {}".format(
                    type(axes)
                )
            )
324

325
        infer_flags = [1 for i in range(len(axes))]
326 327 328 329 330

        tmp_tensor_type = core.eager.Tensor

        if isinstance(starts, (list, tuple)):
            starts = [
331
                item.item(0) if isinstance(item, tmp_tensor_type) else item
332 333 334
                for item in starts
            ]
        elif isinstance(starts, tmp_tensor_type):
335
            tensor_t = starts.numpy(False)
336
            starts = list(tensor_t)
337
            infer_flags = [-1 for i in range(len(axes))]
338 339 340

        if isinstance(ends, (list, tuple)):
            ends = [
341
                item.item(0) if isinstance(item, tmp_tensor_type) else item
342
                for item in ends
343 344
            ]
        elif isinstance(ends, tmp_tensor_type):
345
            tensor_t = ends.numpy(False)
346
            ends = list(tensor_t)
347
            infer_flags = [-1 for i in range(len(axes))]
348

349
        return _C_ops.slice(input, axes, starts, ends, infer_flags, [])
350
    else:
351 352 353 354 355 356 357 358
        if not isinstance(starts, (list, tuple, Variable)):
            raise ValueError(
                "Input starts must be an Variable, python list or tuple."
            )
        if not isinstance(ends, (list, tuple, Variable)):
            raise ValueError(
                "Input ends must be an Variable, python list or tuple."
            )
359

360 361 362 363
        helper = LayerHelper('slice', **locals())

        inputs = {'Input': input}
        attrs = {'axes': axes}
364
        infer_flags = [1 for i in range(len(axes))]
365 366 367 368 369

        # starts
        if isinstance(starts, Variable):
            starts.stop_gradient = True
            inputs['StartsTensor'] = starts
370
            infer_flags = [-1 for i in range(len(axes))]
371 372
        elif isinstance(starts, (list, tuple)):
            attrs['starts'] = []
373 374 375 376
            if paddle.utils._contain_var(starts):
                inputs[
                    'StartsTensorList'
                ] = paddle.utils._convert_to_tensor_list(starts)
377 378 379 380 381 382 383 384
                for i, dim in enumerate(starts):
                    if isinstance(dim, Variable):
                        attrs['starts'].append(-1)
                        infer_flags[i] = -1
                    else:
                        attrs['starts'].append(dim)
            else:
                attrs['starts'] = starts
385

386 387 388 389
        # ends
        if isinstance(ends, Variable):
            ends.stop_gradient = True
            inputs['EndsTensor'] = ends
390
            infer_flags = [-1 for i in range(len(axes))]
391 392
        elif isinstance(ends, (list, tuple)):
            attrs['ends'] = []
393 394 395 396
            if paddle.utils._contain_var(ends):
                inputs['EndsTensorList'] = paddle.utils._convert_to_tensor_list(
                    ends
                )
397 398 399 400 401 402 403 404
                for i, dim in enumerate(ends):
                    if isinstance(dim, Variable):
                        attrs['ends'].append(-1)
                        infer_flags[i] = -1
                    else:
                        attrs['ends'].append(dim)
            else:
                attrs['ends'] = ends
405

406 407 408 409
        # infer_flags
        attrs['infer_flags'] = infer_flags
        out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype('input')
410
        )
411 412
        helper.append_op(
            type='slice', inputs=inputs, attrs=attrs, outputs={'Out': out}
413
        )
414

415
        return out
416 417 418 419 420 421 422 423 424 425 426 427 428 429 430


def transpose(x, perm, name=None):
    """
    Permute the data dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
        x (Tensor): The input Tensor. It is a N-D Tensor of data types bool, float32, float64, int32.
        perm (list|tuple): Permute the input according to the data of perm.
        name (str): The name of this layer. It is optional.

    Returns:
L
Ligoml 已提交
431
        Tensor, A transposed n-D Tensor, with data type being bool, float32, float64, int32, int64.
432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468

    For Example:

        .. code-block:: text

         x = [[[ 1  2  3  4] [ 5  6  7  8] [ 9 10 11 12]]
             [[13 14 15 16] [17 18 19 20] [21 22 23 24]]]
         shape(x) =  [2,3,4]

         # Example 1
         perm0 = [1,0,2]
         y_perm0 = [[[ 1  2  3  4] [13 14 15 16]]
                   [[ 5  6  7  8]  [17 18 19 20]]
                   [[ 9 10 11 12]  [21 22 23 24]]]
         shape(y_perm0) = [3,2,4]

         # Example 2
         perm1 = [2,1,0]
         y_perm1 = [[[ 1 13] [ 5 17] [ 9 21]]
                   [[ 2 14] [ 6 18] [10 22]]
                   [[ 3 15]  [ 7 19]  [11 23]]
                   [[ 4 16]  [ 8 20]  [12 24]]]
         shape(y_perm1) = [4,3,2]

    Examples:

        .. code-block:: python

            import paddle

            x = paddle.randn([2, 3, 4])
            x_transposed = paddle.transpose(x, perm=[1, 0, 2])
            print(x_transposed.shape)
            # [3L, 2L, 4L]

    """
    if in_dygraph_mode():
469
        return _C_ops.transpose(x, perm)
470
    else:
471 472 473 474 475 476 477 478 479 480
        check_variable_and_dtype(
            x,
            'x',
            [
                'bool',
                'float16',
                'float32',
                'float64',
                'int32',
                'int64',
481
                'uint16',
482 483 484 485
                'complex64',
                'complex128',
            ],
            'transpose',
486
        )
487 488 489 490
        check_type(perm, 'perm', (list, tuple), 'transpose')
        if isinstance(perm, tuple):
            perm = list(perm)
        if len(perm) != len(x.shape):
491
            raise ValueError(
492 493
                "Input(perm) is the permutation of dimensions of Input(x), "
                "its length should be equal to dimensions of Input(x), "
494 495 496 497
                "but received dimension of Input(x) is {}, "
                "the length of Input(perm) is {}.".format(
                    len(x.shape), len(perm)
                )
498
            )
499 500 501 502 503 504 505
        for idx, dim in enumerate(perm):
            if dim >= len(x.shape):
                raise ValueError(
                    "Each element in Input(perm) should be less than Input(x)'s dimension, "
                    "but %d-th element in Input(perm) is %d which exceeds Input(x)'s "
                    "dimension %d." % (idx, perm[idx], len(x.shape))
                )
506

507 508 509 510 511 512 513 514 515 516
        helper = LayerHelper('transpose', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        x_shape = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='transpose2',
            inputs={'X': [x]},
            outputs={'Out': [out], 'XShape': [x_shape]},
            attrs={'axis': perm},
        )
        return out
517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533


def unstack(x, axis=0, num=None):
    """
    This layer unstacks input Tensor :code:`x` into several Tensors along :code:`axis`.

    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x)`.
    If :code:`num` is None, it would be inferred from :code:`x.shape[axis]`,
    and if :code:`x.shape[axis]` <= 0 or is unknown, :code:`ValueError` is
    raised.

    Args:
        x (Tensor): Input Tensor. It is a N-D Tensors of data types float32, float64, int32, int64.
        axis (int): The axis along which the input is unstacked.
        num (int|None): The number of output variables.

    Returns:
L
Ligoml 已提交
534
        list(Tensor), The unstacked Tensors list. The list elements are N-D Tensors of data types float32, float64, int32, int64.
535 536 537 538 539 540 541 542 543

    Examples:
        .. code-block:: python

            import paddle
            x = paddle.ones(name='x', shape=[2, 3, 5], dtype='float32')  # create a tensor with shape=[2, 3, 5]
            y = paddle.unstack(x, axis=1)  # unstack with second axis, which results 3 tensors with shape=[2, 5]

    """
544 545 546 547
    if not (-x.ndim <= axis < x.ndim):
        raise ValueError(
            '`axis` must be in the range [-{0}, {0})'.format(x.ndim)
        )
548
    if in_dygraph_mode():
549
        if num is None:
550 551 552
            num = x.shape[axis]
        if num == 0:
            return []
553
        return _C_ops.unstack(x, axis, num)
554 555
    else:
        helper = LayerHelper('unstack', **locals())
556
        if num is None:
557 558 559 560
            if axis is None or x.shape[axis] <= 0:
                raise ValueError('unknown unstack number')
            else:
                num = x.shape[axis]
561

562 563 564
        outs = []
        for _ in range(num):
            outs.append(helper.create_variable_for_type_inference(x.dtype))
565

566 567 568 569 570 571 572
        helper.append_op(
            type='unstack',
            inputs={'X': [x]},
            outputs={'Y': outs},
            attrs={'axis': axis, 'num': num},
        )
        return outs
573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592


def shard_index(input, index_num, nshards, shard_id, ignore_value=-1):
    """
    Reset the values of `input` according to the shard it beloning to.
    Every value in `input` must be a non-negative integer, and
    the parameter `index_num` represents the integer above the maximum
    value of `input`. Thus, all values in `input` must be in the range
    [0, index_num) and each value can be regarded as the offset to the beginning
    of the range. The range is further split into multiple shards. Specifically,
    we first compute the `shard_size` according to the following formula,
    which represents the number of integers each shard can hold. So for the
    i'th shard, it can hold values in the range [i*shard_size, (i+1)*shard_size).
    ::

        shard_size = (index_num + nshards - 1) // nshards

    For each value `v` in `input`, we reset it to a new value according to the
    following formula:
    ::
593

594 595 596 597 598 599 600 601 602 603
        v = v - shard_id * shard_size if shard_id * shard_size <= v < (shard_id+1) * shard_size else ignore_value

    That is, the value `v` is set to the new offset within the range represented by the shard `shard_id`
    if it in the range. Otherwise, we reset it to be `ignore_value`.

    Args:
        input (Tensor): Input tensor with data type int64 or int32. It's last dimension must be 1.
        index_num (int): An integer represents the integer above the maximum value of `input`.
        nshards (int): The number of shards.
        shard_id (int): The index of the current shard.
L
LoneRanger 已提交
604
        ignore_value (int, optional): An integer value out of sharded index range. The default value is -1.
605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621

    Returns:
        Tensor.

    Examples:
        .. code-block:: python

            import paddle
            label = paddle.to_tensor([[16], [1]], "int64")
            shard_label = paddle.shard_index(input=label,
                                             index_num=20,
                                             nshards=2,
                                             shard_id=0)
            print(shard_label)
            # [[-1], [1]]
    """
    if in_dygraph_mode():
622 623 624
        return _C_ops.shard_index(
            input, index_num, nshards, shard_id, ignore_value
        )
625 626 627 628 629

    check_variable_and_dtype(input, 'input', ['int64', 'int32'], 'shard_index')
    op_type = 'shard_index'
    helper = LayerHelper(op_type, **locals())
    if shard_id < 0 or shard_id >= nshards:
630 631 632
        raise ValueError(
            'The shard_id(%d) should be in [0, %d)' % (shard_id, nshards)
        )
633 634

    out = helper.create_variable_for_type_inference(dtype=input.dtype)
635 636 637 638 639 640 641 642 643 644 645 646
    helper.append_op(
        type=op_type,
        inputs={'X': [input]},
        outputs={'Out': out},
        attrs={
            'index_num': index_num,
            'nshards': nshards,
            'shard_id': shard_id,
            'ignore_value': ignore_value,
        },
        stop_gradient=True,
    )
647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689
    return out


def crop(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

    .. code-block:: text

        * Case 1 (input is a 2-D Tensor):
            Input:
                X.shape = [3, 5]
                X.data = [[0, 1, 2, 0, 0],
                          [0, 3, 4, 0, 0],
                          [0, 0, 0, 0, 0]]
            Parameters:
                shape = [2, 2]
                offsets = [0, 1]
            Output:
                Out.shape = [2, 2]
                Out.data = [[1, 2],
                            [3, 4]]
        * Case 2 (input is a 3-D Tensor):
            Input:
                X.shape = [2, 3, 4]
                X.data =  [[[0, 1, 2, 3],
                            [0, 5, 6, 7],
                            [0, 0, 0, 0]],
                           [[0, 3, 4, 5],
                            [0, 6, 7, 8],
                            [0, 0, 0, 0]]]
            Parameters:
                shape = [2, 2, -1]
                offsets = [0, 0, 1]
            Output:
                Out.shape = [2, 2, 3]
                Out.data  = [[[1, 2, 3],
                              [5, 6, 7]],
                             [[3, 4, 5],
                              [6, 7, 8]]]

    Parameters:
        x (Tensor): 1-D to 6-D Tensor, the data type is float32, float64, int32 or int64.
690
        shape (list|tuple|Tensor, optional): The output shape is specified
691 692 693 694 695 696 697 698 699 700 701
            by `shape`. Its data type is int32. If a list/tuple, it's length must be
            the same as the dimension size of `x`. If a Tensor, it should be a 1-D Tensor.
            When it is a list, each element can be an integer or a Tensor of shape: [1].
            If Variable contained, it is suitable for the case that the shape may
            be changed each iteration.
        offsets (list|tuple|Variable, optional): Specifies the cropping
            offsets at each dimension. Its data type is int32. If a list/tuple, it's length
            must be the same as the dimension size of `x`. If a Tensor, it should be a 1-D
            Tensor. When it is a list, each element can be an integer or a Tensor of shape: [1].
            If Variable contained, it is suitable for the case that the offsets may be changed
            each iteration. Default: None, the offsets are 0 at each dimension.
702
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
703 704

    Returns:
L
Ligoml 已提交
705
        Tensor, The cropped Tensor has same data type with `x`.
706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735

    Examples:

        .. code-block:: python

            import paddle
            x = paddle.to_tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
            # x.shape = [3, 3]
            # x = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]

            # shape can be a 1-D Tensor or list or tuple.
            shape = paddle.to_tensor([2, 2], dtype='int32')
            # shape = [2, 2]
            # shape = (2, 2)
            out = paddle.crop(x, shape)
            # out.shape = [2, 2]
            # out = [[1,2], [4,5]]

            # offsets can be a 1-D Tensor or list or tuple.
            offsets = paddle.to_tensor([0, 1], dtype='int32')
            # offsets = [1, 0]
            # offsets = (1, 1)
            out = paddle.crop(x, shape, offsets)
            # out.shape = [2, 2]
            # if offsets = [0, 0], out = [[1,2], [4,5]]
            # if offsets = [0, 1], out = [[2,3], [5,6]]
            # if offsets = [1, 0], out = [[4,5], [7,8]]
            # if offsets = [1, 1], out = [[5,6], [8,9]]

    """
736

737
    helper = LayerHelper('crop_tensor', **locals())
738 739 740 741 742 743 744 745 746
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'int32', 'int64'], 'crop_tensor'
    )
    check_type(
        shape, 'shape', (list, tuple, Variable, type(None)), 'crop_tensor'
    )
    check_type(
        offsets, 'offsets', (list, tuple, Variable, type(None)), 'crop_tensor'
    )
747 748 749 750

    if offsets is None:
        offsets = [0] * len(x.shape)

P
PuQing 已提交
751 752 753
    if shape is None:
        shape = x.shape

754
    if in_dygraph_mode():
755
        return _C_ops.crop(x, shape, offsets)
756

757 758 759 760 761 762 763 764
    out = helper.create_variable_for_type_inference(x.dtype)
    ipts = {'X': x}
    attrs = {}

    def _attr_shape_check(shape_val):
        if not isinstance(shape_val, int):
            raise TypeError(
                "Attr(shape)'s dtype of Op(crop_tensor) should be int32, but received: %s."
765 766
                % type(shape_val)
            )
767 768 769
        if shape_val == 0:
            raise ValueError(
                "Attr(shape) of Op(crop_tensor) should not be zero, but received: %s."
770 771
                % str(shape_val)
            )
772 773 774
        if shape_val < -1:
            raise ValueError(
                "When the element in Attr(shape) of Op(crop_tensor) is negative, only -1 is supported, but received: %s."
775 776
                % str(shape_val)
            )
777 778 779 780 781

    def _attr_offsets_check(offset_val):
        if not isinstance(offset_val, int):
            raise TypeError(
                "Attr(offsets)'s dtype of Op(crop_tensor) should be int32, but received: %s."
782 783
                % type(offset_val)
            )
784 785 786
        if offset_val < 0:
            raise ValueError(
                "Attr(offsets) of Op(crop_tensor) should be greater or equal to zero, but received: %s."
787 788
                % str(offset_val)
            )
789 790 791 792 793

    if isinstance(offsets, Variable):
        offsets.stop_gradient = True
        ipts['Offsets'] = offsets
        attrs['offsets'] = [-1] * len(x.shape)
794
    elif paddle.utils._contain_var(offsets):
795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817
        new_offsets_tensor = []
        offsets_attr = []
        for dim in offsets:
            if isinstance(dim, Variable):
                dim.stop_gradient = True
                new_offsets_tensor.append(dim)
                offsets_attr.append(-1)
            else:
                _attr_offsets_check(dim)
                temp_out = helper.create_variable_for_type_inference('int32')
                fill_constant([1], 'int32', dim, force_cpu=True, out=temp_out)
                new_offsets_tensor.append(temp_out)
                offsets_attr.append(dim)
        ipts['OffsetsTensor'] = new_offsets_tensor
        attrs['offsets'] = offsets_attr
    else:
        for offset in offsets:
            _attr_offsets_check(offset)
        attrs['offsets'] = offsets

    if isinstance(shape, Variable):
        shape.stop_gradient = True
        ipts['Shape'] = shape
818
    elif paddle.utils._contain_var(shape):
819 820 821 822 823 824 825 826 827 828
        new_shape_tensor = []
        shape_attr = []
        for dim_size in shape:
            if isinstance(dim_size, Variable):
                dim_size.stop_gradient = True
                new_shape_tensor.append(dim_size)
                shape_attr.append(0)
            else:
                _attr_shape_check(dim_size)
                temp_out = helper.create_variable_for_type_inference('int32')
829 830 831
                fill_constant(
                    [1], 'int32', dim_size, force_cpu=True, out=temp_out
                )
832 833 834 835 836 837 838 839 840
                new_shape_tensor.append(temp_out)
                shape_attr.append(dim_size)
        ipts['ShapeTensor'] = new_shape_tensor
        attrs['shape'] = shape_attr
    else:
        for dim_size in shape:
            _attr_shape_check(dim_size)
        attrs['shape'] = shape

841 842 843 844 845 846
    helper.append_op(
        type='crop_tensor',
        inputs=ipts,
        outputs={'Out': out},
        attrs=None if len(attrs) == 0 else attrs,
    )
847 848 849
    return out


850 851 852 853 854 855 856 857 858
@dygraph_only
def fill_(x, value):
    """
    **Notes**:
        **This API is ONLY available in Dygraph mode**

    This function fill the Tensor with value inplace.

    Args:
859 860
        x (Tensor): ``x`` is the Tensor we want to filled data inplace
        value (Scale): ``value`` is the value to be filled in x
861 862

    Returns:
L
Ligoml 已提交
863
        x(Tensor), Tensor x filled with value inplace
864 865 866 867 868 869 870 871 872 873 874 875 876 877

    Examples:
        .. code-block:: python

            import paddle

            tensor = paddle.to_tensor([0, 1, 2, 3, 4])

            tensor.fill_(0)
            print(tensor.tolist())   #[0, 0, 0, 0, 0]

    """
    if not isinstance(value, (float, int)):
        raise TypeError(
878 879 880
            "The type of 'value'  must be int or float, but received %s."
            % (type(value))
        )
881
    return _C_ops.fill_(x, value)
882 883 884 885 886 887 888 889 890 891 892


@dygraph_only
def zero_(x):
    """
    **Notes**:
        **This API is ONLY available in Dygraph mode**

    This function fill the Tensor with zero inplace.

    Args:
893
        x (Tensor): ``x`` is the Tensor we want to filled with zero inplace
894 895

    Returns:
L
Ligoml 已提交
896
        x (Tensor), Tensor x filled with zero inplace
897 898 899 900 901 902 903 904 905 906 907 908

    Examples:
        .. code-block:: python

            import paddle

            tensor = paddle.to_tensor([0, 1, 2, 3, 4])

            tensor.zero_()
            print(tensor.tolist())   #[0, 0, 0, 0, 0]

    """
909
    return _C_ops.fill_(x, 0.0)
910 911


912 913 914
@dygraph_only
def fill_diagonal_(x, value, offset=0, wrap=False, name=None):
    """
915 916
    Note:
        This API is ONLY available in Dygraph mode.
917

918
    This function fill the value into the x Tensor's diagonal inplace.
919

920 921 922 923 924 925
    Args:
        x(Tensor): ``x`` is the original Tensor
        value(Scale): ``value`` is the value to filled in x
        offset(int,optional): the offset to the main diagonal. Default: 0 (main diagonal).
        wrap(bool,optional): the diagonal 'wrapped' after N columns for tall matrices.
        name(str,optional): Name for the operation (optional, default is None)
926

927
    Returns:
L
Ligoml 已提交
928
        Tensor, Tensor with diagonal filled with value.
929

930 931 932 933 934 935 936
    Examples:
        .. code-block:: python
            import paddle
            x = paddle.ones((4, 3)) * 2
            x.fill_diagonal_(1.0)
            print(x.tolist())   #[[1.0, 2.0, 2.0], [2.0, 1.0, 2.0], [2.0, 2.0, 1.0], [2.0, 2.0, 2.0]]
    """
Z
zhiboniu 已提交
937
    if in_dygraph_mode():
938
        if len(x.shape) == 2:
939 940
            return _C_ops.fill_diagonal_(x, value, offset, wrap)
        return _C_ops.fill_diagonal_(x, value, offset, True)
Z
zhiboniu 已提交
941

942

943 944
def _fill_diagonal_tensor_impl(x, y, offset=0, dim1=0, dim2=1, inplace=False):
    inshape = x.shape
945 946 947 948 949 950 951
    assert dim1 < len(inshape) and dim1 >= -len(
        inshape
    ), 'dim1 should between [-rank,rank) in fill_diagonal_tensor_'
    assert dim2 < len(inshape) and dim2 >= -len(
        inshape
    ), 'dim2 should between [-rank,rank) in fill_diagonal_tensor_'
    assert len(inshape) >= 2, 'Tensor dims should >= 2 in fill_diagonal_tensor_'
952 953 954 955 956 957 958
    dim1 %= len(inshape)
    dim2 %= len(inshape)

    predshape = []
    for i in range(len(inshape)):
        if i != dim1 and i != dim2:
            predshape.append(inshape[i])
959 960 961 962
    diaglen = min(
        min(inshape[dim1], inshape[dim1] + offset),
        min(inshape[dim2], inshape[dim2] - offset),
    )
963
    predshape.append(diaglen)
964
    assert tuple(predshape) == tuple(
965
        y.shape
966
    ), f"the y shape should be {predshape}"
967 968 969 970
    if len(y.shape) == 1:
        y = y.reshape([1, -1])

    if inplace:
971 972
        return _C_ops.fill_diagonal_tensor_(x, y, offset, dim1, dim2)
    return _C_ops.fill_diagonal_tensor(x, y, offset, dim1, dim2)
973 974 975 976


def fill_diagonal_tensor_(x, y, offset=0, dim1=0, dim2=1, name=None):
    """
977 978
    Note:
        This API is ONLY available in Dygraph mode.
979 980 981 982

    This function fill the source Tensor y into the x Tensor's diagonal inplace.

