test_var_base.py 37.5 KB
Newer Older
L
Leo Chen 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import unittest
18 19
import numpy as np
import six
20
import copy
21

22
import paddle
L
Leo Chen 已提交
23 24 25 26 27 28 29 30 31 32
import paddle.fluid as fluid
import paddle.fluid.core as core


class TestVarBase(unittest.TestCase):
    def setUp(self):
        self.shape = [512, 1234]
        self.dtype = np.float32
        self.array = np.random.uniform(0.1, 1, self.shape).astype(self.dtype)

33 34 35
    def test_to_tensor(self):
        def _test_place(place):
            with fluid.dygraph.guard():
36
                paddle.set_default_dtype('float32')
37
                # set_default_dtype should not take effect on int
38 39 40 41
                x = paddle.to_tensor(1, place=place, stop_gradient=False)
                self.assertTrue(np.array_equal(x.numpy(), [1]))
                self.assertNotEqual(x.dtype, core.VarDesc.VarType.FP32)

42 43 44
                y = paddle.to_tensor(2, place=x.place)
                self.assertEqual(str(x.place), str(y.place))

45 46 47 48 49 50 51 52 53 54
                # set_default_dtype should not take effect on numpy
                x = paddle.to_tensor(
                    np.array([1.2]).astype('float16'),
                    place=place,
                    stop_gradient=False)
                self.assertTrue(
                    np.array_equal(x.numpy(), np.array([1.2], 'float16')))
                self.assertEqual(x.dtype, core.VarDesc.VarType.FP16)

                # set_default_dtype take effect on float
55 56 57 58 59
                x = paddle.to_tensor(1.2, place=place, stop_gradient=False)
                self.assertTrue(
                    np.array_equal(x.numpy(), np.array([1.2]).astype(
                        'float32')))
                self.assertEqual(x.dtype, core.VarDesc.VarType.FP32)
Z
Zhou Wei 已提交
60 61 62 63 64 65 66 67
                clone_x = x.clone()
                self.assertTrue(
                    np.array_equal(clone_x.numpy(),
                                   np.array([1.2]).astype('float32')))
                self.assertEqual(clone_x.dtype, core.VarDesc.VarType.FP32)
                y = clone_x**2
                y.backward()
                self.assertTrue(
68 69
                    np.array_equal(x.grad.numpy(),
                                   np.array([2.4]).astype('float32')))
70 71 72 73 74 75 76 77 78
                y = x.cpu()
                self.assertEqual(y.place.__repr__(), "CPUPlace")
                if core.is_compiled_with_cuda():
                    y = x.pin_memory()
                    self.assertEqual(y.place.__repr__(), "CUDAPinnedPlace")
                    y = x.cuda(blocking=False)
                    self.assertEqual(y.place.__repr__(), "CUDAPlace(0)")
                    y = x.cuda(blocking=True)
                    self.assertEqual(y.place.__repr__(), "CUDAPlace(0)")
79

80 81 82 83 84
                # support 'dtype' is core.VarType
                x = paddle.rand((2, 2))
                y = paddle.to_tensor([2, 2], dtype=x.dtype)
                self.assertEqual(y.dtype, core.VarDesc.VarType.FP32)

85
                # set_default_dtype take effect on complex
86 87
                x = paddle.to_tensor(1 + 2j, place=place, stop_gradient=False)
                self.assertTrue(np.array_equal(x.numpy(), [1 + 2j]))
C
chentianyu03 已提交
88
                self.assertEqual(x.dtype, core.VarDesc.VarType.COMPLEX64)
89 90 91 92 93 94 95 96

                paddle.set_default_dtype('float64')
                x = paddle.to_tensor(1.2, place=place, stop_gradient=False)
                self.assertTrue(np.array_equal(x.numpy(), [1.2]))
                self.assertEqual(x.dtype, core.VarDesc.VarType.FP64)

                x = paddle.to_tensor(1 + 2j, place=place, stop_gradient=False)
                self.assertTrue(np.array_equal(x.numpy(), [1 + 2j]))
C
chentianyu03 已提交
97
                self.assertEqual(x.dtype, core.VarDesc.VarType.COMPLEX128)
98

99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
                x = paddle.to_tensor(
                    1, dtype='float32', place=place, stop_gradient=False)
                self.assertTrue(np.array_equal(x.numpy(), [1.]))
                self.assertEqual(x.dtype, core.VarDesc.VarType.FP32)
                self.assertEqual(x.shape, [1])
                self.assertEqual(x.stop_gradient, False)
                self.assertEqual(x.type, core.VarDesc.VarType.LOD_TENSOR)

                x = paddle.to_tensor(
                    (1, 2), dtype='float32', place=place, stop_gradient=False)
                x = paddle.to_tensor(
                    [1, 2], dtype='float32', place=place, stop_gradient=False)
                self.assertTrue(np.array_equal(x.numpy(), [1., 2.]))
                self.assertEqual(x.dtype, core.VarDesc.VarType.FP32)
                self.assertEqual(x.grad, None)
                self.assertEqual(x.shape, [2])
                self.assertEqual(x.stop_gradient, False)
                self.assertEqual(x.type, core.VarDesc.VarType.LOD_TENSOR)

