test_var_base.py 61.8 KB
Newer Older
L
Leo Chen 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import copy
L
Leo Chen 已提交
16
import unittest
17

18 19
import numpy as np

20
import paddle
21
import paddle.nn.functional as F
22 23
from paddle import fluid
from paddle.fluid import core
L
Leo Chen 已提交
24 25 26 27 28 29 30 31


class TestVarBase(unittest.TestCase):
    def setUp(self):
        self.shape = [512, 1234]
        self.dtype = np.float32
        self.array = np.random.uniform(0.1, 1, self.shape).astype(self.dtype)

32
    def test_to_tensor(self):
33
        def check_with_place(place):
34
            with fluid.dygraph.guard():
35
                paddle.set_default_dtype('float32')
36
                # set_default_dtype should not take effect on int
37
                x = paddle.to_tensor(1, place=place, stop_gradient=False)
38
                np.testing.assert_array_equal(x.numpy(), [1])
39 40
                self.assertNotEqual(x.dtype, core.VarDesc.VarType.FP32)

41 42 43
                y = paddle.to_tensor(2, place=x.place)
                self.assertEqual(str(x.place), str(y.place))

44
                # set_default_dtype should not take effect on numpy
45 46 47 48 49 50 51 52
                x = paddle.to_tensor(
                    np.array([1.2]).astype('float16'),
                    place=place,
                    stop_gradient=False,
                )
                np.testing.assert_array_equal(
                    x.numpy(), np.array([1.2], 'float16')
                )
53 54
                self.assertEqual(x.dtype, core.VarDesc.VarType.FP16)

55 56 57 58
                # set_default_dtype take effect on int
                x = paddle.to_tensor(1, place=place)
                self.assertTrue(x.dtype, core.VarDesc.VarType.INT64)

59
                # set_default_dtype take effect on float
60
                x = paddle.to_tensor(1.2, place=place, stop_gradient=False)
61 62 63
                np.testing.assert_array_equal(
                    x.numpy(), np.array([1.2]).astype('float32')
                )
64
                self.assertEqual(x.dtype, core.VarDesc.VarType.FP32)
Z
Zhou Wei 已提交
65
                clone_x = x.clone()
66 67 68
                np.testing.assert_array_equal(
                    clone_x.numpy(), np.array([1.2]).astype('float32')
                )
Z
Zhou Wei 已提交
69 70 71
                self.assertEqual(clone_x.dtype, core.VarDesc.VarType.FP32)
                y = clone_x**2
                y.backward()
72 73 74
                np.testing.assert_array_equal(
                    x.grad.numpy(), np.array([2.4]).astype('float32')
                )
75
                y = x.cpu()
76
                self.assertEqual(y.place.__repr__(), "Place(cpu)")
77 78
                if core.is_compiled_with_cuda():
                    y = x.pin_memory()
79
                    self.assertEqual(y.place.__repr__(), "Place(gpu_pinned)")
80
                    y = x.cuda()
81
                    self.assertEqual(y.place.__repr__(), "Place(gpu:0)")
82
                    y = x.cuda(None)
83
                    self.assertEqual(y.place.__repr__(), "Place(gpu:0)")
84
                    y = x.cuda(device_id=0)
85
                    self.assertEqual(y.place.__repr__(), "Place(gpu:0)")
86
                    y = x.cuda(blocking=False)
87
                    self.assertEqual(y.place.__repr__(), "Place(gpu:0)")
88
                    y = x.cuda(blocking=True)
89
                    self.assertEqual(y.place.__repr__(), "Place(gpu:0)")
90 91
                    with self.assertRaises(ValueError):
                        y = x.cuda("test")
92

93 94 95 96 97
                # support 'dtype' is core.VarType
                x = paddle.rand((2, 2))
                y = paddle.to_tensor([2, 2], dtype=x.dtype)
                self.assertEqual(y.dtype, core.VarDesc.VarType.FP32)

98
                # set_default_dtype take effect on complex
99
                x = paddle.to_tensor(1 + 2j, place=place, stop_gradient=False)
100
                np.testing.assert_array_equal(x.numpy(), [1 + 2j])
C
chentianyu03 已提交
101
                self.assertEqual(x.dtype, core.VarDesc.VarType.COMPLEX64)
102 103 104

                paddle.set_default_dtype('float64')
                x = paddle.to_tensor(1.2, place=place, stop_gradient=False)
105
                np.testing.assert_array_equal(x.numpy(), [1.2])
106 107 108
                self.assertEqual(x.dtype, core.VarDesc.VarType.FP64)

                x = paddle.to_tensor(1 + 2j, place=place, stop_gradient=False)
109
                np.testing.assert_array_equal(x.numpy(), [1 + 2j])
C
chentianyu03 已提交
110
                self.assertEqual(x.dtype, core.VarDesc.VarType.COMPLEX128)
111

112 113 114
                x = paddle.to_tensor(
                    1, dtype='float32', place=place, stop_gradient=False
                )
115
                np.testing.assert_array_equal(x.numpy(), [1.0])
116 117 118 119 120
                self.assertEqual(x.dtype, core.VarDesc.VarType.FP32)
                self.assertEqual(x.shape, [1])
                self.assertEqual(x.stop_gradient, False)
                self.assertEqual(x.type, core.VarDesc.VarType.LOD_TENSOR)

121 122 123 124 125 126
                x = paddle.to_tensor(
                    (1, 2), dtype='float32', place=place, stop_gradient=False
                )
                x = paddle.to_tensor(
                    [1, 2], dtype='float32', place=place, stop_gradient=False
                )
127
                np.testing.assert_array_equal(x.numpy(), [1.0, 2.0])
128
                self.assertEqual(x.dtype, core.VarDesc.VarType.FP32)
129
                self.assertIsNone(x.grad)
130 131 132 133
                self.assertEqual(x.shape, [2])
                self.assertEqual(x.stop_gradient, False)
                self.assertEqual(x.type, core.VarDesc.VarType.LOD_TENSOR)

134 135 136 137 138 139
                x = paddle.to_tensor(
                    self.array,
                    dtype='float32',
                    place=place,
                    stop_gradient=False,
                )
140
                np.testing.assert_array_equal(x.numpy(), self.array)
141 142 143 144 145 146 147
                self.assertEqual(x.dtype, core.VarDesc.VarType.FP32)
                self.assertEqual(x.shape, self.shape)
                self.assertEqual(x.stop_gradient, False)
                self.assertEqual(x.type, core.VarDesc.VarType.LOD_TENSOR)

                y = paddle.to_tensor(x)
                y = paddle.to_tensor(y, dtype='float64', place=place)
148
                np.testing.assert_array_equal(y.numpy(), self.array)
149 150 151 152 153
                self.assertEqual(y.dtype, core.VarDesc.VarType.FP64)
                self.assertEqual(y.shape, self.shape)
                self.assertEqual(y.stop_gradient, True)
                self.assertEqual(y.type, core.VarDesc.VarType.LOD_TENSOR)
                z = x + y
154
                np.testing.assert_array_equal(z.numpy(), 2 * self.array)
155

156 157 158
                x = paddle.to_tensor(
                    [1 + 2j, 1 - 2j], dtype='complex64', place=place
                )
159
                y = paddle.to_tensor(x)
160
                np.testing.assert_array_equal(x.numpy(), [1 + 2j, 1 - 2j])
C
chentianyu03 已提交
161
                self.assertEqual(y.dtype, core.VarDesc.VarType.COMPLEX64)
162 163
                self.assertEqual(y.shape, [2])

164 165 166 167 168
                paddle.set_default_dtype('float32')
                x = paddle.randn([3, 4])
                x_array = np.array(x)
                self.assertEqual(x_array.shape, x.numpy().shape)
                self.assertEqual(x_array.dtype, x.numpy().dtype)
169
                np.testing.assert_array_equal(x_array, x.numpy())
170

171
                x = paddle.to_tensor(1.0, place=place)
172 173 174 175 176 177 178
                self.assertEqual(x.item(), 1.0)
                self.assertTrue(isinstance(x.item(), float))

                x = paddle.randn([3, 2, 2])
                self.assertTrue(isinstance(x.item(5), float))
                self.assertTrue(isinstance(x.item(1, 0, 1), float))
                self.assertEqual(x.item(5), x.item(1, 0, 1))
179 180 181
                np.testing.assert_array_equal(
                    x.item(1, 0, 1), x.numpy().item(1, 0, 1)
                )
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213

                x = paddle.to_tensor([[1.111111, 2.222222, 3.333333]])
                self.assertEqual(x.item(0, 2), x.item(2))
                self.assertAlmostEqual(x.item(2), 3.333333)
                self.assertTrue(isinstance(x.item(0, 2), float))

                x = paddle.to_tensor(1.0, dtype='float64')
                self.assertEqual(x.item(), 1.0)
                self.assertTrue(isinstance(x.item(), float))

                x = paddle.to_tensor(1.0, dtype='float16')
                self.assertEqual(x.item(), 1.0)
                self.assertTrue(isinstance(x.item(), float))

                x = paddle.to_tensor(1, dtype='uint8')
                self.assertEqual(x.item(), 1)
                self.assertTrue(isinstance(x.item(), int))

                x = paddle.to_tensor(1, dtype='int8')
                self.assertEqual(x.item(), 1)
                self.assertTrue(isinstance(x.item(), int))

                x = paddle.to_tensor(1, dtype='int16')
                self.assertEqual(x.item(), 1)
                self.assertTrue(isinstance(x.item(), int))

                x = paddle.to_tensor(1, dtype='int32')
                self.assertEqual(x.item(), 1)
                self.assertTrue(isinstance(x.item(), int))

                x = paddle.to_tensor(1, dtype='int64')
                self.assertEqual(x.item(), 1)
T
tianshuo78520a 已提交
214
                self.assertTrue(isinstance(x.item(), int))
215 216 217 218 219 220 221 222 223

                x = paddle.to_tensor(True)
                self.assertEqual(x.item(), True)
                self.assertTrue(isinstance(x.item(), bool))

                x = paddle.to_tensor(1 + 1j)
                self.assertEqual(x.item(), 1 + 1j)
                self.assertTrue(isinstance(x.item(), complex))