    Args:
983 984 985 986 987 988
        x (Tensor): ``x`` is the original Tensor
        y (Tensor): ``y`` is the Tensor to filled in x
        dim1 (int,optional): first dimension with respect to which to fill diagonal. Default: 0.
        dim2 (int,optional): second dimension with respect to which to fill diagonal. Default: 1.
        offset (int,optional): the offset to the main diagonal. Default: 0 (main diagonal).
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
989 990

    Returns:
L
Ligoml 已提交
991
        Tensor, Tensor with diagonal filled with y.
992 993 994 995 996 997 998 999 1000 1001 1002 1003

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.ones((4, 3)) * 2
            y = paddle.ones((3,))
            x.fill_diagonal_tensor_(y)
            print(x.tolist())   #[[1.0, 2.0, 2.0], [2.0, 1.0, 2.0], [2.0, 2.0, 1.0], [2.0, 2.0, 2.0]]

    """
1004 1005 1006
    return _fill_diagonal_tensor_impl(
        x, y, offset=offset, dim1=dim1, dim2=dim2, inplace=True
    )
1007 1008 1009 1010 1011 1012 1013


def fill_diagonal_tensor(x, y, offset=0, dim1=0, dim2=1, name=None):
    """
    This function fill the source Tensor y into the x Tensor's diagonal.

    Args:
1014 1015 1016 1017 1018 1019
        x (Tensor): ``x`` is the original Tensor
        y (Tensor): ``y`` is the Tensor to filled in x
        dim1 (int,optional): first dimension with respect to which to fill diagonal. Default: 0.
        dim2 (int,optional): second dimension with respect to which to fill diagonal. Default: 1.
        offset (int,optional): the offset to the main diagonal. Default: 0 (main diagonal).
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1020 1021

    Returns:
L
Ligoml 已提交
1022
        Tensor, Tensor with diagonal filled with y.
1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.ones((4, 3)) * 2
            y = paddle.ones((3,))
            nx = x.fill_diagonal_tensor(y)
            print(nx.tolist())   #[[1.0, 2.0, 2.0], [2.0, 1.0, 2.0], [2.0, 2.0, 1.0], [2.0, 2.0, 2.0]]

    """
1035 1036 1037
    return _fill_diagonal_tensor_impl(
        x, y, offset=offset, dim1=dim1, dim2=dim2, inplace=False
    )
1038 1039


Z
zhiboniu 已提交
1040 1041 1042
@dygraph_only
def tolist(x):
    """
1043 1044
    Note:
        This API is ONLY available in Dygraph mode.
Z
zhiboniu 已提交
1045 1046 1047 1048

    This function translate the paddle.Tensor to python list.

    Args:
1049
        x (Tensor): ``x`` is the Tensor we want to translate to list.
Z
zhiboniu 已提交
1050 1051

    Returns:
L
Ligoml 已提交
1052
        list, A list that contain the same value of current Tensor.
Z
zhiboniu 已提交
1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067


    Examples:
        .. code-block:: python

            import paddle

            t = paddle.to_tensor([0,1,2,3,4])
            expectlist = t.tolist()
            print(expectlist)   #[0, 1, 2, 3, 4]

            expectlist = paddle.tolist(t)
            print(expectlist)   #[0, 1, 2, 3, 4]

    """
1068 1069
    # TODO(zhouwei): will remove 0D Tensor.numpy() hack
    return x.numpy(False).tolist()
Z
zhiboniu 已提交
1070 1071


1072 1073 1074
def concat(x, axis=0, name=None):
    """

1075
    Concatenates the input along the axis.
1076 1077

    Args:
1078
        x (list|tuple): ``x`` is a Tensor list or Tensor tuple which is with data type bool, float16,
1079
            float32, float64, int32, int64, int8, uint8. All the Tensors in ``x`` must have same data type.
1080
        axis (int|Tensor, optional): Specify the axis to operate on the input Tensors.
1081
            It's a scalar with data type int or a Tensor with shape [1] and data type int32
1082 1083
            or int64. The effective range is [-R, R), where R is Rank(x). When ``axis < 0``,
            it works the same way as ``axis+R``. Default is 0.
1084
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1085 1086

    Returns:
L
Ligoml 已提交
1087
        Tensor, A Tensor with the same data type as ``x``.
1088 1089 1090

    Examples:
        .. code-block:: python
1091

1092
            import paddle
1093

1094 1095 1096 1097 1098 1099
            x1 = paddle.to_tensor([[1, 2, 3],
                                   [4, 5, 6]])
            x2 = paddle.to_tensor([[11, 12, 13],
                                   [14, 15, 16]])
            x3 = paddle.to_tensor([[21, 22],
                                   [23, 24]])
1100 1101 1102
            zero = paddle.full(shape=[1], dtype='int32', fill_value=0)
            # When the axis is negative, the real axis is (axis + Rank(x))
            # As follow, axis is -1, Rank(x) is 2, the real axis is 1
1103 1104 1105
            out1 = paddle.concat(x=[x1, x2, x3], axis=-1)
            out2 = paddle.concat(x=[x1, x2], axis=0)
            out3 = paddle.concat(x=[x1, x2], axis=zero)
1106 1107 1108 1109 1110 1111 1112 1113 1114
            # out1
            # [[ 1  2  3 11 12 13 21 22]
            #  [ 4  5  6 14 15 16 23 24]]
            # out2 out3
            # [[ 1  2  3]
            #  [ 4  5  6]
            #  [11 12 13]
            #  [14 15 16]]
    """
1115 1116 1117 1118 1119 1120
    input = x
    if in_dygraph_mode():
        if isinstance(axis, Variable):
            axis = axis.item(0)
        if not isinstance(input, Variable):
            input = [t for t in input if t.shape.count(0) == 0]
1121
        return _C_ops.concat(input, axis)
1122 1123
    else:
        check_type(input, 'input', (list, tuple, Variable), 'concat')
1124
        if not isinstance(input, Variable):
1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137
            for id, x in enumerate(input):
                check_variable_and_dtype(
                    x,
                    'input[' + str(id) + ']',
                    [
                        'bool',
                        'float16',
                        'float32',
                        'float64',
                        'int32',
                        'int64',
                        'int8',
                        'unit8',
W
wangzhen38 已提交
1138
                        'uint16',
1139 1140 1141 1142 1143 1144 1145 1146 1147 1148
                    ],
                    'concat',
                )
                if x.dtype != input[0].dtype:
                    raise TypeError(
                        "All the Tensors in the input must have the same data type."
                    )
        else:
            input = [input]
        check_type(axis, 'axis', (int, Variable), 'concat')
1149

1150 1151 1152 1153 1154
        if isinstance(axis, Variable):
            check_dtype(
                axis.dtype,
                'axis',
                ['int32', 'int64'],
1155
                'concat',
1156
                "The data type of axis must be int32 or int64 when axis is a Tensor",
1157
            )
1158

1159 1160 1161
        helper = LayerHelper('concat', **locals())
        out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype()
1162
        )
1163

1164 1165 1166
        if input[0].desc.type() == core.VarDesc.VarType.LOD_TENSOR_ARRAY:
            # NOTE(liym27): Don't remove this if branch!
            # This feature is supported for Dynamic-to-Static, because after transformed, the type of inputs[0]
1167
            # is LOD_TENSOR_ARRAY in some scenarios. And this feature can be used in static graph mode.
1168

1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180
            assert len(input) == 1, (
                "If the elements of 'input' in concat are Variable(LoDTensorArray), "
                "number of the elements must be 1, but received %s."
                % len(input)
            )
            out_index = helper.create_variable_for_type_inference(dtype="int32")
            helper.append_op(
                type='tensor_array_to_tensor',
                inputs={'X': input[0]},
                outputs={'Out': [out], 'OutIndex': [out_index]},
                attrs={'axis': axis, 'use_stack': False},
            )
1181
        else:
1182 1183 1184 1185 1186 1187 1188
            inputs = {'X': input}
            attrs = {}
            if isinstance(axis, Variable):
                axis.stop_gradient = True
                inputs['AxisTensor'] = axis
            else:
                attrs['axis'] = axis
1189

1190 1191 1192 1193 1194 1195 1196
            helper.append_op(
                type='concat',
                inputs=inputs,
                outputs={'Out': [out]},
                attrs=attrs,
            )
        return out
1197 1198


1199 1200
def broadcast_tensors(input, name=None):
    """
1201
    Broadcast a list of tensors following broadcast semantics
1202

1203
    Note:
1204 1205 1206
        If you want know more about broadcasting, please refer to `Introduction to Tensor`_ .

    .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor
1207 1208

    Args:
1209
        input (list|tuple): ``input`` is a Tensor list or Tensor tuple which is with data type bool,
1210 1211
            float16, float32, float64, int32, int64. All the Tensors in ``input`` must have same data type.
            Currently we only support tensors with rank no greater than 5.
1212
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1213 1214

    Returns:
L
Ligoml 已提交
1215
        list(Tensor), The list of broadcasted tensors following the same order as ``input``.
1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228

    Examples:
        .. code-block:: python

            import paddle
            x1 = paddle.rand([1, 2, 3, 4]).astype('float32')
            x2 = paddle.rand([1, 2, 1, 4]).astype('float32')
            x3 = paddle.rand([1, 1, 3, 1]).astype('float32')
            out1, out2, out3 = paddle.broadcast_tensors(input=[x1, x2, x3])
            # out1, out2, out3: tensors broadcasted from x1, x2, x3 with shape [1,2,3,4]
    """

    num_inputs = len(input)
1229
    if in_dygraph_mode():
1230
        return _C_ops.broadcast_tensors(input)
1231 1232 1233
    else:
        check_type(input, 'input', (list, tuple), 'broadcast_tensors')
        if num_inputs < 1:
1234
            raise TypeError(
1235
                "At least 1 tensor is needed to perform broadcast_tensors"
1236
            )
1237

1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249
        # Check input types
        for id, x in enumerate(input):
            check_variable_and_dtype(
                x,
                'input[' + str(id) + ']',
                ['bool', 'float32', 'float64', 'int32', 'int64'],
                'broadcast_tensors',
            )
            if x.dtype != input[0].dtype:
                raise TypeError(
                    "All the Tensors in the input must have the same data type."
                )
1250

1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275
        # Check bcast semantics
        output_shape_r_last_tensor_index = []
        output_shape_r = []

        # Use while loop due to weird behaviour of "range()"
        j = 0
        while j < len(input):
            tensor = input[j]
            shape = list(reversed(tensor.shape))

            i = 0
            while i < len(shape):
                if len(output_shape_r) <= i:
                    output_shape_r.append(shape[i])
                    output_shape_r_last_tensor_index.append(j)
                else:
                    invalid = (
                        output_shape_r[i] != shape[i]
                        and output_shape_r[i] != 1
                        and shape[i] != 1
                    )
                    if invalid:
                        last_index = output_shape_r_last_tensor_index[i]
                        raise TypeError(
                            "Input tensors to broadcast_tensors does not follow bcast semantics"
1276
                            f"Tensor {last_index} conflicts with Tensor {j} in reversed dimension {i}"
1277 1278 1279 1280 1281 1282 1283 1284
                        )
                    if output_shape_r[i] <= shape[i]:
                        output_shape_r[i] = shape[i]
                        output_shape_r_last_tensor_index[i] = j
                i += 1  # while i < len(shape)
            j += 1  # while j < len(input)

        helper = LayerHelper('broadcast_tensors', **locals())
1285
        i = 0
1286 1287 1288 1289 1290
        out = []
        while i < num_inputs:
            out.append(
                helper.create_variable_for_type_inference(
                    dtype=helper.input_dtype()
1291 1292
                )
            )
1293
            i += 1
1294

1295 1296 1297 1298 1299 1300 1301
        inputs = {'X': input}
        helper.append_op(
            type='broadcast_tensors',
            inputs=inputs,
            outputs={'Out': out},
            attrs={},
        )
1302

1303
        return out
1304 1305


Y
yaoxuefeng 已提交
1306
def flip(x, axis, name=None):
W
Wilber 已提交
1307
    """
Y
yaoxuefeng 已提交
1308
    Reverse the order of a n-D tensor along given axis in axis.
W
Wilber 已提交
1309 1310

    Args:
Y
yaoxuefeng 已提交
1311
        x (Tensor): A Tensor(or LoDTensor) with shape :math:`[N_1, N_2,..., N_k]` . The data type of the input Tensor x
W
Wilber 已提交
1312
            should be float32, float64, int32, int64, bool.
R
Roc 已提交
1313
        axis (list|tuple|int): The axis(axes) to flip on. Negative indices for indexing from the end are accepted.
1314
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
W
Wilber 已提交
1315 1316

    Returns:
L
Ligoml 已提交
1317
        Tensor, Tensor or LoDTensor calculated by flip layer. The data type is same with input x.
W
Wilber 已提交
1318 1319 1320 1321 1322

    Examples:
        .. code-block:: python

          import paddle
Y
yaoxuefeng 已提交
1323 1324

          image_shape=(3, 2, 2)
1325
          img = paddle.arange(image_shape[0] * image_shape[1] * image_shape[2]).reshape(image_shape)
R
Roc 已提交
1326 1327
          tmp = paddle.flip(img, [0,1])
          print(tmp) # [[[10,11],[8, 9]], [[6, 7],[4, 5]], [[2, 3],[0, 1]]]
Y
yaoxuefeng 已提交
1328

R
Roc 已提交
1329 1330
          out = paddle.flip(tmp,-1)
          print(out) # [[[11,10],[9, 8]], [[7, 6],[5, 4]], [[3, 2],[1, 0]]]
W
Wilber 已提交
1331
    """
R
Roc 已提交
1332 1333
    if isinstance(axis, int):
        axis = [axis]
H
hong 已提交
1334 1335

    if in_dygraph_mode():
1336
        return _C_ops.flip(x, axis)
1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353
    else:
        helper = LayerHelper("flip", **locals())
        check_type(x, 'X', (Variable), 'flip')
        dtype = helper.input_dtype('x')
        check_dtype(
            dtype,
            'X',
            ['float16', 'float32', 'float64', 'int32', 'int64', 'bool'],
            'flip',
        )
        check_type(axis, 'axis', (list, tuple), 'flip')
        if name is None:
            out = helper.create_variable_for_type_inference(dtype)
        else:
            out = helper.create_variable(
                name=name, dtype=dtype, persistable=False
            )
H
hong 已提交
1354

1355 1356 1357 1358 1359 1360 1361
        helper.append_op(
            type="flip",
            inputs={"X": x},
            outputs={"Out": out},
            attrs={"axis": axis},
        )
        return out
1362 1363


Z
zmxdream 已提交
1364 1365
def rot90(x, k=1, axes=[0, 1], name=None):
    """
1366
    Rotate a n-D tensor by 90 degrees. The rotation direction and times are specified by axes and the absolute value of k. Rotation direction is from axes[0] towards axes[1] if k > 0, and from axes[1] towards axes[0] for k < 0.
Z
zmxdream 已提交
1367 1368 1369

    Args:
        x (Tensor): The input Tensor(or LoDTensor). The data type of the input Tensor x
Z
zmxdream 已提交
1370
            should be float16, float32, float64, int32, int64, bool. float16 is only supported on gpu.
Z
zmxdream 已提交
1371 1372
        k (int, optional): Direction and number of times to rotate, default value: 1.
        axes (list|tuple, optional): Axes to rotate, dimension must be 2. default value: [0, 1].
Z
zmxdream 已提交
1373 1374 1375 1376
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .

    Returns:
L
Ligoml 已提交
1377
        Tensor, Tensor or LoDTensor calculated by rot90 layer. The data type is same with input x.
Z
zmxdream 已提交
1378 1379 1380 1381 1382 1383 1384 1385

    Examples:
        .. code-block:: python

          import paddle

          data = paddle.arange(4)
          data = paddle.reshape(data, (2, 2))
1386
          print(data)
Z
zmxdream 已提交
1387 1388 1389
          #[[0, 1],
          # [2, 3]]

Z
zmxdream 已提交
1390
          y = paddle.rot90(data, 1, [0, 1])
1391
          print(y)
Z
zmxdream 已提交
1392 1393 1394
          #[[1, 3],
          # [0, 2]]

Z
zmxdream 已提交
1395
          y= paddle.rot90(data, -1, [0, 1])
1396
          print(y)
Z
zmxdream 已提交
1397 1398 1399
          #[[2, 0],
          # [3, 1]]

Z
zmxdream 已提交
1400 1401
          data2 = paddle.arange(8)
          data2 = paddle.reshape(data2, (2,2,2))
1402
          print(data2)
Z
zmxdream 已提交
1403 1404 1405 1406 1407
          #[[[0, 1],
          #  [2, 3]],
          # [[4, 5],
          #  [6, 7]]]

Z
zmxdream 已提交
1408
          y = paddle.rot90(data2, 1, [1, 2])
Z
zmxdream 已提交
1409 1410 1411 1412 1413
          print(y)
          #[[[1, 3],
          #  [0, 2]],
          # [[5, 7],
          #  [4, 6]]]
Z
zmxdream 已提交
1414 1415 1416 1417 1418
    """

    helper = LayerHelper("rot90", **locals())
    check_type(x, 'X', (Variable), 'rot90')
    dtype = helper.input_dtype('x')
1419 1420 1421 1422 1423 1424
    check_dtype(
        dtype,
        'X',
        ['float16', 'float32', 'float64', 'int32', 'int64', 'bool'],
        'rot90',
    )
Z
zmxdream 已提交
1425 1426 1427 1428 1429
    check_type(axes, 'axes', (list, tuple), 'rot90')

    input_total_dims = len(x.shape)
    total_rot_dims = len(axes)
    if total_rot_dims != 2:
1430 1431
        raise ValueError(
            "expected total rotation axes == 2, but got axes = {}".format(
1432 1433 1434
                total_rot_dims
            )
        )
Z
zmxdream 已提交
1435
    if input_total_dims < 2:
1436 1437
        raise ValueError(
            "expected total dims >= 2, but got total dims = {}".format(
1438 1439 1440
                input_total_dims
            )
        )
Z
zmxdream 已提交
1441 1442 1443

    if not (axes[0] != axes[1] and abs(axes[0] - axes[1]) != input_total_dims):
        raise ValueError(
1444 1445 1446 1447
            "expected rotation axes to be different, but got axis0 = {}, and axis1 = {}".format(
                axes[0], axes[1]
            )
        )
Z
zmxdream 已提交
1448 1449

    if not (axes[0] < input_total_dims and axes[0] >= -input_total_dims):
1450
        raise ValueError(f"Rotation axis0 out of range, axis0 = {axes[0]}")
Z
zmxdream 已提交
1451
    if not (axes[1] < input_total_dims and axes[1] >= -input_total_dims):
1452
        raise ValueError(f"Rotation axis1 out of range, axis1 = {axes[1]}")
Z
zmxdream 已提交
1453

Z
zmxdream 已提交
1454
    k %= 4
Z
zmxdream 已提交
1455 1456 1457 1458 1459 1460
    if k == 0:
        return x
    if k == 2:
        return flip(flip(x, axes[0]), axes[1])

    axes_list = list(range(0, input_total_dims))
1461 1462 1463 1464
    (axes_list[axes[0]], axes_list[axes[1]]) = (
        axes_list[axes[1]],
        axes_list[axes[0]],
    )
Z
zmxdream 已提交
1465 1466 1467 1468 1469 1470 1471
    if k == 1:
        return transpose(flip(x, axes[1]), axes_list)
    else:
        # k == 3
        return flip(transpose(x, axes_list), axes[1])


1472
def flatten(x, start_axis=0, stop_axis=-1, name=None):
1473
    r"""
1474 1475
    Flattens a contiguous range of axes in a tensor according to start_axis and stop_axis.

1476
    Note:
1477
        The output Tensor will share data with origin Tensor and doesn't have a Tensor copy in ``dygraph`` mode.
1478
        If you want to use the Tensor copy version, please use `Tensor.clone` like ``flatten_clone_x = x.flatten().clone()``.
1479

1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508
    For Example:

    .. code-block:: text

        Case 1:

          Given
            X.shape = (3, 100, 100, 4)

          and
            start_axis = 1
            end_axis = 2

          We get:
            Out.shape = (3, 1000 * 100, 2)

        Case 2:

          Given
            X.shape = (3, 100, 100, 4)

          and
            start_axis = 0
            stop_axis = -1

          We get:
            Out.shape = (3 * 100 * 100 * 4)

    Args:
张春乔 已提交
1509
        x (Tensor): A tensor of number of dimentions >= axis. A tensor with data type float16, float32,
1510
                      float64, int8, int32, int64, uint8.
1511 1512
        start_axis (int): the start axis to flatten
        stop_axis (int): the stop axis to flatten
1513
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1514 1515

    Returns:
L
Ligoml 已提交
1516
        Tensor, A tensor with the contents of the input tensor, with input \
1517 1518 1519 1520 1521 1522 1523 1524 1525 1526
                  axes flattened by indicated start axis and end axis. \
                  A Tensor with data type same as input x.