                x = paddle.to_tensor(
                    self.array,
                    dtype='float32',
                    place=place,
                    stop_gradient=False)
                self.assertTrue(np.array_equal(x.numpy(), self.array))
                self.assertEqual(x.dtype, core.VarDesc.VarType.FP32)
                self.assertEqual(x.shape, self.shape)
                self.assertEqual(x.stop_gradient, False)
                self.assertEqual(x.type, core.VarDesc.VarType.LOD_TENSOR)

                y = paddle.to_tensor(x)
                y = paddle.to_tensor(y, dtype='float64', place=place)
                self.assertTrue(np.array_equal(y.numpy(), self.array))
                self.assertEqual(y.dtype, core.VarDesc.VarType.FP64)
                self.assertEqual(y.shape, self.shape)
                self.assertEqual(y.stop_gradient, True)
                self.assertEqual(y.type, core.VarDesc.VarType.LOD_TENSOR)
                z = x + y
                self.assertTrue(np.array_equal(z.numpy(), 2 * self.array))

                x = paddle.to_tensor(
                    [1 + 2j, 1 - 2j], dtype='complex64', place=place)
                y = paddle.to_tensor(x)
                self.assertTrue(np.array_equal(x.numpy(), [1 + 2j, 1 - 2j]))
C
chentianyu03 已提交
143
                self.assertEqual(y.dtype, core.VarDesc.VarType.COMPLEX64)
144 145
                self.assertEqual(y.shape, [2])

146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
                paddle.set_default_dtype('float32')
                x = paddle.randn([3, 4])
                x_array = np.array(x)
                self.assertEqual(x_array.shape, x.numpy().shape)
                self.assertEqual(x_array.dtype, x.numpy().dtype)
                self.assertTrue(np.array_equal(x_array, x.numpy()))

                x = paddle.to_tensor(1.0)
                self.assertEqual(x.item(), 1.0)
                self.assertTrue(isinstance(x.item(), float))

                x = paddle.randn([3, 2, 2])
                self.assertTrue(isinstance(x.item(5), float))
                self.assertTrue(isinstance(x.item(1, 0, 1), float))
                self.assertEqual(x.item(5), x.item(1, 0, 1))
                self.assertTrue(
                    np.array_equal(x.item(1, 0, 1), x.numpy().item(1, 0, 1)))

                x = paddle.to_tensor([[1.111111, 2.222222, 3.333333]])
                self.assertEqual(x.item(0, 2), x.item(2))
                self.assertAlmostEqual(x.item(2), 3.333333)
                self.assertTrue(isinstance(x.item(0, 2), float))

                x = paddle.to_tensor(1.0, dtype='float64')
                self.assertEqual(x.item(), 1.0)
                self.assertTrue(isinstance(x.item(), float))

                x = paddle.to_tensor(1.0, dtype='float16')
                self.assertEqual(x.item(), 1.0)
                self.assertTrue(isinstance(x.item(), float))

                x = paddle.to_tensor(1, dtype='uint8')
                self.assertEqual(x.item(), 1)
                self.assertTrue(isinstance(x.item(), int))

                x = paddle.to_tensor(1, dtype='int8')
                self.assertEqual(x.item(), 1)
                self.assertTrue(isinstance(x.item(), int))

                x = paddle.to_tensor(1, dtype='int16')
                self.assertEqual(x.item(), 1)
                self.assertTrue(isinstance(x.item(), int))

                x = paddle.to_tensor(1, dtype='int32')
                self.assertEqual(x.item(), 1)
                self.assertTrue(isinstance(x.item(), int))

                x = paddle.to_tensor(1, dtype='int64')
                self.assertEqual(x.item(), 1)
                self.assertTrue(isinstance(x.item(), long if six.PY2 else int))

                x = paddle.to_tensor(True)
                self.assertEqual(x.item(), True)
                self.assertTrue(isinstance(x.item(), bool))

                x = paddle.to_tensor(1 + 1j)
                self.assertEqual(x.item(), 1 + 1j)
                self.assertTrue(isinstance(x.item(), complex))

205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
                numpy_array = np.random.randn(3, 4)
                # covert core.LoDTensor to paddle.Tensor
                lod_tensor = paddle.fluid.core.LoDTensor()
                place = paddle.fluid.framework._current_expected_place()
                lod_tensor.set(numpy_array, place)
                x = paddle.to_tensor(lod_tensor)
                self.assertTrue(np.array_equal(x.numpy(), numpy_array))
                self.assertEqual(x.type, core.VarDesc.VarType.LOD_TENSOR)
                self.assertEqual(str(x.place), str(place))

                # covert core.Tensor to paddle.Tensor
                x = paddle.to_tensor(numpy_array)
                dlpack = x.value().get_tensor()._to_dlpack()
                tensor_from_dlpack = paddle.fluid.core.from_dlpack(dlpack)
                x = paddle.to_tensor(tensor_from_dlpack)
                self.assertTrue(np.array_equal(x.numpy(), numpy_array))
                self.assertEqual(x.type, core.VarDesc.VarType.LOD_TENSOR)

