test_var_base.py 16.4 KB
Newer Older
L
Leo Chen 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import unittest
from paddle.fluid.framework import default_main_program, Program, convert_np_dtype_to_dtype_, in_dygraph_mode
19
import paddle
L
Leo Chen 已提交
20 21 22 23 24 25 26 27 28 29 30 31
import paddle.fluid as fluid
import paddle.fluid.layers as layers
import paddle.fluid.core as core
import numpy as np


class TestVarBase(unittest.TestCase):
    def setUp(self):
        self.shape = [512, 1234]
        self.dtype = np.float32
        self.array = np.random.uniform(0.1, 1, self.shape).astype(self.dtype)

32 33 34
    def test_to_tensor(self):
        def _test_place(place):
            with fluid.dygraph.guard():
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
                paddle.set_default_dtype('float32')
                x = paddle.to_tensor(1, place=place, stop_gradient=False)
                self.assertTrue(np.array_equal(x.numpy(), [1]))
                self.assertNotEqual(x.dtype, core.VarDesc.VarType.FP32)

                x = paddle.to_tensor(1.2, place=place, stop_gradient=False)
                self.assertTrue(
                    np.array_equal(x.numpy(), np.array([1.2]).astype(
                        'float32')))
                self.assertEqual(x.dtype, core.VarDesc.VarType.FP32)

                x = paddle.to_tensor(1 + 2j, place=place, stop_gradient=False)
                self.assertTrue(np.array_equal(x.numpy(), [1 + 2j]))
                self.assertEqual(x.dtype, 'complex64')

                paddle.set_default_dtype('float64')
                x = paddle.to_tensor(1.2, place=place, stop_gradient=False)
                self.assertTrue(np.array_equal(x.numpy(), [1.2]))
                self.assertEqual(x.dtype, core.VarDesc.VarType.FP64)

                x = paddle.to_tensor(1 + 2j, place=place, stop_gradient=False)
                self.assertTrue(np.array_equal(x.numpy(), [1 + 2j]))
                self.assertEqual(x.dtype, 'complex128')

59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
                x = paddle.to_tensor(
                    1, dtype='float32', place=place, stop_gradient=False)
                self.assertTrue(np.array_equal(x.numpy(), [1.]))
                self.assertEqual(x.dtype, core.VarDesc.VarType.FP32)
                self.assertEqual(x.shape, [1])
                self.assertEqual(x.stop_gradient, False)
                self.assertEqual(x.type, core.VarDesc.VarType.LOD_TENSOR)

                x = paddle.to_tensor(
                    (1, 2), dtype='float32', place=place, stop_gradient=False)
                x = paddle.to_tensor(
                    [1, 2], dtype='float32', place=place, stop_gradient=False)
                self.assertTrue(np.array_equal(x.numpy(), [1., 2.]))
                self.assertEqual(x.dtype, core.VarDesc.VarType.FP32)
                self.assertEqual(x.grad, None)
                self.assertEqual(x.shape, [2])
                self.assertEqual(x.stop_gradient, False)
                self.assertEqual(x.type, core.VarDesc.VarType.LOD_TENSOR)

                x = paddle.to_tensor(
                    self.array,
                    dtype='float32',
                    place=place,
                    stop_gradient=False)
                self.assertTrue(np.array_equal(x.numpy(), self.array))
                self.assertEqual(x.dtype, core.VarDesc.VarType.FP32)
                self.assertEqual(x.shape, self.shape)
                self.assertEqual(x.stop_gradient, False)
                self.assertEqual(x.type, core.VarDesc.VarType.LOD_TENSOR)

                y = paddle.to_tensor(x)
                y = paddle.to_tensor(y, dtype='float64', place=place)
                self.assertTrue(np.array_equal(y.numpy(), self.array))
                self.assertEqual(y.dtype, core.VarDesc.VarType.FP64)
                self.assertEqual(y.shape, self.shape)
                self.assertEqual(y.stop_gradient, True)
                self.assertEqual(y.type, core.VarDesc.VarType.LOD_TENSOR)
                z = x + y
                self.assertTrue(np.array_equal(z.numpy(), 2 * self.array))

                x = paddle.to_tensor(
                    [1 + 2j, 1 - 2j], dtype='complex64', place=place)
                y = paddle.to_tensor(x)
                self.assertTrue(np.array_equal(x.numpy(), [1 + 2j, 1 - 2j]))
                self.assertEqual(y.dtype, 'complex64')
                self.assertEqual(y.shape, [2])
                self.assertEqual(y.real.stop_gradient, True)
                self.assertEqual(y.real.type, core.VarDesc.VarType.LOD_TENSOR)

