test_var_base.py 62.0 KB
Newer Older
L
Leo Chen 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import copy
L
Leo Chen 已提交
16
import unittest
17

18 19
import numpy as np

20
import paddle
21
import paddle.nn.functional as F
22 23
from paddle import fluid
from paddle.fluid import core
L
Leo Chen 已提交
24 25 26 27 28 29 30 31


class TestVarBase(unittest.TestCase):
    def setUp(self):
        self.shape = [512, 1234]
        self.dtype = np.float32
        self.array = np.random.uniform(0.1, 1, self.shape).astype(self.dtype)

32
    def test_to_tensor(self):
33
        def check_with_place(place):
34
            with fluid.dygraph.guard():
35
                paddle.set_default_dtype('float32')
36
                # set_default_dtype should not take effect on int
37
                x = paddle.to_tensor(1, place=place, stop_gradient=False)
38
                np.testing.assert_array_equal(x.numpy(), [1])
39 40
                self.assertNotEqual(x.dtype, core.VarDesc.VarType.FP32)

41 42 43
                y = paddle.to_tensor(2, place=x.place)
                self.assertEqual(str(x.place), str(y.place))

44
                # set_default_dtype should not take effect on numpy
45 46 47 48 49 50 51 52
                x = paddle.to_tensor(
                    np.array([1.2]).astype('float16'),
                    place=place,
                    stop_gradient=False,
                )
                np.testing.assert_array_equal(
                    x.numpy(), np.array([1.2], 'float16')
                )
53 54
                self.assertEqual(x.dtype, core.VarDesc.VarType.FP16)

55 56 57 58
                # set_default_dtype take effect on int
                x = paddle.to_tensor(1, place=place)
                self.assertTrue(x.dtype, core.VarDesc.VarType.INT64)

59
                # set_default_dtype take effect on float
60
                x = paddle.to_tensor(1.2, place=place, stop_gradient=False)
61 62 63
                np.testing.assert_array_equal(
                    x.numpy(), np.array([1.2]).astype('float32')
                )
64
                self.assertEqual(x.dtype, core.VarDesc.VarType.FP32)
Z
Zhou Wei 已提交
65
                clone_x = x.clone()
66 67 68
                np.testing.assert_array_equal(
                    clone_x.numpy(), np.array([1.2]).astype('float32')
                )
Z
Zhou Wei 已提交
69 70 71
                self.assertEqual(clone_x.dtype, core.VarDesc.VarType.FP32)
                y = clone_x**2
                y.backward()
72 73 74
                np.testing.assert_array_equal(
                    x.grad.numpy(), np.array([2.4]).astype('float32')
                )
75
                y = x.cpu()
76
                self.assertEqual(y.place.__repr__(), "Place(cpu)")
77 78
                if core.is_compiled_with_cuda():
                    y = x.pin_memory()
79
                    self.assertEqual(y.place.__repr__(), "Place(gpu_pinned)")
80
                    y = x.cuda()
81
                    self.assertEqual(y.place.__repr__(), "Place(gpu:0)")
82
                    y = x.cuda(None)
83
                    self.assertEqual(y.place.__repr__(), "Place(gpu:0)")
84
                    y = x.cuda(device_id=0)
85
                    self.assertEqual(y.place.__repr__(), "Place(gpu:0)")
86
                    y = x.cuda(blocking=False)
87
                    self.assertEqual(y.place.__repr__(), "Place(gpu:0)")
88
                    y = x.cuda(blocking=True)
89
                    self.assertEqual(y.place.__repr__(), "Place(gpu:0)")
90 91
                    with self.assertRaises(ValueError):
                        y = x.cuda("test")
92

93 94 95 96 97
                # support 'dtype' is core.VarType
                x = paddle.rand((2, 2))
                y = paddle.to_tensor([2, 2], dtype=x.dtype)
                self.assertEqual(y.dtype, core.VarDesc.VarType.FP32)

98
                # set_default_dtype take effect on complex
99
                x = paddle.to_tensor(1 + 2j, place=place, stop_gradient=False)
100
                np.testing.assert_array_equal(x.numpy(), [1 + 2j])
C
chentianyu03 已提交
101
                self.assertEqual(x.dtype, core.VarDesc.VarType.COMPLEX64)
102 103 104

                paddle.set_default_dtype('float64')
                x = paddle.to_tensor(1.2, place=place, stop_gradient=False)
105
                np.testing.assert_array_equal(x.numpy(), [1.2])
106 107 108
                self.assertEqual(x.dtype, core.VarDesc.VarType.FP64)

                x = paddle.to_tensor(1 + 2j, place=place, stop_gradient=False)
109
                np.testing.assert_array_equal(x.numpy(), [1 + 2j])
C
chentianyu03 已提交
110
                self.assertEqual(x.dtype, core.VarDesc.VarType.COMPLEX128)
111

