test_var_base.py 62.0 KB
Newer Older
L
Leo Chen 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import copy
L
Leo Chen 已提交
16
import unittest
17

18 19
import numpy as np

20
import paddle
L
Leo Chen 已提交
21 22
import paddle.fluid as fluid
import paddle.fluid.core as core
23
import paddle.nn.functional as F
L
Leo Chen 已提交
24 25 26 27 28 29 30 31


class TestVarBase(unittest.TestCase):
    def setUp(self):
        self.shape = [512, 1234]
        self.dtype = np.float32
        self.array = np.random.uniform(0.1, 1, self.shape).astype(self.dtype)

32
    def test_to_tensor(self):
33
        def check_with_place(place):
34
            with fluid.dygraph.guard():
35
                paddle.set_default_dtype('float32')
36
                # set_default_dtype should not take effect on int
37
                x = paddle.to_tensor(1, place=place, stop_gradient=False)
38
                np.testing.assert_array_equal(x.numpy(), [1])
39 40
                self.assertNotEqual(x.dtype, core.VarDesc.VarType.FP32)

41 42 43
                y = paddle.to_tensor(2, place=x.place)
                self.assertEqual(str(x.place), str(y.place))

44
                # set_default_dtype should not take effect on numpy
45 46 47 48 49 50 51 52
                x = paddle.to_tensor(
                    np.array([1.2]).astype('float16'),
                    place=place,
                    stop_gradient=False,
                )
                np.testing.assert_array_equal(
                    x.numpy(), np.array([1.2], 'float16')
                )
53 54
                self.assertEqual(x.dtype, core.VarDesc.VarType.FP16)

55 56 57 58
                # set_default_dtype take effect on int
                x = paddle.to_tensor(1, place=place)
                self.assertTrue(x.dtype, core.VarDesc.VarType.INT64)

59
                # set_default_dtype take effect on float
60
                x = paddle.to_tensor(1.2, place=place, stop_gradient=False)
61 62 63
                np.testing.assert_array_equal(
                    x.numpy(), np.array([1.2]).astype('float32')
                )
64
                self.assertEqual(x.dtype, core.VarDesc.VarType.FP32)
Z
Zhou Wei 已提交
65
                clone_x = x.clone()
66 67 68
                np.testing.assert_array_equal(
                    clone_x.numpy(), np.array([1.2]).astype('float32')
                )
Z
Zhou Wei 已提交
69 70 71
                self.assertEqual(clone_x.dtype, core.VarDesc.VarType.FP32)
                y = clone_x**2
                y.backward()
72 73 74
                np.testing.assert_array_equal(
                    x.grad.numpy(), np.array([2.4]).astype('float32')
                )
75
                y = x.cpu()
76
                self.assertEqual(y.place.__repr__(), "Place(cpu)")
77 78
                if core.is_compiled_with_cuda():
                    y = x.pin_memory()
79
                    self.assertEqual(y.place.__repr__(), "Place(gpu_pinned)")
80
                    y = x.cuda()
81
                    self.assertEqual(y.place.__repr__(), "Place(gpu:0)")
82
                    y = x.cuda(None)
83
                    self.assertEqual(y.place.__repr__(), "Place(gpu:0)")
84
                    y = x.cuda(device_id=0)
85
                    self.assertEqual(y.place.__repr__(), "Place(gpu:0)")
86
                    y = x.cuda(blocking=False)
87
                    self.assertEqual(y.place.__repr__(), "Place(gpu:0)")
88
                    y = x.cuda(blocking=True)
89
                    self.assertEqual(y.place.__repr__(), "Place(gpu:0)")
90 91
                    with self.assertRaises(ValueError):
                        y = x.cuda("test")
92

93 94 95 96 97
                # support 'dtype' is core.VarType
                x = paddle.rand((2, 2))
                y = paddle.to_tensor([2, 2], dtype=x.dtype)
                self.assertEqual(y.dtype, core.VarDesc.VarType.FP32)

98
                # set_default_dtype take effect on complex
99
                x = paddle.to_tensor(1 + 2j, place=place, stop_gradient=False)
100
                np.testing.assert_array_equal(x.numpy(), [1 + 2j])
C
chentianyu03 已提交
101
                self.assertEqual(x.dtype, core.VarDesc.VarType.COMPLEX64)
102 103 104

                paddle.set_default_dtype('float64')
                x = paddle.to_tensor(1.2, place=place, stop_gradient=False)
105
                np.testing.assert_array_equal(x.numpy(), [1.2])
106 107 108
                self.assertEqual(x.dtype, core.VarDesc.VarType.FP64)

                x = paddle.to_tensor(1 + 2j, place=place, stop_gradient=False)
109
                np.testing.assert_array_equal(x.numpy(), [1 + 2j])
C
chentianyu03 已提交
110
                self.assertEqual(x.dtype, core.VarDesc.VarType.COMPLEX128)
111

112 113 114
                x = paddle.to_tensor(
                    1, dtype='float32', place=place, stop_gradient=False
                )
115
                np.testing.assert_array_equal(x.numpy(), [1.0])
116 117 118 119 120
                self.assertEqual(x.dtype, core.VarDesc.VarType.FP32)
                self.assertEqual(x.shape, [1])
                self.assertEqual(x.stop_gradient, False)
                self.assertEqual(x.type, core.VarDesc.VarType.LOD_TENSOR)

121 122 123 124 125 126
                x = paddle.to_tensor(
                    (1, 2), dtype='float32', place=place, stop_gradient=False
                )
                x = paddle.to_tensor(
                    [1, 2], dtype='float32', place=place, stop_gradient=False
                )
127
                np.testing.assert_array_equal(x.numpy(), [1.0, 2.0])
128
                self.assertEqual(x.dtype, core.VarDesc.VarType.FP32)
129
                self.assertIsNone(x.grad)
130 131 132 133
                self.assertEqual(x.shape, [2])
                self.assertEqual(x.stop_gradient, False)
                self.assertEqual(x.type, core.VarDesc.VarType.LOD_TENSOR)

134 135 136 137 138 139
                x = paddle.to_tensor(
                    self.array,
                    dtype='float32',
                    place=place,
                    stop_gradient=False,
                )
140
                np.testing.assert_array_equal(x.numpy(), self.array)
141 142 143 144 145 146 147
                self.assertEqual(x.dtype, core.VarDesc.VarType.FP32)
                self.assertEqual(x.shape, self.shape)
                self.assertEqual(x.stop_gradient, False)
                self.assertEqual(x.type, core.VarDesc.VarType.LOD_TENSOR)

                y = paddle.to_tensor(x)
                y = paddle.to_tensor(y, dtype='float64', place=place)
148
                np.testing.assert_array_equal(y.numpy(), self.array)
149 150 151 152 153
                self.assertEqual(y.dtype, core.VarDesc.VarType.FP64)
                self.assertEqual(y.shape, self.shape)
                self.assertEqual(y.stop_gradient, True)
                self.assertEqual(y.type, core.VarDesc.VarType.LOD_TENSOR)
                z = x + y
154
                np.testing.assert_array_equal(z.numpy(), 2 * self.array)
155

156 157 158
                x = paddle.to_tensor(
                    [1 + 2j, 1 - 2j], dtype='complex64', place=place
                )
159
                y = paddle.to_tensor(x)
160
                np.testing.assert_array_equal(x.numpy(), [1 + 2j, 1 - 2j])
C
chentianyu03 已提交
161
                self.assertEqual(y.dtype, core.VarDesc.VarType.COMPLEX64)
162 163
                self.assertEqual(y.shape, [2])

164 165 166 167 168
                paddle.set_default_dtype('float32')
                x = paddle.randn([3, 4])
                x_array = np.array(x)
                self.assertEqual(x_array.shape, x.numpy().shape)
                self.assertEqual(x_array.dtype, x.numpy().dtype)
169
                np.testing.assert_array_equal(x_array, x.numpy())
170 171 172 173 174 175 176 177 178

                x = paddle.to_tensor(1.0)
                self.assertEqual(x.item(), 1.0)
                self.assertTrue(isinstance(x.item(), float))

                x = paddle.randn([3, 2, 2])
                self.assertTrue(isinstance(x.item(5), float))
                self.assertTrue(isinstance(x.item(1, 0, 1), float))
                self.assertEqual(x.item(5), x.item(1, 0, 1))
179 180 181
                np.testing.assert_array_equal(
                    x.item(1, 0, 1), x.numpy().item(1, 0, 1)
                )
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213

                x = paddle.to_tensor([[1.111111, 2.222222, 3.333333]])
                self.assertEqual(x.item(0, 2), x.item(2))
                self.assertAlmostEqual(x.item(2), 3.333333)
                self.assertTrue(isinstance(x.item(0, 2), float))

                x = paddle.to_tensor(1.0, dtype='float64')
                self.assertEqual(x.item(), 1.0)
                self.assertTrue(isinstance(x.item(), float))

                x = paddle.to_tensor(1.0, dtype='float16')
                self.assertEqual(x.item(), 1.0)
                self.assertTrue(isinstance(x.item(), float))

                x = paddle.to_tensor(1, dtype='uint8')
                self.assertEqual(x.item(), 1)
                self.assertTrue(isinstance(x.item(), int))

                x = paddle.to_tensor(1, dtype='int8')
                self.assertEqual(x.item(), 1)
                self.assertTrue(isinstance(x.item(), int))

                x = paddle.to_tensor(1, dtype='int16')
                self.assertEqual(x.item(), 1)
                self.assertTrue(isinstance(x.item(), int))

                x = paddle.to_tensor(1, dtype='int32')
                self.assertEqual(x.item(), 1)
                self.assertTrue(isinstance(x.item(), int))

                x = paddle.to_tensor(1, dtype='int64')
                self.assertEqual(x.item(), 1)
T
tianshuo78520a 已提交
214
                self.assertTrue(isinstance(x.item(), int))
215 216 217 218 219 220 221 222 223

                x = paddle.to_tensor(True)
                self.assertEqual(x.item(), True)
                self.assertTrue(isinstance(x.item(), bool))

                x = paddle.to_tensor(1 + 1j)
                self.assertEqual(x.item(), 1 + 1j)
                self.assertTrue(isinstance(x.item(), complex))