                with self.assertRaises(TypeError):
                    paddle.to_tensor('test')
                with self.assertRaises(TypeError):
                    paddle.to_tensor(1, dtype='test')
                with self.assertRaises(ValueError):
                    paddle.to_tensor([[1], [2, 3]])
                with self.assertRaises(ValueError):
                    paddle.to_tensor([[1], [2, 3]], place='test')
                with self.assertRaises(ValueError):
                    paddle.to_tensor([[1], [2, 3]], place=1)

        _test_place(core.CPUPlace())
        if core.is_compiled_with_cuda():
            _test_place(core.CUDAPinnedPlace())
            _test_place(core.CUDAPlace(0))

L
Leo Chen 已提交
124 125 126 127 128 129 130 131 132 133 134
    def test_to_variable(self):
        with fluid.dygraph.guard():
            var = fluid.dygraph.to_variable(self.array, name="abc")
            self.assertTrue(np.array_equal(var.numpy(), self.array))
            self.assertEqual(var.name, 'abc')
            # default value
            self.assertEqual(var.persistable, False)
            self.assertEqual(var.stop_gradient, True)
            self.assertEqual(var.shape, self.shape)
            self.assertEqual(var.dtype, core.VarDesc.VarType.FP32)
            self.assertEqual(var.type, core.VarDesc.VarType.LOD_TENSOR)
135 136 137 138 139 140 141
            # The type of input must be 'ndarray' or 'Variable', it will raise TypeError
            with self.assertRaises(TypeError):
                var = fluid.dygraph.to_variable("test", name="abc")
            # test to_variable of LayerObjectHelper(LayerHelperBase)
            with self.assertRaises(TypeError):
                linear = fluid.dygraph.Linear(32, 64)
                var = linear._helper.to_variable("test", name="abc")
L
Leo Chen 已提交
142

143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
    def test_list_to_variable(self):
        with fluid.dygraph.guard():
            array = [[[1, 2], [1, 2], [1.0, 2]], [[1, 2], [1, 2], [1, 2]]]
            var = fluid.dygraph.to_variable(array, dtype='int32')
            self.assertTrue(np.array_equal(var.numpy(), array))
            self.assertEqual(var.shape, [2, 3, 2])
            self.assertEqual(var.dtype, core.VarDesc.VarType.INT32)
            self.assertEqual(var.type, core.VarDesc.VarType.LOD_TENSOR)

    def test_tuple_to_variable(self):
        with fluid.dygraph.guard():
            array = (((1, 2), (1, 2), (1, 2)), ((1, 2), (1, 2), (1, 2)))
            var = fluid.dygraph.to_variable(array, dtype='float32')
            self.assertTrue(np.array_equal(var.numpy(), array))
            self.assertEqual(var.shape, [2, 3, 2])
            self.assertEqual(var.dtype, core.VarDesc.VarType.FP32)
            self.assertEqual(var.type, core.VarDesc.VarType.LOD_TENSOR)

161 162 163
    def test_tensor_to_variable(self):
        with fluid.dygraph.guard():
            t = fluid.Tensor()
L
Leo Chen 已提交
164
            t.set(np.random.random((1024, 1024)), fluid.CPUPlace())
165 166 167
            var = fluid.dygraph.to_variable(t)
            self.assertTrue(np.array_equal(t, var.numpy()))

L
Leo Chen 已提交
168 169 170 171
    def test_write_property(self):
        with fluid.dygraph.guard():
            var = fluid.dygraph.to_variable(self.array)

172
            self.assertEqual(var.name, 'generated_tensor_0')
L
Leo Chen 已提交
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
            var.name = 'test'
            self.assertEqual(var.name, 'test')

            self.assertEqual(var.persistable, False)
            var.persistable = True
            self.assertEqual(var.persistable, True)

            self.assertEqual(var.stop_gradient, True)
            var.stop_gradient = False
            self.assertEqual(var.stop_gradient, False)

