test_var_base.py 54.1 KB
Newer Older
L
Leo Chen 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import unittest
18 19
import numpy as np
import six
20
import copy
21

22
import paddle
L
Leo Chen 已提交
23 24 25 26 27 28 29 30 31 32
import paddle.fluid as fluid
import paddle.fluid.core as core


class TestVarBase(unittest.TestCase):
    def setUp(self):
        self.shape = [512, 1234]
        self.dtype = np.float32
        self.array = np.random.uniform(0.1, 1, self.shape).astype(self.dtype)

33 34 35
    def test_to_tensor(self):
        def _test_place(place):
            with fluid.dygraph.guard():
36
                paddle.set_default_dtype('float32')
37
                # set_default_dtype should not take effect on int
38 39 40 41
                x = paddle.to_tensor(1, place=place, stop_gradient=False)
                self.assertTrue(np.array_equal(x.numpy(), [1]))
                self.assertNotEqual(x.dtype, core.VarDesc.VarType.FP32)

42 43 44
                y = paddle.to_tensor(2, place=x.place)
                self.assertEqual(str(x.place), str(y.place))

45 46 47 48 49 50 51 52 53 54
                # set_default_dtype should not take effect on numpy
                x = paddle.to_tensor(
                    np.array([1.2]).astype('float16'),
                    place=place,
                    stop_gradient=False)
                self.assertTrue(
                    np.array_equal(x.numpy(), np.array([1.2], 'float16')))
                self.assertEqual(x.dtype, core.VarDesc.VarType.FP16)

                # set_default_dtype take effect on float
55 56 57 58 59
                x = paddle.to_tensor(1.2, place=place, stop_gradient=False)
                self.assertTrue(
                    np.array_equal(x.numpy(), np.array([1.2]).astype(
                        'float32')))
                self.assertEqual(x.dtype, core.VarDesc.VarType.FP32)
Z
Zhou Wei 已提交
60 61 62 63 64 65 66 67
                clone_x = x.clone()
                self.assertTrue(
                    np.array_equal(clone_x.numpy(),
                                   np.array([1.2]).astype('float32')))
                self.assertEqual(clone_x.dtype, core.VarDesc.VarType.FP32)
                y = clone_x**2
                y.backward()
                self.assertTrue(
68 69
                    np.array_equal(x.grad.numpy(),
                                   np.array([2.4]).astype('float32')))
70 71 72 73 74
                y = x.cpu()
                self.assertEqual(y.place.__repr__(), "CPUPlace")
                if core.is_compiled_with_cuda():
                    y = x.pin_memory()
                    self.assertEqual(y.place.__repr__(), "CUDAPinnedPlace")
75 76 77 78 79
                    y = x.cuda()
                    y = x.cuda(None)
                    self.assertEqual(y.place.__repr__(), "CUDAPlace(0)")
                    y = x.cuda(device_id=0)
                    self.assertEqual(y.place.__repr__(), "CUDAPlace(0)")
80 81 82 83
                    y = x.cuda(blocking=False)
                    self.assertEqual(y.place.__repr__(), "CUDAPlace(0)")
                    y = x.cuda(blocking=True)
                    self.assertEqual(y.place.__repr__(), "CUDAPlace(0)")
84 85
                    with self.assertRaises(ValueError):
                        y = x.cuda("test")
86

87 88 89 90 91
                # support 'dtype' is core.VarType
                x = paddle.rand((2, 2))
                y = paddle.to_tensor([2, 2], dtype=x.dtype)
                self.assertEqual(y.dtype, core.VarDesc.VarType.FP32)

92
                # set_default_dtype take effect on complex
93 94
                x = paddle.to_tensor(1 + 2j, place=place, stop_gradient=False)
                self.assertTrue(np.array_equal(x.numpy(), [1 + 2j]))
C
chentianyu03 已提交
95
                self.assertEqual(x.dtype, core.VarDesc.VarType.COMPLEX64)
96 97 98 99 100 101 102 103

                paddle.set_default_dtype('float64')
                x = paddle.to_tensor(1.2, place=place, stop_gradient=False)
                self.assertTrue(np.array_equal(x.numpy(), [1.2]))
                self.assertEqual(x.dtype, core.VarDesc.VarType.FP64)

                x = paddle.to_tensor(1 + 2j, place=place, stop_gradient=False)
                self.assertTrue(np.array_equal(x.numpy(), [1 + 2j]))
C
chentianyu03 已提交
104
                self.assertEqual(x.dtype, core.VarDesc.VarType.COMPLEX128)
105

106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
                x = paddle.to_tensor(
                    1, dtype='float32', place=place, stop_gradient=False)
                self.assertTrue(np.array_equal(x.numpy(), [1.]))
                self.assertEqual(x.dtype, core.VarDesc.VarType.FP32)
                self.assertEqual(x.shape, [1])
                self.assertEqual(x.stop_gradient, False)
                self.assertEqual(x.type, core.VarDesc.VarType.LOD_TENSOR)

                x = paddle.to_tensor(
                    (1, 2), dtype='float32', place=place, stop_gradient=False)
                x = paddle.to_tensor(
                    [1, 2], dtype='float32', place=place, stop_gradient=False)
                self.assertTrue(np.array_equal(x.numpy(), [1., 2.]))
                self.assertEqual(x.dtype, core.VarDesc.VarType.FP32)
                self.assertEqual(x.grad, None)
                self.assertEqual(x.shape, [2])
                self.assertEqual(x.stop_gradient, False)
                self.assertEqual(x.type, core.VarDesc.VarType.LOD_TENSOR)

                x = paddle.to_tensor(
                    self.array,
                    dtype='float32',
                    place=place,
                    stop_gradient=False)
                self.assertTrue(np.array_equal(x.numpy(), self.array))
                self.assertEqual(x.dtype, core.VarDesc.VarType.FP32)
                self.assertEqual(x.shape, self.shape)
                self.assertEqual(x.stop_gradient, False)
                self.assertEqual(x.type, core.VarDesc.VarType.LOD_TENSOR)

                y = paddle.to_tensor(x)
                y = paddle.to_tensor(y, dtype='float64', place=place)
                self.assertTrue(np.array_equal(y.numpy(), self.array))
                self.assertEqual(y.dtype, core.VarDesc.VarType.FP64)
                self.assertEqual(y.shape, self.shape)
                self.assertEqual(y.stop_gradient, True)
                self.assertEqual(y.type, core.VarDesc.VarType.LOD_TENSOR)
                z = x + y
                self.assertTrue(np.array_equal(z.numpy(), 2 * self.array))

                x = paddle.to_tensor(
                    [1 + 2j, 1 - 2j], dtype='complex64', place=place)
                y = paddle.to_tensor(x)
                self.assertTrue(np.array_equal(x.numpy(), [1 + 2j, 1 - 2j]))
C
chentianyu03 已提交
150
                self.assertEqual(y.dtype, core.VarDesc.VarType.COMPLEX64)
151 152
                self.assertEqual(y.shape, [2])