224 225 226 227 228
                # empty tensor
                x = paddle.to_tensor([])
                self.assertEqual(x.shape, [0])
                expected_result = np.array([], dtype='float32')
                self.assertEqual(x.numpy().shape, expected_result.shape)
229
                np.testing.assert_array_equal(x.numpy(), expected_result)
230

231 232 233 234 235 236
                numpy_array = np.random.randn(3, 4)
                # covert core.LoDTensor to paddle.Tensor
                lod_tensor = paddle.fluid.core.LoDTensor()
                place = paddle.fluid.framework._current_expected_place()
                lod_tensor.set(numpy_array, place)
                x = paddle.to_tensor(lod_tensor)
237
                np.testing.assert_array_equal(x.numpy(), numpy_array)
238 239 240 241 242 243 244 245
                self.assertEqual(x.type, core.VarDesc.VarType.LOD_TENSOR)
                self.assertEqual(str(x.place), str(place))

                # covert core.Tensor to paddle.Tensor
                x = paddle.to_tensor(numpy_array)
                dlpack = x.value().get_tensor()._to_dlpack()
                tensor_from_dlpack = paddle.fluid.core.from_dlpack(dlpack)
                x = paddle.to_tensor(tensor_from_dlpack)
246
                np.testing.assert_array_equal(x.numpy(), numpy_array)
247 248
                self.assertEqual(x.type, core.VarDesc.VarType.LOD_TENSOR)

249 250 251 252 253 254 255 256
                with self.assertRaises(ValueError):
                    paddle.randn([3, 2, 2]).item()
                with self.assertRaises(ValueError):
                    paddle.randn([3, 2, 2]).item(18)
                with self.assertRaises(ValueError):
                    paddle.randn([3, 2, 2]).item(1, 2)
                with self.assertRaises(ValueError):
                    paddle.randn([3, 2, 2]).item(2, 1, 2)
257 258 259 260 261 262 263 264 265 266 267
                with self.assertRaises(TypeError):
                    paddle.to_tensor('test')
                with self.assertRaises(TypeError):
                    paddle.to_tensor(1, dtype='test')
                with self.assertRaises(ValueError):
                    paddle.to_tensor([[1], [2, 3]])
                with self.assertRaises(ValueError):
                    paddle.to_tensor([[1], [2, 3]], place='test')
                with self.assertRaises(ValueError):
                    paddle.to_tensor([[1], [2, 3]], place=1)

268 269
        check_with_place(core.CPUPlace())
        check_with_place("cpu")
270
        if core.is_compiled_with_cuda():
271 272 273 274
            check_with_place(core.CUDAPinnedPlace())
            check_with_place("gpu_pinned")
            check_with_place(core.CUDAPlace(0))
            check_with_place("gpu:0")
275
        if core.is_compiled_with_npu():
276 277
            check_with_place(core.NPUPlace(0))
            check_with_place("npu:0")
278

279
    def test_to_tensor_not_change_input_stop_gradient(self):
280 281 282 283 284 285 286
        with paddle.fluid.dygraph.guard(core.CPUPlace()):
            a = paddle.zeros([1024])
            a.stop_gradient = False
            b = paddle.to_tensor(a)
            self.assertEqual(a.stop_gradient, False)
            self.assertEqual(b.stop_gradient, True)

287
    def test_to_tensor_change_place(self):
288 289 290 291 292
        if core.is_compiled_with_cuda():
            a_np = np.random.rand(1024, 1024)
            with paddle.fluid.dygraph.guard(core.CPUPlace()):
                a = paddle.to_tensor(a_np, place=paddle.CUDAPinnedPlace())
                a = paddle.to_tensor(a)
293
                self.assertEqual(a.place.__repr__(), "Place(cpu)")
294 295 296 297

            with paddle.fluid.dygraph.guard(core.CUDAPlace(0)):
                a = paddle.to_tensor(a_np, place=paddle.CUDAPinnedPlace())
                a = paddle.to_tensor(a)
298
                self.assertEqual(a.place.__repr__(), "Place(gpu:0)")
299 300 301 302

            with paddle.fluid.dygraph.guard(core.CUDAPlace(0)):
                a = paddle.to_tensor(a_np, place=paddle.CPUPlace())
                a = paddle.to_tensor(a, place=paddle.CUDAPinnedPlace())
303
                self.assertEqual(a.place.__repr__(), "Place(gpu_pinned)")
304

305
    def test_to_tensor_with_lodtensor(self):
306 307 308 309 310 311
        if core.is_compiled_with_cuda():
            a_np = np.random.rand(1024, 1024)
            with paddle.fluid.dygraph.guard(core.CPUPlace()):
                lod_tensor = core.LoDTensor()
                lod_tensor.set(a_np, core.CPUPlace())
                a = paddle.to_tensor(lod_tensor)
312
                np.testing.assert_array_equal(a_np, a.numpy())
313 314 315 316

            with paddle.fluid.dygraph.guard(core.CUDAPlace(0)):
                lod_tensor = core.LoDTensor()
                lod_tensor.set(a_np, core.CUDAPlace(0))
317
                a = paddle.to_tensor(lod_tensor, place=core.CPUPlace())
318
                np.testing.assert_array_equal(a_np, a.numpy())
319
                self.assertTrue(a.place.__repr__(), "Place(cpu)")
320

321
    def test_to_variable(self):
L
Leo Chen 已提交
322 323
        with fluid.dygraph.guard():
            var = fluid.dygraph.to_variable(self.array, name="abc")
324
            np.testing.assert_array_equal(var.numpy(), self.array)
L
Leo Chen 已提交
325 326 327 328 329 330 331
            self.assertEqual(var.name, 'abc')
            # default value
            self.assertEqual(var.persistable, False)
            self.assertEqual(var.stop_gradient, True)
            self.assertEqual(var.shape, self.shape)
            self.assertEqual(var.dtype, core.VarDesc.VarType.FP32)
            self.assertEqual(var.type, core.VarDesc.VarType.LOD_TENSOR)
332 333 334 335 336
            # The type of input must be 'ndarray' or 'Variable', it will raise TypeError
            with self.assertRaises(TypeError):
                var = fluid.dygraph.to_variable("test", name="abc")
            # test to_variable of LayerObjectHelper(LayerHelperBase)
            with self.assertRaises(TypeError):
337
                linear = paddle.nn.Linear(32, 64)
338
                var = linear._helper.to_variable("test", name="abc")
L
Leo Chen 已提交
339

340
    def test_list_to_variable(self):
341 342 343
        with fluid.dygraph.guard():
            array = [[[1, 2], [1, 2], [1.0, 2]], [[1, 2], [1, 2], [1, 2]]]
            var = fluid.dygraph.to_variable(array, dtype='int32')
344
            np.testing.assert_array_equal(var.numpy(), array)
345 346 347 348
            self.assertEqual(var.shape, [2, 3, 2])
            self.assertEqual(var.dtype, core.VarDesc.VarType.INT32)
            self.assertEqual(var.type, core.VarDesc.VarType.LOD_TENSOR)

349
    def test_tuple_to_variable(self):
350 351 352
        with fluid.dygraph.guard():
            array = (((1, 2), (1, 2), (1, 2)), ((1, 2), (1, 2), (1, 2)))
            var = fluid.dygraph.to_variable(array, dtype='float32')
353
            np.testing.assert_array_equal(var.numpy(), array)
354 355 356 357
            self.assertEqual(var.shape, [2, 3, 2])
            self.assertEqual(var.dtype, core.VarDesc.VarType.FP32)
            self.assertEqual(var.type, core.VarDesc.VarType.LOD_TENSOR)

358
    def test_tensor_to_variable(self):
359 360
        with fluid.dygraph.guard():
            t = fluid.Tensor()
L
Leo Chen 已提交
361
            t.set(np.random.random((1024, 1024)), fluid.CPUPlace())
362
            var = fluid.dygraph.to_variable(t)
363
            np.testing.assert_array_equal(t, var.numpy())
364

365
    def test_leaf_tensor(self):
366 367 368 369 370 371
        with fluid.dygraph.guard():
            x = paddle.to_tensor(np.random.uniform(-1, 1, size=[10, 10]))
            self.assertTrue(x.is_leaf)
            y = x + 1
            self.assertTrue(y.is_leaf)

372 373 374
            x = paddle.to_tensor(
                np.random.uniform(-1, 1, size=[10, 10]), stop_gradient=False
            )
375 376 377 378 379
            self.assertTrue(x.is_leaf)
            y = x + 1
            self.assertFalse(y.is_leaf)

            linear = paddle.nn.Linear(10, 10)
380 381 382 383
            input = paddle.to_tensor(
                np.random.uniform(-1, 1, size=[10, 10]).astype('float32'),
                stop_gradient=False,
            )
384 385 386 387 388 389 390
            self.assertTrue(input.is_leaf)

            out = linear(input)
            self.assertTrue(linear.weight.is_leaf)
            self.assertTrue(linear.bias.is_leaf)
            self.assertFalse(out.is_leaf)