224 225 226 227 228
                # empty tensor
                x = paddle.to_tensor([])
                self.assertEqual(x.shape, [0])
                expected_result = np.array([], dtype='float32')
                self.assertEqual(x.numpy().shape, expected_result.shape)
229
                np.testing.assert_array_equal(x.numpy(), expected_result)
230

231 232 233 234 235 236
                numpy_array = np.random.randn(3, 4)
                # covert core.LoDTensor to paddle.Tensor
                lod_tensor = paddle.fluid.core.LoDTensor()
                place = paddle.fluid.framework._current_expected_place()
                lod_tensor.set(numpy_array, place)
                x = paddle.to_tensor(lod_tensor)
237
                np.testing.assert_array_equal(x.numpy(), numpy_array)
238 239 240 241 242 243 244 245
                self.assertEqual(x.type, core.VarDesc.VarType.LOD_TENSOR)
                self.assertEqual(str(x.place), str(place))

                # covert core.Tensor to paddle.Tensor
                x = paddle.to_tensor(numpy_array)
                dlpack = x.value().get_tensor()._to_dlpack()
                tensor_from_dlpack = paddle.fluid.core.from_dlpack(dlpack)
                x = paddle.to_tensor(tensor_from_dlpack)
246
                np.testing.assert_array_equal(x.numpy(), numpy_array)
247 248
                self.assertEqual(x.type, core.VarDesc.VarType.LOD_TENSOR)

249 250 251 252 253 254 255 256
                with self.assertRaises(ValueError):
                    paddle.randn([3, 2, 2]).item()
                with self.assertRaises(ValueError):
                    paddle.randn([3, 2, 2]).item(18)
                with self.assertRaises(ValueError):
                    paddle.randn([3, 2, 2]).item(1, 2)
                with self.assertRaises(ValueError):
                    paddle.randn([3, 2, 2]).item(2, 1, 2)
257 258 259 260 261 262 263 264 265 266 267
                with self.assertRaises(TypeError):
                    paddle.to_tensor('test')
                with self.assertRaises(TypeError):
                    paddle.to_tensor(1, dtype='test')
                with self.assertRaises(ValueError):
                    paddle.to_tensor([[1], [2, 3]])
                with self.assertRaises(ValueError):
                    paddle.to_tensor([[1], [2, 3]], place='test')
                with self.assertRaises(ValueError):
                    paddle.to_tensor([[1], [2, 3]], place=1)

268 269
        check_with_place(core.CPUPlace())
        check_with_place("cpu")
270
        if core.is_compiled_with_cuda():
271 272 273 274
            check_with_place(core.CUDAPinnedPlace())
            check_with_place("gpu_pinned")
            check_with_place(core.CUDAPlace(0))
            check_with_place("gpu:0")
275

276
    def test_to_tensor_not_change_input_stop_gradient(self):
277 278 279 280 281 282 283
        with paddle.fluid.dygraph.guard(core.CPUPlace()):
            a = paddle.zeros([1024])
            a.stop_gradient = False
            b = paddle.to_tensor(a)
            self.assertEqual(a.stop_gradient, False)
            self.assertEqual(b.stop_gradient, True)

284
    def test_to_tensor_change_place(self):
285 286 287 288 289
        if core.is_compiled_with_cuda():
            a_np = np.random.rand(1024, 1024)
            with paddle.fluid.dygraph.guard(core.CPUPlace()):
                a = paddle.to_tensor(a_np, place=paddle.CUDAPinnedPlace())
                a = paddle.to_tensor(a)
290
                self.assertEqual(a.place.__repr__(), "Place(cpu)")
291 292 293 294

            with paddle.fluid.dygraph.guard(core.CUDAPlace(0)):
                a = paddle.to_tensor(a_np, place=paddle.CUDAPinnedPlace())
                a = paddle.to_tensor(a)
295
                self.assertEqual(a.place.__repr__(), "Place(gpu:0)")
296 297 298 299

            with paddle.fluid.dygraph.guard(core.CUDAPlace(0)):
                a = paddle.to_tensor(a_np, place=paddle.CPUPlace())
                a = paddle.to_tensor(a, place=paddle.CUDAPinnedPlace())
300
                self.assertEqual(a.place.__repr__(), "Place(gpu_pinned)")
301

302
    def test_to_tensor_with_lodtensor(self):
303 304 305 306 307 308
        if core.is_compiled_with_cuda():
            a_np = np.random.rand(1024, 1024)
            with paddle.fluid.dygraph.guard(core.CPUPlace()):
                lod_tensor = core.LoDTensor()
                lod_tensor.set(a_np, core.CPUPlace())
                a = paddle.to_tensor(lod_tensor)
309
                np.testing.assert_array_equal(a_np, a.numpy())
310 311 312 313

            with paddle.fluid.dygraph.guard(core.CUDAPlace(0)):
                lod_tensor = core.LoDTensor()
                lod_tensor.set(a_np, core.CUDAPlace(0))
314
                a = paddle.to_tensor(lod_tensor, place=core.CPUPlace())
315
                np.testing.assert_array_equal(a_np, a.numpy())
316
                self.assertTrue(a.place.__repr__(), "Place(cpu)")
317

318
    def test_to_variable(self):
L
Leo Chen 已提交
319 320
        with fluid.dygraph.guard():
            var = fluid.dygraph.to_variable(self.array, name="abc")
321
            np.testing.assert_array_equal(var.numpy(), self.array)
L
Leo Chen 已提交
322 323 324 325 326 327 328
            self.assertEqual(var.name, 'abc')
            # default value
            self.assertEqual(var.persistable, False)
            self.assertEqual(var.stop_gradient, True)
            self.assertEqual(var.shape, self.shape)
            self.assertEqual(var.dtype, core.VarDesc.VarType.FP32)
            self.assertEqual(var.type, core.VarDesc.VarType.LOD_TENSOR)
329 330 331 332 333
            # The type of input must be 'ndarray' or 'Variable', it will raise TypeError
            with self.assertRaises(TypeError):
                var = fluid.dygraph.to_variable("test", name="abc")
            # test to_variable of LayerObjectHelper(LayerHelperBase)
            with self.assertRaises(TypeError):
334
                linear = paddle.nn.Linear(32, 64)
335
                var = linear._helper.to_variable("test", name="abc")
L
Leo Chen 已提交
336

337
    def test_list_to_variable(self):
338 339 340
        with fluid.dygraph.guard():
            array = [[[1, 2], [1, 2], [1.0, 2]], [[1, 2], [1, 2], [1, 2]]]
            var = fluid.dygraph.to_variable(array, dtype='int32')
341
            np.testing.assert_array_equal(var.numpy(), array)
342 343 344 345
            self.assertEqual(var.shape, [2, 3, 2])
            self.assertEqual(var.dtype, core.VarDesc.VarType.INT32)
            self.assertEqual(var.type, core.VarDesc.VarType.LOD_TENSOR)

346
    def test_tuple_to_variable(self):
347 348 349
        with fluid.dygraph.guard():
            array = (((1, 2), (1, 2), (1, 2)), ((1, 2), (1, 2), (1, 2)))
            var = fluid.dygraph.to_variable(array, dtype='float32')
350
            np.testing.assert_array_equal(var.numpy(), array)
351 352 353 354
            self.assertEqual(var.shape, [2, 3, 2])
            self.assertEqual(var.dtype, core.VarDesc.VarType.FP32)
            self.assertEqual(var.type, core.VarDesc.VarType.LOD_TENSOR)

355
    def test_tensor_to_variable(self):
356 357
        with fluid.dygraph.guard():
            t = fluid.Tensor()
L
Leo Chen 已提交
358
            t.set(np.random.random((1024, 1024)), fluid.CPUPlace())
359
            var = fluid.dygraph.to_variable(t)
360
            np.testing.assert_array_equal(t, var.numpy())
361

362
    def test_leaf_tensor(self):
363 364 365 366 367 368
        with fluid.dygraph.guard():
            x = paddle.to_tensor(np.random.uniform(-1, 1, size=[10, 10]))
            self.assertTrue(x.is_leaf)
            y = x + 1
            self.assertTrue(y.is_leaf)

369 370 371
            x = paddle.to_tensor(
                np.random.uniform(-1, 1, size=[10, 10]), stop_gradient=False
            )
372 373 374 375 376
            self.assertTrue(x.is_leaf)
            y = x + 1
            self.assertFalse(y.is_leaf)

            linear = paddle.nn.Linear(10, 10)
377 378 379 380
            input = paddle.to_tensor(
                np.random.uniform(-1, 1, size=[10, 10]).astype('float32'),
                stop_gradient=False,
            )
381 382 383 384 385 386 387
            self.assertTrue(input.is_leaf)

            out = linear(input)
            self.assertTrue(linear.weight.is_leaf)
            self.assertTrue(linear.bias.is_leaf)
            self.assertFalse(out.is_leaf)

388
    def test_detach(self):
Z
Zhou Wei 已提交
389 390 391 392 393
        with fluid.dygraph.guard():
            x = paddle.to_tensor(1.0, dtype="float64", stop_gradient=False)
            detach_x = x.detach()
            self.assertTrue(detach_x.stop_gradient, True)