223 224 225 226 227 228 229 230
                with self.assertRaises(ValueError):
                    paddle.randn([3, 2, 2]).item()
                with self.assertRaises(ValueError):
                    paddle.randn([3, 2, 2]).item(18)
                with self.assertRaises(ValueError):
                    paddle.randn([3, 2, 2]).item(1, 2)
                with self.assertRaises(ValueError):
                    paddle.randn([3, 2, 2]).item(2, 1, 2)
231 232 233 234 235 236 237 238 239 240 241 242
                with self.assertRaises(TypeError):
                    paddle.to_tensor('test')
                with self.assertRaises(TypeError):
                    paddle.to_tensor(1, dtype='test')
                with self.assertRaises(ValueError):
                    paddle.to_tensor([[1], [2, 3]])
                with self.assertRaises(ValueError):
                    paddle.to_tensor([[1], [2, 3]], place='test')
                with self.assertRaises(ValueError):
                    paddle.to_tensor([[1], [2, 3]], place=1)

        _test_place(core.CPUPlace())
243
        _test_place("cpu")
244
        if core.is_compiled_with_cuda():
245
            _test_place(core.CUDAPinnedPlace())
246
            _test_place("gpu_pinned")
247
            _test_place(core.CUDAPlace(0))
248
            _test_place("gpu:0")
249

250 251 252 253 254 255 256 257
    def test_to_tensor_not_change_input_stop_gradient(self):
        with paddle.fluid.dygraph.guard(core.CPUPlace()):
            a = paddle.zeros([1024])
            a.stop_gradient = False
            b = paddle.to_tensor(a)
            self.assertEqual(a.stop_gradient, False)
            self.assertEqual(b.stop_gradient, True)

258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
    def test_to_tensor_change_place(self):
        if core.is_compiled_with_cuda():
            a_np = np.random.rand(1024, 1024)
            with paddle.fluid.dygraph.guard(core.CPUPlace()):
                a = paddle.to_tensor(a_np, place=paddle.CUDAPinnedPlace())
                a = paddle.to_tensor(a)
                self.assertEqual(a.place.__repr__(), "CPUPlace")

            with paddle.fluid.dygraph.guard(core.CUDAPlace(0)):
                a = paddle.to_tensor(a_np, place=paddle.CUDAPinnedPlace())
                a = paddle.to_tensor(a)
                self.assertEqual(a.place.__repr__(), "CUDAPlace(0)")

            with paddle.fluid.dygraph.guard(core.CUDAPlace(0)):
                a = paddle.to_tensor(a_np, place=paddle.CPUPlace())
                a = paddle.to_tensor(a, place=paddle.CUDAPinnedPlace())
                self.assertEqual(a.place.__repr__(), "CUDAPinnedPlace")

276 277 278 279 280 281 282 283 284 285 286 287
    def test_to_tensor_with_lodtensor(self):
        if core.is_compiled_with_cuda():
            a_np = np.random.rand(1024, 1024)
            with paddle.fluid.dygraph.guard(core.CPUPlace()):
                lod_tensor = core.LoDTensor()
                lod_tensor.set(a_np, core.CPUPlace())
                a = paddle.to_tensor(lod_tensor)
                self.assertTrue(np.array_equal(a_np, a.numpy()))

            with paddle.fluid.dygraph.guard(core.CUDAPlace(0)):
                lod_tensor = core.LoDTensor()
                lod_tensor.set(a_np, core.CUDAPlace(0))
288
                a = paddle.to_tensor(lod_tensor, place=core.CPUPlace())
289
                self.assertTrue(np.array_equal(a_np, a.numpy()))
290
                self.assertTrue(a.place.__repr__(), "CPUPlace")
291

L
Leo Chen 已提交
292 293 294 295 296 297 298 299 300 301 302
    def test_to_variable(self):
        with fluid.dygraph.guard():
            var = fluid.dygraph.to_variable(self.array, name="abc")
            self.assertTrue(np.array_equal(var.numpy(), self.array))
            self.assertEqual(var.name, 'abc')
            # default value
            self.assertEqual(var.persistable, False)
            self.assertEqual(var.stop_gradient, True)
            self.assertEqual(var.shape, self.shape)
            self.assertEqual(var.dtype, core.VarDesc.VarType.FP32)
            self.assertEqual(var.type, core.VarDesc.VarType.LOD_TENSOR)
303 304 305 306 307 308 309
            # The type of input must be 'ndarray' or 'Variable', it will raise TypeError
            with self.assertRaises(TypeError):
                var = fluid.dygraph.to_variable("test", name="abc")
            # test to_variable of LayerObjectHelper(LayerHelperBase)
            with self.assertRaises(TypeError):
                linear = fluid.dygraph.Linear(32, 64)
                var = linear._helper.to_variable("test", name="abc")
L
Leo Chen 已提交
310

311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328
    def test_list_to_variable(self):
        with fluid.dygraph.guard():
            array = [[[1, 2], [1, 2], [1.0, 2]], [[1, 2], [1, 2], [1, 2]]]
            var = fluid.dygraph.to_variable(array, dtype='int32')
            self.assertTrue(np.array_equal(var.numpy(), array))
            self.assertEqual(var.shape, [2, 3, 2])
            self.assertEqual(var.dtype, core.VarDesc.VarType.INT32)
            self.assertEqual(var.type, core.VarDesc.VarType.LOD_TENSOR)

    def test_tuple_to_variable(self):
        with fluid.dygraph.guard():
            array = (((1, 2), (1, 2), (1, 2)), ((1, 2), (1, 2), (1, 2)))
            var = fluid.dygraph.to_variable(array, dtype='float32')
            self.assertTrue(np.array_equal(var.numpy(), array))
            self.assertEqual(var.shape, [2, 3, 2])
            self.assertEqual(var.dtype, core.VarDesc.VarType.FP32)
            self.assertEqual(var.type, core.VarDesc.VarType.LOD_TENSOR)