153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
                paddle.set_default_dtype('float32')
                x = paddle.randn([3, 4])
                x_array = np.array(x)
                self.assertEqual(x_array.shape, x.numpy().shape)
                self.assertEqual(x_array.dtype, x.numpy().dtype)
                self.assertTrue(np.array_equal(x_array, x.numpy()))

                x = paddle.to_tensor(1.0)
                self.assertEqual(x.item(), 1.0)
                self.assertTrue(isinstance(x.item(), float))

                x = paddle.randn([3, 2, 2])
                self.assertTrue(isinstance(x.item(5), float))
                self.assertTrue(isinstance(x.item(1, 0, 1), float))
                self.assertEqual(x.item(5), x.item(1, 0, 1))
                self.assertTrue(
                    np.array_equal(x.item(1, 0, 1), x.numpy().item(1, 0, 1)))

                x = paddle.to_tensor([[1.111111, 2.222222, 3.333333]])
                self.assertEqual(x.item(0, 2), x.item(2))
                self.assertAlmostEqual(x.item(2), 3.333333)
                self.assertTrue(isinstance(x.item(0, 2), float))

                x = paddle.to_tensor(1.0, dtype='float64')
                self.assertEqual(x.item(), 1.0)
                self.assertTrue(isinstance(x.item(), float))

                x = paddle.to_tensor(1.0, dtype='float16')
                self.assertEqual(x.item(), 1.0)
                self.assertTrue(isinstance(x.item(), float))

                x = paddle.to_tensor(1, dtype='uint8')
                self.assertEqual(x.item(), 1)
                self.assertTrue(isinstance(x.item(), int))

                x = paddle.to_tensor(1, dtype='int8')
                self.assertEqual(x.item(), 1)
                self.assertTrue(isinstance(x.item(), int))

                x = paddle.to_tensor(1, dtype='int16')
                self.assertEqual(x.item(), 1)
                self.assertTrue(isinstance(x.item(), int))

                x = paddle.to_tensor(1, dtype='int32')
                self.assertEqual(x.item(), 1)
                self.assertTrue(isinstance(x.item(), int))

                x = paddle.to_tensor(1, dtype='int64')
                self.assertEqual(x.item(), 1)
T
tianshuo78520a 已提交
202
                self.assertTrue(isinstance(x.item(), int))
203 204 205 206 207 208 209 210 211

                x = paddle.to_tensor(True)
                self.assertEqual(x.item(), True)
                self.assertTrue(isinstance(x.item(), bool))

                x = paddle.to_tensor(1 + 1j)
                self.assertEqual(x.item(), 1 + 1j)
                self.assertTrue(isinstance(x.item(), complex))

212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
                numpy_array = np.random.randn(3, 4)
                # covert core.LoDTensor to paddle.Tensor
                lod_tensor = paddle.fluid.core.LoDTensor()
                place = paddle.fluid.framework._current_expected_place()
                lod_tensor.set(numpy_array, place)
                x = paddle.to_tensor(lod_tensor)
                self.assertTrue(np.array_equal(x.numpy(), numpy_array))
                self.assertEqual(x.type, core.VarDesc.VarType.LOD_TENSOR)
                self.assertEqual(str(x.place), str(place))

                # covert core.Tensor to paddle.Tensor
                x = paddle.to_tensor(numpy_array)
                dlpack = x.value().get_tensor()._to_dlpack()
                tensor_from_dlpack = paddle.fluid.core.from_dlpack(dlpack)
                x = paddle.to_tensor(tensor_from_dlpack)
                self.assertTrue(np.array_equal(x.numpy(), numpy_array))
                self.assertEqual(x.type, core.VarDesc.VarType.LOD_TENSOR)

230 231 232 233 234 235 236 237
                with self.assertRaises(ValueError):
                    paddle.randn([3, 2, 2]).item()
                with self.assertRaises(ValueError):
                    paddle.randn([3, 2, 2]).item(18)
                with self.assertRaises(ValueError):
                    paddle.randn([3, 2, 2]).item(1, 2)
                with self.assertRaises(ValueError):
                    paddle.randn([3, 2, 2]).item(2, 1, 2)
238 239 240 241 242 243 244 245 246 247 248 249
                with self.assertRaises(TypeError):
                    paddle.to_tensor('test')
                with self.assertRaises(TypeError):
                    paddle.to_tensor(1, dtype='test')
                with self.assertRaises(ValueError):
                    paddle.to_tensor([[1], [2, 3]])
                with self.assertRaises(ValueError):
                    paddle.to_tensor([[1], [2, 3]], place='test')
                with self.assertRaises(ValueError):
                    paddle.to_tensor([[1], [2, 3]], place=1)

        _test_place(core.CPUPlace())
250
        _test_place("cpu")
251
        if core.is_compiled_with_cuda():
252
            _test_place(core.CUDAPinnedPlace())
253
            _test_place("gpu_pinned")
254
            _test_place(core.CUDAPlace(0))
255
            _test_place("gpu:0")
256 257 258
        if core.is_compiled_with_npu():
            _test_place(core.NPUPlace(0))
            _test_place("npu:0")
259

260 261 262 263 264 265 266 267
    def test_to_tensor_not_change_input_stop_gradient(self):
        with paddle.fluid.dygraph.guard(core.CPUPlace()):
            a = paddle.zeros([1024])
            a.stop_gradient = False
            b = paddle.to_tensor(a)
            self.assertEqual(a.stop_gradient, False)
            self.assertEqual(b.stop_gradient, True)

268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
    def test_to_tensor_change_place(self):
        if core.is_compiled_with_cuda():
            a_np = np.random.rand(1024, 1024)
            with paddle.fluid.dygraph.guard(core.CPUPlace()):
                a = paddle.to_tensor(a_np, place=paddle.CUDAPinnedPlace())
                a = paddle.to_tensor(a)
                self.assertEqual(a.place.__repr__(), "CPUPlace")

            with paddle.fluid.dygraph.guard(core.CUDAPlace(0)):
                a = paddle.to_tensor(a_np, place=paddle.CUDAPinnedPlace())
                a = paddle.to_tensor(a)
                self.assertEqual(a.place.__repr__(), "CUDAPlace(0)")

            with paddle.fluid.dygraph.guard(core.CUDAPlace(0)):
                a = paddle.to_tensor(a_np, place=paddle.CPUPlace())
                a = paddle.to_tensor(a, place=paddle.CUDAPinnedPlace())
                self.assertEqual(a.place.__repr__(), "CUDAPinnedPlace")

286 287 288 289 290 291 292 293 294 295 296 297
    def test_to_tensor_with_lodtensor(self):
        if core.is_compiled_with_cuda():
            a_np = np.random.rand(1024, 1024)
            with paddle.fluid.dygraph.guard(core.CPUPlace()):
                lod_tensor = core.LoDTensor()
                lod_tensor.set(a_np, core.CPUPlace())
                a = paddle.to_tensor(lod_tensor)
                self.assertTrue(np.array_equal(a_np, a.numpy()))

            with paddle.fluid.dygraph.guard(core.CUDAPlace(0)):
                lod_tensor = core.LoDTensor()
                lod_tensor.set(a_np, core.CUDAPlace(0))
298
                a = paddle.to_tensor(lod_tensor, place=core.CPUPlace())
299
                self.assertTrue(np.array_equal(a_np, a.numpy()))
300
                self.assertTrue(a.place.__repr__(), "CPUPlace")
301

L
Leo Chen 已提交
302 303 304 305 306 307 308 309 310 311 312
    def test_to_variable(self):
        with fluid.dygraph.guard():
            var = fluid.dygraph.to_variable(self.array, name="abc")
            self.assertTrue(np.array_equal(var.numpy(), self.array))
            self.assertEqual(var.name, 'abc')
            # default value
            self.assertEqual(var.persistable, False)
            self.assertEqual(var.stop_gradient, True)
            self.assertEqual(var.shape, self.shape)
            self.assertEqual(var.dtype, core.VarDesc.VarType.FP32)
            self.assertEqual(var.type, core.VarDesc.VarType.LOD_TENSOR)
313 314 315 316 317 318 319
            # The type of input must be 'ndarray' or 'Variable', it will raise TypeError
            with self.assertRaises(TypeError):
                var = fluid.dygraph.to_variable("test", name="abc")
            # test to_variable of LayerObjectHelper(LayerHelperBase)
            with self.assertRaises(TypeError):
                linear = fluid.dygraph.Linear(32, 64)
                var = linear._helper.to_variable("test", name="abc")
L
Leo Chen 已提交
320