394 395 396
            cmp_float = (
                np.allclose if core.is_compiled_with_rocm() else np.array_equal
            )
Z
Zhou Wei 已提交
397
            detach_x[:] = 10.0
Z
zhulei 已提交
398
            self.assertTrue(cmp_float(x.numpy(), [10.0]))
Z
Zhou Wei 已提交
399 400 401

            y = x**2
            y.backward()
Z
zhulei 已提交
402
            self.assertTrue(cmp_float(x.grad.numpy(), [20.0]))
403
            self.assertIsNone(detach_x.grad)
Z
Zhou Wei 已提交
404

405 406 407
            detach_x.stop_gradient = (
                False  # Set stop_gradient to be False, supported auto-grad
            )
Z
Zhou Wei 已提交
408 409
            z = 3 * detach_x**2
            z.backward()
Z
zhulei 已提交
410 411
            self.assertTrue(cmp_float(x.grad.numpy(), [20.0]))
            self.assertTrue(cmp_float(detach_x.grad.numpy(), [60.0]))
412

413 414 415 416 417
            with self.assertRaises(ValueError):
                detach_x[:] = 5.0

            detach_x.stop_gradient = True

Z
Zhou Wei 已提交
418
            # Due to sharing of data with origin Tensor, There are some unsafe operations:
419 420 421 422
            with self.assertRaises(RuntimeError):
                y = 2**x
                detach_x[:] = 5.0
                y.backward()
Z
Zhou Wei 已提交
423

424
    def test_write_property(self):
L
Leo Chen 已提交
425 426 427
        with fluid.dygraph.guard():
            var = fluid.dygraph.to_variable(self.array)

428
            self.assertEqual(var.name, 'generated_tensor_0')
L
Leo Chen 已提交
429 430 431 432 433 434 435 436 437 438 439
            var.name = 'test'
            self.assertEqual(var.name, 'test')

            self.assertEqual(var.persistable, False)
            var.persistable = True
            self.assertEqual(var.persistable, True)

            self.assertEqual(var.stop_gradient, True)
            var.stop_gradient = False
            self.assertEqual(var.stop_gradient, False)

440
    def test_deep_copy(self):
441
        with fluid.dygraph.guard():
姜永久 已提交
442
            empty_var = core.eager.Tensor()
443
            empty_var_copy = copy.deepcopy(empty_var)
444 445 446
            self.assertEqual(
                empty_var.stop_gradient, empty_var_copy.stop_gradient
            )
447 448 449 450
            self.assertEqual(empty_var.persistable, empty_var_copy.persistable)
            self.assertEqual(empty_var.type, empty_var_copy.type)
            self.assertEqual(empty_var.dtype, empty_var_copy.dtype)

451 452
            x = paddle.to_tensor([2.0], stop_gradient=False)
            y = paddle.to_tensor([3.0], stop_gradient=False)
453 454 455 456 457 458 459 460 461
            z = x * y
            memo = {}
            x_copy = copy.deepcopy(x, memo)
            y_copy = copy.deepcopy(y, memo)

            self.assertEqual(x_copy.stop_gradient, y_copy.stop_gradient)
            self.assertEqual(x_copy.persistable, y_copy.persistable)
            self.assertEqual(x_copy.type, y_copy.type)
            self.assertEqual(x_copy.dtype, y_copy.dtype)
462 463
            np.testing.assert_array_equal(x.numpy(), x_copy.numpy())
            np.testing.assert_array_equal(y.numpy(), y_copy.numpy())
464 465

            self.assertNotEqual(id(x), id(x_copy))
466
            np.testing.assert_array_equal(x.numpy(), [2.0])
467

468
            with self.assertRaises(ValueError):
469
                x_copy[:] = 5.0
470

471 472 473 474 475 476 477 478 479
            with self.assertRaises(RuntimeError):
                copy.deepcopy(z)

            x_copy2 = copy.deepcopy(x, memo)
            y_copy2 = copy.deepcopy(y, memo)
            self.assertEqual(id(x_copy), id(x_copy2))
            self.assertEqual(id(y_copy), id(y_copy2))

            # test copy selected rows
姜永久 已提交
480 481 482 483 484 485 486
            x = core.eager.Tensor(
                core.VarDesc.VarType.FP32,
                [3, 100],
                "selected_rows",
                core.VarDesc.VarType.SELECTED_ROWS,
                True,
            )
487

488
            selected_rows = x.value().get_selected_rows()
489 490 491
            selected_rows.get_tensor().set(
                np.random.rand(3, 100), core.CPUPlace()
            )
492 493 494 495 496 497 498 499 500 501
            selected_rows.set_height(10)
            selected_rows.set_rows([3, 5, 7])
            x_copy = copy.deepcopy(x)

            self.assertEqual(x_copy.stop_gradient, x.stop_gradient)
            self.assertEqual(x_copy.persistable, x.persistable)
            self.assertEqual(x_copy.type, x.type)
            self.assertEqual(x_copy.dtype, x.dtype)

            copy_selected_rows = x_copy.value().get_selected_rows()
502 503 504
            self.assertEqual(
                copy_selected_rows.height(), selected_rows.height()
            )
505
            self.assertEqual(copy_selected_rows.rows(), selected_rows.rows())
506 507
            np.testing.assert_array_equal(
                np.array(copy_selected_rows.get_tensor()),
508 509
                np.array(selected_rows.get_tensor()),
            )
510

L
Leo Chen 已提交
511
    # test some patched methods
512
    def test_set_value(self):
L
Leo Chen 已提交
513 514 515 516 517 518 519
        with fluid.dygraph.guard():
            var = fluid.dygraph.to_variable(self.array)
            tmp1 = np.random.uniform(0.1, 1, [2, 2, 3]).astype(self.dtype)
            self.assertRaises(AssertionError, var.set_value, tmp1)

            tmp2 = np.random.uniform(0.1, 1, self.shape).astype(self.dtype)
            var.set_value(tmp2)
520
            np.testing.assert_array_equal(var.numpy(), tmp2)
L
Leo Chen 已提交
521

522
    def test_to_string(self):
L
Leo Chen 已提交
523 524
        with fluid.dygraph.guard():
            var = fluid.dygraph.to_variable(self.array)
525
            self.assertTrue(isinstance(str(var), str))
L
Leo Chen 已提交
526

527
    def test_element_size(self):
528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561
        with fluid.dygraph.guard():
            x = paddle.to_tensor(1, dtype='bool')
            self.assertEqual(x.element_size(), 1)

            x = paddle.to_tensor(1, dtype='float16')
            self.assertEqual(x.element_size(), 2)

            x = paddle.to_tensor(1, dtype='float32')
            self.assertEqual(x.element_size(), 4)

            x = paddle.to_tensor(1, dtype='float64')
            self.assertEqual(x.element_size(), 8)

            x = paddle.to_tensor(1, dtype='int8')
            self.assertEqual(x.element_size(), 1)

            x = paddle.to_tensor(1, dtype='int16')
            self.assertEqual(x.element_size(), 2)

            x = paddle.to_tensor(1, dtype='int32')
            self.assertEqual(x.element_size(), 4)

            x = paddle.to_tensor(1, dtype='int64')
            self.assertEqual(x.element_size(), 8)

            x = paddle.to_tensor(1, dtype='uint8')
            self.assertEqual(x.element_size(), 1)

            x = paddle.to_tensor(1, dtype='complex64')
            self.assertEqual(x.element_size(), 8)

            x = paddle.to_tensor(1, dtype='complex128')
            self.assertEqual(x.element_size(), 16)

562
    def test_backward(self):
L
Leo Chen 已提交
563 564 565
        with fluid.dygraph.guard():
            var = fluid.dygraph.to_variable(self.array)
            var.stop_gradient = False
566
            loss = F.relu(var)
L
Leo Chen 已提交
567 568 569 570
            loss.backward()
            grad_var = var._grad_ivar()
            self.assertEqual(grad_var.shape, self.shape)

571
    def test_gradient(self):
L
Leo Chen 已提交
572 573 574
        with fluid.dygraph.guard():
            var = fluid.dygraph.to_variable(self.array)
            var.stop_gradient = False
575
            loss = F.relu(var)
L
Leo Chen 已提交
576 577 578 579
            loss.backward()
            grad_var = var.gradient()
            self.assertEqual(grad_var.shape, self.array.shape)

580
    def test_block(self):
L
Leo Chen 已提交
581 582
        with fluid.dygraph.guard():
            var = fluid.dygraph.to_variable(self.array)
583 584 585
            self.assertEqual(
                var.block, fluid.default_main_program().global_block()
            )
L
Leo Chen 已提交
586

587 588
    def _test_slice(self):
        w = fluid.dygraph.to_variable(
589 590
            np.random.random((784, 100, 100)).astype('float64')
        )
591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606

        for i in range(3):
            nw = w[i]
            self.assertEqual((100, 100), tuple(nw.shape))

        nw = w[:]
        self.assertEqual((784, 100, 100), tuple(nw.shape))

        nw = w[:, :]
        self.assertEqual((784, 100, 100), tuple(nw.shape))

        nw = w[:, :, -1]
        self.assertEqual((784, 100), tuple(nw.shape))

        nw = w[1, 1, 1]

J
JYChen 已提交
607
        self.assertEqual(len(nw.shape), 0)
608 609 610 611

        nw = w[:, :, :-1]
        self.assertEqual((784, 100, 99), tuple(nw.shape))