391
    def test_detach(self):
Z
Zhou Wei 已提交
392 393 394 395 396
        with fluid.dygraph.guard():
            x = paddle.to_tensor(1.0, dtype="float64", stop_gradient=False)
            detach_x = x.detach()
            self.assertTrue(detach_x.stop_gradient, True)

397 398 399
            cmp_float = (
                np.allclose if core.is_compiled_with_rocm() else np.array_equal
            )
Z
Zhou Wei 已提交
400
            detach_x[:] = 10.0
Z
zhulei 已提交
401
            self.assertTrue(cmp_float(x.numpy(), [10.0]))
Z
Zhou Wei 已提交
402 403 404

            y = x**2
            y.backward()
Z
zhulei 已提交
405
            self.assertTrue(cmp_float(x.grad.numpy(), [20.0]))
406
            self.assertIsNone(detach_x.grad)
Z
Zhou Wei 已提交
407

408 409 410
            detach_x.stop_gradient = (
                False  # Set stop_gradient to be False, supported auto-grad
            )
Z
Zhou Wei 已提交
411 412
            z = 3 * detach_x**2
            z.backward()
Z
zhulei 已提交
413 414
            self.assertTrue(cmp_float(x.grad.numpy(), [20.0]))
            self.assertTrue(cmp_float(detach_x.grad.numpy(), [60.0]))
415

416 417 418 419 420
            with self.assertRaises(ValueError):
                detach_x[:] = 5.0

            detach_x.stop_gradient = True

Z
Zhou Wei 已提交
421
            # Due to sharing of data with origin Tensor, There are some unsafe operations:
422 423 424 425
            with self.assertRaises(RuntimeError):
                y = 2**x
                detach_x[:] = 5.0
                y.backward()
Z
Zhou Wei 已提交
426

427
    def test_write_property(self):
L
Leo Chen 已提交
428 429 430
        with fluid.dygraph.guard():
            var = fluid.dygraph.to_variable(self.array)

431
            self.assertEqual(var.name, 'generated_tensor_0')
L
Leo Chen 已提交
432 433 434 435 436 437 438 439 440 441 442
            var.name = 'test'
            self.assertEqual(var.name, 'test')

            self.assertEqual(var.persistable, False)
            var.persistable = True
            self.assertEqual(var.persistable, True)

            self.assertEqual(var.stop_gradient, True)
            var.stop_gradient = False
            self.assertEqual(var.stop_gradient, False)

443
    def test_deep_copy(self):
444
        with fluid.dygraph.guard():
姜永久 已提交
445
            empty_var = core.eager.Tensor()
446
            empty_var_copy = copy.deepcopy(empty_var)
447 448 449
            self.assertEqual(
                empty_var.stop_gradient, empty_var_copy.stop_gradient
            )
450 451 452 453
            self.assertEqual(empty_var.persistable, empty_var_copy.persistable)
            self.assertEqual(empty_var.type, empty_var_copy.type)
            self.assertEqual(empty_var.dtype, empty_var_copy.dtype)

454 455
            x = paddle.to_tensor([2.0], stop_gradient=False)
            y = paddle.to_tensor([3.0], stop_gradient=False)
456 457 458 459 460 461 462 463 464
            z = x * y
            memo = {}
            x_copy = copy.deepcopy(x, memo)
            y_copy = copy.deepcopy(y, memo)

            self.assertEqual(x_copy.stop_gradient, y_copy.stop_gradient)
            self.assertEqual(x_copy.persistable, y_copy.persistable)
            self.assertEqual(x_copy.type, y_copy.type)
            self.assertEqual(x_copy.dtype, y_copy.dtype)
465 466
            np.testing.assert_array_equal(x.numpy(), x_copy.numpy())
            np.testing.assert_array_equal(y.numpy(), y_copy.numpy())
467 468

            self.assertNotEqual(id(x), id(x_copy))
469
            np.testing.assert_array_equal(x.numpy(), [2.0])
470

471
            with self.assertRaises(ValueError):
472
                x_copy[:] = 5.0
473

474 475 476 477 478 479 480 481 482
            with self.assertRaises(RuntimeError):
                copy.deepcopy(z)

            x_copy2 = copy.deepcopy(x, memo)
            y_copy2 = copy.deepcopy(y, memo)
            self.assertEqual(id(x_copy), id(x_copy2))
            self.assertEqual(id(y_copy), id(y_copy2))

            # test copy selected rows
姜永久 已提交
483 484 485 486 487 488 489
            x = core.eager.Tensor(
                core.VarDesc.VarType.FP32,
                [3, 100],
                "selected_rows",
                core.VarDesc.VarType.SELECTED_ROWS,
                True,
            )
490

491
            selected_rows = x.value().get_selected_rows()
492 493 494
            selected_rows.get_tensor().set(
                np.random.rand(3, 100), core.CPUPlace()
            )
495 496 497 498 499 500 501 502 503 504
            selected_rows.set_height(10)
            selected_rows.set_rows([3, 5, 7])
            x_copy = copy.deepcopy(x)

            self.assertEqual(x_copy.stop_gradient, x.stop_gradient)
            self.assertEqual(x_copy.persistable, x.persistable)
            self.assertEqual(x_copy.type, x.type)
            self.assertEqual(x_copy.dtype, x.dtype)

            copy_selected_rows = x_copy.value().get_selected_rows()
505 506 507
            self.assertEqual(
                copy_selected_rows.height(), selected_rows.height()
            )
508
            self.assertEqual(copy_selected_rows.rows(), selected_rows.rows())
509 510
            np.testing.assert_array_equal(
                np.array(copy_selected_rows.get_tensor()),
511 512
                np.array(selected_rows.get_tensor()),
            )
513

L
Leo Chen 已提交
514
    # test some patched methods
515
    def test_set_value(self):
L
Leo Chen 已提交
516 517 518 519 520 521 522
        with fluid.dygraph.guard():
            var = fluid.dygraph.to_variable(self.array)
            tmp1 = np.random.uniform(0.1, 1, [2, 2, 3]).astype(self.dtype)
            self.assertRaises(AssertionError, var.set_value, tmp1)

            tmp2 = np.random.uniform(0.1, 1, self.shape).astype(self.dtype)
            var.set_value(tmp2)
523
            np.testing.assert_array_equal(var.numpy(), tmp2)
L
Leo Chen 已提交
524

525
    def test_to_string(self):
L
Leo Chen 已提交
526 527
        with fluid.dygraph.guard():
            var = fluid.dygraph.to_variable(self.array)
528
            self.assertTrue(isinstance(str(var), str))
L
Leo Chen 已提交
529

530
    def test_element_size(self):
531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564
        with fluid.dygraph.guard():
            x = paddle.to_tensor(1, dtype='bool')
            self.assertEqual(x.element_size(), 1)

            x = paddle.to_tensor(1, dtype='float16')
            self.assertEqual(x.element_size(), 2)

            x = paddle.to_tensor(1, dtype='float32')
            self.assertEqual(x.element_size(), 4)

            x = paddle.to_tensor(1, dtype='float64')
            self.assertEqual(x.element_size(), 8)

            x = paddle.to_tensor(1, dtype='int8')
            self.assertEqual(x.element_size(), 1)

            x = paddle.to_tensor(1, dtype='int16')
            self.assertEqual(x.element_size(), 2)

            x = paddle.to_tensor(1, dtype='int32')
            self.assertEqual(x.element_size(), 4)

            x = paddle.to_tensor(1, dtype='int64')
            self.assertEqual(x.element_size(), 8)

            x = paddle.to_tensor(1, dtype='uint8')
            self.assertEqual(x.element_size(), 1)

            x = paddle.to_tensor(1, dtype='complex64')
            self.assertEqual(x.element_size(), 8)

            x = paddle.to_tensor(1, dtype='complex128')
            self.assertEqual(x.element_size(), 16)

565
    def test_backward(self):
L
Leo Chen 已提交
566 567 568
        with fluid.dygraph.guard():
            var = fluid.dygraph.to_variable(self.array)
            var.stop_gradient = False
569
            loss = F.relu(var)
L
Leo Chen 已提交
570 571 572 573
            loss.backward()
            grad_var = var._grad_ivar()
            self.assertEqual(grad_var.shape, self.shape)

574
    def test_gradient(self):
L
Leo Chen 已提交
575 576 577
        with fluid.dygraph.guard():
            var = fluid.dygraph.to_variable(self.array)
            var.stop_gradient = False
578
            loss = F.relu(var)
L
Leo Chen 已提交
579 580 581 582
            loss.backward()
            grad_var = var.gradient()
            self.assertEqual(grad_var.shape, self.array.shape)

583
    def test_block(self):
L
Leo Chen 已提交
584 585
        with fluid.dygraph.guard():
            var = fluid.dygraph.to_variable(self.array)
586 587 588
            self.assertEqual(
                var.block, fluid.default_main_program().global_block()
            )
L
Leo Chen 已提交
589

590 591
    def _test_slice(self):
        w = fluid.dygraph.to_variable(
592 593
            np.random.random((784, 100, 100)).astype('float64')
        )
594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615

        for i in range(3):
            nw = w[i]
            self.assertEqual((100, 100), tuple(nw.shape))

        nw = w[:]
        self.assertEqual((784, 100, 100), tuple(nw.shape))

        nw = w[:, :]
        self.assertEqual((784, 100, 100), tuple(nw.shape))

        nw = w[:, :, -1]
        self.assertEqual((784, 100), tuple(nw.shape))

        nw = w[1, 1, 1]

        self.assertEqual(len(nw.shape), 1)
        self.assertEqual(nw.shape[0], 1)

        nw = w[:, :, :-1]
        self.assertEqual((784, 100, 99), tuple(nw.shape))