321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338
    def test_list_to_variable(self):
        with fluid.dygraph.guard():
            array = [[[1, 2], [1, 2], [1.0, 2]], [[1, 2], [1, 2], [1, 2]]]
            var = fluid.dygraph.to_variable(array, dtype='int32')
            self.assertTrue(np.array_equal(var.numpy(), array))
            self.assertEqual(var.shape, [2, 3, 2])
            self.assertEqual(var.dtype, core.VarDesc.VarType.INT32)
            self.assertEqual(var.type, core.VarDesc.VarType.LOD_TENSOR)

    def test_tuple_to_variable(self):
        with fluid.dygraph.guard():
            array = (((1, 2), (1, 2), (1, 2)), ((1, 2), (1, 2), (1, 2)))
            var = fluid.dygraph.to_variable(array, dtype='float32')
            self.assertTrue(np.array_equal(var.numpy(), array))
            self.assertEqual(var.shape, [2, 3, 2])
            self.assertEqual(var.dtype, core.VarDesc.VarType.FP32)
            self.assertEqual(var.type, core.VarDesc.VarType.LOD_TENSOR)

339 340 341
    def test_tensor_to_variable(self):
        with fluid.dygraph.guard():
            t = fluid.Tensor()
L
Leo Chen 已提交
342
            t.set(np.random.random((1024, 1024)), fluid.CPUPlace())
343 344 345
            var = fluid.dygraph.to_variable(t)
            self.assertTrue(np.array_equal(t, var.numpy()))

346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371
    def test_leaf_tensor(self):
        with fluid.dygraph.guard():
            x = paddle.to_tensor(np.random.uniform(-1, 1, size=[10, 10]))
            self.assertTrue(x.is_leaf)
            y = x + 1
            self.assertTrue(y.is_leaf)

            x = paddle.to_tensor(
                np.random.uniform(
                    -1, 1, size=[10, 10]), stop_gradient=False)
            self.assertTrue(x.is_leaf)
            y = x + 1
            self.assertFalse(y.is_leaf)

            linear = paddle.nn.Linear(10, 10)
            input = paddle.to_tensor(
                np.random.uniform(
                    -1, 1, size=[10, 10]).astype('float32'),
                stop_gradient=False)
            self.assertTrue(input.is_leaf)

            out = linear(input)
            self.assertTrue(linear.weight.is_leaf)
            self.assertTrue(linear.bias.is_leaf)
            self.assertFalse(out.is_leaf)

Z
Zhou Wei 已提交
372 373 374 375 376 377
    def test_detach(self):
        with fluid.dygraph.guard():
            x = paddle.to_tensor(1.0, dtype="float64", stop_gradient=False)
            detach_x = x.detach()
            self.assertTrue(detach_x.stop_gradient, True)

Z
zhulei 已提交
378 379
            cmp_float = np.allclose if core.is_compiled_with_rocm(
            ) else np.array_equal
Z
Zhou Wei 已提交
380
            detach_x[:] = 10.0
Z
zhulei 已提交
381
            self.assertTrue(cmp_float(x.numpy(), [10.0]))
Z
Zhou Wei 已提交
382 383 384

            y = x**2
            y.backward()
Z
zhulei 已提交
385
            self.assertTrue(cmp_float(x.grad.numpy(), [20.0]))
Z
Zhou Wei 已提交
386 387 388 389 390
            self.assertEqual(detach_x.grad, None)

            detach_x.stop_gradient = False  # Set stop_gradient to be False, supported auto-grad
            z = 3 * detach_x**2
            z.backward()
Z
zhulei 已提交
391 392
            self.assertTrue(cmp_float(x.grad.numpy(), [20.0]))
            self.assertTrue(cmp_float(detach_x.grad.numpy(), [60.0]))
393

394 395 396 397 398
            with self.assertRaises(ValueError):
                detach_x[:] = 5.0

            detach_x.stop_gradient = True

Z
Zhou Wei 已提交
399
            # Due to sharing of data with origin Tensor, There are some unsafe operations:
400 401 402 403
            with self.assertRaises(RuntimeError):
                y = 2**x
                detach_x[:] = 5.0
                y.backward()
Z
Zhou Wei 已提交
404

L
Leo Chen 已提交
405 406 407 408
    def test_write_property(self):
        with fluid.dygraph.guard():
            var = fluid.dygraph.to_variable(self.array)

409
            self.assertEqual(var.name, 'generated_tensor_0')
L
Leo Chen 已提交
410 411 412 413 414 415 416 417 418 419 420
            var.name = 'test'
            self.assertEqual(var.name, 'test')

            self.assertEqual(var.persistable, False)
            var.persistable = True
            self.assertEqual(var.persistable, True)

            self.assertEqual(var.stop_gradient, True)
            var.stop_gradient = False
            self.assertEqual(var.stop_gradient, False)

421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447
    def test_deep_copy(self):
        with fluid.dygraph.guard():
            empty_var = core.VarBase()
            empty_var_copy = copy.deepcopy(empty_var)
            self.assertEqual(empty_var.stop_gradient,
                             empty_var_copy.stop_gradient)
            self.assertEqual(empty_var.persistable, empty_var_copy.persistable)
            self.assertEqual(empty_var.type, empty_var_copy.type)
            self.assertEqual(empty_var.dtype, empty_var_copy.dtype)

            x = paddle.to_tensor([2.], stop_gradient=False)
            y = paddle.to_tensor([3.], stop_gradient=False)
            z = x * y
            memo = {}
            x_copy = copy.deepcopy(x, memo)
            y_copy = copy.deepcopy(y, memo)

            self.assertEqual(x_copy.stop_gradient, y_copy.stop_gradient)
            self.assertEqual(x_copy.persistable, y_copy.persistable)
            self.assertEqual(x_copy.type, y_copy.type)
            self.assertEqual(x_copy.dtype, y_copy.dtype)
            self.assertTrue(np.array_equal(x.numpy(), x_copy.numpy()))
            self.assertTrue(np.array_equal(y.numpy(), y_copy.numpy()))

            self.assertNotEqual(id(x), id(x_copy))
            self.assertTrue(np.array_equal(x.numpy(), [2.]))

448 449 450
            with self.assertRaises(ValueError):
                x_copy[:] = 5.

451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483
            with self.assertRaises(RuntimeError):
                copy.deepcopy(z)

            x_copy2 = copy.deepcopy(x, memo)
            y_copy2 = copy.deepcopy(y, memo)
            self.assertEqual(id(x_copy), id(x_copy2))
            self.assertEqual(id(y_copy), id(y_copy2))

            # test copy selected rows
            x = core.VarBase(core.VarDesc.VarType.FP32, [3, 100],
                             "selected_rows",
                             core.VarDesc.VarType.SELECTED_ROWS, True)
            selected_rows = x.value().get_selected_rows()
            selected_rows.get_tensor().set(
                np.random.rand(3, 100), core.CPUPlace())
            selected_rows.set_height(10)
            selected_rows.set_rows([3, 5, 7])
            x_copy = copy.deepcopy(x)

            self.assertEqual(x_copy.stop_gradient, x.stop_gradient)
            self.assertEqual(x_copy.persistable, x.persistable)
            self.assertEqual(x_copy.type, x.type)
            self.assertEqual(x_copy.dtype, x.dtype)

            copy_selected_rows = x_copy.value().get_selected_rows()
            self.assertEqual(copy_selected_rows.height(),
                             selected_rows.height())
            self.assertEqual(copy_selected_rows.rows(), selected_rows.rows())
            self.assertTrue(
                np.array_equal(
                    np.array(copy_selected_rows.get_tensor()),
                    np.array(selected_rows.get_tensor())))