    # test some patched methods
    def test_set_value(self):
        with fluid.dygraph.guard():
            var = fluid.dygraph.to_variable(self.array)
            tmp1 = np.random.uniform(0.1, 1, [2, 2, 3]).astype(self.dtype)
            self.assertRaises(AssertionError, var.set_value, tmp1)

            tmp2 = np.random.uniform(0.1, 1, self.shape).astype(self.dtype)
            var.set_value(tmp2)
            self.assertTrue(np.array_equal(var.numpy(), tmp2))

    def test_to_string(self):
        with fluid.dygraph.guard():
            var = fluid.dygraph.to_variable(self.array)
198
            self.assertTrue(isinstance(str(var), str))
L
Leo Chen 已提交
199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223

    def test_backward(self):
        with fluid.dygraph.guard():
            var = fluid.dygraph.to_variable(self.array)
            var.stop_gradient = False
            loss = fluid.layers.relu(var)
            loss.backward()
            grad_var = var._grad_ivar()
            self.assertEqual(grad_var.shape, self.shape)

    def test_gradient(self):
        with fluid.dygraph.guard():
            var = fluid.dygraph.to_variable(self.array)
            var.stop_gradient = False
            loss = fluid.layers.relu(var)
            loss.backward()
            grad_var = var.gradient()
            self.assertEqual(grad_var.shape, self.array.shape)

    def test_block(self):
        with fluid.dygraph.guard():
            var = fluid.dygraph.to_variable(self.array)
            self.assertEqual(var.block,
                             fluid.default_main_program().global_block())

224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
    def _test_slice(self):
        w = fluid.dygraph.to_variable(
            np.random.random((784, 100, 100)).astype('float64'))

        for i in range(3):
            nw = w[i]
            self.assertEqual((100, 100), tuple(nw.shape))

        nw = w[:]
        self.assertEqual((784, 100, 100), tuple(nw.shape))

        nw = w[:, :]
        self.assertEqual((784, 100, 100), tuple(nw.shape))

        nw = w[:, :, -1]
        self.assertEqual((784, 100), tuple(nw.shape))

        nw = w[1, 1, 1]

        self.assertEqual(len(nw.shape), 1)
        self.assertEqual(nw.shape[0], 1)

        nw = w[:, :, :-1]
        self.assertEqual((784, 100, 99), tuple(nw.shape))

        tensor_array = np.array(
            [[[1, 2, 3], [4, 5, 6], [7, 8, 9]],
             [[10, 11, 12], [13, 14, 15], [16, 17, 18]],
             [[19, 20, 21], [22, 23, 24], [25, 26, 27]]]).astype('float32')
        var = fluid.dygraph.to_variable(tensor_array)
        var1 = var[0, 1, 1]
        var2 = var[1:]
        var3 = var[0:1]
        var4 = var[::-1]
        var5 = var[1, 1:, 1:]
        var_reshape = fluid.layers.reshape(var, [3, -1, 3])
        var6 = var_reshape[:, :, -1]
        var7 = var[:, :, :-1]
        var8 = var[:1, :1, :1]
        var9 = var[:-1, :-1, :-1]
        var10 = var[::-1, :1, :-1]
        var11 = var[:-1, ::-1, -1:]
        var12 = var[1:2, 2:, ::-1]
        var13 = var[2:10, 2:, -2:-1]
        var14 = var[1:-1, 0:2, ::-1]
        var15 = var[::-1, ::-1, ::-1]

        vars = [
            var, var1, var2, var3, var4, var5, var6, var7, var8, var9, var10,
            var11, var12, var13, var14, var15
        ]
        local_out = [var.numpy() for var in vars]

        self.assertTrue(np.array_equal(local_out[1], tensor_array[0, 1, 1:2]))
        self.assertTrue(np.array_equal(local_out[2], tensor_array[1:]))
        self.assertTrue(np.array_equal(local_out[3], tensor_array[0:1]))
        self.assertTrue(np.array_equal(local_out[4], tensor_array[::-1]))
        self.assertTrue(np.array_equal(local_out[5], tensor_array[1, 1:, 1:]))
        self.assertTrue(
            np.array_equal(local_out[6],
                           tensor_array.reshape((3, -1, 3))[:, :, -1]))
        self.assertTrue(np.array_equal(local_out[7], tensor_array[:, :, :-1]))
        self.assertTrue(np.array_equal(local_out[8], tensor_array[:1, :1, :1]))
        self.assertTrue(
            np.array_equal(local_out[9], tensor_array[:-1, :-1, :-1]))
        self.assertTrue(
            np.array_equal(local_out[10], tensor_array[::-1, :1, :-1]))
        self.assertTrue(
            np.array_equal(local_out[11], tensor_array[:-1, ::-1, -1:]))
        self.assertTrue(
            np.array_equal(local_out[12], tensor_array[1:2, 2:, ::-1]))
        self.assertTrue(
            np.array_equal(local_out[13], tensor_array[2:10, 2:, -2:-1]))
        self.assertTrue(
            np.array_equal(local_out[14], tensor_array[1:-1, 0:2, ::-1]))
        self.assertTrue(
            np.array_equal(local_out[15], tensor_array[::-1, ::-1, ::-1]))