112 113 114
                x = paddle.to_tensor(
                    1, dtype='float32', place=place, stop_gradient=False
                )
115
                np.testing.assert_array_equal(x.numpy(), [1.0])
116 117 118 119 120
                self.assertEqual(x.dtype, core.VarDesc.VarType.FP32)
                self.assertEqual(x.shape, [1])
                self.assertEqual(x.stop_gradient, False)
                self.assertEqual(x.type, core.VarDesc.VarType.LOD_TENSOR)

121 122 123 124 125 126
                x = paddle.to_tensor(
                    (1, 2), dtype='float32', place=place, stop_gradient=False
                )
                x = paddle.to_tensor(
                    [1, 2], dtype='float32', place=place, stop_gradient=False
                )
127
                np.testing.assert_array_equal(x.numpy(), [1.0, 2.0])
128
                self.assertEqual(x.dtype, core.VarDesc.VarType.FP32)
129
                self.assertIsNone(x.grad)
130 131 132 133
                self.assertEqual(x.shape, [2])
                self.assertEqual(x.stop_gradient, False)
                self.assertEqual(x.type, core.VarDesc.VarType.LOD_TENSOR)

134 135 136 137 138 139
                x = paddle.to_tensor(
                    self.array,
                    dtype='float32',
                    place=place,
                    stop_gradient=False,
                )
140
                np.testing.assert_array_equal(x.numpy(), self.array)
141 142 143 144 145 146 147
                self.assertEqual(x.dtype, core.VarDesc.VarType.FP32)
                self.assertEqual(x.shape, self.shape)
                self.assertEqual(x.stop_gradient, False)
                self.assertEqual(x.type, core.VarDesc.VarType.LOD_TENSOR)

                y = paddle.to_tensor(x)
                y = paddle.to_tensor(y, dtype='float64', place=place)
148
                np.testing.assert_array_equal(y.numpy(), self.array)
149 150 151 152 153
                self.assertEqual(y.dtype, core.VarDesc.VarType.FP64)
                self.assertEqual(y.shape, self.shape)
                self.assertEqual(y.stop_gradient, True)
                self.assertEqual(y.type, core.VarDesc.VarType.LOD_TENSOR)
                z = x + y
154
                np.testing.assert_array_equal(z.numpy(), 2 * self.array)
155

156 157 158
                x = paddle.to_tensor(
                    [1 + 2j, 1 - 2j], dtype='complex64', place=place
                )
159
                y = paddle.to_tensor(x)
160
                np.testing.assert_array_equal(x.numpy(), [1 + 2j, 1 - 2j])
C
chentianyu03 已提交
161
                self.assertEqual(y.dtype, core.VarDesc.VarType.COMPLEX64)
162 163
                self.assertEqual(y.shape, [2])

164 165 166 167 168
                paddle.set_default_dtype('float32')
                x = paddle.randn([3, 4])
                x_array = np.array(x)
                self.assertEqual(x_array.shape, x.numpy().shape)
                self.assertEqual(x_array.dtype, x.numpy().dtype)
169
                np.testing.assert_array_equal(x_array, x.numpy())
170 171 172 173 174 175 176 177 178

                x = paddle.to_tensor(1.0)
                self.assertEqual(x.item(), 1.0)
                self.assertTrue(isinstance(x.item(), float))

                x = paddle.randn([3, 2, 2])
                self.assertTrue(isinstance(x.item(5), float))
                self.assertTrue(isinstance(x.item(1, 0, 1), float))
                self.assertEqual(x.item(5), x.item(1, 0, 1))
179 180 181
                np.testing.assert_array_equal(
                    x.item(1, 0, 1), x.numpy().item(1, 0, 1)
                )
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213

                x = paddle.to_tensor([[1.111111, 2.222222, 3.333333]])
                self.assertEqual(x.item(0, 2), x.item(2))
                self.assertAlmostEqual(x.item(2), 3.333333)
                self.assertTrue(isinstance(x.item(0, 2), float))

                x = paddle.to_tensor(1.0, dtype='float64')
                self.assertEqual(x.item(), 1.0)
                self.assertTrue(isinstance(x.item(), float))

                x = paddle.to_tensor(1.0, dtype='float16')
                self.assertEqual(x.item(), 1.0)
                self.assertTrue(isinstance(x.item(), float))

                x = paddle.to_tensor(1, dtype='uint8')
                self.assertEqual(x.item(), 1)
                self.assertTrue(isinstance(x.item(), int))

                x = paddle.to_tensor(1, dtype='int8')
                self.assertEqual(x.item(), 1)
                self.assertTrue(isinstance(x.item(), int))

                x = paddle.to_tensor(1, dtype='int16')
                self.assertEqual(x.item(), 1)
                self.assertTrue(isinstance(x.item(), int))

                x = paddle.to_tensor(1, dtype='int32')
                self.assertEqual(x.item(), 1)
                self.assertTrue(isinstance(x.item(), int))

                x = paddle.to_tensor(1, dtype='int64')
                self.assertEqual(x.item(), 1)
T
tianshuo78520a 已提交
214
                self.assertTrue(isinstance(x.item(), int))
215 216 217 218 219 220 221 222 223

                x = paddle.to_tensor(True)
                self.assertEqual(x.item(), True)
                self.assertTrue(isinstance(x.item(), bool))

                x = paddle.to_tensor(1 + 1j)
                self.assertEqual(x.item(), 1 + 1j)
                self.assertTrue(isinstance(x.item(), complex))