    Examples:

        .. code-block:: python

            import paddle

            image_shape=(2, 3, 4, 4)
1527

Y
yaoxuefeng 已提交
1528 1529
            x = paddle.arange(end=image_shape[0] * image_shape[1] * image_shape[2] * image_shape[3])
            img = paddle.reshape(x, image_shape)
1530

1531 1532
            out = paddle.flatten(img, start_axis=1, stop_axis=2)
            # out shape is [2, 12, 4]
1533 1534 1535 1536

            # out shares data with img in dygraph mode
            img[0, 0, 0, 0] = -1
            print(out[0, 0, 0]) # [-1]
1537 1538
    """
    if not (isinstance(x, Variable)):
Y
yaoxuefeng 已提交
1539
        raise ValueError("The input x should be a Tensor")
1540 1541

    x_dim = len(x.shape)
1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573
    if x_dim == 0:
        if not (isinstance(start_axis, int)) or start_axis not in [0, -1]:
            raise ValueError(
                "The start_axis should be int, and should be 0 or -1 when the input tensor is a 0D-Tensor"
            )
        if not (isinstance(stop_axis, int)) or stop_axis not in [0, -1]:
            raise ValueError(
                "The stop_axis should be int, and should be 0 or -1 when the input tensor is a 0D-Tensor"
            )
    else:
        if (
            not (isinstance(start_axis, int))
            or (start_axis > x_dim - 1)
            or start_axis < -x_dim
        ):
            raise ValueError(
                "The start_axis should be a int, and in range [-rank(x), rank(x))"
            )
        if (
            not (isinstance(stop_axis, int))
            or (stop_axis > x_dim - 1)
            or stop_axis < -x_dim
        ):
            raise ValueError(
                "The stop_axis should be a int, and in range [-rank(x), rank(x))"
            )
        if start_axis < 0:
            start_axis = start_axis + x_dim
        if stop_axis < 0:
            stop_axis = stop_axis + x_dim
        if start_axis > stop_axis:
            raise ValueError("The stop_axis should be larger than stat_axis")
1574

1575
    if in_dygraph_mode():
1576
        return _C_ops.flatten(x, start_axis, stop_axis)
1577
    else:
W
Weilong Wu 已提交
1578 1579 1580
        check_variable_and_dtype(
            x,
            'x',
X
xiaoguoguo626807 已提交
1581 1582 1583 1584 1585 1586 1587 1588 1589
            [
                'float16',
                'float32',
                'float64',
                'int8',
                'int16',
                'int32',
                'int64',
                'uint8',
1590
                'uint16',
X
xiaoguoguo626807 已提交
1591
            ],
W
Weilong Wu 已提交
1592 1593
            'flatten',
        )
1594 1595 1596 1597 1598 1599 1600 1601
        helper = LayerHelper('flatten', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        x_shape = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='flatten_contiguous_range',
            inputs={"X": x},
            outputs={'Out': out, 'XShape': x_shape},
            attrs={"start_axis": start_axis, "stop_axis": stop_axis},
1602
        )
1603
        return out
1604 1605


1606 1607 1608 1609 1610 1611 1612 1613 1614 1615
@inplace_apis_in_dygraph_only
def flatten_(x, start_axis=0, stop_axis=-1, name=None):
    """
    Inplace version of ``flatten`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_flatten`.
    """
    if not (isinstance(x, Variable)):
        raise ValueError("The input x should be a Tensor")

    x_dim = len(x.shape)
1616 1617 1618 1619 1620
    if (
        not (isinstance(start_axis, int))
        or (start_axis > x_dim - 1)
        or start_axis < -x_dim
    ):
1621
        raise ValueError(
1622 1623 1624 1625 1626 1627 1628
            "The start_axis should be a int, and in range [-rank(x), rank(x))"
        )
    if (
        not (isinstance(stop_axis, int))
        or (stop_axis > x_dim - 1)
        or stop_axis < -x_dim
    ):
1629
        raise ValueError(
1630 1631
            "The stop_axis should be a int, and in range [-rank(x), rank(x))"
        )
1632 1633 1634 1635 1636 1637 1638
    if start_axis < 0:
        start_axis = start_axis + x_dim
    if stop_axis < 0:
        stop_axis = stop_axis + x_dim
    if start_axis > stop_axis:
        raise ValueError("The stop_axis should be larger than stat_axis")

1639
    if in_dygraph_mode():
1640
        return _C_ops.flatten_(x, start_axis, stop_axis)
1641

1642

Y
yaoxuefeng 已提交
1643
def roll(x, shifts, axis=None, name=None):
1644
    """
1645 1646 1647
    Roll the `x` tensor along the given axis(axes). With specific 'shifts', Elements that
    roll beyond the last position are re-introduced at the first according to 'shifts'.
    If a axis is not specified,
1648 1649 1650
    the tensor will be flattened before rolling and then restored to the original shape.

    Args:
Y
yaoxuefeng 已提交
1651
        x (Tensor): The x tensor as input.
1652
        shifts (int|list|tuple): The number of places by which the elements
Y
yaoxuefeng 已提交
1653
                           of the `x` tensor are shifted.
Y
Yuang Liu 已提交
1654
        axis (int|list|tuple, optional): axis(axes) along which to roll. Default: None
C
Chen Long 已提交
1655 1656 1657
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.
                For more information, please refer to :ref:`api_guide_Name` .

1658 1659

    Returns:
L
Ligoml 已提交
1660
        Tensor, A Tensor with same data type as `x`.
1661 1662 1663

    Examples:
        .. code-block:: python
1664

1665 1666
            import paddle

1667 1668 1669
            x = paddle.to_tensor([[1.0, 2.0, 3.0],
                                  [4.0, 5.0, 6.0],
                                  [7.0, 8.0, 9.0]])
Y
yaoxuefeng 已提交
1670
            out_z1 = paddle.roll(x, shifts=1)
Y
yaoxuefeng 已提交
1671
            print(out_z1)
Y
yaoxuefeng 已提交
1672 1673 1674 1675
            #[[9. 1. 2.]
            # [3. 4. 5.]
            # [6. 7. 8.]]
            out_z2 = paddle.roll(x, shifts=1, axis=0)
Y
yaoxuefeng 已提交
1676
            print(out_z2)
Y
yaoxuefeng 已提交
1677 1678 1679
            #[[7. 8. 9.]
            # [1. 2. 3.]
            # [4. 5. 6.]]
Y
Yuang Liu 已提交
1680 1681 1682 1683 1684
            out_z3 = paddle.roll(x, shifts=1, axis=1)
            print(out_z3)
            #[[3. 1. 2.]
            # [6. 4. 5.]
            # [9. 7. 8.]]
1685
    """
Y
yaoxuefeng 已提交
1686
    origin_shape = x.shape
1687 1688
    if type(shifts) == int:
        shifts = [shifts]
Y
yaoxuefeng 已提交
1689 1690 1691 1692
    if type(axis) == int:
        axis = [axis]

    len_origin_shape = len(origin_shape)
1693
    if axis is not None:
Y
yaoxuefeng 已提交
1694 1695 1696
        for i in range(len(axis)):
            if axis[i] >= len_origin_shape or axis[i] < -len_origin_shape:
                raise ValueError(
1697 1698 1699 1700
                    "axis is out of range, it should be in range [{}, {}), but received {}".format(
                        -len_origin_shape, len_origin_shape, axis
                    )
                )
S
sunli 已提交
1701 1702 1703
    else:
        axis = []

F
From00 已提交
1704
    if in_dygraph_mode():
1705
        return _C_ops.roll(x, shifts, axis)
1706
    else:
1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721
        check_variable_and_dtype(
            x,
            'dtype',
            [
                'float16',
                'float32',
                'uint16',
                'float64',
                'int32',
                'int64',
                'complex64',
                'complex128',
            ],
            'roll',
        )
1722 1723
        helper = LayerHelper("roll", **locals())
        check_type(axis, 'axis', (list, tuple), 'roll')
F
From00 已提交
1724

1725
        out = helper.create_variable_for_type_inference(x.dtype)
1726

1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742
        if isinstance(shifts, Variable):
            helper.append_op(
                type='roll',
                inputs={'X': x, "ShiftsTensor": shifts},
                outputs={'Out': out},
                attrs={'axis': axis},
            )
        else:
            check_type(shifts, 'shifts', (list, tuple), 'roll')
            helper.append_op(
                type='roll',
                inputs={'X': x},
                outputs={'Out': out},
                attrs={'axis': axis, 'shifts': shifts},
            )
        return out
1743 1744


L
Leo Chen 已提交
1745
def stack(x, axis=0, name=None):
1746
    """
1747
    Stacks all the input tensors ``x`` along ``axis`` dimemsion.
L
Leo Chen 已提交
1748
    All tensors must be of the same shape and same dtype.
1749 1750 1751

    For example, given N tensors of shape [A, B], if ``axis == 0``, the shape of stacked
    tensor is [N, A, B]; if ``axis == 1``, the shape of stacked
L
Leo Chen 已提交
1752
    tensor is [A, N, B], etc.
1753

1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788

    .. code-block:: text

        Case 1:

          Input:
            x[0].shape = [1, 2]
            x[0].data = [ [1.0 , 2.0 ] ]
            x[1].shape = [1, 2]
            x[1].data = [ [3.0 , 4.0 ] ]
            x[2].shape = [1, 2]
            x[2].data = [ [5.0 , 6.0 ] ]

          Attrs:
            axis = 0

          Output:
            Out.dims = [3, 1, 2]
            Out.data =[ [ [1.0, 2.0] ],
                        [ [3.0, 4.0] ],
                        [ [5.0, 6.0] ] ]


        Case 2:

          Input:
            x[0].shape = [1, 2]
            x[0].data = [ [1.0 , 2.0 ] ]
            x[1].shape = [1, 2]
            x[1].data = [ [3.0 , 4.0 ] ]
            x[2].shape = [1, 2]
            x[2].data = [ [5.0 , 6.0 ] ]


          Attrs:
L
Leo Chen 已提交
1789
            axis = 1 or axis = -2  # If axis = -2, axis = axis+ndim(x[0])+1 = -2+2+1 = 1.
1790 1791 1792 1793 1794 1795 1796 1797

          Output:
            Out.shape = [1, 3, 2]
            Out.data =[ [ [1.0, 2.0]
                          [3.0, 4.0]
                          [5.0, 6.0] ] ]

    Args:
L
Leo Chen 已提交
1798
        x (list[Tensor]|tuple[Tensor]): Input ``x`` can be a ``list`` or ``tuple`` of tensors, the Tensors in ``x``
1799
                                     must be of the same shape and dtype. Supported data types: float32, float64, int32, int64.
L
Leo Chen 已提交
1800
        axis (int, optional): The axis along which all inputs are stacked. ``axis`` range is ``[-(R+1), R+1)``,
1801
                              where ``R`` is the number of dimensions of the first input tensor ``x[0]``.
L
Leo Chen 已提交
1802
                              If ``axis < 0``, ``axis = axis+R+1``. The default value of axis is 0.
1803
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1804

1805
    Returns:
L
Ligoml 已提交
1806
        Tensor, The stacked tensor with same data type as input.
1807

1808
    Example:
1809
        .. code-block:: python
L
Leo Chen 已提交
1810

1811
            import paddle
1812

L
Leo Chen 已提交
1813 1814 1815
            x1 = paddle.to_tensor([[1.0, 2.0]])
            x2 = paddle.to_tensor([[3.0, 4.0]])
            x3 = paddle.to_tensor([[5.0, 6.0]])
1816

L
Leo Chen 已提交
1817 1818
            out = paddle.stack([x1, x2, x3], axis=0)
            print(out.shape)  # [3, 1, 2]
L
Leo Chen 已提交
1819
            print(out)
L
Leo Chen 已提交
1820 1821 1822
            # [[[1., 2.]],
            #  [[3., 4.]],
            #  [[5., 6.]]]
1823

1824 1825 1826 1827 1828 1829
        out = paddle.stack([x1, x2, x3], axis=-2)
        print(out.shape)  # [1, 3, 2]
        print(out)
        # [[[1., 2.],
        #   [3., 4.],
        #   [5., 6.]]]
L
Leo Chen 已提交
1830
    """
1831 1832 1833
    axis = 0 if axis is None else axis

    if in_dygraph_mode():
1834
        return _C_ops.stack(x, axis)
1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853
    else:
        if not isinstance(x, list) and not isinstance(x, tuple):
            # NOTE:(zhiqiu) Only support Variable as input if the Variable is a LOD_TENSOR_ARRAY create by create_array, array_write, array_read, etc.
            # In that case, Variable is array of tensors indeed.
            if (
                isinstance(x, Variable)
                and x.desc.type() == core.VarDesc.VarType.LOD_TENSOR_ARRAY
            ):
                x = [x]
            else:
                raise TypeError(
                    "The type of '%s' in %s must be %s, but received %s"
                    % (
                        'x',
                        'stack',
                        'list[Tensor], tuple[Tensor] or TensorArray',
                        type(x),
                    )
                )
1854

1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867
        helper = LayerHelper('stack', **locals())

        out = helper.create_variable_for_type_inference(x[0].dtype)
        if x[0].desc.type() == core.VarDesc.VarType.LOD_TENSOR_ARRAY:
            assert len(x) == 1, (
                "If the elements of 'x' in stack are Variable(LoDTensorArray), "
                "number of the elements must be 1, but received %s." % len(x)
            )
            out_index = helper.create_variable_for_type_inference(dtype="int32")

            for i in x:
                check_variable_and_dtype(
                    i,
1868
                    'x',
C
ccrrong 已提交
1869 1870 1871 1872 1873 1874 1875 1876
                    [
                        'float16',
                        'float32',
                        'float64',
                        'int32',
                        'int64',
                        'uint16',
                    ],
1877 1878
                    'stack',
                )
1879

1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891
            helper.append_op(
                type='tensor_array_to_tensor',
                inputs={'X': x[0]},
                outputs={'Out': [out], 'OutIndex': [out_index]},
                attrs={'axis': axis, 'use_stack': True},
            )
        else:
            helper.append_op(
                type='stack',
                inputs={'X': x},
                outputs={'Y': out},
                attrs={'axis': axis},
1892 1893
            )

1894
        return out
1895 1896


1897
def split(x, num_or_sections, axis=0, name=None):
1898 1899
    """
    Split the input tensor into multiple sub-Tensors.
1900

1901
    Args:
1902
        x (Tensor): A N-D Tensor. The data type is bool, float16, float32, float64, uint8, int8, int32 or int64.
1903
        num_or_sections (int|list|tuple): If ``num_or_sections`` is an int, then ``num_or_sections``
1904 1905 1906 1907
            indicates the number of equal sized sub-Tensors that the ``x`` will be divided into.
            If ``num_or_sections`` is a list or tuple, the length of it indicates the number of
            sub-Tensors and the elements in it indicate the sizes of sub-Tensors'  dimension orderly.
            The length of the list must not  be larger than the ``x`` 's size of specified ``axis``.
1908
        axis (int|Tensor, optional): The axis along which to split, it can be a scalar with type
1909 1910 1911 1912
            ``int`` or a ``Tensor`` with shape [1] and data type  ``int32`` or ``int64``.
            If :math::`axis < 0`, the axis to split along is :math:`rank(x) + axis`. Default is 0.
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .
1913
    Returns:
L
Ligoml 已提交
1914
        list(Tensor), The list of segmented Tensors.
1915

1916 1917
    Example:
        .. code-block:: python
1918

1919
            import paddle
1920

L
Leo Chen 已提交
1921 1922
            # x is a Tensor of shape [3, 9, 5]
            x = paddle.rand([3, 9, 5])
1923

L
Leo Chen 已提交
1924 1925 1926 1927
            out0, out1, out2 = paddle.split(x, num_or_sections=3, axis=1)
            print(out0.shape)  # [3, 3, 5]
            print(out1.shape)  # [3, 3, 5]
            print(out2.shape)  # [3, 3, 5]
1928 1929

            out0, out1, out2 = paddle.split(x, num_or_sections=[2, 3, 4], axis=1)
L
Leo Chen 已提交
1930 1931 1932
            print(out0.shape)  # [3, 2, 5]
            print(out1.shape)  # [3, 3, 5]
            print(out2.shape)  # [3, 4, 5]
1933 1934

            out0, out1, out2 = paddle.split(x, num_or_sections=[2, 3, -1], axis=1)
L
Leo Chen 已提交
1935 1936 1937
            print(out0.shape)  # [3, 2, 5]
            print(out1.shape)  # [3, 3, 5]
            print(out2.shape)  # [3, 4, 5]
1938

L
Leo Chen 已提交
1939
            # axis is negative, the real axis is (rank(x) + axis)=1
1940
            out0, out1, out2 = paddle.split(x, num_or_sections=3, axis=-2)
L
Leo Chen 已提交
1941 1942 1943
            print(out0.shape)  # [3, 3, 5]
            print(out1.shape)  # [3, 3, 5]
            print(out2.shape)  # [3, 3, 5]
1944
    """
1945 1946
    input = x
    dim = axis
1947
    if in_dygraph_mode():
1948 1949 1950 1951 1952
        if isinstance(dim, Variable):
            dim = dim.item(0)
        assert len(input.shape) + dim >= 0, "(rank(x) + axis) must >= 0"
        dim = (len(input.shape) + dim) if dim < 0 else dim

1953
        if isinstance(num_or_sections, (list, tuple)):
1954
            if paddle.utils._contain_var(num_or_sections):
1955 1956
                for index, item in enumerate(num_or_sections):
                    if isinstance(item, Variable):
1957
                        num_or_sections[index] = num_or_sections[index].item()
1958
        elif not isinstance(num_or_sections, int):
1959 1960
            raise TypeError(
                "The type of 'num_or_sections' in split must be int, list or tuple in imperative mode, but "
1961 1962
                "received %s." % (type(num_or_sections))
            )
1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973
        if isinstance(num_or_sections, int):
            return _C_ops.split_with_num(input, num_or_sections, dim)
        else:
            return _C_ops.split(input, num_or_sections, dim)
    else:
        check_variable_and_dtype(
            input,
            'input',
            [
                'bool',
                'float16',
1974
                'uint16',
1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989
                'float32',
                'float64',
                'int32',
                'int64',
                'uint8',
                'int8',
            ],
            'split',
        )
        check_type(
            num_or_sections, 'num_or_sections', (list, int, tuple), 'split'
        )
        check_type(dim, 'dim', (int, Variable), 'split')
        if isinstance(dim, Variable):
            check_dtype(dim.dtype, 'dim', ['int32', 'int64'], 'split')
1990

1991
        helper = LayerHelper('split', **locals())
1992

1993 1994 1995 1996 1997
        input_shape = input.shape
        inputs = {'X': input}
        attrs = {
            'num': num_or_sections if isinstance(num_or_sections, int) else 0
        }
1998

1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016
        def _get_SectionsTensorList(one_list):
            tensor_list = []
            unk_dim_idx = -1
            for idx, dim_size in enumerate(one_list):
                if isinstance(dim_size, Variable):
                    dim_size.stop_gradient = True
                    tensor_list.append(dim_size)
                else:
                    assert isinstance(dim_size, int)
                    if dim_size == -1:
                        assert unk_dim_idx == -1, (
                            "Only one value of 'num_or_section' in split can "
                            "be -1. But received num_or_section[%d] is also -1."
                            % idx
                        )
                        unk_dim_idx = idx
                    temp_out = helper.create_variable_for_type_inference(
                        'int32'
2017
                    )
2018 2019 2020 2021 2022
                    fill_constant(
                        [1], 'int32', dim_size, force_cpu=True, out=temp_out
                    )
                    tensor_list.append(temp_out)
            return tensor_list
2023

2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047
        if isinstance(dim, Variable):
            dim.stop_gradient = True
            inputs['AxisTensor'] = dim
        else:
            assert len(input.shape) + dim >= 0, "(rank(x) + axis) must >= 0"
            dim = (len(input_shape) + dim) if dim < 0 else dim
            attrs['axis'] = dim

        if isinstance(num_or_sections, int):
            assert num_or_sections > 1, 'num_or_sections must be more than 1.'
            if isinstance(dim, int) and input_shape[dim] > 0:
                assert input_shape[dim] % num_or_sections == 0, (
                    "The input's size along the split dimension "
                    "must be evenly divisible by Attr(num_or_sections). "
                    "But %d is not evenly divisible by %d. "
                    % (num_or_sections, input_shape[dim])
                )
            num = num_or_sections
        else:
            if isinstance(dim, int) and input_shape[dim] > 0:
                assert (
                    len(num_or_sections) <= input_shape[dim]
                ), 'len(num_or_sections) must not be more than input.shape[dim].'
            num = len(num_or_sections)
2048 2049 2050 2051
            attrs['sections'] = [
                -1 if isinstance(ele, Variable) else ele
                for ele in num_or_sections
            ]
2052
            if paddle.utils._contain_var(num_or_sections):
2053 2054 2055 2056 2057 2058 2059
                inputs['SectionsTensorList'] = _get_SectionsTensorList(
                    num_or_sections
                )

        outs = [
            helper.create_variable_for_type_inference(
                dtype=helper.input_dtype()
2060
            )
2061 2062 2063 2064
            for i in range(num)
        ]
        helper.append_op(
            type='split', inputs=inputs, outputs={'Out': outs}, attrs=attrs
2065
        )
2066
        return outs
2067 2068


2069 2070 2071
def vsplit(x, num_or_sections, name=None):
    """
    Split the input tensor into multiple sub-Tensors along the vertical axis, which is equivalent to ``paddle.split`` with ``axis=0``.
2072

2073 2074
    Args:
        x (Tensor): A Tensor whose dimension must be greater than 1. The data type is bool, float16, float32, float64, uint8, int8, int32 or int64.
2075
        num_or_sections (int|list|tuple): If ``num_or_sections`` is an int, then ``num_or_sections``
2076 2077 2078 2079 2080 2081 2082 2083
            indicates the number of equal sized sub-Tensors that the ``x`` will be divided into.
            If ``num_or_sections`` is a list or tuple, the length of it indicates the number of
            sub-Tensors and the elements in it indicate the sizes of sub-Tensors'  dimension orderly.
            The length of the list must not  be larger than the ``x`` 's size of axis 0.
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .
    Returns:
        list[Tensor], The list of segmented Tensors.
2084

2085 2086
    Example:
        .. code-block:: python
2087

2088
            import paddle
2089

2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105
            # x is a Tensor of shape [8, 6, 7]
            x = paddle.rand([8, 6, 7])
            out0, out1, out2 = paddle.vsplit(x, num_or_sections=2)
            print(out0.shape)  # [4, 6, 7]
            print(out1.shape)  # [4, 6, 7]
            out0, out1, out2 = paddle.vsplit(x, num_or_sections=[1, 3, 4])
            print(out0.shape)  # [1, 6, 7]
            print(out1.shape)  # [3, 6, 7]
            print(out2.shape)  # [4, 6, 7]
            out0, out1, out2 = paddle.vsplit(x, num_or_sections=[2, 3, -1])
            print(out0.shape)  # [2, 6, 7]
            print(out1.shape)  # [3, 6, 7]
            print(out2.shape)  # [3, 6, 7]
    """
    if x.ndim < 2:
        raise ValueError(
2106 2107 2108 2109
            "The input tensor's dimension must be greater than 1, but got {}".format(
                x.ndim
            )
        )
2110 2111 2112
    return split(x, num_or_sections, axis=0, name=name)


L
Leo Chen 已提交
2113
def squeeze(x, axis=None, name=None):
2114
    """
2115 2116 2117 2118
    Squeeze the dimension(s) of size 1 of input tensor x's shape.