616 617 618 619 620 621 622
        tensor_array = np.array(
            [
                [[1, 2, 3], [4, 5, 6], [7, 8, 9]],
                [[10, 11, 12], [13, 14, 15], [16, 17, 18]],
                [[19, 20, 21], [22, 23, 24], [25, 26, 27]],
            ]
        ).astype('float32')
623 624 625 626 627 628
        var = fluid.dygraph.to_variable(tensor_array)
        var1 = var[0, 1, 1]
        var2 = var[1:]
        var3 = var[0:1]
        var4 = var[::-1]
        var5 = var[1, 1:, 1:]
629
        var_reshape = paddle.reshape(var, [3, -1, 3])
630 631 632 633 634 635 636 637 638 639
        var6 = var_reshape[:, :, -1]
        var7 = var[:, :, :-1]
        var8 = var[:1, :1, :1]
        var9 = var[:-1, :-1, :-1]
        var10 = var[::-1, :1, :-1]
        var11 = var[:-1, ::-1, -1:]
        var12 = var[1:2, 2:, ::-1]
        var13 = var[2:10, 2:, -2:-1]
        var14 = var[1:-1, 0:2, ::-1]
        var15 = var[::-1, ::-1, ::-1]
640
        var16 = var[-4:4]
641 642
        var17 = var[:, 0, 0:0]
        var18 = var[:, 1:1:2]
643 644

        vars = [
645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663
            var,
            var1,
            var2,
            var3,
            var4,
            var5,
            var6,
            var7,
            var8,
            var9,
            var10,
            var11,
            var12,
            var13,
            var14,
            var15,
            var16,
            var17,
            var18,
664 665 666
        ]
        local_out = [var.numpy() for var in vars]

667 668 669 670 671 672
        np.testing.assert_array_equal(local_out[1], tensor_array[0, 1, 1:2])
        np.testing.assert_array_equal(local_out[2], tensor_array[1:])
        np.testing.assert_array_equal(local_out[3], tensor_array[0:1])
        np.testing.assert_array_equal(local_out[4], tensor_array[::-1])
        np.testing.assert_array_equal(local_out[5], tensor_array[1, 1:, 1:])
        np.testing.assert_array_equal(
673 674
            local_out[6], tensor_array.reshape((3, -1, 3))[:, :, -1]
        )
675 676 677
        np.testing.assert_array_equal(local_out[7], tensor_array[:, :, :-1])
        np.testing.assert_array_equal(local_out[8], tensor_array[:1, :1, :1])
        np.testing.assert_array_equal(local_out[9], tensor_array[:-1, :-1, :-1])
678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695
        np.testing.assert_array_equal(
            local_out[10], tensor_array[::-1, :1, :-1]
        )
        np.testing.assert_array_equal(
            local_out[11], tensor_array[:-1, ::-1, -1:]
        )
        np.testing.assert_array_equal(
            local_out[12], tensor_array[1:2, 2:, ::-1]
        )
        np.testing.assert_array_equal(
            local_out[13], tensor_array[2:10, 2:, -2:-1]
        )
        np.testing.assert_array_equal(
            local_out[14], tensor_array[1:-1, 0:2, ::-1]
        )
        np.testing.assert_array_equal(
            local_out[15], tensor_array[::-1, ::-1, ::-1]
        )
696 697 698
        np.testing.assert_array_equal(local_out[16], tensor_array[-4:4])
        np.testing.assert_array_equal(local_out[17], tensor_array[:, 0, 0:0])
        np.testing.assert_array_equal(local_out[18], tensor_array[:, 1:1:2])
699

700
    def _test_slice_for_tensor_attr(self):
701 702 703 704 705 706 707
        tensor_array = np.array(
            [
                [[1, 2, 3], [4, 5, 6], [7, 8, 9]],
                [[10, 11, 12], [13, 14, 15], [16, 17, 18]],
                [[19, 20, 21], [22, 23, 24], [25, 26, 27]],
            ]
        ).astype('float32')
708 709 710 711 712 713 714 715 716 717 718 719 720 721

        var = paddle.to_tensor(tensor_array)

        one = paddle.ones(shape=[1], dtype="int32")
        two = paddle.full(shape=[1], fill_value=2, dtype="int32")
        negative_one = paddle.full(shape=[1], fill_value=-1, dtype="int32")
        four = paddle.full(shape=[1], fill_value=4, dtype="int32")

        var = fluid.dygraph.to_variable(tensor_array)
        var1 = var[0, one, one]
        var2 = var[one:]
        var3 = var[0:one]
        var4 = var[::negative_one]
        var5 = var[one, one:, one:]
722
        var_reshape = paddle.reshape(var, [3, negative_one, 3])
723 724 725 726 727 728 729 730 731 732 733 734 735
        var6 = var_reshape[:, :, negative_one]
        var7 = var[:, :, :negative_one]
        var8 = var[:one, :one, :1]
        var9 = var[:-1, :negative_one, :negative_one]
        var10 = var[::negative_one, :one, :negative_one]
        var11 = var[:negative_one, ::-1, negative_one:]
        var12 = var[one:2, 2:, ::negative_one]
        var13 = var[two:10, 2:, -2:negative_one]
        var14 = var[1:negative_one, 0:2, ::negative_one]
        var15 = var[::negative_one, ::-1, ::negative_one]
        var16 = var[-4:4]

        vars = [
736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752
            var,
            var1,
            var2,
            var3,
            var4,
            var5,
            var6,
            var7,
            var8,
            var9,
            var10,
            var11,
            var12,
            var13,
            var14,
            var15,
            var16,
753 754 755
        ]
        local_out = [var.numpy() for var in vars]

756 757 758 759 760 761
        np.testing.assert_array_equal(local_out[1], tensor_array[0, 1, 1:2])
        np.testing.assert_array_equal(local_out[2], tensor_array[1:])
        np.testing.assert_array_equal(local_out[3], tensor_array[0:1])
        np.testing.assert_array_equal(local_out[4], tensor_array[::-1])
        np.testing.assert_array_equal(local_out[5], tensor_array[1, 1:, 1:])
        np.testing.assert_array_equal(
762 763
            local_out[6], tensor_array.reshape((3, -1, 3))[:, :, -1]
        )
764 765 766
        np.testing.assert_array_equal(local_out[7], tensor_array[:, :, :-1])
        np.testing.assert_array_equal(local_out[8], tensor_array[:1, :1, :1])
        np.testing.assert_array_equal(local_out[9], tensor_array[:-1, :-1, :-1])
767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784
        np.testing.assert_array_equal(
            local_out[10], tensor_array[::-1, :1, :-1]
        )
        np.testing.assert_array_equal(
            local_out[11], tensor_array[:-1, ::-1, -1:]
        )
        np.testing.assert_array_equal(
            local_out[12], tensor_array[1:2, 2:, ::-1]
        )
        np.testing.assert_array_equal(
            local_out[13], tensor_array[2:10, 2:, -2:-1]
        )
        np.testing.assert_array_equal(
            local_out[14], tensor_array[1:-1, 0:2, ::-1]
        )
        np.testing.assert_array_equal(
            local_out[15], tensor_array[::-1, ::-1, ::-1]
        )
785
        np.testing.assert_array_equal(local_out[16], tensor_array[-4:4])
786

787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807
    def _test_for_getitem_ellipsis_index(self):
        shape = (64, 3, 5, 256)
        np_fp32_value = np.random.random(shape).astype('float32')
        np_int_value = np.random.randint(1, 100, shape)

        var_fp32 = paddle.to_tensor(np_fp32_value)
        var_int = paddle.to_tensor(np_int_value)

        def assert_getitem_ellipsis_index(var_tensor, var_np):
            var = [
                var_tensor[..., 0].numpy(),
                var_tensor[..., 1, 0].numpy(),
                var_tensor[0, ..., 1, 0].numpy(),
                var_tensor[1, ..., 1].numpy(),
                var_tensor[2, ...].numpy(),
                var_tensor[2, 0, ...].numpy(),
                var_tensor[2, 0, 1, ...].numpy(),
                var_tensor[...].numpy(),
                var_tensor[:, ..., 100].numpy(),
            ]

808 809 810 811 812 813 814 815 816
            np.testing.assert_array_equal(var[0], var_np[..., 0])
            np.testing.assert_array_equal(var[1], var_np[..., 1, 0])
            np.testing.assert_array_equal(var[2], var_np[0, ..., 1, 0])
            np.testing.assert_array_equal(var[3], var_np[1, ..., 1])
            np.testing.assert_array_equal(var[4], var_np[2, ...])
            np.testing.assert_array_equal(var[5], var_np[2, 0, ...])
            np.testing.assert_array_equal(var[6], var_np[2, 0, 1, ...])
            np.testing.assert_array_equal(var[7], var_np[...])
            np.testing.assert_array_equal(var[8], var_np[:, ..., 100])
817 818 819 820 821 822 823

        var_fp32 = paddle.to_tensor(np_fp32_value)
        var_int = paddle.to_tensor(np_int_value)

        assert_getitem_ellipsis_index(var_fp32, np_fp32_value)
        assert_getitem_ellipsis_index(var_int, np_int_value)

824 825
        # test 1 dim tensor
        var_one_dim = paddle.to_tensor([1, 2, 3, 4])
826 827 828
        np.testing.assert_array_equal(
            var_one_dim[..., 0].numpy(), np.array([1])
        )
829