224 225 226 227 228
                # empty tensor
                x = paddle.to_tensor([])
                self.assertEqual(x.shape, [0])
                expected_result = np.array([], dtype='float32')
                self.assertEqual(x.numpy().shape, expected_result.shape)
229
                np.testing.assert_array_equal(x.numpy(), expected_result)
230

231 232 233 234 235 236
                numpy_array = np.random.randn(3, 4)
                # covert core.LoDTensor to paddle.Tensor
                lod_tensor = paddle.fluid.core.LoDTensor()
                place = paddle.fluid.framework._current_expected_place()
                lod_tensor.set(numpy_array, place)
                x = paddle.to_tensor(lod_tensor)
237
                np.testing.assert_array_equal(x.numpy(), numpy_array)
238 239 240 241 242 243 244 245
                self.assertEqual(x.type, core.VarDesc.VarType.LOD_TENSOR)
                self.assertEqual(str(x.place), str(place))

                # covert core.Tensor to paddle.Tensor
                x = paddle.to_tensor(numpy_array)
                dlpack = x.value().get_tensor()._to_dlpack()
                tensor_from_dlpack = paddle.fluid.core.from_dlpack(dlpack)
                x = paddle.to_tensor(tensor_from_dlpack)
246
                np.testing.assert_array_equal(x.numpy(), numpy_array)
247 248
                self.assertEqual(x.type, core.VarDesc.VarType.LOD_TENSOR)

249 250 251 252 253 254 255 256
                with self.assertRaises(ValueError):
                    paddle.randn([3, 2, 2]).item()
                with self.assertRaises(ValueError):
                    paddle.randn([3, 2, 2]).item(18)
                with self.assertRaises(ValueError):
                    paddle.randn([3, 2, 2]).item(1, 2)
                with self.assertRaises(ValueError):
                    paddle.randn([3, 2, 2]).item(2, 1, 2)
257 258 259 260 261 262 263 264 265 266 267
                with self.assertRaises(TypeError):
                    paddle.to_tensor('test')
                with self.assertRaises(TypeError):
                    paddle.to_tensor(1, dtype='test')
                with self.assertRaises(ValueError):
                    paddle.to_tensor([[1], [2, 3]])
                with self.assertRaises(ValueError):
                    paddle.to_tensor([[1], [2, 3]], place='test')
                with self.assertRaises(ValueError):
                    paddle.to_tensor([[1], [2, 3]], place=1)

268 269
        check_with_place(core.CPUPlace())
        check_with_place("cpu")
270
        if core.is_compiled_with_cuda():
271 272 273 274
            check_with_place(core.CUDAPinnedPlace())
            check_with_place("gpu_pinned")
            check_with_place(core.CUDAPlace(0))
            check_with_place("gpu:0")
275
        if core.is_compiled_with_npu():
276 277
            check_with_place(core.NPUPlace(0))
            check_with_place("npu:0")
278

279
    def test_to_tensor_not_change_input_stop_gradient(self):
280 281 282 283 284 285 286
        with paddle.fluid.dygraph.guard(core.CPUPlace()):
            a = paddle.zeros([1024])
            a.stop_gradient = False
            b = paddle.to_tensor(a)
            self.assertEqual(a.stop_gradient, False)
            self.assertEqual(b.stop_gradient, True)

287
    def test_to_tensor_change_place(self):
288 289 290 291 292
        if core.is_compiled_with_cuda():
            a_np = np.random.rand(1024, 1024)
            with paddle.fluid.dygraph.guard(core.CPUPlace()):
                a = paddle.to_tensor(a_np, place=paddle.CUDAPinnedPlace())
                a = paddle.to_tensor(a)
293
                self.assertEqual(a.place.__repr__(), "Place(cpu)")
294 295 296 297

            with paddle.fluid.dygraph.guard(core.CUDAPlace(0)):
                a = paddle.to_tensor(a_np, place=paddle.CUDAPinnedPlace())
                a = paddle.to_tensor(a)
298
                self.assertEqual(a.place.__repr__(), "Place(gpu:0)")
299 300 301 302

            with paddle.fluid.dygraph.guard(core.CUDAPlace(0)):
                a = paddle.to_tensor(a_np, place=paddle.CPUPlace())
                a = paddle.to_tensor(a, place=paddle.CUDAPinnedPlace())
303
                self.assertEqual(a.place.__repr__(), "Place(gpu_pinned)")
304