612 613 614 615 616 617 618
        tensor_array = np.array(
            [
                [[1, 2, 3], [4, 5, 6], [7, 8, 9]],
                [[10, 11, 12], [13, 14, 15], [16, 17, 18]],
                [[19, 20, 21], [22, 23, 24], [25, 26, 27]],
            ]
        ).astype('float32')
619 620 621 622 623 624
        var = fluid.dygraph.to_variable(tensor_array)
        var1 = var[0, 1, 1]
        var2 = var[1:]
        var3 = var[0:1]
        var4 = var[::-1]
        var5 = var[1, 1:, 1:]
625
        var_reshape = paddle.reshape(var, [3, -1, 3])
626 627 628 629 630 631 632 633 634 635
        var6 = var_reshape[:, :, -1]
        var7 = var[:, :, :-1]
        var8 = var[:1, :1, :1]
        var9 = var[:-1, :-1, :-1]
        var10 = var[::-1, :1, :-1]
        var11 = var[:-1, ::-1, -1:]
        var12 = var[1:2, 2:, ::-1]
        var13 = var[2:10, 2:, -2:-1]
        var14 = var[1:-1, 0:2, ::-1]
        var15 = var[::-1, ::-1, ::-1]
636
        var16 = var[-4:4]
637 638
        var17 = var[:, 0, 0:0]
        var18 = var[:, 1:1:2]
639 640

        vars = [
641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659
            var,
            var1,
            var2,
            var3,
            var4,
            var5,
            var6,
            var7,
            var8,
            var9,
            var10,
            var11,
            var12,
            var13,
            var14,
            var15,
            var16,
            var17,
            var18,
660 661 662
        ]
        local_out = [var.numpy() for var in vars]

663 664 665 666 667 668
        np.testing.assert_array_equal(local_out[1], tensor_array[0, 1, 1:2])
        np.testing.assert_array_equal(local_out[2], tensor_array[1:])
        np.testing.assert_array_equal(local_out[3], tensor_array[0:1])
        np.testing.assert_array_equal(local_out[4], tensor_array[::-1])
        np.testing.assert_array_equal(local_out[5], tensor_array[1, 1:, 1:])
        np.testing.assert_array_equal(
669 670
            local_out[6], tensor_array.reshape((3, -1, 3))[:, :, -1]
        )
671 672 673
        np.testing.assert_array_equal(local_out[7], tensor_array[:, :, :-1])
        np.testing.assert_array_equal(local_out[8], tensor_array[:1, :1, :1])
        np.testing.assert_array_equal(local_out[9], tensor_array[:-1, :-1, :-1])
674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691
        np.testing.assert_array_equal(
            local_out[10], tensor_array[::-1, :1, :-1]
        )
        np.testing.assert_array_equal(
            local_out[11], tensor_array[:-1, ::-1, -1:]
        )
        np.testing.assert_array_equal(
            local_out[12], tensor_array[1:2, 2:, ::-1]
        )
        np.testing.assert_array_equal(
            local_out[13], tensor_array[2:10, 2:, -2:-1]
        )
        np.testing.assert_array_equal(
            local_out[14], tensor_array[1:-1, 0:2, ::-1]
        )
        np.testing.assert_array_equal(
            local_out[15], tensor_array[::-1, ::-1, ::-1]
        )
692 693 694
        np.testing.assert_array_equal(local_out[16], tensor_array[-4:4])
        np.testing.assert_array_equal(local_out[17], tensor_array[:, 0, 0:0])
        np.testing.assert_array_equal(local_out[18], tensor_array[:, 1:1:2])
695

696
    def _test_slice_for_tensor_attr(self):
697 698 699 700 701 702 703
        tensor_array = np.array(
            [
                [[1, 2, 3], [4, 5, 6], [7, 8, 9]],
                [[10, 11, 12], [13, 14, 15], [16, 17, 18]],
                [[19, 20, 21], [22, 23, 24], [25, 26, 27]],
            ]
        ).astype('float32')
704 705 706

        var = paddle.to_tensor(tensor_array)

J
JYChen 已提交
707 708 709 710
        one = paddle.ones(shape=[], dtype="int32")
        two = paddle.full(shape=[], fill_value=2, dtype="int32")
        negative_one = paddle.full(shape=[], fill_value=-1, dtype="int32")
        four = paddle.full(shape=[], fill_value=4, dtype="int32")
711 712 713 714 715 716 717

        var = fluid.dygraph.to_variable(tensor_array)
        var1 = var[0, one, one]
        var2 = var[one:]
        var3 = var[0:one]
        var4 = var[::negative_one]
        var5 = var[one, one:, one:]
718
        var_reshape = paddle.reshape(var, [3, negative_one, 3])
719 720 721 722 723 724 725 726 727 728 729 730 731
        var6 = var_reshape[:, :, negative_one]
        var7 = var[:, :, :negative_one]
        var8 = var[:one, :one, :1]
        var9 = var[:-1, :negative_one, :negative_one]
        var10 = var[::negative_one, :one, :negative_one]
        var11 = var[:negative_one, ::-1, negative_one:]
        var12 = var[one:2, 2:, ::negative_one]
        var13 = var[two:10, 2:, -2:negative_one]
        var14 = var[1:negative_one, 0:2, ::negative_one]
        var15 = var[::negative_one, ::-1, ::negative_one]
        var16 = var[-4:4]

        vars = [
732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748
            var,
            var1,
            var2,
            var3,
            var4,
            var5,
            var6,
            var7,
            var8,
            var9,
            var10,
            var11,
            var12,
            var13,
            var14,
            var15,
            var16,
749 750 751
        ]
        local_out = [var.numpy() for var in vars]

752 753 754 755 756 757
        np.testing.assert_array_equal(local_out[1], tensor_array[0, 1, 1:2])
        np.testing.assert_array_equal(local_out[2], tensor_array[1:])
        np.testing.assert_array_equal(local_out[3], tensor_array[0:1])
        np.testing.assert_array_equal(local_out[4], tensor_array[::-1])
        np.testing.assert_array_equal(local_out[5], tensor_array[1, 1:, 1:])
        np.testing.assert_array_equal(
758 759
            local_out[6], tensor_array.reshape((3, -1, 3))[:, :, -1]
        )
760 761 762
        np.testing.assert_array_equal(local_out[7], tensor_array[:, :, :-1])
        np.testing.assert_array_equal(local_out[8], tensor_array[:1, :1, :1])
        np.testing.assert_array_equal(local_out[9], tensor_array[:-1, :-1, :-1])
763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780
        np.testing.assert_array_equal(
            local_out[10], tensor_array[::-1, :1, :-1]
        )
        np.testing.assert_array_equal(
            local_out[11], tensor_array[:-1, ::-1, -1:]
        )
        np.testing.assert_array_equal(
            local_out[12], tensor_array[1:2, 2:, ::-1]
        )
        np.testing.assert_array_equal(
            local_out[13], tensor_array[2:10, 2:, -2:-1]
        )
        np.testing.assert_array_equal(
            local_out[14], tensor_array[1:-1, 0:2, ::-1]
        )
        np.testing.assert_array_equal(
            local_out[15], tensor_array[::-1, ::-1, ::-1]
        )
781
        np.testing.assert_array_equal(local_out[16], tensor_array[-4:4])
782

783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803
    def _test_for_getitem_ellipsis_index(self):
        shape = (64, 3, 5, 256)
        np_fp32_value = np.random.random(shape).astype('float32')
        np_int_value = np.random.randint(1, 100, shape)

        var_fp32 = paddle.to_tensor(np_fp32_value)
        var_int = paddle.to_tensor(np_int_value)

        def assert_getitem_ellipsis_index(var_tensor, var_np):
            var = [
                var_tensor[..., 0].numpy(),
                var_tensor[..., 1, 0].numpy(),
                var_tensor[0, ..., 1, 0].numpy(),
                var_tensor[1, ..., 1].numpy(),
                var_tensor[2, ...].numpy(),
                var_tensor[2, 0, ...].numpy(),
                var_tensor[2, 0, 1, ...].numpy(),
                var_tensor[...].numpy(),
                var_tensor[:, ..., 100].numpy(),
            ]

804 805 806 807 808 809 810 811 812
            np.testing.assert_array_equal(var[0], var_np[..., 0])
            np.testing.assert_array_equal(var[1], var_np[..., 1, 0])
            np.testing.assert_array_equal(var[2], var_np[0, ..., 1, 0])
            np.testing.assert_array_equal(var[3], var_np[1, ..., 1])
            np.testing.assert_array_equal(var[4], var_np[2, ...])
            np.testing.assert_array_equal(var[5], var_np[2, 0, ...])
            np.testing.assert_array_equal(var[6], var_np[2, 0, 1, ...])
            np.testing.assert_array_equal(var[7], var_np[...])
            np.testing.assert_array_equal(var[8], var_np[:, ..., 100])
813 814 815 816 817 818 819

        var_fp32 = paddle.to_tensor(np_fp32_value)
        var_int = paddle.to_tensor(np_int_value)

        assert_getitem_ellipsis_index(var_fp32, np_fp32_value)
        assert_getitem_ellipsis_index(var_int, np_int_value)

820 821
        # test 1 dim tensor
        var_one_dim = paddle.to_tensor([1, 2, 3, 4])
822 823 824
        np.testing.assert_array_equal(
            var_one_dim[..., 0].numpy(), np.array([1])
        )
825