830 831 832 833 834 835 836 837 838 839 840 841 842 843 844
    def _test_none_index(self):
        shape = (8, 64, 5, 256)
        np_value = np.random.random(shape).astype('float32')
        var_tensor = paddle.to_tensor(np_value)

        var = [
            var_tensor[1, 0, None].numpy(),
            var_tensor[None, ..., 1, 0].numpy(),
            var_tensor[:, :, :, None].numpy(),
            var_tensor[1, ..., 1, None].numpy(),
            var_tensor[2, ..., None, None].numpy(),
            var_tensor[None, 2, 0, ...].numpy(),
            var_tensor[None, 2, None, 1].numpy(),
            var_tensor[None].numpy(),
            var_tensor[0, 0, None, 0, 0, None].numpy(),
845
            var_tensor[None, None, 0, ..., None].numpy(),
846
            var_tensor[..., None, :, None].numpy(),
847 848 849
            var_tensor[0, 1:10:2, None, None, ...].numpy(),
        ]

850 851 852 853 854 855 856 857 858
        np.testing.assert_array_equal(var[0], np_value[1, 0, None])
        np.testing.assert_array_equal(var[1], np_value[None, ..., 1, 0])
        np.testing.assert_array_equal(var[2], np_value[:, :, :, None])
        np.testing.assert_array_equal(var[3], np_value[1, ..., 1, None])
        np.testing.assert_array_equal(var[4], np_value[2, ..., None, None])
        np.testing.assert_array_equal(var[5], np_value[None, 2, 0, ...])
        np.testing.assert_array_equal(var[6], np_value[None, 2, None, 1])
        np.testing.assert_array_equal(var[7], np_value[None])
        np.testing.assert_array_equal(var[8], np_value[0, 0, None, 0, 0, None])
859 860 861
        np.testing.assert_array_equal(
            var[9], np_value[None, None, 0, ..., None]
        )
862
        np.testing.assert_array_equal(var[10], np_value[..., None, :, None])
863

864 865
        # TODO(zyfncg) there is a bug of dimensions when slice step > 1 and
        #              indexs has int type
866
        # self.assertTrue(
867
        #     np.array_equal(var[11], np_value[0, 1:10:2, None, None, ...]))
868

Z
zyfncg 已提交
869 870 871 872
    def _test_bool_index(self):
        shape = (4, 2, 5, 64)
        np_value = np.random.random(shape).astype('float32')
        var_tensor = paddle.to_tensor(np_value)
873 874 875 876 877 878 879 880 881 882
        index = [
            [True, True, True, True],
            [True, False, True, True],
            [True, False, False, True],
            [False, 0, 1, True, True],
            [False, False, False, False],
        ]
        index2d = np.array(
            [[True, True], [False, False], [True, False], [True, True]]
        )
Z
zyfncg 已提交
883 884
        tensor_index = paddle.to_tensor(index2d)
        var = [
885 886 887 888
            var_tensor[index[0]].numpy(),
            var_tensor[index[1]].numpy(),
            var_tensor[index[2]].numpy(),
            var_tensor[index[3]].numpy(),
Z
zyfncg 已提交
889 890
            var_tensor[paddle.to_tensor(index[0])].numpy(),
            var_tensor[tensor_index].numpy(),
891
            var_tensor[paddle.to_tensor(index[4])].numpy(),
Z
zyfncg 已提交
892
        ]
893 894 895 896 897 898 899
        np.testing.assert_array_equal(var[0], np_value[index[0]])
        np.testing.assert_array_equal(var[1], np_value[index[1]])
        np.testing.assert_array_equal(var[2], np_value[index[2]])
        np.testing.assert_array_equal(var[3], np_value[index[3]])
        np.testing.assert_array_equal(var[4], np_value[index[0]])
        np.testing.assert_array_equal(var[5], np_value[index2d])
        np.testing.assert_array_equal(var[6], np_value[index[4]])
900 901 902 903 904 905
        np.testing.assert_array_equal(
            var_tensor[var_tensor > 0.67], np_value[np_value > 0.67]
        )
        np.testing.assert_array_equal(
            var_tensor[var_tensor < 0.55], np_value[np_value < 0.55]
        )
Z
zyfncg 已提交
906 907 908 909 910 911 912 913 914 915

        with self.assertRaises(ValueError):
            var_tensor[[False, False, False, False]]
        with self.assertRaises(ValueError):
            var_tensor[[True, False]]
        with self.assertRaises(ValueError):
            var_tensor[[True, False, False, False, False]]
        with self.assertRaises(IndexError):
            var_tensor[paddle.to_tensor([[True, False, False, False]])]

916 917 918 919 920 921
    def _test_scalar_bool_index(self):
        shape = (1, 2, 5, 64)
        np_value = np.random.random(shape).astype('float32')
        var_tensor = paddle.to_tensor(np_value)
        index = [True]
        tensor_index = paddle.to_tensor(index)
922 923 924
        var = [
            var_tensor[tensor_index].numpy(),
        ]
925
        np.testing.assert_array_equal(var[0], np_value[index])
926

H
hong 已提交
927 928 929 930 931
    def _test_for_var(self):
        np_value = np.random.random((30, 100, 100)).astype('float32')
        w = fluid.dygraph.to_variable(np_value)

        for i, e in enumerate(w):
932
            np.testing.assert_array_equal(e.numpy(), np_value[i])
H
hong 已提交
933

934 935 936
    def _test_numpy_index(self):
        array = np.arange(120).reshape([4, 5, 6])
        t = paddle.to_tensor(array)
937 938
        np.testing.assert_array_equal(t[np.longlong(0)].numpy(), array[0])
        np.testing.assert_array_equal(
939 940 941
            t[np.longlong(0) : np.longlong(4) : np.longlong(2)].numpy(),
            array[0:4:2],
        )
942 943
        np.testing.assert_array_equal(t[np.int64(0)].numpy(), array[0])
        np.testing.assert_array_equal(
944 945
            t[np.int32(1) : np.int32(4) : np.int32(2)].numpy(), array[1:4:2]
        )
946
        np.testing.assert_array_equal(
947 948
            t[np.int16(0) : np.int16(4) : np.int16(2)].numpy(), array[0:4:2]
        )
949 950 951 952 953 954

    def _test_list_index(self):
        # case1:
        array = np.arange(120).reshape([6, 5, 4])
        x = paddle.to_tensor(array)
        py_idx = [[0, 2, 0, 1, 3], [0, 0, 1, 2, 0]]
J
JYChen 已提交
955 956 957 958 959 960 961 962 963 964 965 966 967

        # note(chenjianye):
        # Non-tuple sequence for multidimensional indexing is supported in numpy < 1.23.
        # For List case, the outermost `[]` will be treated as tuple `()` in version less than 1.23,
        # which is used to wrap index elements for multiple axes.
        # And from 1.23, this will be treat as a whole and only works on one axis.
        #
        # e.g. x[[[0],[1]]] == x[([0],[1])] == x[[0],[1]] (in version < 1.23)
        #      x[[[0],[1]]] == x[array([[0],[1]])] (in version >= 1.23)
        #
        # Here, we just modify the code to remove the impact of numpy version changes,
        # changing x[[[0],[1]]] to x[tuple([[0],[1]])] == x[([0],[1])] == x[[0],[1]].
        # Whether the paddle behavior in this case will change is still up for debate.
968
        idx = [paddle.to_tensor(py_idx[0]), paddle.to_tensor(py_idx[1])]
J
JYChen 已提交
969 970
        np.testing.assert_array_equal(x[idx].numpy(), array[tuple(py_idx)])
        np.testing.assert_array_equal(x[py_idx].numpy(), array[tuple(py_idx)])
971 972
        # case2:
        tensor_x = paddle.to_tensor(
973 974
            np.zeros(12).reshape(2, 6).astype(np.float32)
        )
975 976
        tensor_y1 = paddle.zeros([1], dtype='int32') + 2
        tensor_y2 = paddle.zeros([1], dtype='int32') + 5
977 978
        tensor_x[:, tensor_y1:tensor_y2] = 42
        res = tensor_x.numpy()
979 980 981 982 983 984
        exp = np.array(
            [
                [0.0, 0.0, 42.0, 42.0, 42.0, 0.0],
                [0.0, 0.0, 42.0, 42.0, 42.0, 0.0],
            ]
        )
985
        np.testing.assert_array_equal(res, exp)
986

W
WeiXin 已提交
987 988 989
        # case3:
        row = np.array([0, 1, 2])
        col = np.array([2, 1, 3])
990
        np.testing.assert_array_equal(array[row, col], x[row, col].numpy())
W
WeiXin 已提交
991

992
    def test_slice(self):
L
Leo Chen 已提交
993
        with fluid.dygraph.guard():
994
            self._test_slice()
995
            self._test_slice_for_tensor_attr()
H
hong 已提交
996
            self._test_for_var()
997
            self._test_for_getitem_ellipsis_index()
998
            self._test_none_index()
Z
zyfncg 已提交
999
            self._test_bool_index()
1000
            self._test_scalar_bool_index()
1001 1002
            self._test_numpy_index()
            self._test_list_index()
1003

L
Leo Chen 已提交
1004
            var = fluid.dygraph.to_variable(self.array)
1005 1006
            np.testing.assert_array_equal(var[1, :].numpy(), self.array[1, :])
            np.testing.assert_array_equal(var[::-1].numpy(), self.array[::-1])
L
Leo Chen 已提交
1007

H
hong 已提交
1008 1009 1010
            with self.assertRaises(IndexError):
                y = var[self.shape[0]]

1011 1012 1013
            with self.assertRaises(IndexError):
                y = var[0 - self.shape[0] - 1]