305
    def test_to_tensor_with_lodtensor(self):
306 307 308 309 310 311
        if core.is_compiled_with_cuda():
            a_np = np.random.rand(1024, 1024)
            with paddle.fluid.dygraph.guard(core.CPUPlace()):
                lod_tensor = core.LoDTensor()
                lod_tensor.set(a_np, core.CPUPlace())
                a = paddle.to_tensor(lod_tensor)
312
                np.testing.assert_array_equal(a_np, a.numpy())
313 314 315 316

            with paddle.fluid.dygraph.guard(core.CUDAPlace(0)):
                lod_tensor = core.LoDTensor()
                lod_tensor.set(a_np, core.CUDAPlace(0))
317
                a = paddle.to_tensor(lod_tensor, place=core.CPUPlace())
318
                np.testing.assert_array_equal(a_np, a.numpy())
319
                self.assertTrue(a.place.__repr__(), "Place(cpu)")
320

321
    def test_to_variable(self):
L
Leo Chen 已提交
322 323
        with fluid.dygraph.guard():
            var = fluid.dygraph.to_variable(self.array, name="abc")
324
            np.testing.assert_array_equal(var.numpy(), self.array)
L
Leo Chen 已提交
325 326 327 328 329 330 331
            self.assertEqual(var.name, 'abc')
            # default value
            self.assertEqual(var.persistable, False)
            self.assertEqual(var.stop_gradient, True)
            self.assertEqual(var.shape, self.shape)
            self.assertEqual(var.dtype, core.VarDesc.VarType.FP32)
            self.assertEqual(var.type, core.VarDesc.VarType.LOD_TENSOR)
332 333 334 335 336
            # The type of input must be 'ndarray' or 'Variable', it will raise TypeError
            with self.assertRaises(TypeError):
                var = fluid.dygraph.to_variable("test", name="abc")
            # test to_variable of LayerObjectHelper(LayerHelperBase)
            with self.assertRaises(TypeError):
337
                linear = paddle.nn.Linear(32, 64)
338
                var = linear._helper.to_variable("test", name="abc")
L
Leo Chen 已提交
339

340
    def test_list_to_variable(self):
341 342 343
        with fluid.dygraph.guard():
            array = [[[1, 2], [1, 2], [1.0, 2]], [[1, 2], [1, 2], [1, 2]]]
            var = fluid.dygraph.to_variable(array, dtype='int32')
344
            np.testing.assert_array_equal(var.numpy(), array)
345 346 347 348
            self.assertEqual(var.shape, [2, 3, 2])
            self.assertEqual(var.dtype, core.VarDesc.VarType.INT32)
            self.assertEqual(var.type, core.VarDesc.VarType.LOD_TENSOR)

349
    def test_tuple_to_variable(self):
350 351 352
        with fluid.dygraph.guard():
            array = (((1, 2), (1, 2), (1, 2)), ((1, 2), (1, 2), (1, 2)))
            var = fluid.dygraph.to_variable(array, dtype='float32')
353
            np.testing.assert_array_equal(var.numpy(), array)
354 355 356 357
            self.assertEqual(var.shape, [2, 3, 2])
            self.assertEqual(var.dtype, core.VarDesc.VarType.FP32)
            self.assertEqual(var.type, core.VarDesc.VarType.LOD_TENSOR)

358
    def test_tensor_to_variable(self):
359 360
        with fluid.dygraph.guard():
            t = fluid.Tensor()
L
Leo Chen 已提交
361
            t.set(np.random.random((1024, 1024)), fluid.CPUPlace())
362
            var = fluid.dygraph.to_variable(t)
363
            np.testing.assert_array_equal(t, var.numpy())
364

365
    def test_leaf_tensor(self):
366 367 368 369 370 371
        with fluid.dygraph.guard():
            x = paddle.to_tensor(np.random.uniform(-1, 1, size=[10, 10]))
            self.assertTrue(x.is_leaf)
            y = x + 1
            self.assertTrue(y.is_leaf)

372 373 374
            x = paddle.to_tensor(
                np.random.uniform(-1, 1, size=[10, 10]), stop_gradient=False
            )
375 376 377 378 379
            self.assertTrue(x.is_leaf)
            y = x + 1
            self.assertFalse(y.is_leaf)

            linear = paddle.nn.Linear(10, 10)
380 381 382 383
            input = paddle.to_tensor(
                np.random.uniform(-1, 1, size=[10, 10]).astype('float32'),
                stop_gradient=False,
            )
384 385 386 387 388 389 390
            self.assertTrue(input.is_leaf)

            out = linear(input)
            self.assertTrue(linear.weight.is_leaf)
            self.assertTrue(linear.bias.is_leaf)
            self.assertFalse(out.is_leaf)