329 330 331
    def test_tensor_to_variable(self):
        with fluid.dygraph.guard():
            t = fluid.Tensor()
L
Leo Chen 已提交
332
            t.set(np.random.random((1024, 1024)), fluid.CPUPlace())
333 334 335
            var = fluid.dygraph.to_variable(t)
            self.assertTrue(np.array_equal(t, var.numpy()))

336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361
    def test_leaf_tensor(self):
        with fluid.dygraph.guard():
            x = paddle.to_tensor(np.random.uniform(-1, 1, size=[10, 10]))
            self.assertTrue(x.is_leaf)
            y = x + 1
            self.assertTrue(y.is_leaf)

            x = paddle.to_tensor(
                np.random.uniform(
                    -1, 1, size=[10, 10]), stop_gradient=False)
            self.assertTrue(x.is_leaf)
            y = x + 1
            self.assertFalse(y.is_leaf)

            linear = paddle.nn.Linear(10, 10)
            input = paddle.to_tensor(
                np.random.uniform(
                    -1, 1, size=[10, 10]).astype('float32'),
                stop_gradient=False)
            self.assertTrue(input.is_leaf)

            out = linear(input)
            self.assertTrue(linear.weight.is_leaf)
            self.assertTrue(linear.bias.is_leaf)
            self.assertFalse(out.is_leaf)

Z
Zhou Wei 已提交
362 363 364 365 366 367
    def test_detach(self):
        with fluid.dygraph.guard():
            x = paddle.to_tensor(1.0, dtype="float64", stop_gradient=False)
            detach_x = x.detach()
            self.assertTrue(detach_x.stop_gradient, True)

Z
zhulei 已提交
368 369
            cmp_float = np.allclose if core.is_compiled_with_rocm(
            ) else np.array_equal
Z
Zhou Wei 已提交
370
            detach_x[:] = 10.0
Z
zhulei 已提交
371
            self.assertTrue(cmp_float(x.numpy(), [10.0]))
Z
Zhou Wei 已提交
372 373 374

            y = x**2
            y.backward()
Z
zhulei 已提交
375
            self.assertTrue(cmp_float(x.grad.numpy(), [20.0]))
Z
Zhou Wei 已提交
376 377 378 379 380
            self.assertEqual(detach_x.grad, None)

            detach_x.stop_gradient = False  # Set stop_gradient to be False, supported auto-grad
            z = 3 * detach_x**2
            z.backward()
Z
zhulei 已提交
381 382
            self.assertTrue(cmp_float(x.grad.numpy(), [20.0]))
            self.assertTrue(cmp_float(detach_x.grad.numpy(), [60.0]))
383

Z
Zhou Wei 已提交
384
            # Due to sharing of data with origin Tensor, There are some unsafe operations:
385 386 387 388
            with self.assertRaises(RuntimeError):
                y = 2**x
                detach_x[:] = 5.0
                y.backward()
Z
Zhou Wei 已提交
389

L
Leo Chen 已提交
390 391 392 393
    def test_write_property(self):
        with fluid.dygraph.guard():
            var = fluid.dygraph.to_variable(self.array)

394
            self.assertEqual(var.name, 'generated_tensor_0')
L
Leo Chen 已提交
395 396 397 398 399 400 401 402 403 404 405
            var.name = 'test'
            self.assertEqual(var.name, 'test')

            self.assertEqual(var.persistable, False)
            var.persistable = True
            self.assertEqual(var.persistable, True)

            self.assertEqual(var.stop_gradient, True)
            var.stop_gradient = False
            self.assertEqual(var.stop_gradient, False)

406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467
    def test_deep_copy(self):
        with fluid.dygraph.guard():
            empty_var = core.VarBase()
            empty_var_copy = copy.deepcopy(empty_var)
            self.assertEqual(empty_var.stop_gradient,
                             empty_var_copy.stop_gradient)
            self.assertEqual(empty_var.persistable, empty_var_copy.persistable)
            self.assertEqual(empty_var.type, empty_var_copy.type)
            self.assertEqual(empty_var.dtype, empty_var_copy.dtype)

            x = paddle.to_tensor([2.], stop_gradient=False)
            y = paddle.to_tensor([3.], stop_gradient=False)
            z = x * y
            memo = {}
            x_copy = copy.deepcopy(x, memo)
            y_copy = copy.deepcopy(y, memo)

            self.assertEqual(x_copy.stop_gradient, y_copy.stop_gradient)
            self.assertEqual(x_copy.persistable, y_copy.persistable)
            self.assertEqual(x_copy.type, y_copy.type)
            self.assertEqual(x_copy.dtype, y_copy.dtype)
            self.assertTrue(np.array_equal(x.numpy(), x_copy.numpy()))
            self.assertTrue(np.array_equal(y.numpy(), y_copy.numpy()))

            self.assertNotEqual(id(x), id(x_copy))
            x_copy[:] = 5.
            self.assertTrue(np.array_equal(x_copy.numpy(), [5.]))
            self.assertTrue(np.array_equal(x.numpy(), [2.]))

            with self.assertRaises(RuntimeError):
                copy.deepcopy(z)

            x_copy2 = copy.deepcopy(x, memo)
            y_copy2 = copy.deepcopy(y, memo)
            self.assertEqual(id(x_copy), id(x_copy2))
            self.assertEqual(id(y_copy), id(y_copy2))