    Note that the output Tensor will share data with origin Tensor and doesn't have a
    Tensor copy in ``dygraph`` mode. If you want to use the Tensor copy version,
2119
    please use `Tensor.clone` like ``squeeze_clone_x = x.squeeze().clone()``.
2120

2121 2122
    If axis is provided, it will remove the dimension(s) by given axis that of size 1.
    If the dimension of given axis is not of size 1, the dimension remain unchanged.
L
Leo Chen 已提交
2123
    If axis is not provided, all dims equal of size 1 will be removed.
2124 2125 2126 2127 2128 2129

    .. code-block:: text

        Case1:

          Input:
L
Leo Chen 已提交
2130 2131
            x.shape = [1, 3, 1, 5]  # If axis is not provided, all dims equal of size 1 will be removed.
            axis = None
2132
          Output:
L
Leo Chen 已提交
2133
            out.shape = [3, 5]
2134 2135 2136 2137

        Case2:

          Input:
L
Leo Chen 已提交
2138 2139 2140 2141
            x.shape = [1, 3, 1, 5]  # If axis is provided, it will remove the dimension(s) by given axis that of size 1.
            axis = 0
          Output:
            out.shape = [3, 1, 5]
2142

L
Leo Chen 已提交
2143 2144 2145
        Case4:

          Input:
2146
            x.shape = [1, 3, 1, 5]  # If the dimension of one given axis (3) is not of size 1, the dimension remain unchanged.
L
Leo Chen 已提交
2147
            axis = [0, 2, 3]
2148
          Output:
L
Leo Chen 已提交
2149
            out.shape = [3, 5]
2150

L
Leo Chen 已提交
2151
        Case4:
2152 2153

          Input:
2154
            x.shape = [1, 3, 1, 5]  # If axis is negative, axis = axis + ndim (number of dimensions in x).
L
Leo Chen 已提交
2155
            axis = [-2]
2156
          Output:
L
Leo Chen 已提交
2157
            out.shape = [1, 3, 5]
2158 2159

    Args:
2160
        x (Tensor): The input Tensor. Supported data type: float32, float64, bool, int8, int32, int64.
2161
        axis (int|list|tuple, optional): An integer or list/tuple of integers, indicating the dimensions to be squeezed. Default is None.
2162 2163 2164
                          The range of axis is :math:`[-ndim(x), ndim(x))`.
                          If axis is negative, :math:`axis = axis + ndim(x)`.
                          If axis is None, all the dimensions of x of size 1 will be removed.
2165 2166 2167
        name (str, optional): Please refer to :ref:`api_guide_Name`, Default None.

    Returns:
L
Ligoml 已提交
2168
        Tensor, Squeezed Tensor with the same data type as input Tensor.
2169 2170 2171

    Examples:
        .. code-block:: python
2172

2173
            import paddle
2174

L
Leo Chen 已提交
2175 2176
            x = paddle.rand([5, 1, 10])
            output = paddle.squeeze(x, axis=1)
2177 2178

            print(x.shape)  # [5, 1, 10]
L
Leo Chen 已提交
2179
            print(output.shape)  # [5, 10]
2180

2181 2182 2183 2184
            # output shares data with x in dygraph mode
            x[0, 0, 0] = 10.
            print(output[0, 0]) # [10.]

2185
    """
L
Leo Chen 已提交
2186 2187 2188 2189 2190 2191
    if axis is None:
        axis = []
    elif isinstance(axis, int):
        axis = [axis]
    elif isinstance(axis, tuple):
        axis = list(axis)
2192

2193 2194 2195
    input = x
    axes = axis
    if in_dygraph_mode():
2196
        return _C_ops.squeeze(input, axes)
2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214
    else:
        helper = LayerHelper("squeeze", **locals())
        check_variable_and_dtype(
            input,
            'input',
            [
                'float16',
                'float32',
                'float64',
                'bool',
                'int8',
                'int32',
                'int64',
                'complex64',
                'complex128',
            ],
            'squeeze',
        )
2215

2216 2217 2218 2219
        check_type(axes, 'axis/axes', (int, list, tuple, Variable), 'squeeze')
        attrs = {}
        if isinstance(axes, Variable):
            axes.stop_gradient = True
2220
            attrs["axes"] = axes
2221
        elif isinstance(axes, (list, tuple)):
2222 2223
            if paddle.utils._contain_var(axes):
                attrs["axes"] = paddle.utils._convert_to_tensor_list(axes)
2224 2225
            else:
                attrs["axes"] = axes
2226

2227 2228 2229 2230 2231 2232 2233 2234
        out = helper.create_variable_for_type_inference(dtype=input.dtype)
        x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
        helper.append_op(
            type="squeeze2",
            inputs={"X": input},
            attrs=attrs,
            outputs={"Out": out, "XShape": x_shape},
        )
2235

2236
        return out
2237 2238


2239
@inplace_apis_in_dygraph_only
2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251
def squeeze_(x, axis=None, name=None):
    """
    Inplace version of ``squeeze`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_paddle_tensor_squeeze`.
    """
    if axis is None:
        axis = []
    elif isinstance(axis, int):
        axis = [axis]
    elif isinstance(axis, tuple):
        axis = list(axis)

2252 2253 2254
    input = x
    axes = axis
    if in_dygraph_mode():
2255
        return _C_ops.squeeze_(input, axes)
2256 2257


2258 2259 2260 2261 2262 2263 2264 2265
def unique_consecutive(
    x,
    return_inverse=False,
    return_counts=False,
    axis=None,
    dtype="int64",
    name=None,
):
Z
Zman 已提交
2266
    """
D
duanboqiang 已提交
2267 2268
    Eliminates all but the first element from every consecutive group of equivalent elements.

2269
    Note:
Z
Zman 已提交
2270 2271
        This function is different from :ref:`api_paddle_unique` in the sense that this function
        only eliminates consecutive duplicate values. This semantics is similar to :ref:`api_paddle_unique` in C++.
D
duanboqiang 已提交
2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286

    Args:
        x(Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        return_inverse(bool, optional): If True, also return the indices for where elements in
            the original input ended up in the returned unique consecutive tensor. Default is False.
        return_counts(bool, optional): If True, also return the counts for each unique consecutive element.
            Default is False.
        axis(int, optional): The axis to apply unique consecutive. If None, the input will be flattened.
            Default is None.
        dtype(np.dtype|str, optional): The data type `inverse` tensor: int32 or int64.
            Default: int64.
        name(str, optional): Name for the operation. For more information, please refer to
            :ref:`api_guide_Name`. Default is None.

    Returns:
Z
Zman 已提交
2287 2288 2289 2290 2291 2292
        - out (Tensor), the unique consecutive tensor for x.
        - inverse (Tensor), the element of the input tensor corresponds to
            the index of the elements in the unique consecutive tensor for x.
            inverse is provided only if return_inverse is True.
        - counts (Tensor), the counts of the every unique consecutive element in the input tensor.
            counts is provided only if return_counts is True.
D
duanboqiang 已提交
2293 2294 2295 2296

    Example:
        .. code-block:: python

2297
            import paddle
D
duanboqiang 已提交
2298 2299

            x = paddle.to_tensor([1, 1, 2, 2, 3, 1, 1, 2])
2300
            output = paddle.unique_consecutive(x) #
2301 2302 2303 2304
            print(output)
            # Tensor(shape=[5], dtype=int64, place=Place(gpu:0), stop_gradient=True,
            #        [1, 2, 3, 1, 2])

D
duanboqiang 已提交
2305
            _, inverse, counts = paddle.unique_consecutive(x, return_inverse=True, return_counts=True)
2306 2307 2308 2309 2310 2311
            print(inverse)
            # Tensor(shape=[8], dtype=int64, place=Place(gpu:0), stop_gradient=True,
            #        [0, 0, 1, 1, 2, 3, 3, 4])
            print(counts)
            # Tensor(shape=[5], dtype=int64, place=Place(gpu:0), stop_gradient=True,
            #        [2, 2, 1, 2, 1])
D
duanboqiang 已提交
2312 2313

            x = paddle.to_tensor([[2, 1, 3], [3, 0, 1], [2, 1, 3], [2, 1, 3]])
2314
            output = paddle.unique_consecutive(x, axis=0) #
2315 2316 2317 2318 2319
            print(output)
            # Tensor(shape=[3, 3], dtype=int64, place=Place(gpu:0), stop_gradient=True,
            #        [[2, 1, 3],
            #         [3, 0, 1],
            #         [2, 1, 3]])
D
duanboqiang 已提交
2320 2321

            x = paddle.to_tensor([[2, 1, 3], [3, 0, 1], [2, 1, 3], [2, 1, 3]])
2322
            output = paddle.unique_consecutive(x, axis=0) #
2323 2324 2325 2326 2327
            print(output)
            # Tensor(shape=[3, 3], dtype=int64, place=Place(gpu:0), stop_gradient=True,
            #        [[2, 1, 3],
            #         [3, 0, 1],
            #         [2, 1, 3]])
D
duanboqiang 已提交
2328 2329 2330 2331 2332 2333 2334
    """

    if axis is None:
        axis = []
    else:
        axis = [axis]
    attr_dtype = convert_np_dtype_to_dtype_(dtype)
2335
    if in_dygraph_mode():
2336
        out, inverse, counts = _C_ops.unique_consecutive(
2337 2338
            x, return_inverse, return_counts, axis, attr_dtype
        )
2339 2340 2341 2342 2343 2344 2345 2346
        outs = [out]
        if return_inverse:
            outs.append(inverse)
        if return_counts:
            outs.append(counts)
        if len(outs) == 1:
            return outs[0]
        return tuple(outs)
2347 2348
    else:
        check_variable_and_dtype(
2349
            x,
2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367
            "input",
            ['float32', 'float64', 'int32', 'int64'],
            'unique_consecutive',
        )
        check_type(return_inverse, 'return_inverse', bool, 'unique_consecutive')
        check_type(return_counts, 'return_counts', bool, 'unique_consecutive')
        check_dtype(dtype, 'dtype', ['int32', 'int64'], 'unique_consecutive')
        if len(axis) != 0:
            check_type(axis[0], 'axis', int, 'unique_consecutive')
        helper = LayerHelper('unique_consecutive', **locals())
        attrs = {
            'dtype': attr_dtype,
            "return_inverse": return_inverse,
            "return_counts": return_counts,
            "axis": axis,
        }
        out = helper.create_variable_for_type_inference(
            dtype=x.dtype, stop_gradient=True
2368
        )
2369 2370 2371 2372 2373 2374 2375
        inverse = helper.create_variable_for_type_inference(
            dtype=attr_dtype, stop_gradient=True
        )
        counts = helper.create_variable_for_type_inference(
            dtype=attr_dtype, stop_gradient=True
        )
        outputs = {"Out": out, "Index": inverse, "Counts": counts}
D
duanboqiang 已提交
2376 2377 2378 2379 2380
        outs = [out]
        if return_inverse:
            outs.append(inverse)
        if return_counts:
            outs.append(counts)
2381 2382 2383 2384 2385 2386
        helper.append_op(
            type="unique_consecutive",
            inputs={"X": x},
            attrs=attrs,
            outputs=outputs,
        )
D
duanboqiang 已提交
2387 2388 2389 2390 2391
        if len(outs) == 1:
            return outs[0]
        return tuple(outs)


2392 2393 2394 2395 2396 2397 2398 2399 2400
def unique(
    x,
    return_index=False,
    return_inverse=False,
    return_counts=False,
    axis=None,
    dtype="int64",
    name=None,
):
2401
    r"""
Z
Zhang Ting 已提交
2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412
    Returns the unique elements of `x` in ascending order.

    Args:
        x(Tensor): The input tensor, it's data type should be float32, float64, int32, int64.
        return_index(bool, optional): If True, also return the indices of the input tensor that
            result in the unique Tensor.
        return_inverse(bool, optional): If True, also return the indices for where elements in
            the original input ended up in the returned unique tensor.
        return_counts(bool, optional): If True, also return the counts for each unique element.
        axis(int, optional): The axis to apply unique. If None, the input will be flattened.
            Default: None.
Z
Zhang Ting 已提交
2413 2414
        dtype(np.dtype|str, optional): The date type of `indices` or `inverse` tensor: int32 or int64.
            Default: int64.
Z
Zhang Ting 已提交
2415 2416 2417
        name(str, optional): Name for the operation. For more information, please refer to
            :ref:`api_guide_Name`. Default: None.

2418
    Returns:
2419
        tuple (out, indices, inverse, counts). `out` is the unique tensor for `x`. `indices` is \
Z
Zhang Ting 已提交
2420 2421 2422 2423 2424
            provided only if `return_index` is True. `inverse` is provided only if `return_inverse` \
            is True. `counts` is provided only if `return_counts` is True.

    Examples:
        .. code-block:: python
2425

Z
Zhang Ting 已提交
2426 2427
            import paddle

2428
            x = paddle.to_tensor([2, 3, 3, 1, 5, 3])
Z
Zhang Ting 已提交
2429
            unique = paddle.unique(x)
2430 2431 2432 2433
            print(unique)
            # Tensor(shape=[4], dtype=int64, place=Place(gpu:0), stop_gradient=True,
            #        [1, 2, 3, 5])

Z
Zhang Ting 已提交
2434
            _, indices, inverse, counts = paddle.unique(x, return_index=True, return_inverse=True, return_counts=True)
2435 2436 2437 2438 2439 2440 2441 2442 2443
            print(indices)
            # Tensor(shape=[4], dtype=int64, place=Place(gpu:0), stop_gradient=True,
            #        [3, 0, 1, 4])
            print(inverse)
            # Tensor(shape=[6], dtype=int64, place=Place(gpu:0), stop_gradient=True,
            #        [1, 2, 2, 0, 3, 2])
            print(counts)
            # Tensor(shape=[4], dtype=int64, place=Place(gpu:0), stop_gradient=True,
            #        [1, 1, 3, 1])
Z
Zhang Ting 已提交
2444

2445
            x = paddle.to_tensor([[2, 1, 3], [3, 0, 1], [2, 1, 3]])
Z
Zhang Ting 已提交
2446
            unique = paddle.unique(x)
2447 2448 2449
            print(unique)
            # Tensor(shape=[4], dtype=int64, place=Place(gpu:0), stop_gradient=True,
            #        [0, 1, 2, 3])
Z
Zhang Ting 已提交
2450 2451

            unique = paddle.unique(x, axis=0)
2452 2453 2454 2455
            print(unique)
            # Tensor(shape=[2, 3], dtype=int64, place=Place(gpu:0), stop_gradient=True,
            #        [[2, 1, 3],
            #         [3, 0, 1]])
Z
Zhang Ting 已提交
2456 2457 2458 2459 2460
    """
    if axis is None:
        axis = []
    else:
        axis = [axis]
Z
Zhang Ting 已提交
2461
    attr_dtype = convert_np_dtype_to_dtype_(dtype)
2462 2463 2464 2465
    if in_dygraph_mode():
        out, indices, inverse, counts = _C_ops.unique(
            x, return_index, return_inverse, return_counts, axis, attr_dtype
        )
Z
Zhang Ting 已提交
2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477
        outs = [out]
        if return_index:
            outs.append(indices)
        if return_inverse:
            outs.append(inverse)
        if return_counts:
            outs.append(counts)

        if len(outs) == 1:
            return outs[0]

        return tuple(outs)
2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522
    else:
        check_variable_and_dtype(
            x, "input", ['float32', 'float64', 'int32', 'int64'], 'unique'
        )
        check_type(return_index, 'return_index', bool, 'unique')
        check_type(return_inverse, 'return_inverse', bool, 'unique')
        check_type(return_counts, 'return_counts', bool, 'unique')
        check_dtype(dtype, 'dtype', ['int32', 'int64'], 'unique')
        if len(axis) != 0:
            check_type(axis[0], 'axis', int, 'unique')

        helper = LayerHelper('unique', **locals())
        attrs = {
            'dtype': attr_dtype,
            "return_index": return_index,
            "return_inverse": return_inverse,
            "return_counts": return_counts,
            "axis": axis,
            "is_sorted": True,
        }
        out = helper.create_variable_for_type_inference(
            dtype=x.dtype, stop_gradient=True
        )
        indices = helper.create_variable_for_type_inference(
            dtype=attr_dtype, stop_gradient=True
        )
        inverse = helper.create_variable_for_type_inference(
            dtype=attr_dtype, stop_gradient=True
        )
        counts = helper.create_variable_for_type_inference(
            dtype=attr_dtype, stop_gradient=True
        )
        outputs = {
            "Out": out,
            "Indices": indices,
            "Index": inverse,
            "Counts": counts,
        }
        outs = [out]
        if return_index:
            outs.append(indices)
        if return_inverse:
            outs.append(inverse)
        if return_counts:
            outs.append(counts)
Z
Zhang Ting 已提交
2523

2524 2525 2526
        helper.append_op(
            type="unique", inputs={"X": x}, attrs=attrs, outputs=outputs
        )
Z
Zhang Ting 已提交
2527

2528 2529
        if len(outs) == 1:
            return outs[0]
Z
Zhang Ting 已提交
2530

2531
        return tuple(outs)
Z
Zhang Ting 已提交
2532 2533


2534
def unsqueeze(x, axis, name=None):
2535
    """
2536 2537 2538
    Insert single-dimensional entries to the shape of input Tensor ``x``. Takes one
    required argument axis, a dimension or list of dimensions that will be inserted.
    Dimension indices in axis are as seen in the output tensor.
2539

2540 2541
    Note that the output Tensor will share data with origin Tensor and doesn't have a
    Tensor copy in ``dygraph`` mode. If you want to use the Tensor copy version,
2542 2543
    please use `Tensor.clone` like ``unsqueeze_clone_x = x.unsqueeze(-1).clone()``.