H
hong 已提交
302 303 304 305 306 307 308
    def _test_for_var(self):
        np_value = np.random.random((30, 100, 100)).astype('float32')
        w = fluid.dygraph.to_variable(np_value)

        for i, e in enumerate(w):
            self.assertTrue(np.array_equal(e.numpy(), np_value[i]))

L
Leo Chen 已提交
309 310
    def test_slice(self):
        with fluid.dygraph.guard():
311
            self._test_slice()
H
hong 已提交
312
            self._test_for_var()
313

L
Leo Chen 已提交
314 315
            var = fluid.dygraph.to_variable(self.array)
            self.assertTrue(np.array_equal(var[1, :].numpy(), self.array[1, :]))
316
            self.assertTrue(np.array_equal(var[::-1].numpy(), self.array[::-1]))
L
Leo Chen 已提交
317

H
hong 已提交
318 319 320
            with self.assertRaises(IndexError):
                y = var[self.shape[0]]

L
Leo Chen 已提交
321 322 323 324 325 326 327
    def test_var_base_to_np(self):
        with fluid.dygraph.guard():
            var = fluid.dygraph.to_variable(self.array)
            self.assertTrue(
                np.array_equal(var.numpy(),
                               fluid.framework._var_base_to_np(var)))

328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346
    def test_if(self):
        with fluid.dygraph.guard():
            var1 = fluid.dygraph.to_variable(np.array([[[0]]]))
            var2 = fluid.dygraph.to_variable(np.array([[[1]]]))

            var1_bool = False
            var2_bool = False

            if var1:
                var1_bool = True

            if var2:
                var2_bool = True

            assert var1_bool == False, "if var1 should be false"
            assert var2_bool == True, "if var2 should be true"
            assert bool(var1) == False, "bool(var1) is False"
            assert bool(var2) == True, "bool(var2) is True"

347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392
    def test_to_static_var(self):
        with fluid.dygraph.guard():
            # Convert VarBase into Variable or Parameter
            var_base = fluid.dygraph.to_variable(self.array, name="var_base_1")
            static_var = var_base._to_static_var()
            self._assert_to_static(var_base, static_var)

            var_base = fluid.dygraph.to_variable(self.array, name="var_base_2")
            static_param = var_base._to_static_var(to_parameter=True)
            self._assert_to_static(var_base, static_param, True)

            # Convert ParamBase into Parameter
            fc = fluid.dygraph.Linear(
                10,
                20,
                param_attr=fluid.ParamAttr(
                    learning_rate=0.001,
                    do_model_average=True,
                    regularizer=fluid.regularizer.L1Decay()))
            weight = fc.parameters()[0]
            static_param = weight._to_static_var()
            self._assert_to_static(weight, static_param, True)

    def _assert_to_static(self, var_base, static_var, is_param=False):
        if is_param:
            self.assertTrue(isinstance(static_var, fluid.framework.Parameter))
            self.assertTrue(static_var.persistable, True)
            if isinstance(var_base, fluid.framework.ParamBase):
                for attr in ['trainable', 'is_distributed', 'do_model_average']:
                    self.assertEqual(
                        getattr(var_base, attr), getattr(static_var, attr))

                self.assertEqual(static_var.optimize_attr['learning_rate'],
                                 0.001)
                self.assertTrue(
                    isinstance(static_var.regularizer,
                               fluid.regularizer.L1Decay))
        else:
            self.assertTrue(isinstance(static_var, fluid.framework.Variable))

        attr_keys = ['block', 'dtype', 'type', 'name']
        for attr in attr_keys:
            self.assertEqual(getattr(var_base, attr), getattr(static_var, attr))

        self.assertListEqual(list(var_base.shape), list(static_var.shape))

L
Leo Chen 已提交
393 394 395

if __name__ == '__main__':
    unittest.main()