            # test copy selected rows
            x = core.VarBase(core.VarDesc.VarType.FP32, [3, 100],
                             "selected_rows",
                             core.VarDesc.VarType.SELECTED_ROWS, True)
            selected_rows = x.value().get_selected_rows()
            selected_rows.get_tensor().set(
                np.random.rand(3, 100), core.CPUPlace())
            selected_rows.set_height(10)
            selected_rows.set_rows([3, 5, 7])
            x_copy = copy.deepcopy(x)

            self.assertEqual(x_copy.stop_gradient, x.stop_gradient)
            self.assertEqual(x_copy.persistable, x.persistable)
            self.assertEqual(x_copy.type, x.type)
            self.assertEqual(x_copy.dtype, x.dtype)

            copy_selected_rows = x_copy.value().get_selected_rows()
            self.assertEqual(copy_selected_rows.height(),
                             selected_rows.height())
            self.assertEqual(copy_selected_rows.rows(), selected_rows.rows())
            self.assertTrue(
                np.array_equal(
                    np.array(copy_selected_rows.get_tensor()),
                    np.array(selected_rows.get_tensor())))

L
Leo Chen 已提交
468 469 470 471 472 473 474 475 476 477 478 479 480 481
    # test some patched methods
    def test_set_value(self):
        with fluid.dygraph.guard():
            var = fluid.dygraph.to_variable(self.array)
            tmp1 = np.random.uniform(0.1, 1, [2, 2, 3]).astype(self.dtype)
            self.assertRaises(AssertionError, var.set_value, tmp1)

            tmp2 = np.random.uniform(0.1, 1, self.shape).astype(self.dtype)
            var.set_value(tmp2)
            self.assertTrue(np.array_equal(var.numpy(), tmp2))

    def test_to_string(self):
        with fluid.dygraph.guard():
            var = fluid.dygraph.to_variable(self.array)
482
            self.assertTrue(isinstance(str(var), str))
L
Leo Chen 已提交
483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507

    def test_backward(self):
        with fluid.dygraph.guard():
            var = fluid.dygraph.to_variable(self.array)
            var.stop_gradient = False
            loss = fluid.layers.relu(var)
            loss.backward()
            grad_var = var._grad_ivar()
            self.assertEqual(grad_var.shape, self.shape)

    def test_gradient(self):
        with fluid.dygraph.guard():
            var = fluid.dygraph.to_variable(self.array)
            var.stop_gradient = False
            loss = fluid.layers.relu(var)
            loss.backward()
            grad_var = var.gradient()
            self.assertEqual(grad_var.shape, self.array.shape)

    def test_block(self):
        with fluid.dygraph.guard():
            var = fluid.dygraph.to_variable(self.array)
            self.assertEqual(var.block,
                             fluid.default_main_program().global_block())

508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553
    def _test_slice(self):
        w = fluid.dygraph.to_variable(
            np.random.random((784, 100, 100)).astype('float64'))

        for i in range(3):
            nw = w[i]
            self.assertEqual((100, 100), tuple(nw.shape))

        nw = w[:]
        self.assertEqual((784, 100, 100), tuple(nw.shape))

        nw = w[:, :]
        self.assertEqual((784, 100, 100), tuple(nw.shape))

        nw = w[:, :, -1]
        self.assertEqual((784, 100), tuple(nw.shape))

        nw = w[1, 1, 1]

        self.assertEqual(len(nw.shape), 1)
        self.assertEqual(nw.shape[0], 1)

        nw = w[:, :, :-1]
        self.assertEqual((784, 100, 99), tuple(nw.shape))

        tensor_array = np.array(
            [[[1, 2, 3], [4, 5, 6], [7, 8, 9]],
             [[10, 11, 12], [13, 14, 15], [16, 17, 18]],
             [[19, 20, 21], [22, 23, 24], [25, 26, 27]]]).astype('float32')
        var = fluid.dygraph.to_variable(tensor_array)
        var1 = var[0, 1, 1]
        var2 = var[1:]
        var3 = var[0:1]
        var4 = var[::-1]
        var5 = var[1, 1:, 1:]
        var_reshape = fluid.layers.reshape(var, [3, -1, 3])
        var6 = var_reshape[:, :, -1]
        var7 = var[:, :, :-1]
        var8 = var[:1, :1, :1]
        var9 = var[:-1, :-1, :-1]
        var10 = var[::-1, :1, :-1]
        var11 = var[:-1, ::-1, -1:]
        var12 = var[1:2, 2:, ::-1]
        var13 = var[2:10, 2:, -2:-1]
        var14 = var[1:-1, 0:2, ::-1]
        var15 = var[::-1, ::-1, ::-1]
554
        var16 = var[-4:4]
555 556 557

        vars = [
            var, var1, var2, var3, var4, var5, var6, var7, var8, var9, var10,
558
            var11, var12, var13, var14, var15, var16
559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585
        ]
        local_out = [var.numpy() for var in vars]