W
WeiXin 已提交
1014 1015 1016 1017
            with self.assertRaises(IndexError):
                mask = np.array([1, 0, 1, 0], dtype=bool)
                var[paddle.to_tensor([0, 1]), mask]

1018
    def test_var_base_to_np(self):
L
Leo Chen 已提交
1019 1020
        with fluid.dygraph.guard():
            var = fluid.dygraph.to_variable(self.array)
1021 1022 1023
            np.testing.assert_array_equal(
                var.numpy(), fluid.framework._var_base_to_np(var)
            )
L
Leo Chen 已提交
1024

1025
    def test_var_base_as_np(self):
1026 1027
        with fluid.dygraph.guard():
            var = fluid.dygraph.to_variable(self.array)
1028
            np.testing.assert_array_equal(var.numpy(), np.array(var))
1029 1030 1031
            np.testing.assert_array_equal(
                var.numpy(), np.array(var, dtype=np.float32)
            )
1032

1033
    def test_if(self):
1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046
        with fluid.dygraph.guard():
            var1 = fluid.dygraph.to_variable(np.array([[[0]]]))
            var2 = fluid.dygraph.to_variable(np.array([[[1]]]))

            var1_bool = False
            var2_bool = False

            if var1:
                var1_bool = True

            if var2:
                var2_bool = True

1047 1048 1049 1050
            assert not var1_bool, "if var1 should be false"
            assert var2_bool, "if var2 should be true"
            assert not bool(var1), "bool(var1) is False"
            assert bool(var2), "bool(var2) is True"
1051

1052
    def test_to_static_var(self):
1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063
        with fluid.dygraph.guard():
            # Convert VarBase into Variable or Parameter
            var_base = fluid.dygraph.to_variable(self.array, name="var_base_1")
            static_var = var_base._to_static_var()
            self._assert_to_static(var_base, static_var)

            var_base = fluid.dygraph.to_variable(self.array, name="var_base_2")
            static_param = var_base._to_static_var(to_parameter=True)
            self._assert_to_static(var_base, static_param, True)

            # Convert ParamBase into Parameter
1064
            fc = paddle.nn.Linear(
1065 1066
                10,
                20,
1067
                weight_attr=paddle.ParamAttr(
1068 1069
                    learning_rate=0.001,
                    do_model_average=True,
1070
                    regularizer=paddle.regularizer.L1Decay(),
1071 1072
                ),
            )
1073 1074 1075 1076 1077 1078 1079 1080 1081 1082
            weight = fc.parameters()[0]
            static_param = weight._to_static_var()
            self._assert_to_static(weight, static_param, True)

    def _assert_to_static(self, var_base, static_var, is_param=False):
        if is_param:
            self.assertTrue(isinstance(static_var, fluid.framework.Parameter))
            self.assertTrue(static_var.persistable, True)
            if isinstance(var_base, fluid.framework.ParamBase):
                for attr in ['trainable', 'is_distributed', 'do_model_average']:
1083 1084 1085
                    self.assertEqual(
                        getattr(var_base, attr), getattr(static_var, attr)
                    )
1086

1087 1088 1089
                self.assertEqual(
                    static_var.optimize_attr['learning_rate'], 0.001
                )
1090
                self.assertTrue(
1091 1092 1093 1094
                    isinstance(
                        static_var.regularizer, fluid.regularizer.L1Decay
                    )
                )
1095 1096 1097 1098 1099 1100 1101 1102 1103
        else:
            self.assertTrue(isinstance(static_var, fluid.framework.Variable))

        attr_keys = ['block', 'dtype', 'type', 'name']
        for attr in attr_keys:
            self.assertEqual(getattr(var_base, attr), getattr(static_var, attr))

        self.assertListEqual(list(var_base.shape), list(static_var.shape))

1104
    def test_tensor_str(self):
Z
Zhou Wei 已提交
1105
        paddle.enable_static()
1106
        paddle.disable_static(paddle.CPUPlace())
C
cnn 已提交
1107
        paddle.seed(10)
1108 1109 1110 1111
        a = paddle.rand([10, 20])
        paddle.set_printoptions(4, 100, 3)
        a_str = str(a)

1112
        expected = '''Tensor(shape=[10, 20], dtype=float32, place=Place(cpu), stop_gradient=True,
1113 1114 1115 1116 1117 1118 1119 1120 1121 1122
       [[0.2727, 0.5489, 0.8655, ..., 0.2916, 0.8525, 0.9000],
        [0.3806, 0.8996, 0.0928, ..., 0.9535, 0.8378, 0.6409],
        [0.1484, 0.4038, 0.8294, ..., 0.0148, 0.6520, 0.4250],
        ...,
        [0.3426, 0.1909, 0.7240, ..., 0.4218, 0.2676, 0.5679],
        [0.5561, 0.2081, 0.0676, ..., 0.9778, 0.3302, 0.9559],
        [0.2665, 0.8483, 0.5389, ..., 0.4956, 0.6862, 0.9178]])'''

        self.assertEqual(a_str, expected)

1123
    def test_tensor_str2(self):
1124 1125 1126 1127
        paddle.disable_static(paddle.CPUPlace())
        a = paddle.to_tensor([[1.5111111, 1.0], [0, 0]])
        a_str = str(a)

1128
        expected = '''Tensor(shape=[2, 2], dtype=float32, place=Place(cpu), stop_gradient=True,
1129 1130 1131 1132 1133
       [[1.5111, 1.    ],
        [0.    , 0.    ]])'''

        self.assertEqual(a_str, expected)

1134
    def test_tensor_str3(self):
1135 1136 1137 1138
        paddle.disable_static(paddle.CPUPlace())
        a = paddle.to_tensor([[-1.5111111, 1.0], [0, -0.5]])
        a_str = str(a)

1139
        expected = '''Tensor(shape=[2, 2], dtype=float32, place=Place(cpu), stop_gradient=True,
1140 1141 1142 1143 1144
       [[-1.5111,  1.    ],
        [ 0.    , -0.5000]])'''

        self.assertEqual(a_str, expected)

1145
    def test_tensor_str_scaler(self):
1146 1147 1148 1149
        paddle.disable_static(paddle.CPUPlace())
        a = paddle.to_tensor(np.array(False))
        a_str = str(a)

1150
        expected = '''Tensor(shape=[], dtype=bool, place=Place(cpu), stop_gradient=True,
1151 1152 1153 1154
       False)'''

        self.assertEqual(a_str, expected)

1155
    def test_tensor_str_shape_with_zero(self):
1156 1157
        paddle.disable_static(paddle.CPUPlace())
        x = paddle.ones((10, 10))
1158
        y = paddle.nonzero(x == 0)
1159 1160
        a_str = str(y)

1161
        expected = '''Tensor(shape=[0, 2], dtype=int64, place=Place(cpu), stop_gradient=True,
1162 1163 1164 1165
       [])'''

        self.assertEqual(a_str, expected)

1166
    def test_tensor_str_linewidth(self):
1167 1168 1169
        paddle.disable_static(paddle.CPUPlace())
        paddle.seed(2021)
        x = paddle.rand([128])
1170 1171 1172
        paddle.set_printoptions(
            precision=4, threshold=1000, edgeitems=3, linewidth=80
        )
1173 1174
        a_str = str(x)

1175
        expected = '''Tensor(shape=[128], dtype=float32, place=Place(cpu), stop_gradient=True,
1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193
       [0.3759, 0.0278, 0.2489, 0.3110, 0.9105, 0.7381, 0.1905, 0.4726, 0.2435,
        0.9142, 0.3367, 0.7243, 0.7664, 0.9915, 0.2921, 0.1363, 0.8096, 0.2915,
        0.9564, 0.9972, 0.2573, 0.2597, 0.3429, 0.2484, 0.9579, 0.7003, 0.4126,
        0.4274, 0.0074, 0.9686, 0.9910, 0.0144, 0.6564, 0.2932, 0.7114, 0.9301,
        0.6421, 0.0538, 0.1273, 0.5771, 0.9336, 0.6416, 0.1832, 0.9311, 0.7702,
        0.7474, 0.4479, 0.3382, 0.5579, 0.0444, 0.9802, 0.9874, 0.3038, 0.5640,
        0.2408, 0.5489, 0.8866, 0.1006, 0.5881, 0.7560, 0.7928, 0.8604, 0.4670,
        0.9285, 0.1482, 0.4541, 0.1307, 0.6221, 0.4902, 0.1147, 0.4415, 0.2987,
        0.7276, 0.2077, 0.7551, 0.9652, 0.4369, 0.2282, 0.0047, 0.2934, 0.4308,
        0.4190, 0.1442, 0.3650, 0.3056, 0.6535, 0.1211, 0.8721, 0.7408, 0.4220,
        0.5937, 0.3123, 0.9198, 0.0275, 0.5338, 0.4622, 0.7521, 0.3609, 0.4703,
        0.1736, 0.8976, 0.7616, 0.3756, 0.2416, 0.2907, 0.3246, 0.4305, 0.5717,
        0.0735, 0.0361, 0.5534, 0.4399, 0.9260, 0.6525, 0.3064, 0.4573, 0.9210,
        0.8269, 0.2424, 0.7494, 0.8945, 0.7098, 0.8078, 0.4707, 0.5715, 0.7232,
        0.4678, 0.5047])'''

        self.assertEqual(a_str, expected)

1194
    def test_tensor_str_linewidth2(self):
1195 1196 1197 1198 1199 1200
        paddle.disable_static(paddle.CPUPlace())
        paddle.seed(2021)
        x = paddle.rand([128])
        paddle.set_printoptions(precision=4, linewidth=160, sci_mode=True)
        a_str = str(x)