L
Leo Chen 已提交
484 485 486 487 488 489 490 491 492 493 494 495 496 497
    # test some patched methods
    def test_set_value(self):
        with fluid.dygraph.guard():
            var = fluid.dygraph.to_variable(self.array)
            tmp1 = np.random.uniform(0.1, 1, [2, 2, 3]).astype(self.dtype)
            self.assertRaises(AssertionError, var.set_value, tmp1)

            tmp2 = np.random.uniform(0.1, 1, self.shape).astype(self.dtype)
            var.set_value(tmp2)
            self.assertTrue(np.array_equal(var.numpy(), tmp2))

    def test_to_string(self):
        with fluid.dygraph.guard():
            var = fluid.dygraph.to_variable(self.array)
498
            self.assertTrue(isinstance(str(var), str))
L
Leo Chen 已提交
499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523

    def test_backward(self):
        with fluid.dygraph.guard():
            var = fluid.dygraph.to_variable(self.array)
            var.stop_gradient = False
            loss = fluid.layers.relu(var)
            loss.backward()
            grad_var = var._grad_ivar()
            self.assertEqual(grad_var.shape, self.shape)

    def test_gradient(self):
        with fluid.dygraph.guard():
            var = fluid.dygraph.to_variable(self.array)
            var.stop_gradient = False
            loss = fluid.layers.relu(var)
            loss.backward()
            grad_var = var.gradient()
            self.assertEqual(grad_var.shape, self.array.shape)

    def test_block(self):
        with fluid.dygraph.guard():
            var = fluid.dygraph.to_variable(self.array)
            self.assertEqual(var.block,
                             fluid.default_main_program().global_block())

524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569
    def _test_slice(self):
        w = fluid.dygraph.to_variable(
            np.random.random((784, 100, 100)).astype('float64'))

        for i in range(3):
            nw = w[i]
            self.assertEqual((100, 100), tuple(nw.shape))

        nw = w[:]
        self.assertEqual((784, 100, 100), tuple(nw.shape))

        nw = w[:, :]
        self.assertEqual((784, 100, 100), tuple(nw.shape))

        nw = w[:, :, -1]
        self.assertEqual((784, 100), tuple(nw.shape))

        nw = w[1, 1, 1]

        self.assertEqual(len(nw.shape), 1)
        self.assertEqual(nw.shape[0], 1)

        nw = w[:, :, :-1]
        self.assertEqual((784, 100, 99), tuple(nw.shape))

        tensor_array = np.array(
            [[[1, 2, 3], [4, 5, 6], [7, 8, 9]],
             [[10, 11, 12], [13, 14, 15], [16, 17, 18]],
             [[19, 20, 21], [22, 23, 24], [25, 26, 27]]]).astype('float32')
        var = fluid.dygraph.to_variable(tensor_array)
        var1 = var[0, 1, 1]
        var2 = var[1:]
        var3 = var[0:1]
        var4 = var[::-1]
        var5 = var[1, 1:, 1:]
        var_reshape = fluid.layers.reshape(var, [3, -1, 3])
        var6 = var_reshape[:, :, -1]
        var7 = var[:, :, :-1]
        var8 = var[:1, :1, :1]
        var9 = var[:-1, :-1, :-1]
        var10 = var[::-1, :1, :-1]
        var11 = var[:-1, ::-1, -1:]
        var12 = var[1:2, 2:, ::-1]
        var13 = var[2:10, 2:, -2:-1]
        var14 = var[1:-1, 0:2, ::-1]
        var15 = var[::-1, ::-1, ::-1]
570
        var16 = var[-4:4]
571 572 573

        vars = [
            var, var1, var2, var3, var4, var5, var6, var7, var8, var9, var10,
574
            var11, var12, var13, var14, var15, var16
575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601
        ]
        local_out = [var.numpy() for var in vars]

        self.assertTrue(np.array_equal(local_out[1], tensor_array[0, 1, 1:2]))
        self.assertTrue(np.array_equal(local_out[2], tensor_array[1:]))
        self.assertTrue(np.array_equal(local_out[3], tensor_array[0:1]))
        self.assertTrue(np.array_equal(local_out[4], tensor_array[::-1]))
        self.assertTrue(np.array_equal(local_out[5], tensor_array[1, 1:, 1:]))
        self.assertTrue(
            np.array_equal(local_out[6],
                           tensor_array.reshape((3, -1, 3))[:, :, -1]))
        self.assertTrue(np.array_equal(local_out[7], tensor_array[:, :, :-1]))
        self.assertTrue(np.array_equal(local_out[8], tensor_array[:1, :1, :1]))
        self.assertTrue(
            np.array_equal(local_out[9], tensor_array[:-1, :-1, :-1]))
        self.assertTrue(
            np.array_equal(local_out[10], tensor_array[::-1, :1, :-1]))
        self.assertTrue(
            np.array_equal(local_out[11], tensor_array[:-1, ::-1, -1:]))
        self.assertTrue(
            np.array_equal(local_out[12], tensor_array[1:2, 2:, ::-1]))
        self.assertTrue(
            np.array_equal(local_out[13], tensor_array[2:10, 2:, -2:-1]))
        self.assertTrue(
            np.array_equal(local_out[14], tensor_array[1:-1, 0:2, ::-1]))
        self.assertTrue(
            np.array_equal(local_out[15], tensor_array[::-1, ::-1, ::-1]))
602
        self.assertTrue(np.array_equal(local_out[16], tensor_array[-4:4]))
603

604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667
    def _test_slice_for_tensor_attr(self):
        tensor_array = np.array(
            [[[1, 2, 3], [4, 5, 6], [7, 8, 9]],
             [[10, 11, 12], [13, 14, 15], [16, 17, 18]],
             [[19, 20, 21], [22, 23, 24], [25, 26, 27]]]).astype('float32')

        var = paddle.to_tensor(tensor_array)

        one = paddle.ones(shape=[1], dtype="int32")
        two = paddle.full(shape=[1], fill_value=2, dtype="int32")
        negative_one = paddle.full(shape=[1], fill_value=-1, dtype="int32")
        four = paddle.full(shape=[1], fill_value=4, dtype="int32")

        var = fluid.dygraph.to_variable(tensor_array)
        var1 = var[0, one, one]
        var2 = var[one:]
        var3 = var[0:one]
        var4 = var[::negative_one]
        var5 = var[one, one:, one:]
        var_reshape = fluid.layers.reshape(var, [3, negative_one, 3])
        var6 = var_reshape[:, :, negative_one]
        var7 = var[:, :, :negative_one]
        var8 = var[:one, :one, :1]
        var9 = var[:-1, :negative_one, :negative_one]
        var10 = var[::negative_one, :one, :negative_one]
        var11 = var[:negative_one, ::-1, negative_one:]
        var12 = var[one:2, 2:, ::negative_one]
        var13 = var[two:10, 2:, -2:negative_one]
        var14 = var[1:negative_one, 0:2, ::negative_one]
        var15 = var[::negative_one, ::-1, ::negative_one]
        var16 = var[-4:4]

        vars = [
            var, var1, var2, var3, var4, var5, var6, var7, var8, var9, var10,
            var11, var12, var13, var14, var15, var16
        ]
        local_out = [var.numpy() for var in vars]

        self.assertTrue(np.array_equal(local_out[1], tensor_array[0, 1, 1:2]))
        self.assertTrue(np.array_equal(local_out[2], tensor_array[1:]))
        self.assertTrue(np.array_equal(local_out[3], tensor_array[0:1]))
        self.assertTrue(np.array_equal(local_out[4], tensor_array[::-1]))
        self.assertTrue(np.array_equal(local_out[5], tensor_array[1, 1:, 1:]))
        self.assertTrue(
            np.array_equal(local_out[6],
                           tensor_array.reshape((3, -1, 3))[:, :, -1]))
        self.assertTrue(np.array_equal(local_out[7], tensor_array[:, :, :-1]))
        self.assertTrue(np.array_equal(local_out[8], tensor_array[:1, :1, :1]))
        self.assertTrue(
            np.array_equal(local_out[9], tensor_array[:-1, :-1, :-1]))
        self.assertTrue(
            np.array_equal(local_out[10], tensor_array[::-1, :1, :-1]))
        self.assertTrue(
            np.array_equal(local_out[11], tensor_array[:-1, ::-1, -1:]))
        self.assertTrue(
            np.array_equal(local_out[12], tensor_array[1:2, 2:, ::-1]))
        self.assertTrue(
            np.array_equal(local_out[13], tensor_array[2:10, 2:, -2:-1]))
        self.assertTrue(
            np.array_equal(local_out[14], tensor_array[1:-1, 0:2, ::-1]))
        self.assertTrue(
            np.array_equal(local_out[15], tensor_array[::-1, ::-1, ::-1]))
        self.assertTrue(np.array_equal(local_out[16], tensor_array[-4:4]))