391
    def test_detach(self):
Z
Zhou Wei 已提交
392 393 394 395 396
        with fluid.dygraph.guard():
            x = paddle.to_tensor(1.0, dtype="float64", stop_gradient=False)
            detach_x = x.detach()
            self.assertTrue(detach_x.stop_gradient, True)

397 398 399
            cmp_float = (
                np.allclose if core.is_compiled_with_rocm() else np.array_equal
            )
Z
Zhou Wei 已提交
400
            detach_x[:] = 10.0
Z
zhulei 已提交
401
            self.assertTrue(cmp_float(x.numpy(), [10.0]))
Z
Zhou Wei 已提交
402 403 404

            y = x**2
            y.backward()
Z
zhulei 已提交
405
            self.assertTrue(cmp_float(x.grad.numpy(), [20.0]))
406
            self.assertIsNone(detach_x.grad)
Z
Zhou Wei 已提交
407

408 409 410
            detach_x.stop_gradient = (
                False  # Set stop_gradient to be False, supported auto-grad
            )
Z
Zhou Wei 已提交
411 412
            z = 3 * detach_x**2
            z.backward()
Z
zhulei 已提交
413 414
            self.assertTrue(cmp_float(x.grad.numpy(), [20.0]))
            self.assertTrue(cmp_float(detach_x.grad.numpy(), [60.0]))
415

416 417 418 419 420
            with self.assertRaises(ValueError):
                detach_x[:] = 5.0

            detach_x.stop_gradient = True

Z
Zhou Wei 已提交
421
            # Due to sharing of data with origin Tensor, There are some unsafe operations:
422 423 424 425
            with self.assertRaises(RuntimeError):
                y = 2**x
                detach_x[:] = 5.0
                y.backward()
Z
Zhou Wei 已提交
426

427
    def test_write_property(self):
L
Leo Chen 已提交
428 429 430
        with fluid.dygraph.guard():
            var = fluid.dygraph.to_variable(self.array)

431
            self.assertEqual(var.name, 'generated_tensor_0')
L
Leo Chen 已提交
432 433 434 435 436 437 438 439 440 441 442
            var.name = 'test'
            self.assertEqual(var.name, 'test')

            self.assertEqual(var.persistable, False)
            var.persistable = True
            self.assertEqual(var.persistable, True)

            self.assertEqual(var.stop_gradient, True)
            var.stop_gradient = False
            self.assertEqual(var.stop_gradient, False)

443
    def test_deep_copy(self):
444
        with fluid.dygraph.guard():
姜永久 已提交
445
            empty_var = core.eager.Tensor()
446
            empty_var_copy = copy.deepcopy(empty_var)
447 448 449
            self.assertEqual(
                empty_var.stop_gradient, empty_var_copy.stop_gradient
            )
450 451 452 453
            self.assertEqual(empty_var.persistable, empty_var_copy.persistable)
            self.assertEqual(empty_var.type, empty_var_copy.type)
            self.assertEqual(empty_var.dtype, empty_var_copy.dtype)

454 455
            x = paddle.to_tensor([2.0], stop_gradient=False)
            y = paddle.to_tensor([3.0], stop_gradient=False)
456 457 458 459 460 461 462 463 464
            z = x * y
            memo = {}
            x_copy = copy.deepcopy(x, memo)
            y_copy = copy.deepcopy(y, memo)

            self.assertEqual(x_copy.stop_gradient, y_copy.stop_gradient)
            self.assertEqual(x_copy.persistable, y_copy.persistable)
            self.assertEqual(x_copy.type, y_copy.type)
            self.assertEqual(x_copy.dtype, y_copy.dtype)
465 466
            np.testing.assert_array_equal(x.numpy(), x_copy.numpy())
            np.testing.assert_array_equal(y.numpy(), y_copy.numpy())
467 468

            self.assertNotEqual(id(x), id(x_copy))
469
            np.testing.assert_array_equal(x.numpy(), [2.0])
470

471
            with self.assertRaises(ValueError):
472
                x_copy[:] = 5.0
473

474 475 476 477 478 479 480 481 482
            with self.assertRaises(RuntimeError):
                copy.deepcopy(z)

            x_copy2 = copy.deepcopy(x, memo)
            y_copy2 = copy.deepcopy(y, memo)
            self.assertEqual(id(x_copy), id(x_copy2))
            self.assertEqual(id(y_copy), id(y_copy2))

            # test copy selected rows
姜永久 已提交
483 484 485 486 487 488 489
            x = core.eager.Tensor(
                core.VarDesc.VarType.FP32,
                [3, 100],
                "selected_rows",
                core.VarDesc.VarType.SELECTED_ROWS,
                True,
            )
490