826 827 828 829 830 831 832 833 834 835 836 837 838 839 840
    def _test_none_index(self):
        shape = (8, 64, 5, 256)
        np_value = np.random.random(shape).astype('float32')
        var_tensor = paddle.to_tensor(np_value)

        var = [
            var_tensor[1, 0, None].numpy(),
            var_tensor[None, ..., 1, 0].numpy(),
            var_tensor[:, :, :, None].numpy(),
            var_tensor[1, ..., 1, None].numpy(),
            var_tensor[2, ..., None, None].numpy(),
            var_tensor[None, 2, 0, ...].numpy(),
            var_tensor[None, 2, None, 1].numpy(),
            var_tensor[None].numpy(),
            var_tensor[0, 0, None, 0, 0, None].numpy(),
841
            var_tensor[None, None, 0, ..., None].numpy(),
842
            var_tensor[..., None, :, None].numpy(),
843 844 845
            var_tensor[0, 1:10:2, None, None, ...].numpy(),
        ]

846 847 848 849 850 851 852 853 854
        np.testing.assert_array_equal(var[0], np_value[1, 0, None])
        np.testing.assert_array_equal(var[1], np_value[None, ..., 1, 0])
        np.testing.assert_array_equal(var[2], np_value[:, :, :, None])
        np.testing.assert_array_equal(var[3], np_value[1, ..., 1, None])
        np.testing.assert_array_equal(var[4], np_value[2, ..., None, None])
        np.testing.assert_array_equal(var[5], np_value[None, 2, 0, ...])
        np.testing.assert_array_equal(var[6], np_value[None, 2, None, 1])
        np.testing.assert_array_equal(var[7], np_value[None])
        np.testing.assert_array_equal(var[8], np_value[0, 0, None, 0, 0, None])
855 856 857
        np.testing.assert_array_equal(
            var[9], np_value[None, None, 0, ..., None]
        )
858
        np.testing.assert_array_equal(var[10], np_value[..., None, :, None])
859

860 861
        # TODO(zyfncg) there is a bug of dimensions when slice step > 1 and
        #              indexs has int type
862
        # self.assertTrue(
863
        #     np.array_equal(var[11], np_value[0, 1:10:2, None, None, ...]))
864

Z
zyfncg 已提交
865 866 867 868
    def _test_bool_index(self):
        shape = (4, 2, 5, 64)
        np_value = np.random.random(shape).astype('float32')
        var_tensor = paddle.to_tensor(np_value)
869 870 871 872 873 874 875 876 877 878
        index = [
            [True, True, True, True],
            [True, False, True, True],
            [True, False, False, True],
            [False, 0, 1, True, True],
            [False, False, False, False],
        ]
        index2d = np.array(
            [[True, True], [False, False], [True, False], [True, True]]
        )
Z
zyfncg 已提交
879 880
        tensor_index = paddle.to_tensor(index2d)
        var = [
881 882 883 884
            var_tensor[index[0]].numpy(),
            var_tensor[index[1]].numpy(),
            var_tensor[index[2]].numpy(),
            var_tensor[index[3]].numpy(),
Z
zyfncg 已提交
885 886
            var_tensor[paddle.to_tensor(index[0])].numpy(),
            var_tensor[tensor_index].numpy(),
887
            var_tensor[paddle.to_tensor(index[4])].numpy(),
Z
zyfncg 已提交
888
        ]
889 890 891 892 893 894 895
        np.testing.assert_array_equal(var[0], np_value[index[0]])
        np.testing.assert_array_equal(var[1], np_value[index[1]])
        np.testing.assert_array_equal(var[2], np_value[index[2]])
        np.testing.assert_array_equal(var[3], np_value[index[3]])
        np.testing.assert_array_equal(var[4], np_value[index[0]])
        np.testing.assert_array_equal(var[5], np_value[index2d])
        np.testing.assert_array_equal(var[6], np_value[index[4]])
896 897 898 899 900 901
        np.testing.assert_array_equal(
            var_tensor[var_tensor > 0.67], np_value[np_value > 0.67]
        )
        np.testing.assert_array_equal(
            var_tensor[var_tensor < 0.55], np_value[np_value < 0.55]
        )
Z
zyfncg 已提交
902 903 904 905 906 907 908 909 910 911

        with self.assertRaises(ValueError):
            var_tensor[[False, False, False, False]]
        with self.assertRaises(ValueError):
            var_tensor[[True, False]]
        with self.assertRaises(ValueError):
            var_tensor[[True, False, False, False, False]]
        with self.assertRaises(IndexError):
            var_tensor[paddle.to_tensor([[True, False, False, False]])]

912 913 914 915 916 917
    def _test_scalar_bool_index(self):
        shape = (1, 2, 5, 64)
        np_value = np.random.random(shape).astype('float32')
        var_tensor = paddle.to_tensor(np_value)
        index = [True]
        tensor_index = paddle.to_tensor(index)
918 919 920
        var = [
            var_tensor[tensor_index].numpy(),
        ]
921
        np.testing.assert_array_equal(var[0], np_value[index])
922

H
hong 已提交
923 924 925 926 927
    def _test_for_var(self):
        np_value = np.random.random((30, 100, 100)).astype('float32')
        w = fluid.dygraph.to_variable(np_value)

        for i, e in enumerate(w):
928
            np.testing.assert_array_equal(e.numpy(), np_value[i])
H
hong 已提交
929

930 931 932
    def _test_numpy_index(self):
        array = np.arange(120).reshape([4, 5, 6])
        t = paddle.to_tensor(array)
933 934
        np.testing.assert_array_equal(t[np.longlong(0)].numpy(), array[0])
        np.testing.assert_array_equal(
935 936 937
            t[np.longlong(0) : np.longlong(4) : np.longlong(2)].numpy(),
            array[0:4:2],
        )
938 939
        np.testing.assert_array_equal(t[np.int64(0)].numpy(), array[0])
        np.testing.assert_array_equal(
940 941
            t[np.int32(1) : np.int32(4) : np.int32(2)].numpy(), array[1:4:2]
        )
942
        np.testing.assert_array_equal(
943 944
            t[np.int16(0) : np.int16(4) : np.int16(2)].numpy(), array[0:4:2]
        )
945 946 947 948 949 950

    def _test_list_index(self):
        # case1:
        array = np.arange(120).reshape([6, 5, 4])
        x = paddle.to_tensor(array)
        py_idx = [[0, 2, 0, 1, 3], [0, 0, 1, 2, 0]]
J
JYChen 已提交
951 952 953 954 955 956 957 958 959 960 961 962 963

        # note(chenjianye):
        # Non-tuple sequence for multidimensional indexing is supported in numpy < 1.23.
        # For List case, the outermost `[]` will be treated as tuple `()` in version less than 1.23,
        # which is used to wrap index elements for multiple axes.
        # And from 1.23, this will be treat as a whole and only works on one axis.
        #
        # e.g. x[[[0],[1]]] == x[([0],[1])] == x[[0],[1]] (in version < 1.23)
        #      x[[[0],[1]]] == x[array([[0],[1]])] (in version >= 1.23)
        #
        # Here, we just modify the code to remove the impact of numpy version changes,
        # changing x[[[0],[1]]] to x[tuple([[0],[1]])] == x[([0],[1])] == x[[0],[1]].
        # Whether the paddle behavior in this case will change is still up for debate.
964
        idx = [paddle.to_tensor(py_idx[0]), paddle.to_tensor(py_idx[1])]
J
JYChen 已提交
965 966
        np.testing.assert_array_equal(x[idx].numpy(), array[tuple(py_idx)])
        np.testing.assert_array_equal(x[py_idx].numpy(), array[tuple(py_idx)])
967 968
        # case2:
        tensor_x = paddle.to_tensor(
969 970
            np.zeros(12).reshape(2, 6).astype(np.float32)
        )
971 972
        tensor_y1 = paddle.zeros([1], dtype='int32') + 2
        tensor_y2 = paddle.zeros([1], dtype='int32') + 5
973 974
        tensor_x[:, tensor_y1:tensor_y2] = 42
        res = tensor_x.numpy()
975 976 977 978 979 980
        exp = np.array(
            [
                [0.0, 0.0, 42.0, 42.0, 42.0, 0.0],
                [0.0, 0.0, 42.0, 42.0, 42.0, 0.0],
            ]
        )
981
        np.testing.assert_array_equal(res, exp)
982

W
WeiXin 已提交
983 984 985
        # case3:
        row = np.array([0, 1, 2])
        col = np.array([2, 1, 3])
986
        np.testing.assert_array_equal(array[row, col], x[row, col].numpy())
W
WeiXin 已提交
987

988
    def test_slice(self):
L
Leo Chen 已提交
989
        with fluid.dygraph.guard():
990
            self._test_slice()
991
            self._test_slice_for_tensor_attr()
H
hong 已提交
992
            self._test_for_var()
993
            self._test_for_getitem_ellipsis_index()
994
            self._test_none_index()
Z
zyfncg 已提交
995
            self._test_bool_index()
996
            self._test_scalar_bool_index()
997 998
            self._test_numpy_index()
            self._test_list_index()
999

L
Leo Chen 已提交
1000
            var = fluid.dygraph.to_variable(self.array)
1001 1002
            np.testing.assert_array_equal(var[1, :].numpy(), self.array[1, :])
            np.testing.assert_array_equal(var[::-1].numpy(), self.array[::-1])
L
Leo Chen 已提交
1003

H
hong 已提交
1004 1005 1006
            with self.assertRaises(IndexError):
                y = var[self.shape[0]]

1007 1008 1009
            with self.assertRaises(IndexError):
                y = var[0 - self.shape[0] - 1]

W
WeiXin 已提交
1010 1011 1012 1013
            with self.assertRaises(IndexError):
                mask = np.array([1, 0, 1, 0], dtype=bool)
                var[paddle.to_tensor([0, 1]), mask]