668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704
    def _test_for_getitem_ellipsis_index(self):
        shape = (64, 3, 5, 256)
        np_fp32_value = np.random.random(shape).astype('float32')
        np_int_value = np.random.randint(1, 100, shape)

        var_fp32 = paddle.to_tensor(np_fp32_value)
        var_int = paddle.to_tensor(np_int_value)

        def assert_getitem_ellipsis_index(var_tensor, var_np):
            var = [
                var_tensor[..., 0].numpy(),
                var_tensor[..., 1, 0].numpy(),
                var_tensor[0, ..., 1, 0].numpy(),
                var_tensor[1, ..., 1].numpy(),
                var_tensor[2, ...].numpy(),
                var_tensor[2, 0, ...].numpy(),
                var_tensor[2, 0, 1, ...].numpy(),
                var_tensor[...].numpy(),
                var_tensor[:, ..., 100].numpy(),
            ]

            self.assertTrue(np.array_equal(var[0], var_np[..., 0]))
            self.assertTrue(np.array_equal(var[1], var_np[..., 1, 0]))
            self.assertTrue(np.array_equal(var[2], var_np[0, ..., 1, 0]))
            self.assertTrue(np.array_equal(var[3], var_np[1, ..., 1]))
            self.assertTrue(np.array_equal(var[4], var_np[2, ...]))
            self.assertTrue(np.array_equal(var[5], var_np[2, 0, ...]))
            self.assertTrue(np.array_equal(var[6], var_np[2, 0, 1, ...]))
            self.assertTrue(np.array_equal(var[7], var_np[...]))
            self.assertTrue(np.array_equal(var[8], var_np[:, ..., 100]))

        var_fp32 = paddle.to_tensor(np_fp32_value)
        var_int = paddle.to_tensor(np_int_value)

        assert_getitem_ellipsis_index(var_fp32, np_fp32_value)
        assert_getitem_ellipsis_index(var_int, np_int_value)

705 706 707 708 709
        # test 1 dim tensor
        var_one_dim = paddle.to_tensor([1, 2, 3, 4])
        self.assertTrue(
            np.array_equal(var_one_dim[..., 0].numpy(), np.array([1])))

710 711 712 713 714 715 716 717 718 719 720 721 722 723 724
    def _test_none_index(self):
        shape = (8, 64, 5, 256)
        np_value = np.random.random(shape).astype('float32')
        var_tensor = paddle.to_tensor(np_value)

        var = [
            var_tensor[1, 0, None].numpy(),
            var_tensor[None, ..., 1, 0].numpy(),
            var_tensor[:, :, :, None].numpy(),
            var_tensor[1, ..., 1, None].numpy(),
            var_tensor[2, ..., None, None].numpy(),
            var_tensor[None, 2, 0, ...].numpy(),
            var_tensor[None, 2, None, 1].numpy(),
            var_tensor[None].numpy(),
            var_tensor[0, 0, None, 0, 0, None].numpy(),
725
            var_tensor[None, None, 0, ..., None].numpy(),
726 727 728 729 730 731 732 733 734 735 736 737 738
            var_tensor[0, 1:10:2, None, None, ...].numpy(),
        ]

        self.assertTrue(np.array_equal(var[0], np_value[1, 0, None]))
        self.assertTrue(np.array_equal(var[1], np_value[None, ..., 1, 0]))
        self.assertTrue(np.array_equal(var[2], np_value[:, :, :, None]))
        self.assertTrue(np.array_equal(var[3], np_value[1, ..., 1, None]))
        self.assertTrue(np.array_equal(var[4], np_value[2, ..., None, None]))
        self.assertTrue(np.array_equal(var[5], np_value[None, 2, 0, ...]))
        self.assertTrue(np.array_equal(var[6], np_value[None, 2, None, 1]))
        self.assertTrue(np.array_equal(var[7], np_value[None]))
        self.assertTrue(
            np.array_equal(var[8], np_value[0, 0, None, 0, 0, None]))
739 740
        self.assertTrue(
            np.array_equal(var[9], np_value[None, None, 0, ..., None]))
741 742 743 744

        # TODO(zyfncg) there is a bug of dimensions when slice step > 1 and 
        #              indexs has int type 
        # self.assertTrue(
745
        #     np.array_equal(var[10], np_value[0, 1:10:2, None, None, ...]))
746

Z
zyfncg 已提交
747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785
    def _test_bool_index(self):
        shape = (4, 2, 5, 64)
        np_value = np.random.random(shape).astype('float32')
        var_tensor = paddle.to_tensor(np_value)
        index = [[True, True, True, True], [True, False, True, True],
                 [True, False, False, True], [False, 0, 1, True, True]]
        index2d = np.array([[True, True], [False, False], [True, False],
                            [True, True]])
        tensor_index = paddle.to_tensor(index2d)
        var = [
            var_tensor[index[0]].numpy(),
            var_tensor[index[1]].numpy(),
            var_tensor[index[2]].numpy(),
            var_tensor[index[3]].numpy(),
            var_tensor[paddle.to_tensor(index[0])].numpy(),
            var_tensor[tensor_index].numpy(),
        ]
        self.assertTrue(np.array_equal(var[0], np_value[index[0]]))
        self.assertTrue(np.array_equal(var[1], np_value[index[1]]))
        self.assertTrue(np.array_equal(var[2], np_value[index[2]]))
        self.assertTrue(np.array_equal(var[3], np_value[index[3]]))
        self.assertTrue(np.array_equal(var[4], np_value[index[0]]))
        self.assertTrue(np.array_equal(var[5], np_value[index2d]))
        self.assertTrue(
            np.array_equal(var_tensor[var_tensor > 0.67], np_value[np_value >
                                                                   0.67]))
        self.assertTrue(
            np.array_equal(var_tensor[var_tensor < 0.55], np_value[np_value <
                                                                   0.55]))

        with self.assertRaises(ValueError):
            var_tensor[[False, False, False, False]]
        with self.assertRaises(ValueError):
            var_tensor[[True, False]]
        with self.assertRaises(ValueError):
            var_tensor[[True, False, False, False, False]]
        with self.assertRaises(IndexError):
            var_tensor[paddle.to_tensor([[True, False, False, False]])]

H
hong 已提交
786 787 788 789 790 791 792
    def _test_for_var(self):
        np_value = np.random.random((30, 100, 100)).astype('float32')
        w = fluid.dygraph.to_variable(np_value)

        for i, e in enumerate(w):
            self.assertTrue(np.array_equal(e.numpy(), np_value[i]))

793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818
    def _test_numpy_index(self):
        array = np.arange(120).reshape([4, 5, 6])
        t = paddle.to_tensor(array)
        self.assertTrue(np.array_equal(t[np.longlong(0)].numpy(), array[0]))
        self.assertTrue(
            np.array_equal(t[np.longlong(0):np.longlong(4):np.longlong(2)]
                           .numpy(), array[0:4:2]))
        self.assertTrue(np.array_equal(t[np.int64(0)].numpy(), array[0]))
        self.assertTrue(
            np.array_equal(t[np.int32(1):np.int32(4):np.int32(2)].numpy(),
                           array[1:4:2]))
        self.assertTrue(
            np.array_equal(t[np.int16(0):np.int16(4):np.int16(2)].numpy(),
                           array[0:4:2]))

    def _test_list_index(self):
        # case1:
        array = np.arange(120).reshape([6, 5, 4])
        x = paddle.to_tensor(array)
        py_idx = [[0, 2, 0, 1, 3], [0, 0, 1, 2, 0]]
        idx = [paddle.to_tensor(py_idx[0]), paddle.to_tensor(py_idx[1])]
        self.assertTrue(np.array_equal(x[idx].numpy(), array[py_idx]))
        self.assertTrue(np.array_equal(x[py_idx].numpy(), array[py_idx]))
        # case2:
        tensor_x = paddle.to_tensor(
            np.zeros(12).reshape(2, 6).astype(np.float32))
819 820
        tensor_y1 = paddle.zeros([1], dtype='int32') + 2
        tensor_y2 = paddle.zeros([1], dtype='int32') + 5
821 822 823 824 825 826
        tensor_x[:, tensor_y1:tensor_y2] = 42
        res = tensor_x.numpy()
        exp = np.array([[0., 0., 42., 42., 42., 0.],
                        [0., 0., 42., 42., 42., 0.]])
        self.assertTrue(np.array_equal(res, exp))