2544
    Args:
2545
        x (Tensor): The input Tensor to be unsqueezed. Supported data type: float32, float64, bool, int8, int32, int64.
2546 2547
        axis (int|list|tuple|Tensor): Indicates the dimensions to be inserted. The data type is ``int32`` .
                                    If ``axis`` is a list or tuple, the elements of it should be integers or Tensors with shape [1].
2548 2549 2550
                                    If ``axis`` is a Tensor, it should be an 1-D Tensor .
                                    If ``axis`` is negative, ``axis = axis + ndim(x) + 1``.
        name (str|None): Name for this layer. Please refer to :ref:`api_guide_Name`, Default None.
2551 2552

    Returns:
L
Ligoml 已提交
2553
        Tensor, Unsqueezed Tensor with the same data type as input Tensor.
2554 2555 2556

    Examples:
        .. code-block:: python
2557

2558 2559
            import paddle

2560 2561
            x = paddle.rand([5, 10])
            print(x.shape)  # [5, 10]
2562

2563 2564
            out1 = paddle.unsqueeze(x, axis=0)
            print(out1.shape)  # [1, 5, 10]
2565 2566

            out2 = paddle.unsqueeze(x, axis=[0, 2])
2567
            print(out2.shape)  # [1, 5, 1, 10]
2568

L
Leo Chen 已提交
2569
            axis = paddle.to_tensor([0, 1, 2])
2570
            out3 = paddle.unsqueeze(x, axis=axis)
2571
            print(out3.shape)  # [1, 1, 1, 5, 10]
2572 2573 2574 2575 2576 2577

            # out1, out2, out3 share data with x in dygraph mode
            x[0, 0] = 10.
            print(out1[0, 0, 0]) # [10.]
            print(out2[0, 0, 0, 0]) # [10.]
            print(out3[0, 0, 0, 0, 0]) # [10.]
2578

2579
    """
2580 2581
    input = x
    axes = axis
2582
    if in_dygraph_mode():
2583 2584 2585
        if isinstance(axes, int):
            axes = [axes]
        elif isinstance(axes, Variable):
2586
            axes = axes.tolist()
2587 2588
        elif isinstance(axes, (list, tuple)):
            axes = [
2589
                item.item(0) if isinstance(item, Variable) else item
2590 2591
                for item in axes
            ]
2592
        return _C_ops.unsqueeze(input, axes)
2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614
    else:
        check_type(axes, 'axis/axes', (int, list, tuple, Variable), 'unsqueeze')
        check_variable_and_dtype(
            input,
            'input',
            [
                'float16',
                'float32',
                'float64',
                'bool',
                'int8',
                'int16',
                'int32',
                'int64',
                'complex64',
                'complex128',
            ],
            'unsqueeze',
        )
        helper = LayerHelper("unsqueeze2", **locals())
        inputs = {"X": input}
        attrs = {}
2615

2616 2617 2618 2619 2620 2621
        if isinstance(axes, int):
            axes = [axes]
        if isinstance(axes, Variable):
            axes.stop_gradient = True
            inputs["AxesTensor"] = axes
        elif isinstance(axes, (list, tuple)):
2622 2623 2624 2625
            if paddle.utils._contain_var(axes):
                inputs["AxesTensorList"] = paddle.utils._convert_to_tensor_list(
                    axes
                )
2626 2627
            else:
                attrs["axes"] = axes
2628

2629 2630 2631 2632 2633 2634 2635 2636
        out = helper.create_variable_for_type_inference(dtype=input.dtype)
        x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
        helper.append_op(
            type="unsqueeze2",
            inputs=inputs,
            attrs=attrs,
            outputs={"Out": out, "XShape": x_shape},
        )
2637

2638
        return out
2639 2640


2641
@inplace_apis_in_dygraph_only
2642 2643 2644 2645 2646
def unsqueeze_(x, axis, name=None):
    """
    Inplace version of ``unsqueeze`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_paddle_tensor_unsqueeze`.
    """
2647 2648 2649 2650 2651
    input = x
    axes = axis
    if isinstance(axes, int):
        axes = [axes]
    elif isinstance(axes, Variable):
2652
        axes = axes.tolist()
2653 2654
    elif isinstance(axes, (list, tuple)):
        axes = [
2655
            item.item(0) if isinstance(item, Variable) else item
2656
            for item in axes
2657
        ]
2658
    return _C_ops.unsqueeze_(input, axes)
2659 2660


2661
def gather(x, index, axis=None, name=None):
2662
    """
2663 2664
    Output is obtained by gathering entries of ``axis``
    of ``x`` indexed by ``index`` and concatenate them together.
2665 2666 2667 2668 2669 2670

    .. code-block:: text


                Given:

2671
                x = [[1, 2],
2672 2673 2674
                     [3, 4],
                     [5, 6]]

2675 2676
                index = [1, 2]
                axis=[0]
2677 2678 2679

                Then:

2680
                out = [[3, 4],
2681
                       [5, 6]]
2682

2683
    Args:
2684
        x (Tensor): The source input tensor with rank>=1. Supported data type is
2685 2686
            int32, int64, float32, float64 and uint8 (only for CPU),
            float16 (only for GPU).
2687
        index (Tensor): The index input tensor with rank=0 or rank=1. Data type is int32 or int64.
2688
        axis (Tensor|int, optional): The axis of input to be gathered, it's can be int or a Tensor with data type is int32 or int64. The default value is None, if None, the ``axis`` is 0.
2689 2690
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .
2691 2692

    Returns:
2693
        output (Tensor), If the index is a 1-D tensor, the output is a tensor with the same shape as ``x``. If the index is a 0-D tensor, the output will reduce the dimension where the axis pointing.
2694

2695 2696 2697 2698 2699 2700
    Examples:

        .. code-block:: python

            import paddle

2701 2702
            input = paddle.to_tensor([[1,2],[3,4],[5,6]])
            index = paddle.to_tensor([0,1])
2703 2704
            output = paddle.gather(input, index, axis=0)
            # expected output: [[1,2],[3,4]]
2705
    """
2706 2707
    if axis is None:
        axis = 0
2708

2709
    if in_dygraph_mode():
2710
        return _C_ops.gather(x, index, axis)
2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724
    else:
        check_variable_and_dtype(
            x,
            'x',
            [
                'float16',
                'float32',
                'float64',
                'int16',
                'int32',
                'int64',
                'uint8',
            ],
            'gather',
2725
        )
2726
        check_variable_and_dtype(index, 'index', ['int32', 'int64'], 'gather')
2727

2728 2729
        if isinstance(axis, Variable):
            check_variable_and_dtype(axis, 'axis', ['int32', 'int64'], 'gather')
2730

2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747
        helper = LayerHelper('gather', **locals())
        dtype = helper.input_dtype('x')
        out = helper.create_variable_for_type_inference(dtype)
        if not isinstance(axis, Variable):
            helper.append_op(
                type="gather",
                inputs={"X": x, "Index": index},
                attrs={'axis': axis, 'overwrite': False},
                outputs={"Out": out},
            )
        else:
            helper.append_op(
                type="gather",
                inputs={"X": x, "Index": index, "Axis": axis},
                attrs={"overwrite": False},
                outputs={"Out": out},
            )
2748

2749
        return out
myq406450149's avatar
myq406450149 已提交
2750 2751 2752 2753


def unbind(input, axis=0):
    """
S
swtkiwi 已提交
2754

myq406450149's avatar
myq406450149 已提交
2755
    Removes a tensor dimension, then split the input tensor into multiple sub-Tensors.
2756

myq406450149's avatar
myq406450149 已提交
2757
    Args:
L
Leo Chen 已提交
2758
        input (Tensor): The input variable which is an N-D Tensor, data type being bool, float16, float32, float64, int32 or int64.
2759
        axis (int32|int64, optional): A scalar with type ``int32|int64`` shape [1]. The dimension along which to unbind.
2760
            If :math:`axis < 0`, the dimension to unbind along is :math:`rank(input) + axis`. Default is 0.
myq406450149's avatar
myq406450149 已提交
2761
    Returns:
L
Ligoml 已提交
2762
        list(Tensor), The list of segmented Tensor variables.
myq406450149's avatar
myq406450149 已提交
2763 2764 2765

    Example:
        .. code-block:: python
2766

myq406450149's avatar
myq406450149 已提交
2767
            import paddle
2768

C
Chen Long 已提交
2769 2770
            # input is a Tensor which shape is [3, 4, 5]
            input = paddle.rand([3, 4, 5])
2771

2772
            [x0, x1, x2] = paddle.unbind(input, axis=0)
myq406450149's avatar
myq406450149 已提交
2773 2774 2775
            # x0.shape [4, 5]
            # x1.shape [4, 5]
            # x2.shape [4, 5]
C
Chen Long 已提交
2776

2777
            [x0, x1, x2, x3] = paddle.unbind(input, axis=1)
myq406450149's avatar
myq406450149 已提交
2778 2779 2780 2781 2782
            # x0.shape [3, 5]
            # x1.shape [3, 5]
            # x2.shape [3, 5]
            # x3.shape [3, 5]
    """
2783 2784 2785 2786 2787 2788 2789 2790 2791 2792
    if not isinstance(axis, (int)):
        raise TypeError(
            "The type of 'axis'  must be int, but received %s." % (type(axis))
        )

    if axis not in range(-input.ndim, input.ndim):
        raise ValueError(
            f'The axis must in range({-input.ndim}, {input.ndim}).'
        )

2793
    if in_dygraph_mode():
2794
        return _C_ops.unbind(input, axis)
2795 2796 2797 2798 2799 2800 2801 2802 2803 2804
    else:
        if isinstance(axis, np.generic):
            axis = np.asscalar(axis)
        input_shape = input.shape
        axis_ = axis if axis >= 0 else len(input_shape) + axis
        num = input_shape[axis_]
        helper = LayerHelper("unbind", **locals())
        check_type(input, 'input', (Variable), 'unbind')
        dtype = helper.input_dtype()
        check_dtype(
张春乔 已提交
2805 2806
            dtype,
            'unbind',
2807 2808 2809 2810 2811 2812 2813 2814 2815
            [
                'bool',
                'float16',
                'uint16',
                'float32',
                'float64',
                'int32',
                'int64',
            ],
张春乔 已提交
2816
            'unbind',
2817
        )
2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830
        outs = [
            helper.create_variable_for_type_inference(
                dtype=helper.input_dtype()
            )
            for i in range(num)
        ]
        helper.append_op(
            type="unbind",
            inputs={"X": input},
            outputs={"Out": outs},
            attrs={"axis": axis},
        )
        return outs
L
lilong12 已提交
2831 2832


S
ShenLiang 已提交
2833 2834 2835 2836
def scatter(x, index, updates, overwrite=True, name=None):
    """
    **Scatter Layer**
    Output is obtained by updating the input on selected indices based on updates.
2837

S
ShenLiang 已提交
2838
    .. code-block:: python
2839

H
hg-1099255210 已提交
2840
        import paddle
S
ShenLiang 已提交
2841
        #input:
H
hg-1099255210 已提交
2842 2843
        x = paddle.to_tensor([[1, 1], [2, 2], [3, 3]], dtype='float32')
        index = paddle.to_tensor([2, 1, 0, 1], dtype='int64')
S
ShenLiang 已提交
2844 2845
        # shape of updates should be the same as x
        # shape of updates with dim > 1 should be the same as input
H
hg-1099255210 已提交
2846
        updates = paddle.to_tensor([[1, 1], [2, 2], [3, 3], [4, 4]], dtype='float32')
S
ShenLiang 已提交
2847 2848 2849 2850
        overwrite = False
        # calculation:
        if not overwrite:
            for i in range(len(index)):
H
hg-1099255210 已提交
2851
                x[index[i]] = paddle.zeros([2])
S
ShenLiang 已提交
2852 2853 2854 2855 2856 2857
        for i in range(len(index)):
            if (overwrite):
                x[index[i]] = updates[i]
            else:
                x[index[i]] += updates[i]
        # output:
H
hg-1099255210 已提交
2858
        out = paddle.to_tensor([[3, 3], [6, 6], [1, 1]])
S
ShenLiang 已提交
2859 2860
        out.shape # [3, 2]

2861
    **NOTICE**: The order in which updates are applied is nondeterministic,
S
ShenLiang 已提交
2862 2863 2864 2865
    so the output will be nondeterministic if index contains duplicates.

    Args:
        x (Tensor): The input N-D Tensor with ndim>=1. Data type can be float32, float64.
2866 2867
        index (Tensor): The index is a 1-D or 0-D Tensor. Data type can be int32, int64. The length of index cannot exceed updates's length, and the value in index cannot exceed input's length.
        updates (Tensor): Update input with updates parameter based on index. When the index is a 1-D tensor, the updates shape should be the same as input, and dim value with dim > 1 should be the same as input. When the index is a 0-D tensor, the updates should be a (N-1)-D tensor, the ith dim of the updates should be queal with the (i+1)th dim of the input.
H
hg-1099255210 已提交
2868
        overwrite (bool, optional): The mode that updating the output when there are same indices.
2869

S
sunzhongkai588 已提交
2870
            If True, use the overwrite mode to update the output of the same index,
H
hg-1099255210 已提交
2871
            if False, use the accumulate mode to update the output of the same index. Default value is True.
2872

S
ShenLiang 已提交
2873
        name(str, optional): The default value is None. Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name` .
2874

S
ShenLiang 已提交
2875
    Returns:
L
Ligoml 已提交
2876
        Tensor, The output is a Tensor with the same shape as x.
S
ShenLiang 已提交
2877 2878 2879

    Examples:
        .. code-block:: python
2880

S
ShenLiang 已提交
2881 2882
            import paddle

2883 2884 2885
            x = paddle.to_tensor([[1, 1], [2, 2], [3, 3]], dtype='float32')
            index = paddle.to_tensor([2, 1, 0, 1], dtype='int64')
            updates = paddle.to_tensor([[1, 1], [2, 2], [3, 3], [4, 4]], dtype='float32')
2886

S
ShenLiang 已提交
2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906
            output1 = paddle.scatter(x, index, updates, overwrite=False)
            # [[3., 3.],
            #  [6., 6.],
            #  [1., 1.]]

            output2 = paddle.scatter(x, index, updates, overwrite=True)
            # CPU device:
            # [[3., 3.],
            #  [4., 4.],
            #  [1., 1.]]
            # GPU device maybe have two results because of the repeated numbers in index
            # result 1:
            # [[3., 3.],
            #  [4., 4.],
            #  [1., 1.]]
            # result 2:
            # [[3., 3.],
            #  [2., 2.],
            #  [1., 1.]]
    """
J
Jiabin Yang 已提交
2907
    if in_dygraph_mode():
2908
        return _C_ops.scatter(x, index, updates, overwrite)
J
Jiabin Yang 已提交
2909
    else:
2910 2911 2912
        check_variable_and_dtype(
            x,
            'dtype',
Z
zxcd 已提交
2913
            ['float32', 'float64', 'float16', 'int32', 'int64', 'uint16'],
2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925
            'scatter',
        )
        check_type(overwrite, 'overwrite', bool, 'scatter')
        helper = LayerHelper('scatter', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type="scatter",
            inputs={"X": x, "Ids": index, "Updates": updates},
            attrs={'overwrite': overwrite},
            outputs={"Out": out},
        )
        return out
S
ShenLiang 已提交
2926 2927


2928
@inplace_apis_in_dygraph_only
2929 2930 2931 2932 2933
def scatter_(x, index, updates, overwrite=True, name=None):
    """
    Inplace version of ``scatter`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_paddle_tensor_scatter`.
    """
2934
    return _C_ops.scatter_(x, index, updates, overwrite)
2935 2936


2937
def scatter_nd_add(x, index, updates, name=None):
2938
    r"""
2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979

    Output is obtained by applying sparse addition to a single value
    or slice in a Tensor.

    :attr:`x` is a Tensor with ndim :math:`R`
    and :attr:`index` is a Tensor with ndim :math:`K` . Thus, :attr:`index`
    has shape :math:`[i_0, i_1, ..., i_{K-2}, Q]` where :math:`Q \leq R` . :attr:`updates`
    is a Tensor with ndim :math:`K - 1 + R - Q` and its
    shape is :math:`index.shape[:-1] + x.shape[index.shape[-1]:]` .

    According to the :math:`[i_0, i_1, ..., i_{K-2}]` of :attr:`index` ,
    add the corresponding :attr:`updates` slice to the :attr:`x` slice
    which is obtained by the last one dimension of :attr:`index` .

    .. code-block:: text

        Given:

        * Case 1:
            x = [0, 1, 2, 3, 4, 5]
            index = [[1], [2], [3], [1]]
            updates = [9, 10, 11, 12]

          we get:

            output = [0, 22, 12, 14, 4, 5]

        * Case 2:
            x = [[65, 17], [-14, -25]]
            index = [[], []]
            updates = [[[-1, -2], [1, 2]],
                       [[3, 4], [-3, -4]]]
            x.shape = (2, 2)
            index.shape = (2, 0)
            updates.shape = (2, 2, 2)

          we get:

            output = [[67, 19], [-16, -27]]

    Args:
Z
Zeng Jinle 已提交
2980
        x (Tensor): The x input. Its dtype should be int32, int64, float32, float64.
2981 2982 2983 2984 2985 2986 2987
        index (Tensor): The index input with ndim > 1 and index.shape[-1] <= x.ndim.
                          Its dtype should be int32 or int64 as it is used as indexes.
        updates (Tensor): The updated value of scatter_nd_add op, and it must have the same dtype
                            as x. It must have the shape index.shape[:-1] + x.shape[index.shape[-1]:].
        name (str|None): The output tensor name. If set None, the layer will be named automatically.

    Returns:
L
Ligoml 已提交
2988
        output (Tensor), The output is a tensor with the same shape and dtype as x.
2989 2990 2991 2992 2993 2994 2995 2996 2997

    Examples:

        .. code-block:: python

            import paddle

            x = paddle.rand(shape=[3, 5, 9, 10], dtype='float32')
            updates = paddle.rand(shape=[3, 9, 10], dtype='float32')
C
Chen Long 已提交
2998 2999 3000
            index = paddle.to_tensor([[1, 1],
                                    [0, 1],
                                    [1, 3]], dtype='int64')
3001

3002
            output = paddle.scatter_nd_add(x, index, updates)
C
Chen Long 已提交
3003 3004
            print(output.shape)
            # [3, 5, 9, 10]
3005
    """
3006
    if in_dygraph_mode():
3007
        return _C_ops.scatter_nd_add(x, index, updates)
3008
    else:
3009 3010
        if x.dtype != updates.dtype:
            raise ValueError("x and updates must have same data type.")
3011

3012 3013 3014 3015 3016 3017 3018 3019 3020
        helper = LayerHelper('scatter_nd_add', **locals())
        dtype = helper.input_dtype(input_param_name='x')
        output = helper.create_variable_for_type_inference(dtype)
        helper.append_op(
            type="scatter_nd_add",
            inputs={"X": x, "Index": index, "Updates": updates},
            outputs={"Out": output},
        )
        return output
3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036


def scatter_nd(index, updates, shape, name=None):
    """
    **Scatter_nd Layer**

    Output is obtained by scattering the :attr:`updates` in a new tensor according
    to :attr:`index` . This op is similar to :code:`scatter_nd_add`, except the
    tensor of :attr:`shape` is zero-initialized. Correspondingly, :code:`scatter_nd(index, updates, shape)`
    is equal to :code:`scatter_nd_add(paddle.zeros(shape, updates.dtype), index, updates)` .
    If :attr:`index` has repeated elements, then the corresponding updates are accumulated.
    Because of the numerical approximation issues, the different order of repeated elements
    in :attr:`index` may cause different results. The specific calculation method can be
    seen :code:`scatter_nd_add` . This op is the inverse of the :code:`gather_nd` op.

    Args:
3037
        index (Tensor): The index input with ndim >= 1 and index.shape[-1] <= len(shape).
3038 3039 3040 3041 3042 3043 3044
                          Its dtype should be int32 or int64 as it is used as indexes.
        updates (Tensor): The updated value of scatter_nd op. Its dtype should be float32, float64.
                            It must have the shape index.shape[:-1] + shape[index.shape[-1]:]
        shape(tuple|list): Shape of output tensor.
        name (str|None): The output Tensor name. If set None, the layer will be named automatically.

    Returns:
L
Ligoml 已提交
3045
        output (Tensor), The output is a tensor with the same type as :attr:`updates` .
3046 3047 3048 3049 3050 3051 3052

    Examples:

        .. code-block:: python

            import paddle

3053 3054 3055
            index = paddle.to_tensor([[1, 1],
                                    [0, 1],
                                    [1, 3]], dtype="int64")
3056 3057 3058 3059 3060 3061
            updates = paddle.rand(shape=[3, 9, 10], dtype='float32')
            shape = [3, 5, 9, 10]

            output = paddle.scatter_nd(index, updates, shape)
    """
    return scatter_nd_add(zeros(shape, updates.dtype), index, updates, name)
3062 3063


3064 3065 3066
def chunk(x, chunks, axis=0, name=None):
    """
    Split the input tensor into multiple sub-Tensors.
3067

3068 3069 3070
    Args:
        x (Tensor): A N-D Tensor. The data type is bool, float16, float32, float64, int32 or int64.
        chunks(int): The number of tensor to be split along the certain axis.
3071
        axis (int|Tensor, optional): The axis along which to split, it can be a scalar with type
3072 3073 3074 3075 3076
            ``int`` or a ``Tensor`` with shape [1] and data type  ``int32`` or ``int64``.
            If :math::`axis < 0`, the axis to split along is :math:`rank(x) + axis`. Default is 0.
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .
    Returns:
L
Ligoml 已提交
3077
        list(Tensor), The list of segmented Tensors.
3078

3079
    Examples:
3080
        .. code-block:: python
3081

3082
            import paddle
3083

3084
            x = paddle.rand([3, 9, 5])
3085

3086
            out0, out1, out2 = paddle.chunk(x, chunks=3, axis=1)
3087 3088 3089 3090
            # out0.shape [3, 3, 5]
            # out1.shape [3, 3, 5]
            # out2.shape [3, 3, 5]

3091

3092 3093 3094 3095 3096 3097 3098 3099
            # axis is negative, the real axis is (rank(x) + axis) which real
            # value is 1.
            out0, out1, out2 = paddle.chunk(x, chunks=3, axis=-2)
            # out0.shape [3, 3, 5]
            # out1.shape [3, 3, 5]
            # out2.shape [3, 3, 5]
    """
    check_type(chunks, 'chunks', (int), 'chunk')
3100
    return split(x, num_or_sections=chunks, axis=axis, name=name)
3101 3102


L
lilong12 已提交
3103 3104
def tile(x, repeat_times, name=None):
    """
L
lilong12 已提交
3105 3106

    Construct a new Tensor by repeating ``x`` the number of times given by ``repeat_times``.
3107
    After tiling, the value of the i'th dimension of the output is equal to ``x.shape[i]*repeat_times[i]``.
L
lilong12 已提交
3108 3109 3110

    Both the number of dimensions of ``x`` and the number of elements in ``repeat_times`` should be less than or equal to 6.