1014
    def test_var_base_to_np(self):
L
Leo Chen 已提交
1015 1016
        with fluid.dygraph.guard():
            var = fluid.dygraph.to_variable(self.array)
W
wanghuancoder 已提交
1017
            np.testing.assert_array_equal(var.numpy(), var.numpy(False))
L
Leo Chen 已提交
1018

1019
    def test_var_base_as_np(self):
1020 1021
        with fluid.dygraph.guard():
            var = fluid.dygraph.to_variable(self.array)
1022
            np.testing.assert_array_equal(var.numpy(), np.array(var))
1023 1024 1025
            np.testing.assert_array_equal(
                var.numpy(), np.array(var, dtype=np.float32)
            )
1026

1027
    def test_if(self):
1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040
        with fluid.dygraph.guard():
            var1 = fluid.dygraph.to_variable(np.array([[[0]]]))
            var2 = fluid.dygraph.to_variable(np.array([[[1]]]))

            var1_bool = False
            var2_bool = False

            if var1:
                var1_bool = True

            if var2:
                var2_bool = True

1041 1042 1043 1044
            assert not var1_bool, "if var1 should be false"
            assert var2_bool, "if var2 should be true"
            assert not bool(var1), "bool(var1) is False"
            assert bool(var2), "bool(var2) is True"
1045

1046
    def test_to_static_var(self):
1047
        with fluid.dygraph.guard():
W
wanghuancoder 已提交
1048
            # Convert Tensor into Variable or Parameter
1049 1050 1051 1052 1053 1054 1055 1056
            var_base = fluid.dygraph.to_variable(self.array, name="var_base_1")
            static_var = var_base._to_static_var()
            self._assert_to_static(var_base, static_var)

            var_base = fluid.dygraph.to_variable(self.array, name="var_base_2")
            static_param = var_base._to_static_var(to_parameter=True)
            self._assert_to_static(var_base, static_param, True)

W
wanghuancoder 已提交
1057
            # Convert EagerParamBase into Parameter
1058
            fc = paddle.nn.Linear(
1059 1060
                10,
                20,
1061
                weight_attr=paddle.ParamAttr(
1062 1063
                    learning_rate=0.001,
                    do_model_average=True,
1064
                    regularizer=paddle.regularizer.L1Decay(),
1065 1066
                ),
            )
1067 1068 1069 1070 1071 1072 1073 1074
            weight = fc.parameters()[0]
            static_param = weight._to_static_var()
            self._assert_to_static(weight, static_param, True)

    def _assert_to_static(self, var_base, static_var, is_param=False):
        if is_param:
            self.assertTrue(isinstance(static_var, fluid.framework.Parameter))
            self.assertTrue(static_var.persistable, True)
W
wanghuancoder 已提交
1075
            if isinstance(var_base, fluid.framework.EagerParamBase):
1076
                for attr in ['trainable', 'is_distributed', 'do_model_average']:
1077 1078 1079
                    self.assertEqual(
                        getattr(var_base, attr), getattr(static_var, attr)
                    )
1080

1081 1082 1083
                self.assertEqual(
                    static_var.optimize_attr['learning_rate'], 0.001
                )
1084
                self.assertTrue(
1085 1086 1087 1088
                    isinstance(
                        static_var.regularizer, fluid.regularizer.L1Decay
                    )
                )
1089 1090 1091 1092 1093 1094 1095 1096 1097
        else:
            self.assertTrue(isinstance(static_var, fluid.framework.Variable))

        attr_keys = ['block', 'dtype', 'type', 'name']
        for attr in attr_keys:
            self.assertEqual(getattr(var_base, attr), getattr(static_var, attr))

        self.assertListEqual(list(var_base.shape), list(static_var.shape))

1098
    def test_tensor_str(self):
Z
Zhou Wei 已提交
1099
        paddle.enable_static()
1100
        paddle.disable_static(paddle.CPUPlace())
C
cnn 已提交
1101
        paddle.seed(10)
1102 1103 1104 1105
        a = paddle.rand([10, 20])
        paddle.set_printoptions(4, 100, 3)
        a_str = str(a)

1106
        expected = '''Tensor(shape=[10, 20], dtype=float32, place=Place(cpu), stop_gradient=True,
1107 1108 1109 1110 1111 1112 1113 1114 1115 1116
       [[0.2727, 0.5489, 0.8655, ..., 0.2916, 0.8525, 0.9000],
        [0.3806, 0.8996, 0.0928, ..., 0.9535, 0.8378, 0.6409],
        [0.1484, 0.4038, 0.8294, ..., 0.0148, 0.6520, 0.4250],
        ...,
        [0.3426, 0.1909, 0.7240, ..., 0.4218, 0.2676, 0.5679],
        [0.5561, 0.2081, 0.0676, ..., 0.9778, 0.3302, 0.9559],
        [0.2665, 0.8483, 0.5389, ..., 0.4956, 0.6862, 0.9178]])'''

        self.assertEqual(a_str, expected)

1117
    def test_tensor_str2(self):
1118 1119 1120 1121
        paddle.disable_static(paddle.CPUPlace())
        a = paddle.to_tensor([[1.5111111, 1.0], [0, 0]])
        a_str = str(a)

1122
        expected = '''Tensor(shape=[2, 2], dtype=float32, place=Place(cpu), stop_gradient=True,
1123 1124 1125 1126 1127
       [[1.5111, 1.    ],
        [0.    , 0.    ]])'''

        self.assertEqual(a_str, expected)

1128
    def test_tensor_str3(self):
1129 1130 1131 1132
        paddle.disable_static(paddle.CPUPlace())
        a = paddle.to_tensor([[-1.5111111, 1.0], [0, -0.5]])
        a_str = str(a)

1133
        expected = '''Tensor(shape=[2, 2], dtype=float32, place=Place(cpu), stop_gradient=True,
1134 1135 1136 1137 1138
       [[-1.5111,  1.    ],
        [ 0.    , -0.5000]])'''

        self.assertEqual(a_str, expected)

1139
    def test_tensor_str_scaler(self):
1140 1141 1142 1143
        paddle.disable_static(paddle.CPUPlace())
        a = paddle.to_tensor(np.array(False))
        a_str = str(a)

1144
        expected = '''Tensor(shape=[], dtype=bool, place=Place(cpu), stop_gradient=True,
1145 1146 1147 1148
       False)'''

        self.assertEqual(a_str, expected)

1149
    def test_tensor_str_shape_with_zero(self):
1150 1151
        paddle.disable_static(paddle.CPUPlace())
        x = paddle.ones((10, 10))
1152
        y = paddle.nonzero(x == 0)
1153 1154
        a_str = str(y)

1155
        expected = '''Tensor(shape=[0, 2], dtype=int64, place=Place(cpu), stop_gradient=True,
1156 1157 1158 1159
       [])'''

        self.assertEqual(a_str, expected)

1160
    def test_tensor_str_linewidth(self):
1161 1162 1163
        paddle.disable_static(paddle.CPUPlace())
        paddle.seed(2021)
        x = paddle.rand([128])
1164 1165 1166
        paddle.set_printoptions(
            precision=4, threshold=1000, edgeitems=3, linewidth=80
        )
1167 1168
        a_str = str(x)

1169
        expected = '''Tensor(shape=[128], dtype=float32, place=Place(cpu), stop_gradient=True,
1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187
       [0.3759, 0.0278, 0.2489, 0.3110, 0.9105, 0.7381, 0.1905, 0.4726, 0.2435,
        0.9142, 0.3367, 0.7243, 0.7664, 0.9915, 0.2921, 0.1363, 0.8096, 0.2915,
        0.9564, 0.9972, 0.2573, 0.2597, 0.3429, 0.2484, 0.9579, 0.7003, 0.4126,
        0.4274, 0.0074, 0.9686, 0.9910, 0.0144, 0.6564, 0.2932, 0.7114, 0.9301,
        0.6421, 0.0538, 0.1273, 0.5771, 0.9336, 0.6416, 0.1832, 0.9311, 0.7702,
        0.7474, 0.4479, 0.3382, 0.5579, 0.0444, 0.9802, 0.9874, 0.3038, 0.5640,
        0.2408, 0.5489, 0.8866, 0.1006, 0.5881, 0.7560, 0.7928, 0.8604, 0.4670,
        0.9285, 0.1482, 0.4541, 0.1307, 0.6221, 0.4902, 0.1147, 0.4415, 0.2987,
        0.7276, 0.2077, 0.7551, 0.9652, 0.4369, 0.2282, 0.0047, 0.2934, 0.4308,
        0.4190, 0.1442, 0.3650, 0.3056, 0.6535, 0.1211, 0.8721, 0.7408, 0.4220,
        0.5937, 0.3123, 0.9198, 0.0275, 0.5338, 0.4622, 0.7521, 0.3609, 0.4703,
        0.1736, 0.8976, 0.7616, 0.3756, 0.2416, 0.2907, 0.3246, 0.4305, 0.5717,
        0.0735, 0.0361, 0.5534, 0.4399, 0.9260, 0.6525, 0.3064, 0.4573, 0.9210,
        0.8269, 0.2424, 0.7494, 0.8945, 0.7098, 0.8078, 0.4707, 0.5715, 0.7232,
        0.4678, 0.5047])'''

        self.assertEqual(a_str, expected)

1188
    def test_tensor_str_linewidth2(self):
1189 1190 1191 1192 1193 1194
        paddle.disable_static(paddle.CPUPlace())
        paddle.seed(2021)
        x = paddle.rand([128])
        paddle.set_printoptions(precision=4, linewidth=160, sci_mode=True)
        a_str = str(x)