W
WeiXin 已提交
827 828 829 830 831
        # case3:
        row = np.array([0, 1, 2])
        col = np.array([2, 1, 3])
        self.assertTrue(np.array_equal(array[row, col], x[row, col].numpy()))

L
Leo Chen 已提交
832 833
    def test_slice(self):
        with fluid.dygraph.guard():
834
            self._test_slice()
835
            self._test_slice_for_tensor_attr()
H
hong 已提交
836
            self._test_for_var()
837
            self._test_for_getitem_ellipsis_index()
838
            self._test_none_index()
Z
zyfncg 已提交
839
            self._test_bool_index()
840 841
            self._test_numpy_index()
            self._test_list_index()
842

L
Leo Chen 已提交
843 844
            var = fluid.dygraph.to_variable(self.array)
            self.assertTrue(np.array_equal(var[1, :].numpy(), self.array[1, :]))
845
            self.assertTrue(np.array_equal(var[::-1].numpy(), self.array[::-1]))
L
Leo Chen 已提交
846

H
hong 已提交
847 848 849
            with self.assertRaises(IndexError):
                y = var[self.shape[0]]

850 851 852
            with self.assertRaises(IndexError):
                y = var[0 - self.shape[0] - 1]

W
WeiXin 已提交
853 854 855 856
            with self.assertRaises(IndexError):
                mask = np.array([1, 0, 1, 0], dtype=bool)
                var[paddle.to_tensor([0, 1]), mask]

L
Leo Chen 已提交
857 858 859 860 861 862 863
    def test_var_base_to_np(self):
        with fluid.dygraph.guard():
            var = fluid.dygraph.to_variable(self.array)
            self.assertTrue(
                np.array_equal(var.numpy(),
                               fluid.framework._var_base_to_np(var)))

864 865 866 867 868 869 870 871 872
    def test_var_base_as_np(self):
        with fluid.dygraph.guard():
            var = fluid.dygraph.to_variable(self.array)
            self.assertTrue(np.array_equal(var.numpy(), np.array(var)))
            self.assertTrue(
                np.array_equal(
                    var.numpy(), np.array(
                        var, dtype=np.float32)))

873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891
    def test_if(self):
        with fluid.dygraph.guard():
            var1 = fluid.dygraph.to_variable(np.array([[[0]]]))
            var2 = fluid.dygraph.to_variable(np.array([[[1]]]))

            var1_bool = False
            var2_bool = False

            if var1:
                var1_bool = True

            if var2:
                var2_bool = True

            assert var1_bool == False, "if var1 should be false"
            assert var2_bool == True, "if var2 should be true"
            assert bool(var1) == False, "bool(var1) is False"
            assert bool(var2) == True, "bool(var2) is True"

892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937
    def test_to_static_var(self):
        with fluid.dygraph.guard():
            # Convert VarBase into Variable or Parameter
            var_base = fluid.dygraph.to_variable(self.array, name="var_base_1")
            static_var = var_base._to_static_var()
            self._assert_to_static(var_base, static_var)

            var_base = fluid.dygraph.to_variable(self.array, name="var_base_2")
            static_param = var_base._to_static_var(to_parameter=True)
            self._assert_to_static(var_base, static_param, True)

            # Convert ParamBase into Parameter
            fc = fluid.dygraph.Linear(
                10,
                20,
                param_attr=fluid.ParamAttr(
                    learning_rate=0.001,
                    do_model_average=True,
                    regularizer=fluid.regularizer.L1Decay()))
            weight = fc.parameters()[0]
            static_param = weight._to_static_var()
            self._assert_to_static(weight, static_param, True)

    def _assert_to_static(self, var_base, static_var, is_param=False):
        if is_param:
            self.assertTrue(isinstance(static_var, fluid.framework.Parameter))
            self.assertTrue(static_var.persistable, True)
            if isinstance(var_base, fluid.framework.ParamBase):
                for attr in ['trainable', 'is_distributed', 'do_model_average']:
                    self.assertEqual(
                        getattr(var_base, attr), getattr(static_var, attr))

                self.assertEqual(static_var.optimize_attr['learning_rate'],
                                 0.001)
                self.assertTrue(
                    isinstance(static_var.regularizer,
                               fluid.regularizer.L1Decay))
        else:
            self.assertTrue(isinstance(static_var, fluid.framework.Variable))

        attr_keys = ['block', 'dtype', 'type', 'name']
        for attr in attr_keys:
            self.assertEqual(getattr(var_base, attr), getattr(static_var, attr))

        self.assertListEqual(list(var_base.shape), list(static_var.shape))

938
    def test_tensor_str(self):
Z
Zhou Wei 已提交
939
        paddle.enable_static()
940
        paddle.disable_static(paddle.CPUPlace())
C
cnn 已提交
941
        paddle.seed(10)
942 943 944 945
        a = paddle.rand([10, 20])
        paddle.set_printoptions(4, 100, 3)
        a_str = str(a)

946
        expected = '''Tensor(shape=[10, 20], dtype=float32, place=CPUPlace, stop_gradient=True,
947 948 949 950 951 952 953 954 955 956 957
       [[0.2727, 0.5489, 0.8655, ..., 0.2916, 0.8525, 0.9000],
        [0.3806, 0.8996, 0.0928, ..., 0.9535, 0.8378, 0.6409],
        [0.1484, 0.4038, 0.8294, ..., 0.0148, 0.6520, 0.4250],
        ...,
        [0.3426, 0.1909, 0.7240, ..., 0.4218, 0.2676, 0.5679],
        [0.5561, 0.2081, 0.0676, ..., 0.9778, 0.3302, 0.9559],
        [0.2665, 0.8483, 0.5389, ..., 0.4956, 0.6862, 0.9178]])'''

        self.assertEqual(a_str, expected)
        paddle.enable_static()

958 959 960 961 962
    def test_tensor_str2(self):
        paddle.disable_static(paddle.CPUPlace())
        a = paddle.to_tensor([[1.5111111, 1.0], [0, 0]])
        a_str = str(a)

963
        expected = '''Tensor(shape=[2, 2], dtype=float32, place=CPUPlace, stop_gradient=True,
964 965 966 967 968 969 970 971 972 973 974
       [[1.5111, 1.    ],
        [0.    , 0.    ]])'''

        self.assertEqual(a_str, expected)
        paddle.enable_static()

    def test_tensor_str3(self):
        paddle.disable_static(paddle.CPUPlace())
        a = paddle.to_tensor([[-1.5111111, 1.0], [0, -0.5]])
        a_str = str(a)

975
        expected = '''Tensor(shape=[2, 2], dtype=float32, place=CPUPlace, stop_gradient=True,
976 977 978 979 980 981
       [[-1.5111,  1.    ],
        [ 0.    , -0.5000]])'''

        self.assertEqual(a_str, expected)
        paddle.enable_static()

982 983 984 985 986 987 988 989 990 991 992
    def test_tensor_str_scaler(self):
        paddle.disable_static(paddle.CPUPlace())
        a = paddle.to_tensor(np.array(False))
        a_str = str(a)

        expected = '''Tensor(shape=[], dtype=bool, place=CPUPlace, stop_gradient=True,
       False)'''

        self.assertEqual(a_str, expected)
        paddle.enable_static()