L
lilong12 已提交
3111
    Args:
I
Infinity_lee 已提交
3112
        x (Tensor): The input tensor, its data type should be bool, float16, float32, float64, int32 or int64.
3113
        repeat_times (list|tuple|Tensor): The number of repeating times. If repeat_times is a list or tuple, all its elements
L
lilong12 已提交
3114 3115 3116
            should be integers or 1-D Tensors with the data type int32. If repeat_times is a Tensor, it should be an 1-D Tensor with the data type int32.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

L
lilong12 已提交
3117
    Returns:
3118
        N-D Tensor. The data type is the same as ``x``. The size of the i-th dimension is equal to ``x[i] * repeat_times[i]``.
L
lilong12 已提交
3119

L
lilong12 已提交
3120 3121
    Examples:
        .. code-block:: python
L
lilong12 已提交
3122

L
lilong12 已提交
3123
            import paddle
L
lilong12 已提交
3124

3125
            data = paddle.to_tensor([1, 2, 3], dtype='int32')
L
lilong12 已提交
3126
            out = paddle.tile(data, repeat_times=[2, 1])
3127 3128 3129 3130
            print(out)
            # Tensor(shape=[2, 3], dtype=int32, place=Place(gpu:0), stop_gradient=True,
            #        [[1, 2, 3],
            #         [1, 2, 3]])
L
lilong12 已提交
3131

3132
            out = paddle.tile(data, repeat_times=(2, 2))
3133 3134 3135 3136
            print(out)
            # Tensor(shape=[2, 6], dtype=int32, place=Place(gpu:0), stop_gradient=True,
            #        [[1, 2, 3, 1, 2, 3],
            #         [1, 2, 3, 1, 2, 3]])
L
lilong12 已提交
3137

3138
            repeat_times = paddle.to_tensor([1, 2], dtype='int32')
L
lilong12 已提交
3139
            out = paddle.tile(data, repeat_times=repeat_times)
3140 3141 3142
            print(out)
            # Tensor(shape=[1, 6], dtype=int32, place=Place(gpu:0), stop_gradient=True,
            #        [[1, 2, 3, 1, 2, 3]])
L
lilong12 已提交
3143
    """
H
hong 已提交
3144
    if in_dygraph_mode():
3145
        if isinstance(repeat_times, core.eager.Tensor):
3146 3147 3148
            assert (
                repeat_times.ndim == 1
            ), "Only support ndim == 1 while repeat_times is a Tensor."
3149
            repeat_times = repeat_times.tolist()
3150

3151
        return _C_ops.tile(x, repeat_times)
3152
    else:
3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170
        check_type(
            repeat_times, 'repeat_times', (list, tuple, Variable), 'tile'
        )
        if isinstance(repeat_times, Variable):
            assert (
                len(repeat_times.shape) == 1
            ), 'repeat_times must be an 1-D Tensor.'
        else:
            for elem in repeat_times:
                if isinstance(elem, Variable):
                    assert (
                        len(elem.shape) == 1
                    ), 'Elements in repeat_times must be 1-D Tensors or integers.'
                else:
                    type_tuple = (int, np.int32, np.int64)
                    assert isinstance(
                        elem, type_tuple
                    ), 'Elements in repeat_times must be 1-D Tensors or integers.'
3171

3172
        check_variable_and_dtype(
I
Infinity_lee 已提交
3173 3174
            x,
            'x',
Y
yangjianfengo1 已提交
3175 3176 3177
            [
                'bool',
                'float16',
Y
yangjianfengo1 已提交
3178
                'uint16',
Y
yangjianfengo1 已提交
3179 3180 3181 3182 3183
                'float32',
                'float64',
                'int32',
                'int64',
            ],
I
Infinity_lee 已提交
3184
            'tile',
3185
        )
3186 3187 3188 3189 3190 3191
        if convert_dtype(x.dtype) == 'bool' and not x.stop_gradient:
            raise ValueError(
                "When the date type is bool for the input 'x' of tile op, you "
                "must set its stop_gradient to be True by "
                "some_var.stop_gradient == True supporting some_var is the input."
            )
3192

3193
        helper = LayerHelper('tile', **locals())
L
lilong12 已提交
3194

3195 3196
        inputs = {"X": [x]}
        attrs = {}
L
lilong12 已提交
3197

3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215
        def get_attr_repeat_times(list_repeat_times):
            attrs_repeat_times = []
            for idx, times in enumerate(list_repeat_times):
                if isinstance(times, Variable):
                    attrs_repeat_times.append(-1)
                else:
                    attrs_repeat_times.append(times)
                    assert (
                        times > 0
                    ), "All elements in repeat_times must be positive for tile."
            return attrs_repeat_times

        if isinstance(repeat_times, Variable):
            repeat_times.stop_gradient = True
            inputs['RepeatTimes'] = repeat_times
            attrs['repeat_times'] = [-1]
        elif isinstance(repeat_times, (list, tuple)):
            attrs['repeat_times'] = get_attr_repeat_times(repeat_times)
3216 3217 3218 3219
            if paddle.utils._contain_var(repeat_times):
                inputs[
                    'repeat_times_tensor'
                ] = paddle.utils._convert_to_tensor_list(repeat_times)
L
lilong12 已提交
3220

3221 3222 3223 3224 3225 3226
        dtype = helper.input_dtype(input_param_name='x')
        out = helper.create_variable_for_type_inference(dtype)
        helper.append_op(
            type='tile', inputs=inputs, outputs={'Out': out}, attrs=attrs
        )
        return out
3227 3228


L
lilong12 已提交
3229 3230 3231 3232 3233
def expand_as(x, y, name=None):
    """

    Expand the input tensor ``x`` to the same shape as the input tensor ``y``.

3234
    Both the number of dimensions of ``x`` and ``y`` must be less than or equal to 6, and the number of dimensions of ``y`` must be greather than or equal to that of ``x``. The dimension to expand must have a value of 0.
L
lilong12 已提交
3235 3236 3237

    Args:
        x (Tensor): The input tensor, its data type is bool, float32, float64, int32 or int64.
3238
        y (Tensor): The input tensor that gives the shape to expand to.
L
lilong12 已提交
3239 3240 3241
        name (str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
L
Ligoml 已提交
3242
        N-D Tensor, A Tensor with the same shape as ``y``. The data type is the same as ``x``.
L
lilong12 已提交
3243 3244 3245 3246 3247 3248

    Examples:
        .. code-block:: python

            import paddle

3249 3250
            data_x = paddle.to_tensor([1, 2, 3], 'int32')
            data_y = paddle.to_tensor([[1, 2, 3], [4, 5, 6]], 'int32')
L
lilong12 已提交
3251
            out = paddle.expand_as(data_x, data_y)
3252 3253 3254 3255
            print(out)
            # Tensor(shape=[2, 3], dtype=int32, place=Place(gpu:0), stop_gradient=True,
            #        [[1, 2, 3],
            #         [1, 2, 3]])
L
lilong12 已提交
3256
    """
H
hong 已提交
3257
    if in_dygraph_mode():
3258
        return _C_ops.expand_as(x, None, y.shape)
3259 3260 3261 3262 3263 3264 3265 3266
    else:
        check_variable_and_dtype(
            x,
            'x',
            ['bool', 'float32', 'float64', 'int32', 'int64'],
            'expand_as',
        )
        check_type(y, 'y', Variable, 'expand_as')
H
hong 已提交
3267

3268 3269 3270 3271 3272 3273 3274 3275
        if convert_dtype(x.dtype) == 'bool' and not x.stop_gradient:
            raise ValueError(
                "When the data type of input 'x' for expand_as is bool, "
                "you must set its stop_gradient to be False by "
                "some_var.stop_gradient = True, supporting "
                "some_var as the input 'x'."
            )
        inputs = {"X": [x], "Y": [y]}
L
lilong12 已提交
3276

3277 3278 3279 3280 3281 3282 3283 3284
        helper = LayerHelper('expand_as', **locals())
        dtype = helper.input_dtype(input_param_name='x')
        out = helper.create_variable_for_type_inference(dtype)
        helper.append_op(
            type='expand_as_v2',
            inputs=inputs,
            attrs={'target_shape': y.shape},
            outputs={'Out': out},
3285
        )
3286
        return out
L
lilong12 已提交
3287 3288


3289 3290 3291 3292 3293
def broadcast_to(x, shape, name=None):
    """

    Broadcast the input tensor to a given shape.

3294
    Both the number of dimensions of ``x`` and the number of elements in ``shape`` should be less than or equal to 6. The dimension to broadcast to must have a value 0.
3295 3296 3297


    Args:
张春乔 已提交
3298
        x (Tensor): The input tensor, its data type is bool, float16, float32, float64, int32 or int64.
3299
        shape (list|tuple|Tensor): The result shape after broadcasting. The data type is int32. If shape is a list or tuple, all its elements
3300
            should be integers or 0-D or 1-D Tensors with the data type int32. If shape is a Tensor, it should be an 1-D Tensor with the data type int32.
3301
            The value -1 in shape means keeping the corresponding dimension unchanged.
3302
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
3303
    Returns:
L
Ligoml 已提交
3304
        N-D Tensor, A Tensor with the given shape. The data type is the same as ``x``.
3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315

    Examples:
        .. code-block:: python

            import paddle

            data = paddle.to_tensor([1, 2, 3], dtype='int32')
            out = paddle.broadcast_to(data, shape=[2, 3])
            print(out)
            # [[1, 2, 3], [1, 2, 3]]
    """
3316
    if in_dygraph_mode():
3317
        return _C_ops.expand(x, shape)
3318
    else:
3319 3320 3321
        if isinstance(shape, Variable):
            assert len(shape.shape) == 1, 'shape must be an 1-D Tensor.'
        else:
3322
            type_tuple = (int, np.int32, np.int64)
3323 3324 3325 3326 3327 3328 3329 3330 3331
            for elem in shape:
                if isinstance(elem, Variable):
                    assert (
                        len(elem.shape) == 1
                    ), 'Elements in shape must be 1-D Tensors or integers.'
                else:
                    assert isinstance(
                        elem, type_tuple
                    ), 'Elements in shape must be 1-D Tensors or integers.'
3332

3333 3334 3335
        check_variable_and_dtype(
            x,
            'x',
X
xiaoguoguo626807 已提交
3336
            ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
3337
            'broadcast_to',
3338
        )
3339 3340 3341 3342 3343 3344 3345 3346
        check_type(shape, 'shape', (list, tuple, Variable), 'broadcast_to')
        if convert_dtype(x.dtype) == 'bool' and not x.stop_gradient:
            raise ValueError(
                "When the data type of input 'x' for broadcast_to is bool, "
                "you must set its stop_gradient to be False by "
                "some_var.stop_gradient = True, supporting "
                "some_var as the input."
            )
3347

3348 3349
        inputs = {"X": [x]}
        attrs = {}
3350

3351
        helper = LayerHelper('expand', **locals())
3352

3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363
        def get_attr_expand_shape(list_expand_shape):
            attrs_expand_shape = []
            for idx, shape in enumerate(list_expand_shape):
                if isinstance(shape, Variable):
                    attrs_expand_shape.append(-1)
                else:
                    attrs_expand_shape.append(shape)
                    assert (
                        shape > 0 or shape == -1
                    ), "All elements in shape of broadcast_to must be positive or -1."
            return attrs_expand_shape
3364

3365 3366 3367 3368 3369
        if isinstance(shape, Variable):
            shape.stop_gradient = True
            inputs['Shape'] = shape
        elif isinstance(shape, (list, tuple)):
            attrs['shape'] = get_attr_expand_shape(shape)
3370 3371 3372 3373
            if paddle.utils._contain_var(shape):
                inputs[
                    'expand_shapes_tensor'
                ] = paddle.utils._convert_to_tensor_list(shape)
3374

3375 3376 3377 3378 3379 3380
        dtype = helper.input_dtype(input_param_name='x')
        out = helper.create_variable_for_type_inference(dtype)
        helper.append_op(
            type='expand_v2', inputs=inputs, outputs={'Out': out}, attrs=attrs
        )
        return out
3381 3382


3383 3384 3385 3386 3387
def expand(x, shape, name=None):
    """

    Expand the input tensor to a given shape.

3388
    Both the number of dimensions of ``x`` and the number of elements in ``shape`` should be less than or equal to 6. And the number of dimensions of ``x`` should be less than the number of elements in ``shape``. The dimension to expand must have a value 0.
3389 3390

    Args:
C
Chen Long 已提交
3391
        x (Tensor): The input Tensor, its data type is bool, float32, float64, int32 or int64.
L
lilong12 已提交
3392
        shape (list|tuple|Tensor): The result shape after expanding. The data type is int32. If shape is a list or tuple, all its elements
3393
            should be integers or 0-D or 1-D Tensors with the data type int32. If shape is a Tensor, it should be an 1-D Tensor with the data type int32.
L
lilong12 已提交
3394
            The value -1 in shape means keeping the corresponding dimension unchanged.
3395 3396 3397
        name (str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` .

    Returns:
L
Ligoml 已提交
3398
        N-D Tensor, A Tensor with the given shape. The data type is the same as ``x``.
3399 3400 3401 3402 3403 3404

    Examples:
        .. code-block:: python

            import paddle

3405
            data = paddle.to_tensor([1, 2, 3], dtype='int32')
L
lilong12 已提交
3406
            out = paddle.expand(data, shape=[2, 3])
3407
            print(out)
3408 3409
            # [[1, 2, 3], [1, 2, 3]]
    """
H
hong 已提交
3410
    if in_dygraph_mode():
3411
        return _C_ops.expand(x, shape)
3412
    else:
3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425
        if isinstance(shape, Variable):
            assert len(shape.shape) == 1, 'shape must be an 1-D Tensor.'
        else:
            for elem in shape:
                if isinstance(elem, Variable):
                    assert (
                        len(elem.shape) == 1
                    ), 'Elements in shape must be 1-D Tensors or integers.'
                else:
                    type_tuple = (int, np.int32, np.int64)
                    assert isinstance(
                        elem, type_tuple
                    ), 'Elements in shape must be 1-D Tensors or integers.'
3426

3427 3428 3429
        check_variable_and_dtype(
            x,
            'x',
3430 3431 3432 3433 3434 3435 3436 3437 3438
            [
                'bool',
                'float16',
                'float32',
                'float64',
                'int32',
                'int64',
                'uint16',
            ],
3439
            'expand',
3440
        )
3441 3442 3443 3444 3445 3446 3447 3448
        check_type(shape, 'shape', (list, tuple, Variable), 'expand')
        if convert_dtype(x.dtype) == 'bool' and not x.stop_gradient:
            raise ValueError(
                "When the data type of input 'x' for expand is bool, "
                "you must set its stop_gradient to be False by "
                "some_var.stop_gradient = True, supporting "
                "some_var as the input."
            )
3449

3450 3451
        inputs = {"X": [x]}
        attrs = {}
3452

3453
        helper = LayerHelper('expand', **locals())
3454

3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465
        def get_attr_expand_shape(list_expand_shape):
            attrs_expand_shape = []
            for idx, shape in enumerate(list_expand_shape):
                if isinstance(shape, Variable):
                    attrs_expand_shape.append(-2)
                else:
                    attrs_expand_shape.append(shape)
                    assert (
                        shape > 0 or shape == -1
                    ), "All elements in shape of expand must be positive or -1."
            return attrs_expand_shape
3466

3467 3468 3469 3470 3471
        if isinstance(shape, Variable):
            shape.stop_gradient = True
            inputs['Shape'] = shape
        elif isinstance(shape, (list, tuple)):
            attrs['shape'] = get_attr_expand_shape(shape)
3472 3473 3474 3475
            if paddle.utils._contain_var(shape):
                inputs[
                    'expand_shapes_tensor'
                ] = paddle.utils._convert_to_tensor_list(shape)
3476

3477 3478 3479 3480 3481 3482
        dtype = helper.input_dtype(input_param_name='x')
        out = helper.create_variable_for_type_inference(dtype)
        helper.append_op(
            type='expand_v2', inputs=inputs, outputs={'Out': out}, attrs=attrs
        )
        return out
L
lilong12 已提交
3483 3484


3485 3486
def reshape(x, shape, name=None):
    """
3487
    Changes the shape of ``x`` without changing its data.
3488

3489
    Note that the output Tensor will share data with origin Tensor and doesn't
3490 3491
    have a Tensor copy in ``dygraph`` mode.
    If you want to use the Tensor copy version, please use `Tensor.clone` like
3492 3493
    ``reshape_clone_x = x.reshape([-1]).clone()``.

3494 3495
    Some tricks exist when specifying the target shape.

3496
        - 1. -1 means the value of this dimension is inferred from the total element number of x and remaining dimensions. Thus one and only one dimension can be set -1.
3497

3498
        - 2. 0 means the actual dimension value is going to be copied from the corresponding dimension of x. The index of 0s in shape can not exceed the dimension of x.
3499 3500 3501

    Here are some examples to explain it.

3502
        - 1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape is [6, 8], the reshape operator will transform x into a 2-D tensor with shape [6, 8] and leaving x's data unchanged.
3503

3504
        - 2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape specified is [2, 3, -1, 2], the reshape operator will transform x into a 4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this case, one dimension of the target shape is set to -1, the value of this dimension is inferred from the total element number of x and remaining dimensions.
3505

3506
        - 3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case, besides -1, 0 means the actual dimension value is going to be copied from the corresponding dimension of x.
3507 3508

    Args:
3509 3510
        x (Tensor): An N-D Tensor. The data type is ``float32``, ``float64``, ``int32``, ``int64`` or ``bool``
        shape (list|tuple|Tensor): Define the target shape. At most one dimension of the target shape can be -1.
3511
                        The data type is ``int32`` . If ``shape`` is a list or tuple, the elements of it should be integers or Tensors with shape [].
3512
                        If ``shape`` is an Tensor, it should be an 1-D Tensor .
3513
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
3514 3515

    Returns:
L
Ligoml 已提交
3516
        Tensor, A reshaped Tensor with the same data type as ``x``.
3517 3518 3519 3520 3521 3522

    Examples:
        .. code-block:: python

            import paddle

3523 3524
            x = paddle.rand([2, 4, 6], dtype="float32")
            positive_four = paddle.full([1], 4, "int32")
3525

3526 3527 3528
            out = paddle.reshape(x, [-1, 0, 3, 2])
            print(out)
            # the shape is [2,4,3,2].
3529

3530 3531
            out = paddle.reshape(x, shape=[positive_four, 12])
            print(out)
3532
            # the shape of out_2 is [4, 12].
3533

3534
            shape_tensor = paddle.to_tensor([8, 6], dtype=paddle.int32)
3535
            out = paddle.reshape(x, shape=shape_tensor)
3536
            print(out.shape)
3537
            # the shape is [8, 6].
3538 3539 3540 3541 3542
            # out shares data with x in dygraph mode
            x[0, 0, 0] = 10.
            print(out[0, 0])
            # the value is [10.]

3543
    """
3544 3545
    if in_dygraph_mode():
        if isinstance(shape, (list, tuple)):
3546 3547 3548 3549 3550 3551 3552 3553
            new_shape = []
            for ele in shape:
                if isinstance(ele, core.eager.Tensor):
                    new_shape.append(ele.item())
                else:
                    new_shape.append(ele)

            if new_shape == x.shape:
3554 3555
                out = x
            else:
3556
                out = _C_ops.reshape(x, new_shape)
3557
        elif isinstance(shape, core.eager.Tensor):
3558
            shape.stop_gradient = True
3559
            out = _C_ops.reshape(x, shape)
3560 3561 3562
        else:
            raise ValueError(
                "shape must be an instance of `list`, `tuple` or `Variable`,"
3563 3564
                " got '{}.'".format(type(shape))
            )
3565

3566
        return out
3567
    else:
3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583
        check_variable_and_dtype(
            x,
            'x',
            [
                'float16',
                'float32',
                'float64',
                'int16',
                'int32',
                'int64',
                'bool',
                'uint16',
            ],
            'reshape',
        )
        check_type(shape, 'shape', (list, tuple, Variable), 'reshape')
3584

3585 3586 3587 3588 3589 3590
        def get_attr_shape(list_shape):
            unk_dim_idx = -1
            attrs_shape = []
            for dim_idx, dim_size in enumerate(list_shape):
                if isinstance(dim_size, Variable):
                    attrs_shape.append(-1)
3591
                else:
3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628
                    attrs_shape.append(dim_size)
                    if dim_size == -1:
                        assert unk_dim_idx == -1, (
                            "Only one dimension value of 'shape' in reshape can "
                            "be -1. But received shape[%d] is also -1.\n"
                            "\n\t# N = x.shape()[2]\t\t# N is an int. "
                            "(NOT recommend under @to_static)\n\tN = paddle.shape(x)[2]\t\t"
                            "# N is a Tensor. (Recommend)\n\tz = paddle.reshape([N, -1, 4])"
                            "\t# z.shape is [-1, -1, 4]\n\n"
                            "    If your target shape in Reshape represents dynamic shape, "
                            "please turn it into a Tensor under @to_static. See above example for details."
                            % dim_idx
                        )
                        unk_dim_idx = dim_idx
                    elif dim_size == 0:
                        assert dim_idx < len(x.shape), (
                            "The index of 0 in `shape` must be less than "
                            "the input tensor X's dimensions. "
                            "But received shape[%d] = 0, X's dimensions = %d."
                            % (dim_idx, len(x.shape))
                        )
                    else:
                        assert dim_size > 0, (
                            "Each dimension value of 'shape' in reshape must not "
                            "be negative except one unknown dimension. "
                            "But received shape[%d] = %s."
                            % (dim_idx, str(dim_size))
                        )
            return attrs_shape

        inputs = {"X": x}
        attrs = {}
        if isinstance(shape, Variable):
            shape.stop_gradient = True
            inputs["Shape"] = shape
        elif isinstance(shape, (list, tuple)):
            attrs["shape"] = get_attr_shape(shape)
3629 3630 3631 3632
            if paddle.utils._contain_var(shape):
                inputs['ShapeTensor'] = paddle.utils._convert_to_tensor_list(
                    shape
                )
3633

3634
        helper = LayerHelper("reshape2", **locals())
3635 3636 3637 3638 3639 3640 3641
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        x_shape = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type="reshape2",
            inputs=inputs,
            attrs=attrs,
            outputs={"Out": out, "XShape": x_shape},
3642
        )
3643

3644
        return out
3645 3646


3647
@inplace_apis_in_dygraph_only
3648 3649 3650 3651 3652
def reshape_(x, shape, name=None):
    """
    Inplace version of ``reshape`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_paddle_tensor_reshape`.
    """
3653 3654 3655 3656
    if in_dygraph_mode():
        tmp_tensor_type = core.eager.Tensor
        if isinstance(shape, (list, tuple)):
            shape = [
3657
                item.item(0) if isinstance(item, tmp_tensor_type) else item
3658
                for item in shape
3659
            ]
3660 3661 3662 3663
            if shape == x.shape:
                out = x
            else:
                out = _C_ops.reshape_(x, shape)
3664 3665
        elif isinstance(shape, tmp_tensor_type):
            shape.stop_gradient = True
3666
            out = _C_ops.reshape_(x, shape)
3667 3668 3669
        else:
            raise ValueError(
                "shape must be an instance of `list`, `tuple` or `Variable`,"
3670 3671
                " got '{}.'".format(type(shape))
            )
3672

3673
        return out
3674 3675


3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694
def gather_nd(x, index, name=None):
    """

    This function is actually a high-dimensional extension of :code:`gather`
    and supports for simultaneous indexing by multiple axes. :attr:`index` is a
    K-dimensional integer tensor, which is regarded as a (K-1)-dimensional
    tensor of :attr:`index` into :attr:`input`, where each element defines
    a slice of params:

    .. math::

        output[(i_0, ..., i_{K-2})] = input[index[(i_0, ..., i_{K-2})]]

    Obviously, :code:`index.shape[-1] <= input.rank` . And, the output tensor has
    shape :code:`index.shape[:-1] + input.shape[index.shape[-1]:]` .