        self.assertTrue(np.array_equal(local_out[1], tensor_array[0, 1, 1:2]))
        self.assertTrue(np.array_equal(local_out[2], tensor_array[1:]))
        self.assertTrue(np.array_equal(local_out[3], tensor_array[0:1]))
        self.assertTrue(np.array_equal(local_out[4], tensor_array[::-1]))
        self.assertTrue(np.array_equal(local_out[5], tensor_array[1, 1:, 1:]))
        self.assertTrue(
            np.array_equal(local_out[6],
                           tensor_array.reshape((3, -1, 3))[:, :, -1]))
        self.assertTrue(np.array_equal(local_out[7], tensor_array[:, :, :-1]))
        self.assertTrue(np.array_equal(local_out[8], tensor_array[:1, :1, :1]))
        self.assertTrue(
            np.array_equal(local_out[9], tensor_array[:-1, :-1, :-1]))
        self.assertTrue(
            np.array_equal(local_out[10], tensor_array[::-1, :1, :-1]))
        self.assertTrue(
            np.array_equal(local_out[11], tensor_array[:-1, ::-1, -1:]))
        self.assertTrue(
            np.array_equal(local_out[12], tensor_array[1:2, 2:, ::-1]))
        self.assertTrue(
            np.array_equal(local_out[13], tensor_array[2:10, 2:, -2:-1]))
        self.assertTrue(
            np.array_equal(local_out[14], tensor_array[1:-1, 0:2, ::-1]))
        self.assertTrue(
            np.array_equal(local_out[15], tensor_array[::-1, ::-1, ::-1]))
586
        self.assertTrue(np.array_equal(local_out[16], tensor_array[-4:4]))
587

588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651
    def _test_slice_for_tensor_attr(self):
        tensor_array = np.array(
            [[[1, 2, 3], [4, 5, 6], [7, 8, 9]],
             [[10, 11, 12], [13, 14, 15], [16, 17, 18]],
             [[19, 20, 21], [22, 23, 24], [25, 26, 27]]]).astype('float32')

        var = paddle.to_tensor(tensor_array)

        one = paddle.ones(shape=[1], dtype="int32")
        two = paddle.full(shape=[1], fill_value=2, dtype="int32")
        negative_one = paddle.full(shape=[1], fill_value=-1, dtype="int32")
        four = paddle.full(shape=[1], fill_value=4, dtype="int32")

        var = fluid.dygraph.to_variable(tensor_array)
        var1 = var[0, one, one]
        var2 = var[one:]
        var3 = var[0:one]
        var4 = var[::negative_one]
        var5 = var[one, one:, one:]
        var_reshape = fluid.layers.reshape(var, [3, negative_one, 3])
        var6 = var_reshape[:, :, negative_one]
        var7 = var[:, :, :negative_one]
        var8 = var[:one, :one, :1]
        var9 = var[:-1, :negative_one, :negative_one]
        var10 = var[::negative_one, :one, :negative_one]
        var11 = var[:negative_one, ::-1, negative_one:]
        var12 = var[one:2, 2:, ::negative_one]
        var13 = var[two:10, 2:, -2:negative_one]
        var14 = var[1:negative_one, 0:2, ::negative_one]
        var15 = var[::negative_one, ::-1, ::negative_one]
        var16 = var[-4:4]

        vars = [
            var, var1, var2, var3, var4, var5, var6, var7, var8, var9, var10,
            var11, var12, var13, var14, var15, var16
        ]
        local_out = [var.numpy() for var in vars]

        self.assertTrue(np.array_equal(local_out[1], tensor_array[0, 1, 1:2]))
        self.assertTrue(np.array_equal(local_out[2], tensor_array[1:]))
        self.assertTrue(np.array_equal(local_out[3], tensor_array[0:1]))
        self.assertTrue(np.array_equal(local_out[4], tensor_array[::-1]))
        self.assertTrue(np.array_equal(local_out[5], tensor_array[1, 1:, 1:]))
        self.assertTrue(
            np.array_equal(local_out[6],
                           tensor_array.reshape((3, -1, 3))[:, :, -1]))
        self.assertTrue(np.array_equal(local_out[7], tensor_array[:, :, :-1]))
        self.assertTrue(np.array_equal(local_out[8], tensor_array[:1, :1, :1]))
        self.assertTrue(
            np.array_equal(local_out[9], tensor_array[:-1, :-1, :-1]))
        self.assertTrue(
            np.array_equal(local_out[10], tensor_array[::-1, :1, :-1]))
        self.assertTrue(
            np.array_equal(local_out[11], tensor_array[:-1, ::-1, -1:]))
        self.assertTrue(
            np.array_equal(local_out[12], tensor_array[1:2, 2:, ::-1]))
        self.assertTrue(
            np.array_equal(local_out[13], tensor_array[2:10, 2:, -2:-1]))
        self.assertTrue(
            np.array_equal(local_out[14], tensor_array[1:-1, 0:2, ::-1]))
        self.assertTrue(
            np.array_equal(local_out[15], tensor_array[::-1, ::-1, ::-1]))
        self.assertTrue(np.array_equal(local_out[16], tensor_array[-4:4]))

H
hong 已提交
652 653 654 655 656 657 658
    def _test_for_var(self):
        np_value = np.random.random((30, 100, 100)).astype('float32')
        w = fluid.dygraph.to_variable(np_value)

        for i, e in enumerate(w):
            self.assertTrue(np.array_equal(e.numpy(), np_value[i]))

L
Leo Chen 已提交
659 660
    def test_slice(self):
        with fluid.dygraph.guard():
661
            self._test_slice()
662
            self._test_slice_for_tensor_attr()
H
hong 已提交
663
            self._test_for_var()
664