1195
        expected = '''Tensor(shape=[128], dtype=float32, place=Place(cpu), stop_gradient=True,
1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209
       [3.7587e-01, 2.7798e-02, 2.4891e-01, 3.1097e-01, 9.1053e-01, 7.3811e-01, 1.9045e-01, 4.7258e-01, 2.4354e-01, 9.1415e-01, 3.3666e-01, 7.2428e-01,
        7.6640e-01, 9.9146e-01, 2.9215e-01, 1.3625e-01, 8.0957e-01, 2.9153e-01, 9.5642e-01, 9.9718e-01, 2.5732e-01, 2.5973e-01, 3.4292e-01, 2.4841e-01,
        9.5794e-01, 7.0029e-01, 4.1260e-01, 4.2737e-01, 7.3788e-03, 9.6863e-01, 9.9102e-01, 1.4416e-02, 6.5640e-01, 2.9318e-01, 7.1136e-01, 9.3008e-01,
        6.4209e-01, 5.3849e-02, 1.2730e-01, 5.7712e-01, 9.3359e-01, 6.4155e-01, 1.8320e-01, 9.3110e-01, 7.7021e-01, 7.4736e-01, 4.4793e-01, 3.3817e-01,
        5.5794e-01, 4.4412e-02, 9.8023e-01, 9.8735e-01, 3.0376e-01, 5.6397e-01, 2.4082e-01, 5.4893e-01, 8.8659e-01, 1.0065e-01, 5.8812e-01, 7.5600e-01,
        7.9280e-01, 8.6041e-01, 4.6701e-01, 9.2852e-01, 1.4821e-01, 4.5410e-01, 1.3074e-01, 6.2210e-01, 4.9024e-01, 1.1466e-01, 4.4154e-01, 2.9868e-01,
        7.2758e-01, 2.0766e-01, 7.5508e-01, 9.6522e-01, 4.3688e-01, 2.2823e-01, 4.7394e-03, 2.9342e-01, 4.3083e-01, 4.1902e-01, 1.4416e-01, 3.6500e-01,
        3.0560e-01, 6.5350e-01, 1.2115e-01, 8.7206e-01, 7.4081e-01, 4.2203e-01, 5.9372e-01, 3.1230e-01, 9.1979e-01, 2.7486e-02, 5.3383e-01, 4.6224e-01,
        7.5211e-01, 3.6094e-01, 4.7034e-01, 1.7355e-01, 8.9763e-01, 7.6165e-01, 3.7557e-01, 2.4157e-01, 2.9074e-01, 3.2458e-01, 4.3049e-01, 5.7171e-01,
        7.3509e-02, 3.6087e-02, 5.5341e-01, 4.3993e-01, 9.2601e-01, 6.5248e-01, 3.0640e-01, 4.5727e-01, 9.2104e-01, 8.2688e-01, 2.4243e-01, 7.4937e-01,
        8.9448e-01, 7.0981e-01, 8.0783e-01, 4.7065e-01, 5.7154e-01, 7.2319e-01, 4.6777e-01, 5.0465e-01])'''

        self.assertEqual(a_str, expected)

1210
    def test_tensor_str_bf16(self):
1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222
        paddle.disable_static(paddle.CPUPlace())
        a = paddle.to_tensor([[1.5, 1.0], [0, 0]])
        a = paddle.cast(a, dtype=core.VarDesc.VarType.BF16)
        paddle.set_printoptions(precision=4)
        a_str = str(a)

        expected = '''Tensor(shape=[2, 2], dtype=bfloat16, place=Place(cpu), stop_gradient=True,
       [[1.5000, 1.    ],
        [0.    , 0.    ]])'''

        self.assertEqual(a_str, expected)

1223
    def test_print_tensor_dtype(self):
L
Leo Chen 已提交
1224 1225 1226 1227 1228 1229 1230
        paddle.disable_static(paddle.CPUPlace())
        a = paddle.rand([1])
        a_str = str(a.dtype)

        expected = 'paddle.float32'

        self.assertEqual(a_str, expected)
1231

L
Leo Chen 已提交
1232

1233
class TestVarBaseSetitem(unittest.TestCase):
1234
    def func_setUp(self):
1235 1236 1237
        self.set_dtype()
        self.tensor_x = paddle.to_tensor(np.ones((4, 2, 3)).astype(self.dtype))
        self.np_value = np.random.random((2, 3)).astype(self.dtype)
1238 1239
        self.tensor_value = paddle.to_tensor(self.np_value)

1240 1241 1242
    def set_dtype(self):
        self.dtype = "int32"

1243
    def _test(self, value):
1244
        id_origin = id(self.tensor_x)
1245
        self.tensor_x[0] = value
1246
        if isinstance(value, (int, float)):
1247
            result = np.zeros((2, 3)).astype(self.dtype) + value
1248 1249 1250 1251

        else:
            result = self.np_value

1252
        np.testing.assert_array_equal(self.tensor_x[0].numpy(), result)
1253 1254 1255
        self.assertEqual(id_origin, id(self.tensor_x))

        self.tensor_x[1:2] = value
1256
        np.testing.assert_array_equal(self.tensor_x[1].numpy(), result)
1257 1258 1259
        self.assertEqual(id_origin, id(self.tensor_x))

        self.tensor_x[...] = value
1260
        np.testing.assert_array_equal(self.tensor_x[3].numpy(), result)
1261 1262
        self.assertEqual(id_origin, id(self.tensor_x))

W
wanghuancoder 已提交
1263
    def func_test_value_tensor(self):
1264 1265
        self._test(self.tensor_value)

W
wanghuancoder 已提交
1266
    def test_value_tensor(self):
1267
        self.func_setUp()
W
wanghuancoder 已提交
1268 1269 1270
        self.func_test_value_tensor()

    def func_test_value_numpy(self):
1271 1272
        self._test(self.np_value)

W
wanghuancoder 已提交
1273
    def test_value_numpy(self):
1274
        self.func_setUp()
W
wanghuancoder 已提交
1275 1276 1277
        self.func_test_value_numpy()

    def func_test_value_int(self):
1278 1279
        self._test(10)

W
wanghuancoder 已提交
1280
    def test_value_int(self):
1281
        self.func_setUp()
W
wanghuancoder 已提交
1282 1283
        self.func_test_value_int()

1284 1285 1286 1287 1288 1289 1290 1291 1292 1293

class TestVarBaseSetitemInt64(TestVarBaseSetitem):
    def set_dtype(self):
        self.dtype = "int64"


class TestVarBaseSetitemFp32(TestVarBaseSetitem):
    def set_dtype(self):
        self.dtype = "float32"

1294
    def func_test_value_float(self):
1295 1296 1297
        paddle.disable_static()
        self._test(3.3)

1298 1299 1300 1301
    def test_value_float(self):
        self.func_setUp()
        self.func_test_value_float()

1302

1303 1304 1305 1306 1307
class TestVarBaseSetitemFp64(TestVarBaseSetitem):
    def set_dtype(self):
        self.dtype = "float64"


1308
class TestVarBaseSetitemBoolIndex(unittest.TestCase):
1309
    def func_setUp(self):
1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330
        paddle.disable_static()
        self.set_dtype()
        self.set_input()

    def set_input(self):
        self.tensor_x = paddle.to_tensor(np.ones((4, 2, 3)).astype(self.dtype))
        self.np_value = np.random.random((2, 3)).astype(self.dtype)
        self.tensor_value = paddle.to_tensor(self.np_value)

    def set_dtype(self):
        self.dtype = "int32"

    def _test(self, value):
        paddle.disable_static()
        self.assertEqual(self.tensor_x.inplace_version, 0)

        id_origin = id(self.tensor_x)
        index_1 = paddle.to_tensor(np.array([True, False, False, False]))
        self.tensor_x[index_1] = value
        self.assertEqual(self.tensor_x.inplace_version, 1)

1331
        if isinstance(value, (int, float)):
1332 1333 1334 1335 1336
            result = np.zeros((2, 3)).astype(self.dtype) + value

        else:
            result = self.np_value

1337
        np.testing.assert_array_equal(self.tensor_x[0].numpy(), result)
1338 1339 1340 1341 1342
        self.assertEqual(id_origin, id(self.tensor_x))

        index_2 = paddle.to_tensor(np.array([False, True, False, False]))
        self.tensor_x[index_2] = value
        self.assertEqual(self.tensor_x.inplace_version, 2)
1343
        np.testing.assert_array_equal(self.tensor_x[1].numpy(), result)
1344 1345 1346 1347 1348
        self.assertEqual(id_origin, id(self.tensor_x))

        index_3 = paddle.to_tensor(np.array([True, True, True, True]))
        self.tensor_x[index_3] = value
        self.assertEqual(self.tensor_x.inplace_version, 3)
1349
        np.testing.assert_array_equal(self.tensor_x[3].numpy(), result)
1350 1351
        self.assertEqual(id_origin, id(self.tensor_x))

1352
    def func_test_value_tensor(self):
1353 1354 1355
        paddle.disable_static()
        self._test(self.tensor_value)

1356 1357 1358 1359 1360
    def test_value_tensor(self):
        self.func_setUp()
        self.func_test_value_tensor()

    def func_test_value_numpy(self):
1361 1362 1363
        paddle.disable_static()
        self._test(self.np_value)

1364 1365 1366 1367 1368
    def test_value_numpy(self):
        self.func_setUp()
        self.func_test_value_numpy()

    def func_test_value_int(self):
1369 1370 1371
        paddle.disable_static()
        self._test(10)

1372 1373 1374 1375
    def test_value_int(self):
        self.func_setUp()
        self.func_test_value_int()