    .. code-block:: text

            Given:
3695 3696 3697 3698 3699 3700 3701
                x =  [[[ 0,  1,  2,  3],
                       [ 4,  5,  6,  7],
                       [ 8,  9, 10, 11]],
                      [[12, 13, 14, 15],
                       [16, 17, 18, 19],
                       [20, 21, 22, 23]]]
                x.shape = (2, 3, 4)
3702 3703 3704 3705

            * Case 1:
                index = [[1]]

3706 3707
                gather_nd(x, index)
                         = [x[1, :, :]]
3708 3709 3710 3711 3712 3713 3714
                         = [[12, 13, 14, 15],
                            [16, 17, 18, 19],
                            [20, 21, 22, 23]]

            * Case 2:
                index = [[0,2]]

3715 3716
                gather_nd(x, index)
                         = [x[0, 2, :]]
3717 3718 3719 3720 3721
                         = [8, 9, 10, 11]

            * Case 3:
                index = [[1, 2, 3]]

3722 3723
                gather_nd(x, index)
                         = [x[1, 2, 3]]
3724 3725 3726
                         = [23]

    Args:
张春乔 已提交
3727
        x (Tensor): The input Tensor which it's data type should be bool, float16, float32, float64, int32, int64.
3728 3729
        index (Tensor): The index input with rank > 1, index.shape[-1] <= input.rank.
                        Its dtype should be int32, int64.
3730
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
3731 3732

    Returns:
L
Ligoml 已提交
3733
        output (Tensor), A tensor with the shape index.shape[:-1] + input.shape[index.shape[-1]:]
3734

3735 3736 3737
    Examples:

        .. code-block:: python
3738

3739
            import paddle
3740

3741 3742 3743
            x = paddle.to_tensor([[[1, 2], [3, 4], [5, 6]],
                                  [[7, 8], [9, 10], [11, 12]]])
            index = paddle.to_tensor([[0, 1]])
3744

3745 3746 3747
            output = paddle.gather_nd(x, index) #[[3, 4]]

    """
3748
    if in_dygraph_mode():
3749
        return _C_ops.gather_nd(x, index)
3750
    else:
3751 3752 3753
        check_variable_and_dtype(
            x,
            'x',
张春乔 已提交
3754 3755 3756
            [
                'bool',
                'float16',
3757
                'uint16',
张春乔 已提交
3758 3759 3760 3761 3762 3763
                'float32',
                'float64',
                'int16',
                'int32',
                'int64',
            ],
3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777
            'gather_np',
        )
        check_variable_and_dtype(
            index, 'index', ['int32', 'int64'], 'gather_np'
        )
        helper = LayerHelper('gather_nd', **locals())
        dtype = helper.input_dtype()
        output = helper.create_variable_for_type_inference(dtype)
        helper.append_op(
            type="gather_nd",
            inputs={"X": x, "Index": index},
            outputs={"Out": output},
        )
        return output
3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825


def strided_slice(x, axes, starts, ends, strides, name=None):
    """
    This operator produces a slice of ``x`` along multiple axes. Similar to numpy:
    https://docs.scipy.org/doc/numpy/reference/arrays.indexing.html
    Slice uses ``axes``, ``starts`` and ``ends`` attributes to specify the start and
    end dimension for each axis in the list of axes and Slice uses this information
    to slice the input data tensor. If a negative value is passed to
    ``starts`` or ``ends`` such as :math:`-i`,  it represents the reverse position of the
    axis :math:`i-1` th(here 0 is the initial position). The ``strides`` represents steps of
    slicing and if the ``strides`` is negative, slice operation is in the opposite direction.
    If the value passed to ``starts`` or ``ends`` is greater than n
    (the number of elements in this dimension), it represents n.
    For slicing to the end of a dimension with unknown size, it is recommended
    to pass in INT_MAX. The size of ``axes`` must be equal to ``starts`` , ``ends`` and ``strides``.
    Following examples will explain how strided_slice works:

    .. code-block:: text

        Case1:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
                starts = [1, 0]
                ends = [2, 3]
                strides = [1, 1]
            Then:
                result = [ [5, 6, 7], ]

        Case2:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
                starts = [0, 1]
                ends = [2, 0]
                strides = [1, -1]
            Then:
                result = [ [8, 7, 6], ]
        Case3:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
                starts = [0, 1]
                ends = [-1, 1000]
                strides = [1, 3]
            Then:
                result = [ [2], ]
3826

3827
    Args:
3828
        x (Tensor): An N-D ``Tensor``. The data type is ``bool``, ``float16``, ``float32``, ``float64``, ``int32`` or ``int64``.
3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839
        axes (list|tuple): The data type is ``int32`` . Axes that `starts` and `ends` apply to.
                            It's optional. If it is not provides, it will be treated as :math:`[0,1,...,len(starts)-1]`.
        starts (list|tuple|Tensor): The data type is ``int32`` . If ``starts`` is a list or tuple, the elements of                                                                                          it should be integers or Tensors with shape [1]. If ``starts`` is an Tensor, it should be an 1-D Tensor.                                                                                    It represents starting indices of corresponding axis in ``axes``.
        ends (list|tuple|Tensor): The data type is ``int32`` . If ``ends`` is a list or tuple, the elements of
                it should be integers or Tensors with shape [1]. If ``ends`` is an Tensor, it should be an 1-D Tensor .                                                                                     It represents ending indices of corresponding axis in ``axes``.
        strides (list|tuple|Tensor): The data type is ``int32`` . If ``strides`` is a list or tuple, the elements of
                it should be integers or Tensors with shape [1]. If ``strides`` is an Tensor, it should be an 1-D Tensor .                                                                                  It represents slice step of corresponding axis in ``axes``.
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.
                        For more information, please refer to :ref:`api_guide_Name` .

    Returns:
L
Ligoml 已提交
3840
        Tensor, A ``Tensor`` with the same dimension as ``x``. The data type is same as ``x``.
3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854

    Examples:
        .. code-block:: python

            import paddle
            x = paddle.zeros(shape=[3,4,5,6], dtype="float32")
            # example 1:
            # attr starts is a list which doesn't contain Tensor.
            axes = [1, 2, 3]
            starts = [-3, 0, 2]
            ends = [3, 2, 4]
            strides_1 = [1, 1, 1]
            strides_2 = [1, 1, 2]
            sliced_1 = paddle.strided_slice(x, axes=axes, starts=starts, ends=ends, strides=strides_1)
3855
            # sliced_1 is x[:, 1:3:1, 0:2:1, 2:4:1].
3856 3857
            # example 2:
            # attr starts is a list which contain tensor Tensor.
3858
            minus_3 = paddle.full(shape=[1], fill_value=-3, dtype='int32')
3859 3860 3861
            sliced_2 = paddle.strided_slice(x, axes=axes, starts=[minus_3, 0, 2], ends=ends, strides=strides_2)
            # sliced_2 is x[:, 1:3:1, 0:2:1, 2:4:2].
    """
3862
    if in_dygraph_mode():
3863
        return _C_ops.strided_slice(x, axes, starts, ends, strides)
3864 3865
    else:
        helper = LayerHelper('strided_slice', **locals())
3866

3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880
        check_variable_and_dtype(
            x,
            'x',
            ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
            'strided_slice',
        )
        check_type(axes, 'axes', (list, tuple), 'strided_slice')
        check_type(starts, 'starts', (list, tuple, Variable), 'strided_slice')
        check_type(ends, 'ends', (list, tuple, Variable), 'strided_slice')
        check_type(strides, 'strides', (list, tuple, Variable), 'strided_slice')

        def check_list_elements_dtype(list_input, input_name):
            if isinstance(list_input, Variable):
                check_dtype(
W
wanghuancoder 已提交
3881 3882 3883 3884
                    list_input.dtype,
                    input_name,
                    ['int32', 'int64'],
                    'strided_slice',
3885
                )
3886
            else:
3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914
                for i, var in enumerate(list_input):
                    var_name = input_name + '[' + str(i) + ']'
                    if isinstance(var, Variable):
                        check_dtype(
                            var.dtype, var_name, ['int32'], 'strided_slice'
                        )

        check_list_elements_dtype(axes, 'axes')
        check_list_elements_dtype(starts, 'starts')
        check_list_elements_dtype(ends, 'ends')
        check_list_elements_dtype(strides, 'strides')

        def get_new_list_tensor(old_list):
            new_list_tensor = []
            for dim in old_list:
                if isinstance(dim, Variable):
                    dim.stop_gradient = True
                    new_list_tensor.append(dim)
                else:
                    assert isinstance(dim, int)
                    temp_out = helper.create_variable_for_type_inference(
                        'int32'
                    )
                    fill_constant(
                        [1], 'int32', dim, force_cpu=True, out=temp_out
                    )
                    new_list_tensor.append(temp_out)
            return new_list_tensor
3915 3916

        inputs = {'Input': x}
3917
        attrs = {'axes': axes}
3918
        infer_flags = [1 for i in range(len(axes))]
3919 3920 3921 3922 3923 3924
        # starts
        if isinstance(starts, Variable):
            starts.stop_gradient = True
            inputs['StartsTensor'] = starts
        elif isinstance(starts, (list, tuple)):
            attrs['starts'] = []
3925
            if paddle.utils._contain_var(starts):
3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941
                inputs['StartsTensorList'] = get_new_list_tensor(starts)
                for i, dim in enumerate(starts):
                    if isinstance(dim, Variable):
                        attrs['starts'].append(-1)
                        infer_flags[i] = -1
                    else:
                        attrs['starts'].append(dim)
            else:
                attrs['starts'] = starts

        # ends
        if isinstance(ends, Variable):
            ends.stop_gradient = True
            inputs['EndsTensor'] = ends
        elif isinstance(ends, (list, tuple)):
            attrs['ends'] = []
3942
            if paddle.utils._contain_var(ends):
3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958
                inputs['EndsTensorList'] = get_new_list_tensor(ends)
                for i, dim in enumerate(ends):
                    if isinstance(dim, Variable):
                        attrs['ends'].append(-1)
                        infer_flags[i] = -1
                    else:
                        attrs['ends'].append(dim)
            else:
                attrs['ends'] = ends

        # strides
        if isinstance(strides, Variable):
            strides.stop_gradient = True
            inputs['StridesTensor'] = strides
        elif isinstance(strides, (list, tuple)):
            attrs['strides'] = []
3959
            if paddle.utils._contain_var(strides):
3960 3961 3962 3963 3964 3965 3966 3967 3968 3969
                inputs['StridesTensorList'] = get_new_list_tensor(strides)
                for i, dim in enumerate(strides):
                    if isinstance(dim, Variable):
                        attrs['strides'].append(-1)
                        infer_flags[i] = -1
                    else:
                        attrs['strides'].append(dim)
            else:
                attrs['strides'] = strides
        attrs['infer_flags'] = infer_flags
3970 3971 3972 3973 3974 3975 3976 3977 3978
        out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype('x')
        )
        helper.append_op(
            type='strided_slice',
            inputs=inputs,
            attrs=attrs,
            outputs={'Out': out},
        )
3979

3980
        return out
F
From00 已提交
3981 3982 3983 3984


def tensordot(x, y, axes=2, name=None):
    r"""
3985
    This function computes a contraction, which sum the product of elements from two tensors along the given axes.
F
From00 已提交
3986 3987

    Args:
3988
        x (Tensor): The left tensor for contraction with data type ``float16`` or ``float32`` or ``float64``.
F
From00 已提交
3989 3990 3991
        y (Tensor): The right tensor for contraction with the same data type as ``x``.
        axes (int|tuple|list|Tensor, optional):  The axes to contract for ``x`` and ``y``, defaulted to integer ``2``.

3992
            1. It could be a non-negative integer ``n``,
F
From00 已提交
3993
               in which the function will sum over the last ``n`` axes of ``x`` and the first ``n`` axes of ``y`` in order.
3994 3995

            2. It could be a 1-d tuple or list with data type ``int``, in which ``x`` and ``y`` will be contracted along the same given axes.
F
From00 已提交
3996
               For example, ``axes`` =[0, 1] applies contraction along the first two axes for ``x`` and the first two axes for ``y``.
3997 3998 3999 4000

            3. It could be a tuple or list containing one or two 1-d tuple|list|Tensor with data type ``int``.
               When containing one tuple|list|Tensor, the data in tuple|list|Tensor specified the same axes for ``x`` and ``y`` to contract.
               When containing two tuple|list|Tensor, the first will be applied to ``x`` and the second to ``y``.
F
From00 已提交
4001
               When containing more than two tuple|list|Tensor, only the first two axis sequences will be used while the others will be ignored.
4002 4003 4004

            4. It could be a tensor, in which the ``axes`` tensor will be translated to a python list
               and applied the same rules described above to determine the contraction axes.
F
From00 已提交
4005
               Note that the ``axes`` with Tensor type is ONLY available in Dygraph mode.
4006
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.
F
From00 已提交
4007 4008
                             For more information, please refer to :ref:`api_guide_Name` .

4009
    Return:
L
Ligoml 已提交
4010
        Output (Tensor), The contraction result with the same data type as ``x`` and ``y``.
F
From00 已提交
4011
        In general, :math:`output.ndim = x.ndim + y.ndim - 2 \times n_{axes}`, where :math:`n_{axes}` denotes the number of axes to be contracted.
4012

F
From00 已提交
4013
    NOTES:
4014
        1. This function supports tensor broadcast,
F
From00 已提交
4015
           the size in the corresponding dimensions of ``x`` and ``y`` should be equal, or applies to the broadcast rules.
4016 4017 4018 4019 4020
        2. This function also supports axes expansion,
           when the two given axis sequences for ``x`` and ``y`` are of different lengths,
           the shorter sequence will expand the same axes as the longer one at the end.
           For example, if ``axes`` =[[0, 1, 2, 3], [1, 0]],
           the axis sequence for ``x`` is [0, 1, 2, 3],
F
From00 已提交
4021
           while the corresponding axis sequences for ``y`` will be expanded from [1, 0] to [1, 0, 2, 3].
4022

F
From00 已提交
4023 4024 4025 4026 4027 4028 4029 4030
    Examples:
        .. code-block:: python

            import paddle

            data_type = 'float64'

            # For two 2-d tensor x and y, the case axes=0 is equivalent to outer product.
4031
            # Note that tensordot supports empty axis sequence, so all the axes=0, axes=[], axes=[[]], and axes=[[],[]] are equivalent cases.
F
From00 已提交
4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092
            x = paddle.arange(4, dtype=data_type).reshape([2, 2])
            y = paddle.arange(4, dtype=data_type).reshape([2, 2])
            z = paddle.tensordot(x, y, axes=0)
            # z = [[[[0., 0.],
            #        [0., 0.]],
            #
            #       [[0., 1.],
            #        [2., 3.]]],
            #
            #
            #      [[[0., 2.],
            #        [4., 6.]],
            #
            #       [[0., 3.],
            #        [6., 9.]]]]


            # For two 1-d tensor x and y, the case axes=1 is equivalent to inner product.
            x = paddle.arange(10, dtype=data_type)
            y = paddle.arange(10, dtype=data_type)
            z1 = paddle.tensordot(x, y, axes=1)
            z2 = paddle.dot(x, y)
            # z1 = z2 = [285.]


            # For two 2-d tensor x and y, the case axes=1 is equivalent to matrix multiplication.
            x = paddle.arange(6, dtype=data_type).reshape([2, 3])
            y = paddle.arange(12, dtype=data_type).reshape([3, 4])
            z1 = paddle.tensordot(x, y, axes=1)
            z2 = paddle.matmul(x, y)
            # z1 = z2 =  [[20., 23., 26., 29.],
            #             [56., 68., 80., 92.]]


            # When axes is a 1-d int list, x and y will be contracted along the same given axes.
            # Note that axes=[1, 2] is equivalent to axes=[[1, 2]], axes=[[1, 2], []], axes=[[1, 2], [1]], and axes=[[1, 2], [1, 2]].
            x = paddle.arange(24, dtype=data_type).reshape([2, 3, 4])
            y = paddle.arange(36, dtype=data_type).reshape([3, 3, 4])
            z = paddle.tensordot(x, y, axes=[1, 2])
            # z =  [[506. , 1298., 2090.],
            #       [1298., 3818., 6338.]]


            # When axes is a list containing two 1-d int list, the first will be applied to x and the second to y.
            x = paddle.arange(60, dtype=data_type).reshape([3, 4, 5])
            y = paddle.arange(24, dtype=data_type).reshape([4, 3, 2])
            z = paddle.tensordot(x, y, axes=([1, 0], [0, 1]))
            # z =  [[4400., 4730.],
            #       [4532., 4874.],
            #       [4664., 5018.],
            #       [4796., 5162.],
            #       [4928., 5306.]]


            # Thanks to the support of axes expansion, axes=[[0, 1, 3, 4], [1, 0, 3, 4]] can be abbreviated as axes= [[0, 1, 3, 4], [1, 0]].
            x = paddle.arange(720, dtype=data_type).reshape([2, 3, 4, 5, 6])
            y = paddle.arange(720, dtype=data_type).reshape([3, 2, 4, 5, 6])
            z = paddle.tensordot(x, y, axes=[[0, 1, 3, 4], [1, 0]])
            # z = [[23217330., 24915630., 26613930., 28312230.],
            #      [24915630., 26775930., 28636230., 30496530.],
            #      [26613930., 28636230., 30658530., 32680830.],
4093
            #      [28312230., 30496530., 32680830., 34865130.]]
F
From00 已提交
4094 4095
    """
    op_type = 'tensordot'
4096
    input_dtype = ['float16', 'float32', 'float64']
F
From00 已提交
4097 4098 4099 4100 4101 4102

    check_variable_and_dtype(x, 'x', input_dtype, op_type)
    check_variable_and_dtype(y, 'y', input_dtype, op_type)
    check_type(axes, 'axes', (int, tuple, list, Variable), op_type)

    def _var_to_list(var):
4103
        if in_dygraph_mode():
F
From00 已提交
4104 4105
            return tolist(var)
        raise TypeError(
4106 4107 4108
            "The 'axes' with type 'Tensor' in "
            + op_type
            + " is not available in static graph mode, "
F
From00 已提交
4109 4110 4111 4112 4113 4114 4115
            "please convert its type to int|Tuple|List, or use dynamic graph mode."
        )

    axes_x = []
    axes_y = []
    if np.issubdtype(type(axes), np.integer):
        assert axes >= 0, (
4116 4117 4118 4119
            "The 'axes' in "
            + op_type
            + f" should not be negative, but received axes={axes}."
        )
F
From00 已提交
4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158
        axes_x = range(x.ndim - axes, x.ndim)
        axes_y = range(axes)
    else:
        if isinstance(axes, Variable):
            axes = _var_to_list(axes)

        if not axes or np.issubdtype(type(axes[0]), np.integer):
            axes_x = axes
        else:
            axes_x = axes[0]
            if len(axes) > 1:
                axes_y = axes[1]

            if isinstance(axes_x, Variable):
                axes_x = _var_to_list(axes_x)
            if isinstance(axes_y, Variable):
                axes_y = _var_to_list(axes_y)

    axes_x, axes_y = list(axes_x), list(axes_y)
    len_axes_x, len_axes_y = len(axes_x), len(axes_y)
    if len_axes_x < len_axes_y:
        axes_x.extend(axes_y[len_axes_x:])
    elif len_axes_y < len_axes_x:
        axes_y.extend(axes_x[len_axes_y:])

    shape_x, shape_y = list(x.shape), list(y.shape)
    need_contracted_dim_x = np.zeros((x.ndim), dtype=bool)
    need_contracted_dim_y = np.zeros((y.ndim), dtype=bool)
    contraction_size = 1
    for i in range(len(axes_x)):
        dim_x, dim_y = axes_x[i], axes_y[i]
        sx, sy = shape_x[dim_x], shape_y[dim_y]
        if sx == 1:
            shape_y[dim_y] = 1
            y = y.sum(dim_y).reshape(shape_y)
        elif sy == 1:
            shape_x[dim_x] = 1
            x = x.sum(dim_x).reshape(shape_x)
        else:
4159 4160 4161 4162 4163
            assert sx == sy, (
                "The dimensional size for 'x' and 'y' in "
                + op_type
                + f" should match each other, but 'x' has size {sx} in dim {dim_x} while 'y' has size {sy} in dim {dim_y}."
            )
F
From00 已提交
4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190

        need_contracted_dim_x[dim_x] = True
        need_contracted_dim_y[dim_y] = True
        contraction_size *= shape_x[dim_x]

    perm_x = []
    perm_y = []
    shape_out = []
    not_contraction_size_x = 1
    not_contraction_size_y = 1
    for i in range(x.ndim):
        if not need_contracted_dim_x[i]:
            perm_x.append(i)
            shape_out.append(shape_x[i])
            not_contraction_size_x *= shape_x[i]
    perm_x.extend(axes_x)
    perm_y.extend(axes_y)
    for i in range(y.ndim):
        if not need_contracted_dim_y[i]:
            perm_y.append(i)
            shape_out.append(shape_y[i])
            not_contraction_size_y *= shape_y[i]

    if not shape_out:
        shape_out = [1]

    x = x.transpose(perm=perm_x).reshape(
4191 4192
        [not_contraction_size_x, contraction_size]
    )
F
From00 已提交
4193
    y = y.transpose(perm=perm_y).reshape(
4194 4195
        [contraction_size, not_contraction_size_y]
    )
F
From00 已提交
4196 4197
    out = x.matmul(y).reshape(shape_out)
    return out
4198 4199 4200


def as_complex(x, name=None):
4201 4202
    """Transform a real tensor to a complex tensor.