993 994 995 996 997 998 999 1000 1001 1002 1003 1004
    def test_tensor_str_shape_with_zero(self):
        paddle.disable_static(paddle.CPUPlace())
        x = paddle.ones((10, 10))
        y = paddle.fluid.layers.where(x == 0)
        a_str = str(y)

        expected = '''Tensor(shape=[0, 2], dtype=int64, place=CPUPlace, stop_gradient=True,
       [])'''

        self.assertEqual(a_str, expected)
        paddle.enable_static()

1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
    def test_tensor_str_linewidth(self):
        paddle.disable_static(paddle.CPUPlace())
        paddle.seed(2021)
        x = paddle.rand([128])
        paddle.set_printoptions(
            precision=4, threshold=1000, edgeitems=3, linewidth=80)
        a_str = str(x)

        expected = '''Tensor(shape=[128], dtype=float32, place=CPUPlace, stop_gradient=True,
       [0.3759, 0.0278, 0.2489, 0.3110, 0.9105, 0.7381, 0.1905, 0.4726, 0.2435,
        0.9142, 0.3367, 0.7243, 0.7664, 0.9915, 0.2921, 0.1363, 0.8096, 0.2915,
        0.9564, 0.9972, 0.2573, 0.2597, 0.3429, 0.2484, 0.9579, 0.7003, 0.4126,
        0.4274, 0.0074, 0.9686, 0.9910, 0.0144, 0.6564, 0.2932, 0.7114, 0.9301,
        0.6421, 0.0538, 0.1273, 0.5771, 0.9336, 0.6416, 0.1832, 0.9311, 0.7702,
        0.7474, 0.4479, 0.3382, 0.5579, 0.0444, 0.9802, 0.9874, 0.3038, 0.5640,
        0.2408, 0.5489, 0.8866, 0.1006, 0.5881, 0.7560, 0.7928, 0.8604, 0.4670,
        0.9285, 0.1482, 0.4541, 0.1307, 0.6221, 0.4902, 0.1147, 0.4415, 0.2987,
        0.7276, 0.2077, 0.7551, 0.9652, 0.4369, 0.2282, 0.0047, 0.2934, 0.4308,
        0.4190, 0.1442, 0.3650, 0.3056, 0.6535, 0.1211, 0.8721, 0.7408, 0.4220,
        0.5937, 0.3123, 0.9198, 0.0275, 0.5338, 0.4622, 0.7521, 0.3609, 0.4703,
        0.1736, 0.8976, 0.7616, 0.3756, 0.2416, 0.2907, 0.3246, 0.4305, 0.5717,
        0.0735, 0.0361, 0.5534, 0.4399, 0.9260, 0.6525, 0.3064, 0.4573, 0.9210,
        0.8269, 0.2424, 0.7494, 0.8945, 0.7098, 0.8078, 0.4707, 0.5715, 0.7232,
        0.4678, 0.5047])'''

        self.assertEqual(a_str, expected)
        paddle.enable_static()

    def test_tensor_str_linewidth2(self):
        paddle.disable_static(paddle.CPUPlace())
        paddle.seed(2021)
        x = paddle.rand([128])
        paddle.set_printoptions(precision=4, linewidth=160, sci_mode=True)
        a_str = str(x)

        expected = '''Tensor(shape=[128], dtype=float32, place=CPUPlace, stop_gradient=True,
       [3.7587e-01, 2.7798e-02, 2.4891e-01, 3.1097e-01, 9.1053e-01, 7.3811e-01, 1.9045e-01, 4.7258e-01, 2.4354e-01, 9.1415e-01, 3.3666e-01, 7.2428e-01,
        7.6640e-01, 9.9146e-01, 2.9215e-01, 1.3625e-01, 8.0957e-01, 2.9153e-01, 9.5642e-01, 9.9718e-01, 2.5732e-01, 2.5973e-01, 3.4292e-01, 2.4841e-01,
        9.5794e-01, 7.0029e-01, 4.1260e-01, 4.2737e-01, 7.3788e-03, 9.6863e-01, 9.9102e-01, 1.4416e-02, 6.5640e-01, 2.9318e-01, 7.1136e-01, 9.3008e-01,
        6.4209e-01, 5.3849e-02, 1.2730e-01, 5.7712e-01, 9.3359e-01, 6.4155e-01, 1.8320e-01, 9.3110e-01, 7.7021e-01, 7.4736e-01, 4.4793e-01, 3.3817e-01,
        5.5794e-01, 4.4412e-02, 9.8023e-01, 9.8735e-01, 3.0376e-01, 5.6397e-01, 2.4082e-01, 5.4893e-01, 8.8659e-01, 1.0065e-01, 5.8812e-01, 7.5600e-01,
        7.9280e-01, 8.6041e-01, 4.6701e-01, 9.2852e-01, 1.4821e-01, 4.5410e-01, 1.3074e-01, 6.2210e-01, 4.9024e-01, 1.1466e-01, 4.4154e-01, 2.9868e-01,
        7.2758e-01, 2.0766e-01, 7.5508e-01, 9.6522e-01, 4.3688e-01, 2.2823e-01, 4.7394e-03, 2.9342e-01, 4.3083e-01, 4.1902e-01, 1.4416e-01, 3.6500e-01,
        3.0560e-01, 6.5350e-01, 1.2115e-01, 8.7206e-01, 7.4081e-01, 4.2203e-01, 5.9372e-01, 3.1230e-01, 9.1979e-01, 2.7486e-02, 5.3383e-01, 4.6224e-01,
        7.5211e-01, 3.6094e-01, 4.7034e-01, 1.7355e-01, 8.9763e-01, 7.6165e-01, 3.7557e-01, 2.4157e-01, 2.9074e-01, 3.2458e-01, 4.3049e-01, 5.7171e-01,
        7.3509e-02, 3.6087e-02, 5.5341e-01, 4.3993e-01, 9.2601e-01, 6.5248e-01, 3.0640e-01, 4.5727e-01, 9.2104e-01, 8.2688e-01, 2.4243e-01, 7.4937e-01,
        8.9448e-01, 7.0981e-01, 8.0783e-01, 4.7065e-01, 5.7154e-01, 7.2319e-01, 4.6777e-01, 5.0465e-01])'''

        self.assertEqual(a_str, expected)
        paddle.enable_static()

L
Leo Chen 已提交
1056 1057 1058 1059 1060 1061 1062 1063 1064 1065
    def test_print_tensor_dtype(self):
        paddle.disable_static(paddle.CPUPlace())
        a = paddle.rand([1])
        a_str = str(a.dtype)

        expected = 'paddle.float32'

        self.assertEqual(a_str, expected)
        paddle.enable_static()

L
Leo Chen 已提交
1066

1067 1068 1069
class TestVarBaseSetitem(unittest.TestCase):
    def setUp(self):
        paddle.disable_static()
1070 1071 1072
        self.set_dtype()
        self.tensor_x = paddle.to_tensor(np.ones((4, 2, 3)).astype(self.dtype))
        self.np_value = np.random.random((2, 3)).astype(self.dtype)
1073 1074
        self.tensor_value = paddle.to_tensor(self.np_value)

1075 1076 1077
    def set_dtype(self):
        self.dtype = "int32"

1078 1079
    def _test(self, value):
        paddle.disable_static()
1080
        self.assertEqual(self.tensor_x.inplace_version, 0)
1081

1082
        id_origin = id(self.tensor_x)
1083
        self.tensor_x[0] = value
1084
        self.assertEqual(self.tensor_x.inplace_version, 1)
1085 1086

        if isinstance(value, (six.integer_types, float)):
1087
            result = np.zeros((2, 3)).astype(self.dtype) + value
1088 1089 1090 1091 1092 1093 1094 1095

        else:
            result = self.np_value

        self.assertTrue(np.array_equal(self.tensor_x[0].numpy(), result))
        self.assertEqual(id_origin, id(self.tensor_x))

        self.tensor_x[1:2] = value
1096
        self.assertEqual(self.tensor_x.inplace_version, 2)
1097 1098 1099 1100
        self.assertTrue(np.array_equal(self.tensor_x[1].numpy(), result))
        self.assertEqual(id_origin, id(self.tensor_x))

        self.tensor_x[...] = value
1101
        self.assertEqual(self.tensor_x.inplace_version, 3)
1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116
        self.assertTrue(np.array_equal(self.tensor_x[3].numpy(), result))
        self.assertEqual(id_origin, id(self.tensor_x))

    def test_value_tensor(self):
        paddle.disable_static()
        self._test(self.tensor_value)

    def test_value_numpy(self):
        paddle.disable_static()
        self._test(self.np_value)

    def test_value_int(self):
        paddle.disable_static()
        self._test(10)