1201
        expected = '''Tensor(shape=[128], dtype=float32, place=Place(cpu), stop_gradient=True,
1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215
       [3.7587e-01, 2.7798e-02, 2.4891e-01, 3.1097e-01, 9.1053e-01, 7.3811e-01, 1.9045e-01, 4.7258e-01, 2.4354e-01, 9.1415e-01, 3.3666e-01, 7.2428e-01,
        7.6640e-01, 9.9146e-01, 2.9215e-01, 1.3625e-01, 8.0957e-01, 2.9153e-01, 9.5642e-01, 9.9718e-01, 2.5732e-01, 2.5973e-01, 3.4292e-01, 2.4841e-01,
        9.5794e-01, 7.0029e-01, 4.1260e-01, 4.2737e-01, 7.3788e-03, 9.6863e-01, 9.9102e-01, 1.4416e-02, 6.5640e-01, 2.9318e-01, 7.1136e-01, 9.3008e-01,
        6.4209e-01, 5.3849e-02, 1.2730e-01, 5.7712e-01, 9.3359e-01, 6.4155e-01, 1.8320e-01, 9.3110e-01, 7.7021e-01, 7.4736e-01, 4.4793e-01, 3.3817e-01,
        5.5794e-01, 4.4412e-02, 9.8023e-01, 9.8735e-01, 3.0376e-01, 5.6397e-01, 2.4082e-01, 5.4893e-01, 8.8659e-01, 1.0065e-01, 5.8812e-01, 7.5600e-01,
        7.9280e-01, 8.6041e-01, 4.6701e-01, 9.2852e-01, 1.4821e-01, 4.5410e-01, 1.3074e-01, 6.2210e-01, 4.9024e-01, 1.1466e-01, 4.4154e-01, 2.9868e-01,
        7.2758e-01, 2.0766e-01, 7.5508e-01, 9.6522e-01, 4.3688e-01, 2.2823e-01, 4.7394e-03, 2.9342e-01, 4.3083e-01, 4.1902e-01, 1.4416e-01, 3.6500e-01,
        3.0560e-01, 6.5350e-01, 1.2115e-01, 8.7206e-01, 7.4081e-01, 4.2203e-01, 5.9372e-01, 3.1230e-01, 9.1979e-01, 2.7486e-02, 5.3383e-01, 4.6224e-01,
        7.5211e-01, 3.6094e-01, 4.7034e-01, 1.7355e-01, 8.9763e-01, 7.6165e-01, 3.7557e-01, 2.4157e-01, 2.9074e-01, 3.2458e-01, 4.3049e-01, 5.7171e-01,
        7.3509e-02, 3.6087e-02, 5.5341e-01, 4.3993e-01, 9.2601e-01, 6.5248e-01, 3.0640e-01, 4.5727e-01, 9.2104e-01, 8.2688e-01, 2.4243e-01, 7.4937e-01,
        8.9448e-01, 7.0981e-01, 8.0783e-01, 4.7065e-01, 5.7154e-01, 7.2319e-01, 4.6777e-01, 5.0465e-01])'''

        self.assertEqual(a_str, expected)

1216
    def test_tensor_str_bf16(self):
1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228
        paddle.disable_static(paddle.CPUPlace())
        a = paddle.to_tensor([[1.5, 1.0], [0, 0]])
        a = paddle.cast(a, dtype=core.VarDesc.VarType.BF16)
        paddle.set_printoptions(precision=4)
        a_str = str(a)

        expected = '''Tensor(shape=[2, 2], dtype=bfloat16, place=Place(cpu), stop_gradient=True,
       [[1.5000, 1.    ],
        [0.    , 0.    ]])'''

        self.assertEqual(a_str, expected)

1229
    def test_print_tensor_dtype(self):
L
Leo Chen 已提交
1230 1231 1232 1233 1234 1235 1236
        paddle.disable_static(paddle.CPUPlace())
        a = paddle.rand([1])
        a_str = str(a.dtype)

        expected = 'paddle.float32'

        self.assertEqual(a_str, expected)
1237

L
Leo Chen 已提交
1238

1239
class TestVarBaseSetitem(unittest.TestCase):
1240
    def func_setUp(self):
1241 1242 1243
        self.set_dtype()
        self.tensor_x = paddle.to_tensor(np.ones((4, 2, 3)).astype(self.dtype))
        self.np_value = np.random.random((2, 3)).astype(self.dtype)
1244 1245
        self.tensor_value = paddle.to_tensor(self.np_value)

1246 1247 1248
    def set_dtype(self):
        self.dtype = "int32"

1249
    def _test(self, value):
1250
        id_origin = id(self.tensor_x)
1251
        self.tensor_x[0] = value
1252
        if isinstance(value, (int, float)):
1253
            result = np.zeros((2, 3)).astype(self.dtype) + value
1254 1255 1256 1257

        else:
            result = self.np_value

1258
        np.testing.assert_array_equal(self.tensor_x[0].numpy(), result)
1259 1260 1261
        self.assertEqual(id_origin, id(self.tensor_x))

        self.tensor_x[1:2] = value
1262
        np.testing.assert_array_equal(self.tensor_x[1].numpy(), result)
1263 1264 1265
        self.assertEqual(id_origin, id(self.tensor_x))

        self.tensor_x[...] = value
1266
        np.testing.assert_array_equal(self.tensor_x[3].numpy(), result)
1267 1268
        self.assertEqual(id_origin, id(self.tensor_x))

W
wanghuancoder 已提交
1269
    def func_test_value_tensor(self):
1270 1271
        self._test(self.tensor_value)

W
wanghuancoder 已提交
1272
    def test_value_tensor(self):
1273
        self.func_setUp()
W
wanghuancoder 已提交
1274 1275 1276
        self.func_test_value_tensor()

    def func_test_value_numpy(self):
1277 1278
        self._test(self.np_value)

W
wanghuancoder 已提交
1279
    def test_value_numpy(self):
1280
        self.func_setUp()
W
wanghuancoder 已提交
1281 1282 1283
        self.func_test_value_numpy()

    def func_test_value_int(self):
1284 1285
        self._test(10)

W
wanghuancoder 已提交
1286
    def test_value_int(self):
1287
        self.func_setUp()
W
wanghuancoder 已提交
1288 1289
        self.func_test_value_int()

1290 1291 1292 1293 1294 1295 1296 1297 1298 1299

class TestVarBaseSetitemInt64(TestVarBaseSetitem):
    def set_dtype(self):
        self.dtype = "int64"


class TestVarBaseSetitemFp32(TestVarBaseSetitem):
    def set_dtype(self):
        self.dtype = "float32"

1300
    def func_test_value_float(self):
1301 1302 1303
        paddle.disable_static()
        self._test(3.3)

1304 1305 1306 1307
    def test_value_float(self):
        self.func_setUp()
        self.func_test_value_float()

1308

1309 1310 1311 1312 1313
class TestVarBaseSetitemFp64(TestVarBaseSetitem):
    def set_dtype(self):
        self.dtype = "float64"


1314
class TestVarBaseSetitemBoolIndex(unittest.TestCase):
1315
    def func_setUp(self):
1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336
        paddle.disable_static()
        self.set_dtype()
        self.set_input()

    def set_input(self):
        self.tensor_x = paddle.to_tensor(np.ones((4, 2, 3)).astype(self.dtype))
        self.np_value = np.random.random((2, 3)).astype(self.dtype)
        self.tensor_value = paddle.to_tensor(self.np_value)

    def set_dtype(self):
        self.dtype = "int32"

    def _test(self, value):
        paddle.disable_static()
        self.assertEqual(self.tensor_x.inplace_version, 0)

        id_origin = id(self.tensor_x)
        index_1 = paddle.to_tensor(np.array([True, False, False, False]))
        self.tensor_x[index_1] = value
        self.assertEqual(self.tensor_x.inplace_version, 1)

1337
        if isinstance(value, (int, float)):
1338 1339 1340 1341 1342
            result = np.zeros((2, 3)).astype(self.dtype) + value

        else:
            result = self.np_value

1343
        np.testing.assert_array_equal(self.tensor_x[0].numpy(), result)
1344 1345 1346 1347 1348
        self.assertEqual(id_origin, id(self.tensor_x))

        index_2 = paddle.to_tensor(np.array([False, True, False, False]))
        self.tensor_x[index_2] = value
        self.assertEqual(self.tensor_x.inplace_version, 2)
1349
        np.testing.assert_array_equal(self.tensor_x[1].numpy(), result)
1350 1351 1352 1353 1354
        self.assertEqual(id_origin, id(self.tensor_x))

        index_3 = paddle.to_tensor(np.array([True, True, True, True]))
        self.tensor_x[index_3] = value
        self.assertEqual(self.tensor_x.inplace_version, 3)
1355
        np.testing.assert_array_equal(self.tensor_x[3].numpy(), result)
1356 1357
        self.assertEqual(id_origin, id(self.tensor_x))

1358
    def func_test_value_tensor(self):
1359 1360 1361
        paddle.disable_static()
        self._test(self.tensor_value)

1362 1363 1364 1365 1366
    def test_value_tensor(self):
        self.func_setUp()
        self.func_test_value_tensor()

    def func_test_value_numpy(self):
1367 1368 1369
        paddle.disable_static()
        self._test(self.np_value)

1370 1371 1372 1373 1374
    def test_value_numpy(self):
        self.func_setUp()
        self.func_test_value_numpy()

    def func_test_value_int(self):
1375 1376 1377
        paddle.disable_static()
        self._test(10)

1378 1379 1380 1381
    def test_value_int(self):
        self.func_setUp()
        self.func_test_value_int()