4203 4204 4205
    The data type of the input tensor is 'float32' or 'float64', and the data
    type of the returned tensor is 'complex64' or 'complex128', respectively.

4206
    The shape of the input tensor is ``(* ,2)``, (``*`` means arbitary shape), i.e.
4207 4208 4209 4210 4211 4212 4213 4214
    the size of the last axis shoule be 2, which represent the real and imag part
    of a complex number. The shape of the returned tensor is ``(*,)``.

    Args:
        x (Tensor): The input tensor. Data type is 'float32' or 'float64'.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
L
Ligoml 已提交
4215
        Tensor, The output. Data type is 'complex64' or 'complex128', with the same precision as the input.
4216

4217 4218 4219 4220 4221 4222
    Examples:
        .. code-block:: python

            import paddle
            x = paddle.arange(12, dtype=paddle.float32).reshape([2, 3, 2])
            y = paddle.as_complex(x)
4223
            print(y)
4224

4225 4226 4227
            # Tensor(shape=[2, 3], dtype=complex64, place=Place(gpu:0), stop_gradient=True,
            #        [[1j      , (2+3j)  , (4+5j)  ],
            #         [(6+7j)  , (8+9j)  , (10+11j)]])
4228
    """
4229 4230
    if in_dygraph_mode():
        return _C_ops.as_complex(x)
4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244
    else:
        check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'as_complex')
        op_type = "as_complex"
        helper = LayerHelper(op_type, **locals())
        inputs = {"X": x}
        out = helper.create_variable_for_type_inference(
            dtype=_real_to_complex_dtype(x.dtype)
        )
        outputs = {"Out": out}
        attrs = {}
        helper.append_op(
            type=op_type, inputs=inputs, attrs=attrs, outputs=outputs
        )
        return out
4245 4246 4247


def as_real(x, name=None):
4248 4249 4250
    """Transform a complex tensor to a real tensor.

    The data type of the input tensor is 'complex64' or 'complex128', and the data
4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261
    type of the returned tensor is 'float32' or 'float64', respectively.

    When the shape of the input tensor is ``(*, )``, (``*`` means arbitary shape),
    the shape of the output tensor is ``(*, 2)``, i.e. the shape of the output is
    the shape of the input appended by an extra ``2``.

    Args:
        x (Tensor): The input tensor. Data type is 'complex64' or 'complex128'.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
L
Ligoml 已提交
4262
        Tensor, The output. Data type is 'float32' or 'float64', with the same precision as the input.
4263

4264 4265 4266 4267 4268 4269 4270
    Examples:
        .. code-block:: python

            import paddle
            x = paddle.arange(12, dtype=paddle.float32).reshape([2, 3, 2])
            y = paddle.as_complex(x)
            z = paddle.as_real(y)
4271
            print(z)
4272

4273 4274 4275 4276
            # Tensor(shape=[2, 3, 2], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [[[0. , 1. ],
            #          [2. , 3. ],
            #          [4. , 5. ]],
4277

4278 4279 4280
            #         [[6. , 7. ],
            #          [8. , 9. ],
            #          [10., 11.]]])
4281
    """
4282 4283
    if in_dygraph_mode():
        return _C_ops.as_real(x)
4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294
    else:
        check_variable_and_dtype(x, 'x', ['complex64', 'complex128'], 'as_real')
        op_type = "as_real"
        helper = LayerHelper(op_type, **locals())
        inputs = {"X": x}
        out = helper.create_variable_for_type_inference(
            dtype=_complex_to_real_dtype(x.dtype)
        )
        outputs = {"Out": out}
        helper.append_op(type=op_type, inputs=inputs, outputs=outputs)
        return out
4295 4296


K
kuizhiqing 已提交
4297 4298 4299 4300 4301 4302 4303 4304 4305
def repeat_interleave(x, repeats, axis=None, name=None):
    """

    Returns a new tensor which repeats the ``x`` tensor along dimension ``axis`` using
    the entries in ``repeats`` which is a int or a Tensor.

    Args:
        x (Tensor): The input Tensor to be operated. The data of ``x`` can be one of float32, float64, int32, int64.
        repeats (Tensor or int): The number of repetitions for each element. repeats is broadcasted to fit the shape of the given axis.
4306
        axis (int, optional): The dimension in which we manipulate. Default: None, the output tensor is flatten.
K
kuizhiqing 已提交
4307 4308 4309 4310 4311
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.

    Returns:
L
Ligoml 已提交
4312
        Tensor, A Tensor with same data type as ``x``.
K
kuizhiqing 已提交
4313

4314 4315 4316 4317 4318
    Examples:
        .. code-block:: python

            import paddle

K
kuizhiqing 已提交
4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336
            x = paddle.to_tensor([[1, 2, 3], [4, 5, 6]])
            repeats  = paddle.to_tensor([3, 2, 1], dtype='int32')

            paddle.repeat_interleave(x, repeats, 1)
            # [[1, 1, 1, 2, 2, 3],
            #  [4, 4, 4, 5, 5, 6]]

            paddle.repeat_interleave(x, 2, 0)
            # [[1, 2, 3], [1, 2, 3], [4, 5, 6], [4, 5, 6]]

            paddle.repeat_interleave(x, 2, None)
            # [1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6]
    """

    if axis is None:
        x = paddle.flatten(x)
        axis = 0

S
seemingwang 已提交
4337 4338
    if in_dygraph_mode():
        if isinstance(repeats, Variable):
4339 4340
            return _C_ops.repeat_interleave_with_tensor_index(x, repeats, axis)
        return _C_ops.repeat_interleave(x, repeats, axis)
K
kuizhiqing 已提交
4341 4342

    helper = LayerHelper("repeat_interleave", **locals())
4343 4344 4345 4346 4347 4348
    check_variable_and_dtype(
        x,
        'x',
        ['float32', 'float64', 'int32', 'int64'],
        'paddle.tensor.manipulation.repeat_interleave',
    )
K
kuizhiqing 已提交
4349 4350 4351

    out = helper.create_variable_for_type_inference(x.dtype)

4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363
    helper.append_op(
        type='repeat_interleave',
        inputs={
            'X': x,
            'RepeatsTensor': repeats if isinstance(repeats, Variable) else None,
        },
        outputs={'Out': out},
        attrs={
            'dim': axis,
            'Repeats': repeats if isinstance(repeats, int) else 0,
        },
    )
K
kuizhiqing 已提交
4364 4365 4366
    return out


4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380
def moveaxis(x, source, destination, name=None):
    """
    Move the axis of tensor from ``source`` position to ``destination`` position.

    Other axis that have not been moved remain their original order.

    Args:
        x (Tensor): The input Tensor. It is a N-D Tensor of data types bool, int32, int64, float32, float64, complex64, complex128.
        source(int|tuple|list): ``source`` position of axis that will be moved. Each element must be unique and integer.
        destination(int|tuple|list(int)): ``destination`` position of axis that has been moved. Each element must be unique and integer.
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
L
Ligoml 已提交
4381
        Tensor, A new tensor whose axis have been moved.
4382 4383 4384

    Examples:
        .. code-block:: python
4385

4386 4387 4388 4389 4390 4391 4392
            import paddle

            x = paddle.ones([3, 2, 4])
            paddle.moveaxis(x, [0, 1], [1, 2]).shape
            # [4, 3, 2]

            x = paddle.ones([2, 3])
4393
            paddle.moveaxis(x, 0, 1).shape # equivalent to paddle.t(x)
4394
            # [3, 2]
4395 4396 4397 4398 4399
    """
    src = [source] if isinstance(source, int) else source
    dst = [destination] if isinstance(destination, int) else destination

    assert len(src) == len(
4400 4401
        dst
    ), "'source' must have the same number with 'destination'"
4402

4403
    if len(src) != len(set(src)):
4404
        raise ValueError("Each elemment of 'source' must be unique!")
4405
    if len(dst) != len(set(dst)):
4406 4407 4408 4409 4410 4411 4412 4413 4414 4415
        raise ValueError("Each elemment of 'destination' must be unique!")

    ndim = len(x.shape)

    # perm is the new order after move axis
    perm = list(range(ndim))
    src_dims = list(range(ndim))
    dst_dims = list(range(ndim))

    for i, axis in enumerate(zip(src, dst)):
4416 4417 4418
        assert isinstance(
            axis[0], int
        ), "Each elemment of 'source' must be integer."
4419
        if axis[0] < 0:
4420 4421 4422
            assert (
                axis[0] >= -ndim
            ), "'source' must be in the range of [-{0}, {0})".format(ndim)
4423 4424
            src[i] += ndim
        else:
4425 4426 4427
            assert (
                axis[0] < ndim
            ), "'source' must be in the range of [-{0}, {0})".format(ndim)
4428

4429 4430 4431
        assert isinstance(
            axis[1], int
        ), "Each elemment of 'source' must be integer."
4432
        if axis[1] < 0:
4433 4434 4435
            assert (
                axis[1] >= -ndim
            ), "'source' must be in the range of [-{0}, {0})".format(ndim)
4436 4437
            dst[i] += ndim
        else:
4438 4439 4440
            assert (
                axis[1] < ndim
            ), "'source' must be in the range of [-{0}, {0})".format(ndim)
4441 4442 4443 4444 4445 4446 4447
        perm[dst[i]] = src[i]
        src_dims.remove(src[i])
        dst_dims.remove(dst[i])

    for i in range(len(src_dims)):
        perm[dst_dims[i]] = src_dims[i]

4448
    if in_dygraph_mode():
4449
        out = _C_ops.transpose(x, perm)
4450
        return out
4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466
    else:
        check_variable_and_dtype(
            x,
            'x',
            [
                'bool',
                'float16',
                'float32',
                'float64',
                'int32',
                'int64',
                'complex64',
                'complex128',
            ],
            'moveaxis',
        )
4467

4468 4469 4470 4471 4472 4473 4474 4475 4476
        helper = LayerHelper('moveaxis', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        x_shape = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='transpose2',
            inputs={'X': [x]},
            outputs={'Out': [out], 'XShape': [x_shape]},
            attrs={'axis': perm},
        )
4477 4478
        return out

4479

4480 4481 4482
def non_negative_axis(arr, axis):
    ndim = len(arr.shape)
    if axis >= 0:
4483 4484 4485
        assert (
            axis < ndim
        ), "'axis'  must be in the range of [-{0}, {0})".format(ndim)
4486
    else:
4487 4488 4489
        assert (
            axis >= -ndim
        ), "'axis'  must be in the range of [-{0}, {0})".format(ndim)
4490 4491 4492 4493 4494 4495
        axis += ndim

    return axis


def infer_broadcast_shape(arr, indices, axis):
4496
    # This function is used in take/put_along_axis
4497 4498 4499 4500 4501 4502 4503 4504 4505 4506
    broadcast_shape_list = list(arr.shape)
    broadcast_shape_list[axis] = list(indices.shape)[axis]
    broadcast_shape = tuple(broadcast_shape_list)
    for i in range(len(arr.shape)):
        if arr.shape[i] < indices.shape[i]:
            # if indices matrix has larger size than arr matrix, do not broadcast.
            return None
    return broadcast_shape


4507 4508 4509 4510 4511
def take_along_axis(arr, indices, axis):
    """
    Take values from the input array by given indices matrix along the designated axis.

    Args:
4512
        arr (Tensor) : The input Tensor. Supported data types are float32 and float64.
4513
        indices (Tensor) : Indices to take along each 1d slice of arr. This must match the dimension of arr,
4514
            and need to broadcast against arr. Supported data type are int and int64.
4515
        axis (int) : The axis to take 1d slices along.
4516

4517
    Returns:
L
Ligoml 已提交
4518
        Tensor, The indexed element, same dtype with arr
4519

4520 4521 4522 4523 4524
    Examples:
        .. code-block:: python

            import paddle

4525 4526
            x = paddle.to_tensor([[1, 2, 3], [4, 5, 6], [7,8,9]])
            index = paddle.to_tensor([[0]])
4527 4528 4529 4530 4531
            axis = 0
            result = paddle.take_along_axis(x, index, axis)
            print(result)
            # [[1, 2, 3]]
    """
4532
    if len(arr.shape) != len(indices.shape):
4533
        raise ValueError(
4534 4535
            "`indices` and `arr` must have the same number of dimensions!"
        )
4536 4537 4538 4539 4540
    axis = non_negative_axis(arr, axis)
    broadcast_shape = infer_broadcast_shape(arr, indices, axis)
    if not broadcast_shape:
        # if indices matrix have larger size than arr, arr should broadcast into indices shape.
        broadcast_shape = indices.shape
4541
    if in_dygraph_mode():
4542
        indices = paddle.broadcast_to(indices, broadcast_shape)
4543 4544 4545 4546
        broadcast_shape_list = list(broadcast_shape)
        broadcast_shape_list[axis] = list(arr.shape)[axis]
        broadcast_shape = tuple(broadcast_shape_list)
        arr = paddle.broadcast_to(arr, broadcast_shape)
4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572
        return _C_ops.take_along_axis(arr, indices, axis)
    else:
        check_variable_and_dtype(
            arr,
            'x',
            ['float16', 'float32', 'float64', 'int32', 'int64', 'uint8'],
            'take_along_axis',
        )
        check_variable_and_dtype(
            indices, 'index', ['int32', 'int64'], 'take_along_axis'
        )
        indices = paddle.broadcast_to(indices, broadcast_shape)
        broadcast_shape_list = list(broadcast_shape)
        broadcast_shape_list[axis] = list(arr.shape)[axis]
        broadcast_shape = tuple(broadcast_shape_list)
        arr = paddle.broadcast_to(arr, broadcast_shape)
        helper = LayerHelper('take_along_axis', **locals())
        dtype = helper.input_dtype()
        result = helper.create_variable_for_type_inference(dtype)
        helper.append_op(
            type="take_along_axis",
            inputs={"Input": arr, "Index": indices},
            attrs={"Axis": axis},
            outputs={"Result": result},
        )
        return result
4573 4574 4575 4576 4577 4578 4579 4580 4581 4582


def put_along_axis(arr, indices, values, axis, reduce='assign'):
    """
    Put values into the destination array by given indices matrix along the designated axis.

    Args:
        arr (Tensor) : The Destination Tensor. Supported data types are float32 and float64.
        indices (Tensor) : Indices to put along each 1d slice of arr. This must match the dimension of arr,
            and need to broadcast against arr. Supported data type are int and int64.
4583
        axis (int) : The axis to put 1d slices along.
G
gouzil 已提交
4584 4585 4586
        reduce (str, optional): The reduce operation, default is 'assign', support 'add', 'assign', 'mul' and 'multiply'.

    Returns:
L
Ligoml 已提交
4587
        Tensor, The indexed element, same dtype with arr
4588

4589 4590 4591 4592 4593
    Examples:
        .. code-block:: python

            import paddle

4594 4595
            x = paddle.to_tensor([[10, 30, 20], [60, 40, 50]])
            index = paddle.to_tensor([[0]])
4596 4597 4598 4599 4600 4601 4602 4603
            value = 99
            axis = 0
            result = paddle.put_along_axis(x, index, value, axis)
            print(result)
            # [[99, 99, 99],
            # [60, 40, 50]]

    """
4604
    if len(arr.shape) != len(indices.shape):
4605
        raise ValueError(
4606 4607
            "`indices` and `arr` must have the same number of dimensions!"
        )
4608 4609
    axis = non_negative_axis(arr, axis)
    broadcast_shape = infer_broadcast_shape(arr, indices, axis)
4610
    if in_dygraph_mode():
4611 4612 4613 4614 4615
        values = (
            paddle.to_tensor(values)
            if not isinstance(values, paddle.Tensor)
            else values
        )
4616 4617 4618
        if broadcast_shape:
            indices = paddle.broadcast_to(indices, broadcast_shape)
        values = paddle.broadcast_to(values, indices.shape)
4619 4620 4621 4622 4623 4624 4625
        return _C_ops.put_along_axis(arr, indices, values, axis, reduce)
    else:
        check_variable_and_dtype(
            arr,
            'x',
            ['float16', 'float32', 'float64', 'int32', 'int64', 'uint8'],
            'put_along_axis',
4626
        )
4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642
        check_variable_and_dtype(
            indices, 'index', ['int32', 'int64'], 'put_along_axis'
        )
        if broadcast_shape:
            indices = paddle.broadcast_to(indices, broadcast_shape)
        values = paddle.broadcast_to(values, indices.shape)
        helper = LayerHelper('put_along_axis', **locals())
        dtype = helper.input_dtype()
        result = helper.create_variable_for_type_inference(dtype)
        helper.append_op(
            type="put_along_axis",
            inputs={"Input": arr, "Index": indices, "Value": values},
            attrs={"Axis": axis, "Reduce": reduce},
            outputs={"Result": result},
        )
        return result
4643 4644 4645 4646 4647


@inplace_apis_in_dygraph_only
def put_along_axis_(arr, indices, values, axis, reduce='assign'):
    r"""
4648
    Inplace version of ``put_along_axis`` API, the output Tensor will be inplaced with input ``arr``.
4649 4650
    Please refer to :ref:`api_tensor_put_along_axis`.
    """
4651
    if len(arr.shape) != len(indices.shape):
4652
        raise ValueError(
4653 4654
            "`indices` and `arr` must have the same number of dimensions!"
        )
4655 4656
    axis = non_negative_axis(arr, axis)
    broadcast_shape = infer_broadcast_shape(arr, indices, axis)
4657 4658 4659 4660 4661
    values = (
        paddle.to_tensor(values)
        if not isinstance(values, paddle.Tensor)
        else values
    )
4662 4663 4664
    if broadcast_shape:
        indices = paddle.broadcast_to(indices, broadcast_shape)
    values = paddle.broadcast_to(values, indices.shape)
4665
    return _C_ops.put_along_axis_(arr, indices, values, axis, reduce)
4666 4667


L
Li Min 已提交
4668 4669 4670 4671 4672 4673 4674 4675
def index_add(x, index, axis, value, name=None):
    """
    Adds the elements of the input tensor with value tensor by selecting the indices in the order given in index.

    Args:
        x (Tensor) : The Destination Tensor. Supported data types are int32, int64, float16, float32, float64.
        index (Tensor): The 1-D Tensor containing the indices to index.
            The data type of ``index`` must be int32 or int64.
4676
        axis (int): The dimension in which we index.
L
Li Min 已提交
4677 4678 4679 4680
        value (Tensor): The tensor used to add the elements along the target axis.
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.

    Returns:
L
Ligoml 已提交
4681
        Tensor, same dimention and dtype with x.
L
Li Min 已提交
4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692

    Examples:
        .. code-block:: python

            # required: gpu
            import paddle

            input_tensor = paddle.to_tensor(paddle.ones((3, 3)), dtype="float32")
            index = paddle.to_tensor([0, 2], dtype="int32")
            value = paddle.to_tensor([[1, 1, 1], [1, 1, 1]], dtype="float32")
            outplace_res = paddle.index_add(input_tensor, index, 0, value)
4693 4694 4695 4696 4697
            print(outplace_res)
            # Tensor(shape=[3, 3], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [[2., 2., 2.],
            #         [1., 1., 1.],
            #         [2., 2., 2.]])
L
Li Min 已提交
4698 4699 4700 4701 4702 4703
    """
    if in_dygraph_mode():
        return _C_ops.index_add(x, index, value, axis)

    helper = LayerHelper("index_add", **locals())
    check_variable_and_dtype(
4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714
        x,
        'x',
        ['float16', 'float32', 'float64', 'int32', 'int64'],
        'paddle.tensor.manipulation.index_add',
    )
    check_variable_and_dtype(
        index,
        'index',
        ['int32', 'int64'],
        'paddle.tensor.manipulation.index_add',
    )
L
Li Min 已提交
4715
    check_variable_and_dtype(
4716 4717 4718 4719 4720
        value,
        'add_value',
        ['float16', 'float32', 'float64', 'int32', 'int64'],
        'paddle.tensor.manipulation.index_add',
    )
L
Li Min 已提交
4721 4722 4723

    out = helper.create_variable_for_type_inference(x.dtype)

4724 4725 4726 4727 4728 4729 4730 4731 4732 4733
    helper.append_op(
        type='index_add',
        inputs={
            'X': x,
            'Index': index,
            'AddValue': value,
        },
        outputs={'Out': out},
        attrs={'axis': axis},
    )
L
Li Min 已提交
4734 4735 4736 4737 4738 4739 4740
    return out


@inplace_apis_in_dygraph_only
def index_add_(x, index, axis, value, name=None):
    """
    Inplace version of ``index_add`` API, the output Tensor will be inplaced with input ``x``.
4741
    Please refer to :ref:`api_paddle_index_add`.
4742

L
Li Min 已提交
4743 4744 4745 4746 4747 4748 4749 4750 4751 4752
    Examples:
        .. code-block:: python

            # required: gpu
            import paddle

            input_tensor = paddle.to_tensor(paddle.ones((3, 3)), dtype="float32")
            index = paddle.to_tensor([0, 2], dtype="int32")
            value = paddle.to_tensor([[1, 1], [1, 1], [1, 1]], dtype="float32")
            inplace_res = paddle.index_add_(input_tensor, index, 1, value)
4753 4754 4755 4756 4757
            print(inplace_res)
            # Tensor(shape=[3, 3], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [[2., 1., 2.],
            #         [2., 1., 2.],
            #         [2., 1., 2.]])
L
Li Min 已提交
4758 4759 4760 4761
    """
    return _C_ops.index_add_(x, index, value, axis)


4762 4763 4764 4765 4766 4767 4768
# TODO(dev): We need avoid implementing it by this way.
__METHODS = {
    'fill_': fill_,
    'zero_': zero_,
    'fill_diagonal_': fill_diagonal_,
    'fill_diagonal_tensor_': fill_diagonal_tensor_,
    "fill_diagonal_tensor": fill_diagonal_tensor,
4769
    'tolist': tolist,
4770 4771 4772
}
for name, func in __METHODS.items():
    setattr(core.eager.Tensor, name, func)