491
            selected_rows = x.value().get_selected_rows()
492 493 494
            selected_rows.get_tensor().set(
                np.random.rand(3, 100), core.CPUPlace()
            )
495 496 497 498 499 500 501 502 503 504
            selected_rows.set_height(10)
            selected_rows.set_rows([3, 5, 7])
            x_copy = copy.deepcopy(x)

            self.assertEqual(x_copy.stop_gradient, x.stop_gradient)
            self.assertEqual(x_copy.persistable, x.persistable)
            self.assertEqual(x_copy.type, x.type)
            self.assertEqual(x_copy.dtype, x.dtype)

            copy_selected_rows = x_copy.value().get_selected_rows()
505 506 507
            self.assertEqual(
                copy_selected_rows.height(), selected_rows.height()
            )
508
            self.assertEqual(copy_selected_rows.rows(), selected_rows.rows())
509 510
            np.testing.assert_array_equal(
                np.array(copy_selected_rows.get_tensor()),
511 512
                np.array(selected_rows.get_tensor()),
            )
513

L
Leo Chen 已提交
514
    # test some patched methods
515
    def test_set_value(self):
L
Leo Chen 已提交
516 517 518 519 520 521 522
        with fluid.dygraph.guard():
            var = fluid.dygraph.to_variable(self.array)
            tmp1 = np.random.uniform(0.1, 1, [2, 2, 3]).astype(self.dtype)
            self.assertRaises(AssertionError, var.set_value, tmp1)

            tmp2 = np.random.uniform(0.1, 1, self.shape).astype(self.dtype)
            var.set_value(tmp2)
523
            np.testing.assert_array_equal(var.numpy(), tmp2)
L
Leo Chen 已提交
524

525
    def test_to_string(self):
L
Leo Chen 已提交
526 527
        with fluid.dygraph.guard():
            var = fluid.dygraph.to_variable(self.array)
528
            self.assertTrue(isinstance(str(var), str))
L
Leo Chen 已提交
529

530
    def test_element_size(self):
531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564
        with fluid.dygraph.guard():
            x = paddle.to_tensor(1, dtype='bool')
            self.assertEqual(x.element_size(), 1)

            x = paddle.to_tensor(1, dtype='float16')
            self.assertEqual(x.element_size(), 2)

            x = paddle.to_tensor(1, dtype='float32')
            self.assertEqual(x.element_size(), 4)

            x = paddle.to_tensor(1, dtype='float64')
            self.assertEqual(x.element_size(), 8)

            x = paddle.to_tensor(1, dtype='int8')
            self.assertEqual(x.element_size(), 1)

            x = paddle.to_tensor(1, dtype='int16')
            self.assertEqual(x.element_size(), 2)

            x = paddle.to_tensor(1, dtype='int32')
            self.assertEqual(x.element_size(), 4)

            x = paddle.to_tensor(1, dtype='int64')
            self.assertEqual(x.element_size(), 8)

            x = paddle.to_tensor(1, dtype='uint8')
            self.assertEqual(x.element_size(), 1)

            x = paddle.to_tensor(1, dtype='complex64')
            self.assertEqual(x.element_size(), 8)

            x = paddle.to_tensor(1, dtype='complex128')
            self.assertEqual(x.element_size(), 16)

565
    def test_backward(self):
L
Leo Chen 已提交
566 567 568
        with fluid.dygraph.guard():
            var = fluid.dygraph.to_variable(self.array)
            var.stop_gradient = False
569
            loss = F.relu(var)
L
Leo Chen 已提交
570 571 572 573
            loss.backward()
            grad_var = var._grad_ivar()
            self.assertEqual(grad_var.shape, self.shape)

574
    def test_gradient(self):
L
Leo Chen 已提交
575 576 577
        with fluid.dygraph.guard():
            var = fluid.dygraph.to_variable(self.array)
            var.stop_gradient = False
578
            loss = F.relu(var)
L
Leo Chen 已提交
579 580 581 582
            loss.backward()
            grad_var = var.gradient()
            self.assertEqual(grad_var.shape, self.array.shape)

583
    def test_block(self):
L
Leo Chen 已提交
584 585
        with fluid.dygraph.guard():
            var = fluid.dygraph.to_variable(self.array)
586 587 588
            self.assertEqual(
                var.block, fluid.default_main_program().global_block()
            )
L
Leo Chen 已提交
589

590 591
    def _test_slice(self):
        w = fluid.dygraph.to_variable(
592 593
            np.random.random((784, 100, 100)).astype('float64')
        )
594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615

        for i in range(3):
            nw = w[i]
            self.assertEqual((100, 100), tuple(nw.shape))

        nw = w[:]
        self.assertEqual((784, 100, 100), tuple(nw.shape))

        nw = w[:, :]
        self.assertEqual((784, 100, 100), tuple(nw.shape))

        nw = w[:, :, -1]
        self.assertEqual((784, 100), tuple(nw.shape))

        nw = w[1, 1, 1]

        self.assertEqual(len(nw.shape), 1)
        self.assertEqual(nw.shape[0], 1)

        nw = w[:, :, :-1]
        self.assertEqual((784, 100, 99), tuple(nw.shape))