1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397

class TestVarBaseSetitemBoolScalarIndex(unittest.TestCase):
    def set_input(self):
        self.tensor_x = paddle.to_tensor(np.ones((1, 2, 3)).astype(self.dtype))
        self.np_value = np.random.random((2, 3)).astype(self.dtype)
        self.tensor_value = paddle.to_tensor(self.np_value)

    def _test(self, value):
        paddle.disable_static()
        self.assertEqual(self.tensor_x.inplace_version, 0)

        id_origin = id(self.tensor_x)
        index = paddle.to_tensor(np.array([True]))
        self.tensor_x[index] = value
        self.assertEqual(self.tensor_x.inplace_version, 1)

1398
        if isinstance(value, (int, float)):
1399 1400 1401 1402 1403
            result = np.zeros((2, 3)).astype(self.dtype) + value

        else:
            result = self.np_value

1404
        np.testing.assert_array_equal(self.tensor_x[0].numpy(), result)
1405 1406 1407
        self.assertEqual(id_origin, id(self.tensor_x))


1408
class TestVarBaseInplaceVersion(unittest.TestCase):
1409
    def test_setitem(self):
1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420
        paddle.disable_static()

        var = paddle.ones(shape=[4, 2, 3], dtype="float32")
        self.assertEqual(var.inplace_version, 0)

        var[1] = 1
        self.assertEqual(var.inplace_version, 1)

        var[1:2] = 1
        self.assertEqual(var.inplace_version, 2)

1421
    def test_bump_inplace_version(self):
1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432
        paddle.disable_static()
        var = paddle.ones(shape=[4, 2, 3], dtype="float32")
        self.assertEqual(var.inplace_version, 0)

        var._bump_inplace_version()
        self.assertEqual(var.inplace_version, 1)

        var._bump_inplace_version()
        self.assertEqual(var.inplace_version, 2)


1433
class TestVarBaseSlice(unittest.TestCase):
1434
    def test_slice(self):
1435 1436 1437 1438 1439 1440 1441 1442 1443
        paddle.disable_static()
        np_x = np.random.random((3, 8, 8))
        x = paddle.to_tensor(np_x, dtype="float64")
        actual_x = x._slice(0, 1)
        actual_x = paddle.to_tensor(actual_x)
        self.assertEqual(actual_x.numpy().all(), np_x[0:1].all())


class TestVarBaseClear(unittest.TestCase):
1444
    def test_clear(self):
1445 1446 1447 1448 1449 1450 1451 1452
        paddle.disable_static()
        np_x = np.random.random((3, 8, 8))
        x = paddle.to_tensor(np_x, dtype="float64")
        x._clear()
        self.assertEqual(str(x), "Tensor(Not initialized)")


class TestVarBaseOffset(unittest.TestCase):
1453
    def test_offset(self):
1454 1455 1456 1457 1458 1459 1460 1461 1462
        paddle.disable_static()
        np_x = np.random.random((3, 8, 8))
        x = paddle.to_tensor(np_x, dtype="float64")
        expected_offset = 0
        actual_x = x._slice(expected_offset, 1)
        actual_x = paddle.to_tensor(actual_x)
        self.assertEqual(actual_x._offset(), expected_offset)


1463
class TestVarBaseShareBufferTo(unittest.TestCase):
1464
    def test_share_buffer_To(self):
1465
        paddle.disable_static()
1466 1467 1468
        np_src = np.random.random((3, 8, 8))
        src = paddle.to_tensor(np_src, dtype="float64")
        # empty_var
姜永久 已提交
1469
        dst = core.eager.Tensor()
1470 1471
        src._share_buffer_to(dst)
        self.assertEqual(src._is_shared_buffer_with(dst), True)
1472 1473 1474


class TestVarBaseTo(unittest.TestCase):
1475
    def func_setUp(self):
1476 1477 1478 1479
        paddle.disable_static()
        self.np_x = np.random.random((3, 8, 8))
        self.x = paddle.to_tensor(self.np_x, dtype="float32")

1480
    def func_test_to_api(self):
1481 1482
        x_double = self.x._to(dtype='double')
        self.assertEqual(x_double.dtype, paddle.fluid.core.VarDesc.VarType.FP64)
1483
        np.testing.assert_allclose(self.np_x, x_double, rtol=1e-05)
1484 1485 1486

        x_ = self.x._to()
        self.assertEqual(self.x.dtype, paddle.fluid.core.VarDesc.VarType.FP64)
1487
        np.testing.assert_allclose(self.np_x, x_, rtol=1e-05)
1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500

        if paddle.fluid.is_compiled_with_cuda():
            x_gpu = self.x._to(device=paddle.CUDAPlace(0))
            self.assertTrue(x_gpu.place.is_gpu_place())
            self.assertEqual(x_gpu.place.gpu_device_id(), 0)

            x_gpu0 = self.x._to(device='gpu:0')
            self.assertTrue(x_gpu0.place.is_gpu_place())
            self.assertEqual(x_gpu0.place.gpu_device_id(), 0)

            x_gpu1 = self.x._to(device='gpu:0', dtype="float64")
            self.assertTrue(x_gpu1.place.is_gpu_place())
            self.assertEqual(x_gpu1.place.gpu_device_id(), 0)
1501 1502 1503
            self.assertEqual(
                x_gpu1.dtype, paddle.fluid.core.VarDesc.VarType.FP64
            )
1504 1505 1506 1507

            x_gpu2 = self.x._to(device='gpu:0', dtype="float16")
            self.assertTrue(x_gpu2.place.is_gpu_place())
            self.assertEqual(x_gpu2.place.gpu_device_id(), 0)
1508 1509 1510
            self.assertEqual(
                x_gpu2.dtype, paddle.fluid.core.VarDesc.VarType.FP16
            )
1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528

        x_cpu = self.x._to(device=paddle.CPUPlace())
        self.assertTrue(x_cpu.place.is_cpu_place())

        x_cpu0 = self.x._to(device='cpu')
        self.assertTrue(x_cpu0.place.is_cpu_place())

        x_cpu1 = self.x._to(device=paddle.CPUPlace(), dtype="float64")
        self.assertTrue(x_cpu1.place.is_cpu_place())
        self.assertEqual(x_cpu1.dtype, paddle.fluid.core.VarDesc.VarType.FP64)

        x_cpu2 = self.x._to(device='cpu', dtype="float16")
        self.assertTrue(x_cpu2.place.is_cpu_place())
        self.assertEqual(x_cpu2.dtype, paddle.fluid.core.VarDesc.VarType.FP16)

        self.assertRaises(ValueError, self.x._to, device=1)
        self.assertRaises(AssertionError, self.x._to, blocking=1)

1529 1530 1531 1532
    def test_to_api(self):
        self.func_setUp()
        self.func_test_to_api()

1533 1534

class TestVarBaseInitVarBaseFromTensorWithDevice(unittest.TestCase):
1535
    def test_varbase_init(self):
1536 1537 1538 1539 1540 1541 1542
        paddle.disable_static()
        t = fluid.Tensor()
        np_x = np.random.random((3, 8, 8))
        t.set(np_x, fluid.CPUPlace())

        if paddle.fluid.is_compiled_with_cuda():
            device = paddle.CUDAPlace(0)
姜永久 已提交
1543
            tmp = fluid.core.eager.Tensor(t, device)
1544 1545 1546 1547
            self.assertTrue(tmp.place.is_gpu_place())
            self.assertEqual(tmp.numpy().all(), np_x.all())

        device = paddle.CPUPlace()
姜永久 已提交
1548
        tmp = fluid.core.eager.Tensor(t, device)
1549 1550 1551 1552
        self.assertEqual(tmp.numpy().all(), np_x.all())


class TestVarBaseNumel(unittest.TestCase):
1553
    def test_numel_normal(self):
1554 1555 1556 1557 1558 1559 1560
        paddle.disable_static()
        np_x = np.random.random((3, 8, 8))
        x = paddle.to_tensor(np_x, dtype="float64")
        x_actual_numel = x._numel()
        x_expected_numel = np.product((3, 8, 8))
        self.assertEqual(x_actual_numel, x_expected_numel)

1561
    def test_numel_without_holder(self):
1562
        paddle.disable_static()
姜永久 已提交
1563
        x_without_holder = core.eager.Tensor()
1564 1565 1566
        x_actual_numel = x_without_holder._numel()
        self.assertEqual(x_actual_numel, 0)

1567 1568

class TestVarBaseCopyGradientFrom(unittest.TestCase):
1569
    def test_copy_gradient_from(self):
1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580
        paddle.disable_static()
        np_x = np.random.random((2, 2))
        np_y = np.random.random((2, 2))
        x = paddle.to_tensor(np_x, dtype="float64", stop_gradient=False)
        y = paddle.to_tensor(np_y, dtype="float64")
        out = x + x
        out.backward()
        x._copy_gradient_from(y)
        self.assertEqual(x.grad.numpy().all(), np_y.all())


1581 1582
class TestEagerTensorGradNameValue(unittest.TestCase):
    def test_eager_tensor_grad_name_value(self):
1583 1584 1585 1586 1587 1588 1589 1590
        a_np = np.array([2, 3]).astype('float32')
        a = paddle.to_tensor(a_np)
        a.stop_gradient = False
        b = a**2
        self.assertIsNone(a._grad_value())
        b.backward()
        # Note, for new dygraph, there are no generated grad name, so we skip the name check.
        self.assertIsNotNone(a._grad_value())
1591 1592


L
Leo Chen 已提交
1593 1594
if __name__ == '__main__':
    unittest.main()