L
Leo Chen 已提交
665 666
            var = fluid.dygraph.to_variable(self.array)
            self.assertTrue(np.array_equal(var[1, :].numpy(), self.array[1, :]))
667
            self.assertTrue(np.array_equal(var[::-1].numpy(), self.array[::-1]))
L
Leo Chen 已提交
668

H
hong 已提交
669 670 671
            with self.assertRaises(IndexError):
                y = var[self.shape[0]]

672 673 674
            with self.assertRaises(IndexError):
                y = var[0 - self.shape[0] - 1]

L
Leo Chen 已提交
675 676 677 678 679 680 681
    def test_var_base_to_np(self):
        with fluid.dygraph.guard():
            var = fluid.dygraph.to_variable(self.array)
            self.assertTrue(
                np.array_equal(var.numpy(),
                               fluid.framework._var_base_to_np(var)))

682 683 684 685 686 687 688 689 690
    def test_var_base_as_np(self):
        with fluid.dygraph.guard():
            var = fluid.dygraph.to_variable(self.array)
            self.assertTrue(np.array_equal(var.numpy(), np.array(var)))
            self.assertTrue(
                np.array_equal(
                    var.numpy(), np.array(
                        var, dtype=np.float32)))

691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709
    def test_if(self):
        with fluid.dygraph.guard():
            var1 = fluid.dygraph.to_variable(np.array([[[0]]]))
            var2 = fluid.dygraph.to_variable(np.array([[[1]]]))

            var1_bool = False
            var2_bool = False

            if var1:
                var1_bool = True

            if var2:
                var2_bool = True

            assert var1_bool == False, "if var1 should be false"
            assert var2_bool == True, "if var2 should be true"
            assert bool(var1) == False, "bool(var1) is False"
            assert bool(var2) == True, "bool(var2) is True"

710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755
    def test_to_static_var(self):
        with fluid.dygraph.guard():
            # Convert VarBase into Variable or Parameter
            var_base = fluid.dygraph.to_variable(self.array, name="var_base_1")
            static_var = var_base._to_static_var()
            self._assert_to_static(var_base, static_var)

            var_base = fluid.dygraph.to_variable(self.array, name="var_base_2")
            static_param = var_base._to_static_var(to_parameter=True)
            self._assert_to_static(var_base, static_param, True)

            # Convert ParamBase into Parameter
            fc = fluid.dygraph.Linear(
                10,
                20,
                param_attr=fluid.ParamAttr(
                    learning_rate=0.001,
                    do_model_average=True,
                    regularizer=fluid.regularizer.L1Decay()))
            weight = fc.parameters()[0]
            static_param = weight._to_static_var()
            self._assert_to_static(weight, static_param, True)

    def _assert_to_static(self, var_base, static_var, is_param=False):
        if is_param:
            self.assertTrue(isinstance(static_var, fluid.framework.Parameter))
            self.assertTrue(static_var.persistable, True)
            if isinstance(var_base, fluid.framework.ParamBase):
                for attr in ['trainable', 'is_distributed', 'do_model_average']:
                    self.assertEqual(
                        getattr(var_base, attr), getattr(static_var, attr))

                self.assertEqual(static_var.optimize_attr['learning_rate'],
                                 0.001)
                self.assertTrue(
                    isinstance(static_var.regularizer,
                               fluid.regularizer.L1Decay))
        else:
            self.assertTrue(isinstance(static_var, fluid.framework.Variable))

        attr_keys = ['block', 'dtype', 'type', 'name']
        for attr in attr_keys:
            self.assertEqual(getattr(var_base, attr), getattr(static_var, attr))

        self.assertListEqual(list(var_base.shape), list(static_var.shape))

756
    def test_tensor_str(self):
Z
Zhou Wei 已提交
757
        paddle.enable_static()
758
        paddle.disable_static(paddle.CPUPlace())
C
cnn 已提交
759
        paddle.seed(10)
760 761 762 763
        a = paddle.rand([10, 20])
        paddle.set_printoptions(4, 100, 3)
        a_str = str(a)

764
        expected = '''Tensor(shape=[10, 20], dtype=float32, place=CPUPlace, stop_gradient=True,
765 766 767 768 769 770 771 772 773 774 775
       [[0.2727, 0.5489, 0.8655, ..., 0.2916, 0.8525, 0.9000],
        [0.3806, 0.8996, 0.0928, ..., 0.9535, 0.8378, 0.6409],
        [0.1484, 0.4038, 0.8294, ..., 0.0148, 0.6520, 0.4250],
        ...,
        [0.3426, 0.1909, 0.7240, ..., 0.4218, 0.2676, 0.5679],
        [0.5561, 0.2081, 0.0676, ..., 0.9778, 0.3302, 0.9559],
        [0.2665, 0.8483, 0.5389, ..., 0.4956, 0.6862, 0.9178]])'''

        self.assertEqual(a_str, expected)
        paddle.enable_static()

776 777 778 779 780
    def test_tensor_str2(self):
        paddle.disable_static(paddle.CPUPlace())
        a = paddle.to_tensor([[1.5111111, 1.0], [0, 0]])
        a_str = str(a)