1117 1118 1119 1120 1121 1122 1123 1124 1125 1126

class TestVarBaseSetitemInt64(TestVarBaseSetitem):
    def set_dtype(self):
        self.dtype = "int64"


class TestVarBaseSetitemFp32(TestVarBaseSetitem):
    def set_dtype(self):
        self.dtype = "float32"

1127 1128 1129 1130 1131
    def test_value_float(self):
        paddle.disable_static()
        self._test(3.3)


1132 1133 1134 1135 1136
class TestVarBaseSetitemFp64(TestVarBaseSetitem):
    def set_dtype(self):
        self.dtype = "float64"


1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161
class TestVarBaseInplaceVersion(unittest.TestCase):
    def test_setitem(self):
        paddle.disable_static()

        var = paddle.ones(shape=[4, 2, 3], dtype="float32")
        self.assertEqual(var.inplace_version, 0)

        var[1] = 1
        self.assertEqual(var.inplace_version, 1)

        var[1:2] = 1
        self.assertEqual(var.inplace_version, 2)

    def test_bump_inplace_version(self):
        paddle.disable_static()
        var = paddle.ones(shape=[4, 2, 3], dtype="float32")
        self.assertEqual(var.inplace_version, 0)

        var._bump_inplace_version()
        self.assertEqual(var.inplace_version, 1)

        var._bump_inplace_version()
        self.assertEqual(var.inplace_version, 2)


1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297
class TestVarBaseSlice(unittest.TestCase):
    def test_slice(self):
        paddle.disable_static()
        np_x = np.random.random((3, 8, 8))
        x = paddle.to_tensor(np_x, dtype="float64")
        actual_x = x._slice(0, 1)
        actual_x = paddle.to_tensor(actual_x)
        self.assertEqual(actual_x.numpy().all(), np_x[0:1].all())


class TestVarBaseClear(unittest.TestCase):
    def test_clear(self):
        paddle.disable_static()
        np_x = np.random.random((3, 8, 8))
        x = paddle.to_tensor(np_x, dtype="float64")
        x._clear()
        self.assertEqual(str(x), "Tensor(Not initialized)")


class TestVarBaseOffset(unittest.TestCase):
    def test_offset(self):
        paddle.disable_static()
        np_x = np.random.random((3, 8, 8))
        x = paddle.to_tensor(np_x, dtype="float64")
        expected_offset = 0
        actual_x = x._slice(expected_offset, 1)
        actual_x = paddle.to_tensor(actual_x)
        self.assertEqual(actual_x._offset(), expected_offset)


class TestVarBaseShareBufferWith(unittest.TestCase):
    def test_share_buffer_with(self):
        paddle.disable_static()
        np_x = np.random.random((3, 8, 8))
        np_y = np.random.random((3, 8, 8))
        x = paddle.to_tensor(np_x, dtype="float64")
        y = paddle.to_tensor(np_y, dtype="float64")
        x._share_buffer_with(y)
        self.assertEqual(x._is_shared_buffer_with(y), True)


class TestVarBaseTo(unittest.TestCase):
    def setUp(self):
        paddle.disable_static()
        self.np_x = np.random.random((3, 8, 8))
        self.x = paddle.to_tensor(self.np_x, dtype="float32")

    def test_to_api(self):
        x_double = self.x._to(dtype='double')
        self.assertEqual(x_double.dtype, paddle.fluid.core.VarDesc.VarType.FP64)
        self.assertTrue(np.allclose(self.np_x, x_double))

        x_ = self.x._to()
        self.assertEqual(self.x.dtype, paddle.fluid.core.VarDesc.VarType.FP64)
        self.assertTrue(np.allclose(self.np_x, x_))

        if paddle.fluid.is_compiled_with_cuda():
            x_gpu = self.x._to(device=paddle.CUDAPlace(0))
            self.assertTrue(x_gpu.place.is_gpu_place())
            self.assertEqual(x_gpu.place.gpu_device_id(), 0)

            x_gpu0 = self.x._to(device='gpu:0')
            self.assertTrue(x_gpu0.place.is_gpu_place())
            self.assertEqual(x_gpu0.place.gpu_device_id(), 0)

            x_gpu1 = self.x._to(device='gpu:0', dtype="float64")
            self.assertTrue(x_gpu1.place.is_gpu_place())
            self.assertEqual(x_gpu1.place.gpu_device_id(), 0)
            self.assertEqual(x_gpu1.dtype,
                             paddle.fluid.core.VarDesc.VarType.FP64)

            x_gpu2 = self.x._to(device='gpu:0', dtype="float16")
            self.assertTrue(x_gpu2.place.is_gpu_place())
            self.assertEqual(x_gpu2.place.gpu_device_id(), 0)
            self.assertEqual(x_gpu2.dtype,
                             paddle.fluid.core.VarDesc.VarType.FP16)

        x_cpu = self.x._to(device=paddle.CPUPlace())
        self.assertTrue(x_cpu.place.is_cpu_place())

        x_cpu0 = self.x._to(device='cpu')
        self.assertTrue(x_cpu0.place.is_cpu_place())

        x_cpu1 = self.x._to(device=paddle.CPUPlace(), dtype="float64")
        self.assertTrue(x_cpu1.place.is_cpu_place())
        self.assertEqual(x_cpu1.dtype, paddle.fluid.core.VarDesc.VarType.FP64)

        x_cpu2 = self.x._to(device='cpu', dtype="float16")
        self.assertTrue(x_cpu2.place.is_cpu_place())
        self.assertEqual(x_cpu2.dtype, paddle.fluid.core.VarDesc.VarType.FP16)

        self.assertRaises(ValueError, self.x._to, device=1)
        self.assertRaises(AssertionError, self.x._to, blocking=1)


class TestVarBaseInitVarBaseFromTensorWithDevice(unittest.TestCase):
    def test_varbase_init(self):
        paddle.disable_static()
        t = fluid.Tensor()
        np_x = np.random.random((3, 8, 8))
        t.set(np_x, fluid.CPUPlace())

        if paddle.fluid.is_compiled_with_cuda():
            device = paddle.CUDAPlace(0)
            tmp = fluid.core.VarBase(t, device)
            self.assertTrue(tmp.place.is_gpu_place())
            self.assertEqual(tmp.numpy().all(), np_x.all())

        device = paddle.CPUPlace()
        tmp = fluid.core.VarBase(t, device)
        self.assertEqual(tmp.numpy().all(), np_x.all())


class TestVarBaseNumel(unittest.TestCase):
    def test_numel(self):
        paddle.disable_static()
        np_x = np.random.random((3, 8, 8))
        x = paddle.to_tensor(np_x, dtype="float64")
        x_actual_numel = x._numel()
        x_expected_numel = np.product((3, 8, 8))
        self.assertEqual(x_actual_numel, x_expected_numel)


class TestVarBaseCopyGradientFrom(unittest.TestCase):
    def test_copy_gradient_from(self):
        paddle.disable_static()
        np_x = np.random.random((2, 2))
        np_y = np.random.random((2, 2))
        x = paddle.to_tensor(np_x, dtype="float64", stop_gradient=False)
        y = paddle.to_tensor(np_y, dtype="float64")
        out = x + x
        out.backward()
        x._copy_gradient_from(y)
        self.assertEqual(x.grad.numpy().all(), np_y.all())


L
Leo Chen 已提交
1298 1299
if __name__ == '__main__':
    unittest.main()