616 617 618 619 620 621 622
        tensor_array = np.array(
            [
                [[1, 2, 3], [4, 5, 6], [7, 8, 9]],
                [[10, 11, 12], [13, 14, 15], [16, 17, 18]],
                [[19, 20, 21], [22, 23, 24], [25, 26, 27]],
            ]
        ).astype('float32')
623 624 625 626 627 628
        var = fluid.dygraph.to_variable(tensor_array)
        var1 = var[0, 1, 1]
        var2 = var[1:]
        var3 = var[0:1]
        var4 = var[::-1]
        var5 = var[1, 1:, 1:]
629
        var_reshape = paddle.reshape(var, [3, -1, 3])
630 631 632 633 634 635 636 637 638 639
        var6 = var_reshape[:, :, -1]
        var7 = var[:, :, :-1]
        var8 = var[:1, :1, :1]
        var9 = var[:-1, :-1, :-1]
        var10 = var[::-1, :1, :-1]
        var11 = var[:-1, ::-1, -1:]
        var12 = var[1:2, 2:, ::-1]
        var13 = var[2:10, 2:, -2:-1]
        var14 = var[1:-1, 0:2, ::-1]
        var15 = var[::-1, ::-1, ::-1]
640
        var16 = var[-4:4]
641 642
        var17 = var[:, 0, 0:0]
        var18 = var[:, 1:1:2]
643 644

        vars = [
645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663
            var,
            var1,
            var2,
            var3,
            var4,
            var5,
            var6,
            var7,
            var8,
            var9,
            var10,
            var11,
            var12,
            var13,
            var14,
            var15,
            var16,
            var17,
            var18,
664 665 666
        ]
        local_out = [var.numpy() for var in vars]

667 668 669 670 671 672
        np.testing.assert_array_equal(local_out[1], tensor_array[0, 1, 1:2])
        np.testing.assert_array_equal(local_out[2], tensor_array[1:])
        np.testing.assert_array_equal(local_out[3], tensor_array[0:1])
        np.testing.assert_array_equal(local_out[4], tensor_array[::-1])
        np.testing.assert_array_equal(local_out[5], tensor_array[1, 1:, 1:])
        np.testing.assert_array_equal(
673 674
            local_out[6], tensor_array.reshape((3, -1, 3))[:, :, -1]
        )
675 676 677
        np.testing.assert_array_equal(local_out[7], tensor_array[:, :, :-1])
        np.testing.assert_array_equal(local_out[8], tensor_array[:1, :1, :1])
        np.testing.assert_array_equal(local_out[9], tensor_array[:-1, :-1, :-1])
678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695
        np.testing.assert_array_equal(
            local_out[10], tensor_array[::-1, :1, :-1]
        )
        np.testing.assert_array_equal(
            local_out[11], tensor_array[:-1, ::-1, -1:]
        )
        np.testing.assert_array_equal(
            local_out[12], tensor_array[1:2, 2:, ::-1]
        )
        np.testing.assert_array_equal(
            local_out[13], tensor_array[2:10, 2:, -2:-1]
        )
        np.testing.assert_array_equal(
            local_out[14], tensor_array[1:-1, 0:2, ::-1]
        )
        np.testing.assert_array_equal(
            local_out[15], tensor_array[::-1, ::-1, ::-1]
        )
696 697 698
        np.testing.assert_array_equal(local_out[16], tensor_array[-4:4])
        np.testing.assert_array_equal(local_out[17], tensor_array[:, 0, 0:0])
        np.testing.assert_array_equal(local_out[18], tensor_array[:, 1:1:2])
699

700
    def _test_slice_for_tensor_attr(self):
701 702 703 704 705 706 707
        tensor_array = np.array(
            [
                [[1, 2, 3], [4, 5, 6], [7, 8, 9]],
                [[10, 11, 12], [13, 14, 15], [16, 17, 18]],
                [[19, 20, 21], [22, 23, 24], [25, 26, 27]],
            ]
        ).astype('float32')
708 709 710 711 712 713 714 715 716 717 718 719 720 721

        var = paddle.to_tensor(tensor_array)

        one = paddle.ones(shape=[1], dtype="int32")
        two = paddle.full(shape=[1], fill_value=2, dtype="int32")
        negative_one = paddle.full(shape=[1], fill_value=-1, dtype="int32")
        four = paddle.full(shape=[1], fill_value=4, dtype="int32")

        var = fluid.dygraph.to_variable(tensor_array)
        var1 = var[0, one, one]
        var2 = var[one:]
        var3 = var[0:one]
        var4 = var[::negative_one]
        var5 = var[one, one:, one:]
722
        var_reshape = paddle.reshape(var, [3, negative_one, 3])
723 724 725 726 727 728 729 730 731 732 733 734 735
        var6 = var_reshape[:, :, negative_one]
        var7 = var[:, :, :negative_one]
        var8 = var[:one, :one, :1]
        var9 = var[:-1, :negative_one, :negative_one]
        var10 = var[::negative_one, :one, :negative_one]
        var11 = var[:negative_one, ::-1, negative_one:]
        var12 = var[one:2, 2:, ::negative_one]
        var13 = var[two:10, 2:, -2:negative_one]
        var14 = var[1:negative_one, 0:2, ::negative_one]
        var15 = var[::negative_one, ::-1, ::negative_one]
        var16 = var[-4:4]

        vars = [
736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752
            var,
            var1,
            var2,
            var3,
            var4,
            var5,
            var6,
            var7,
            var8,
            var9,
            var10,
            var11,
            var12,
            var13,
            var14,
            var15,
            var16,
753 754 755
        ]
        local_out = [var.numpy() for var in vars]