781
        expected = '''Tensor(shape=[2, 2], dtype=float32, place=CPUPlace, stop_gradient=True,
782 783 784 785 786 787 788 789 790 791 792
       [[1.5111, 1.    ],
        [0.    , 0.    ]])'''

        self.assertEqual(a_str, expected)
        paddle.enable_static()

    def test_tensor_str3(self):
        paddle.disable_static(paddle.CPUPlace())
        a = paddle.to_tensor([[-1.5111111, 1.0], [0, -0.5]])
        a_str = str(a)

793
        expected = '''Tensor(shape=[2, 2], dtype=float32, place=CPUPlace, stop_gradient=True,
794 795 796 797 798 799
       [[-1.5111,  1.    ],
        [ 0.    , -0.5000]])'''

        self.assertEqual(a_str, expected)
        paddle.enable_static()

800 801 802 803 804 805 806 807 808 809 810
    def test_tensor_str_scaler(self):
        paddle.disable_static(paddle.CPUPlace())
        a = paddle.to_tensor(np.array(False))
        a_str = str(a)

        expected = '''Tensor(shape=[], dtype=bool, place=CPUPlace, stop_gradient=True,
       False)'''

        self.assertEqual(a_str, expected)
        paddle.enable_static()

811 812 813 814 815 816 817 818 819 820 821 822
    def test_tensor_str_shape_with_zero(self):
        paddle.disable_static(paddle.CPUPlace())
        x = paddle.ones((10, 10))
        y = paddle.fluid.layers.where(x == 0)
        a_str = str(y)

        expected = '''Tensor(shape=[0, 2], dtype=int64, place=CPUPlace, stop_gradient=True,
       [])'''

        self.assertEqual(a_str, expected)
        paddle.enable_static()

L
Leo Chen 已提交
823 824 825 826 827 828 829 830 831 832
    def test_print_tensor_dtype(self):
        paddle.disable_static(paddle.CPUPlace())
        a = paddle.rand([1])
        a_str = str(a.dtype)

        expected = 'paddle.float32'

        self.assertEqual(a_str, expected)
        paddle.enable_static()

L
Leo Chen 已提交
833

834 835 836
class TestVarBaseSetitem(unittest.TestCase):
    def setUp(self):
        paddle.disable_static()
837 838 839
        self.set_dtype()
        self.tensor_x = paddle.to_tensor(np.ones((4, 2, 3)).astype(self.dtype))
        self.np_value = np.random.random((2, 3)).astype(self.dtype)
840 841
        self.tensor_value = paddle.to_tensor(self.np_value)

842 843 844
    def set_dtype(self):
        self.dtype = "int32"

845 846
    def _test(self, value):
        paddle.disable_static()
847
        self.assertEqual(self.tensor_x.inplace_version, 0)
848

849
        id_origin = id(self.tensor_x)
850
        self.tensor_x[0] = value
851
        self.assertEqual(self.tensor_x.inplace_version, 1)
852 853

        if isinstance(value, (six.integer_types, float)):
854
            result = np.zeros((2, 3)).astype(self.dtype) + value
855 856 857 858 859 860 861 862

        else:
            result = self.np_value

        self.assertTrue(np.array_equal(self.tensor_x[0].numpy(), result))
        self.assertEqual(id_origin, id(self.tensor_x))

        self.tensor_x[1:2] = value
863
        self.assertEqual(self.tensor_x.inplace_version, 2)
864 865 866 867
        self.assertTrue(np.array_equal(self.tensor_x[1].numpy(), result))
        self.assertEqual(id_origin, id(self.tensor_x))

        self.tensor_x[...] = value
868
        self.assertEqual(self.tensor_x.inplace_version, 3)
869 870 871 872 873 874 875 876 877 878 879 880 881 882 883
        self.assertTrue(np.array_equal(self.tensor_x[3].numpy(), result))
        self.assertEqual(id_origin, id(self.tensor_x))

    def test_value_tensor(self):
        paddle.disable_static()
        self._test(self.tensor_value)

    def test_value_numpy(self):
        paddle.disable_static()
        self._test(self.np_value)

    def test_value_int(self):
        paddle.disable_static()
        self._test(10)

884 885 886 887 888 889 890 891 892 893

class TestVarBaseSetitemInt64(TestVarBaseSetitem):
    def set_dtype(self):
        self.dtype = "int64"


class TestVarBaseSetitemFp32(TestVarBaseSetitem):
    def set_dtype(self):
        self.dtype = "float32"

894 895 896 897 898
    def test_value_float(self):
        paddle.disable_static()
        self._test(3.3)


899 900 901 902 903
class TestVarBaseSetitemFp64(TestVarBaseSetitem):
    def set_dtype(self):
        self.dtype = "float64"


904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928
class TestVarBaseInplaceVersion(unittest.TestCase):
    def test_setitem(self):
        paddle.disable_static()

        var = paddle.ones(shape=[4, 2, 3], dtype="float32")
        self.assertEqual(var.inplace_version, 0)

        var[1] = 1
        self.assertEqual(var.inplace_version, 1)

        var[1:2] = 1
        self.assertEqual(var.inplace_version, 2)

    def test_bump_inplace_version(self):
        paddle.disable_static()
        var = paddle.ones(shape=[4, 2, 3], dtype="float32")
        self.assertEqual(var.inplace_version, 0)

        var._bump_inplace_version()
        self.assertEqual(var.inplace_version, 1)

        var._bump_inplace_version()
        self.assertEqual(var.inplace_version, 2)


L
Leo Chen 已提交
929 930
if __name__ == '__main__':
    unittest.main()