1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391

class TestVarBaseSetitemBoolScalarIndex(unittest.TestCase):
    def set_input(self):
        self.tensor_x = paddle.to_tensor(np.ones((1, 2, 3)).astype(self.dtype))
        self.np_value = np.random.random((2, 3)).astype(self.dtype)
        self.tensor_value = paddle.to_tensor(self.np_value)

    def _test(self, value):
        paddle.disable_static()
        self.assertEqual(self.tensor_x.inplace_version, 0)

        id_origin = id(self.tensor_x)
        index = paddle.to_tensor(np.array([True]))
        self.tensor_x[index] = value
        self.assertEqual(self.tensor_x.inplace_version, 1)

1392
        if isinstance(value, (int, float)):
1393 1394 1395 1396 1397
            result = np.zeros((2, 3)).astype(self.dtype) + value

        else:
            result = self.np_value

1398
        np.testing.assert_array_equal(self.tensor_x[0].numpy(), result)
1399 1400 1401
        self.assertEqual(id_origin, id(self.tensor_x))


1402
class TestVarBaseInplaceVersion(unittest.TestCase):
1403
    def test_setitem(self):
1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414
        paddle.disable_static()

        var = paddle.ones(shape=[4, 2, 3], dtype="float32")
        self.assertEqual(var.inplace_version, 0)

        var[1] = 1
        self.assertEqual(var.inplace_version, 1)

        var[1:2] = 1
        self.assertEqual(var.inplace_version, 2)

1415
    def test_bump_inplace_version(self):
1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426
        paddle.disable_static()
        var = paddle.ones(shape=[4, 2, 3], dtype="float32")
        self.assertEqual(var.inplace_version, 0)

        var._bump_inplace_version()
        self.assertEqual(var.inplace_version, 1)

        var._bump_inplace_version()
        self.assertEqual(var.inplace_version, 2)


1427
class TestVarBaseSlice(unittest.TestCase):
1428
    def test_slice(self):
1429 1430 1431 1432 1433 1434 1435 1436 1437
        paddle.disable_static()
        np_x = np.random.random((3, 8, 8))
        x = paddle.to_tensor(np_x, dtype="float64")
        actual_x = x._slice(0, 1)
        actual_x = paddle.to_tensor(actual_x)
        self.assertEqual(actual_x.numpy().all(), np_x[0:1].all())


class TestVarBaseClear(unittest.TestCase):
1438
    def test_clear(self):
1439 1440 1441 1442 1443 1444 1445 1446
        paddle.disable_static()
        np_x = np.random.random((3, 8, 8))
        x = paddle.to_tensor(np_x, dtype="float64")
        x._clear()
        self.assertEqual(str(x), "Tensor(Not initialized)")


class TestVarBaseOffset(unittest.TestCase):
1447
    def test_offset(self):
1448 1449 1450 1451 1452 1453 1454 1455 1456
        paddle.disable_static()
        np_x = np.random.random((3, 8, 8))
        x = paddle.to_tensor(np_x, dtype="float64")
        expected_offset = 0
        actual_x = x._slice(expected_offset, 1)
        actual_x = paddle.to_tensor(actual_x)
        self.assertEqual(actual_x._offset(), expected_offset)


1457
class TestVarBaseShareBufferTo(unittest.TestCase):
1458
    def test_share_buffer_To(self):
1459
        paddle.disable_static()
1460 1461 1462
        np_src = np.random.random((3, 8, 8))
        src = paddle.to_tensor(np_src, dtype="float64")
        # empty_var
姜永久 已提交
1463
        dst = core.eager.Tensor()
1464 1465
        src._share_buffer_to(dst)
        self.assertEqual(src._is_shared_buffer_with(dst), True)
1466 1467 1468


class TestVarBaseTo(unittest.TestCase):
1469
    def func_setUp(self):
1470 1471 1472 1473
        paddle.disable_static()
        self.np_x = np.random.random((3, 8, 8))
        self.x = paddle.to_tensor(self.np_x, dtype="float32")

1474
    def func_test_to_api(self):
1475 1476
        x_double = self.x._to(dtype='double')
        self.assertEqual(x_double.dtype, paddle.fluid.core.VarDesc.VarType.FP64)
1477
        np.testing.assert_allclose(self.np_x, x_double, rtol=1e-05)
1478 1479 1480

        x_ = self.x._to()
        self.assertEqual(self.x.dtype, paddle.fluid.core.VarDesc.VarType.FP64)
1481
        np.testing.assert_allclose(self.np_x, x_, rtol=1e-05)
1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494

        if paddle.fluid.is_compiled_with_cuda():
            x_gpu = self.x._to(device=paddle.CUDAPlace(0))
            self.assertTrue(x_gpu.place.is_gpu_place())
            self.assertEqual(x_gpu.place.gpu_device_id(), 0)

            x_gpu0 = self.x._to(device='gpu:0')
            self.assertTrue(x_gpu0.place.is_gpu_place())
            self.assertEqual(x_gpu0.place.gpu_device_id(), 0)

            x_gpu1 = self.x._to(device='gpu:0', dtype="float64")
            self.assertTrue(x_gpu1.place.is_gpu_place())
            self.assertEqual(x_gpu1.place.gpu_device_id(), 0)
1495 1496 1497
            self.assertEqual(
                x_gpu1.dtype, paddle.fluid.core.VarDesc.VarType.FP64
            )
1498 1499 1500 1501

            x_gpu2 = self.x._to(device='gpu:0', dtype="float16")
            self.assertTrue(x_gpu2.place.is_gpu_place())
            self.assertEqual(x_gpu2.place.gpu_device_id(), 0)
1502 1503 1504
            self.assertEqual(
                x_gpu2.dtype, paddle.fluid.core.VarDesc.VarType.FP16
            )
1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522

        x_cpu = self.x._to(device=paddle.CPUPlace())
        self.assertTrue(x_cpu.place.is_cpu_place())

        x_cpu0 = self.x._to(device='cpu')
        self.assertTrue(x_cpu0.place.is_cpu_place())

        x_cpu1 = self.x._to(device=paddle.CPUPlace(), dtype="float64")
        self.assertTrue(x_cpu1.place.is_cpu_place())
        self.assertEqual(x_cpu1.dtype, paddle.fluid.core.VarDesc.VarType.FP64)

        x_cpu2 = self.x._to(device='cpu', dtype="float16")
        self.assertTrue(x_cpu2.place.is_cpu_place())
        self.assertEqual(x_cpu2.dtype, paddle.fluid.core.VarDesc.VarType.FP16)

        self.assertRaises(ValueError, self.x._to, device=1)
        self.assertRaises(AssertionError, self.x._to, blocking=1)

1523 1524 1525 1526
    def test_to_api(self):
        self.func_setUp()
        self.func_test_to_api()

1527 1528

class TestVarBaseInitVarBaseFromTensorWithDevice(unittest.TestCase):
1529
    def test_varbase_init(self):
1530 1531 1532 1533 1534 1535 1536
        paddle.disable_static()
        t = fluid.Tensor()
        np_x = np.random.random((3, 8, 8))
        t.set(np_x, fluid.CPUPlace())

        if paddle.fluid.is_compiled_with_cuda():
            device = paddle.CUDAPlace(0)
姜永久 已提交
1537
            tmp = fluid.core.eager.Tensor(t, device)
1538 1539 1540 1541
            self.assertTrue(tmp.place.is_gpu_place())
            self.assertEqual(tmp.numpy().all(), np_x.all())

        device = paddle.CPUPlace()
姜永久 已提交
1542
        tmp = fluid.core.eager.Tensor(t, device)
1543 1544 1545 1546
        self.assertEqual(tmp.numpy().all(), np_x.all())


class TestVarBaseNumel(unittest.TestCase):
1547
    def test_numel_normal(self):
1548 1549 1550 1551 1552 1553 1554
        paddle.disable_static()
        np_x = np.random.random((3, 8, 8))
        x = paddle.to_tensor(np_x, dtype="float64")
        x_actual_numel = x._numel()
        x_expected_numel = np.product((3, 8, 8))
        self.assertEqual(x_actual_numel, x_expected_numel)

1555
    def test_numel_without_holder(self):
1556
        paddle.disable_static()
姜永久 已提交
1557
        x_without_holder = core.eager.Tensor()
1558 1559 1560
        x_actual_numel = x_without_holder._numel()
        self.assertEqual(x_actual_numel, 0)

1561 1562

class TestVarBaseCopyGradientFrom(unittest.TestCase):
1563
    def test_copy_gradient_from(self):
1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574
        paddle.disable_static()
        np_x = np.random.random((2, 2))
        np_y = np.random.random((2, 2))
        x = paddle.to_tensor(np_x, dtype="float64", stop_gradient=False)
        y = paddle.to_tensor(np_y, dtype="float64")
        out = x + x
        out.backward()
        x._copy_gradient_from(y)
        self.assertEqual(x.grad.numpy().all(), np_y.all())


1575 1576
class TestEagerTensorGradNameValue(unittest.TestCase):
    def test_eager_tensor_grad_name_value(self):
1577 1578 1579 1580 1581 1582 1583 1584
        a_np = np.array([2, 3]).astype('float32')
        a = paddle.to_tensor(a_np)
        a.stop_gradient = False
        b = a**2
        self.assertIsNone(a._grad_value())
        b.backward()
        # Note, for new dygraph, there are no generated grad name, so we skip the name check.
        self.assertIsNotNone(a._grad_value())
1585 1586


L
Leo Chen 已提交
1587 1588
if __name__ == '__main__':
    unittest.main()