756 757 758 759 760 761
        np.testing.assert_array_equal(local_out[1], tensor_array[0, 1, 1:2])
        np.testing.assert_array_equal(local_out[2], tensor_array[1:])
        np.testing.assert_array_equal(local_out[3], tensor_array[0:1])
        np.testing.assert_array_equal(local_out[4], tensor_array[::-1])
        np.testing.assert_array_equal(local_out[5], tensor_array[1, 1:, 1:])
        np.testing.assert_array_equal(
762 763
            local_out[6], tensor_array.reshape((3, -1, 3))[:, :, -1]
        )
764 765 766
        np.testing.assert_array_equal(local_out[7], tensor_array[:, :, :-1])
        np.testing.assert_array_equal(local_out[8], tensor_array[:1, :1, :1])
        np.testing.assert_array_equal(local_out[9], tensor_array[:-1, :-1, :-1])
767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784
        np.testing.assert_array_equal(
            local_out[10], tensor_array[::-1, :1, :-1]
        )
        np.testing.assert_array_equal(
            local_out[11], tensor_array[:-1, ::-1, -1:]
        )
        np.testing.assert_array_equal(
            local_out[12], tensor_array[1:2, 2:, ::-1]
        )
        np.testing.assert_array_equal(
            local_out[13], tensor_array[2:10, 2:, -2:-1]
        )
        np.testing.assert_array_equal(
            local_out[14], tensor_array[1:-1, 0:2, ::-1]
        )
        np.testing.assert_array_equal(
            local_out[15], tensor_array[::-1, ::-1, ::-1]
        )
785
        np.testing.assert_array_equal(local_out[16], tensor_array[-4:4])
786

787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807
    def _test_for_getitem_ellipsis_index(self):
        shape = (64, 3, 5, 256)
        np_fp32_value = np.random.random(shape).astype('float32')
        np_int_value = np.random.randint(1, 100, shape)

        var_fp32 = paddle.to_tensor(np_fp32_value)
        var_int = paddle.to_tensor(np_int_value)

        def assert_getitem_ellipsis_index(var_tensor, var_np):
            var = [
                var_tensor[..., 0].numpy(),
                var_tensor[..., 1, 0].numpy(),
                var_tensor[0, ..., 1, 0].numpy(),
                var_tensor[1, ..., 1].numpy(),
                var_tensor[2, ...].numpy(),
                var_tensor[2, 0, ...].numpy(),
                var_tensor[2, 0, 1, ...].numpy(),
                var_tensor[...].numpy(),
                var_tensor[:, ..., 100].numpy(),
            ]

808 809 810 811 812 813 814 815 816
            np.testing.assert_array_equal(var[0], var_np[..., 0])
            np.testing.assert_array_equal(var[1], var_np[..., 1, 0])
            np.testing.assert_array_equal(var[2], var_np[0, ..., 1, 0])
            np.testing.assert_array_equal(var[3], var_np[1, ..., 1])
            np.testing.assert_array_equal(var[4], var_np[2, ...])
            np.testing.assert_array_equal(var[5], var_np[2, 0, ...])
            np.testing.assert_array_equal(var[6], var_np[2, 0, 1, ...])
            np.testing.assert_array_equal(var[7], var_np[...])
            np.testing.assert_array_equal(var[8], var_np[:, ..., 100])
817 818 819 820 821 822 823

        var_fp32 = paddle.to_tensor(np_fp32_value)
        var_int = paddle.to_tensor(np_int_value)

        assert_getitem_ellipsis_index(var_fp32, np_fp32_value)
        assert_getitem_ellipsis_index(var_int, np_int_value)

824 825
        # test 1 dim tensor
        var_one_dim = paddle.to_tensor([1, 2, 3, 4])
826 827 828
        np.testing.assert_array_equal(
            var_one_dim[..., 0].numpy(), np.array([1])
        )
829

830 831 832 833 834 835 836 837 838 839 840 841 842 843 844
    def _test_none_index(self):
        shape = (8, 64, 5, 256)
        np_value = np.random.random(shape).astype('float32')
        var_tensor = paddle.to_tensor(np_value)

        var = [
            var_tensor[1, 0, None].numpy(),
            var_tensor[None, ..., 1, 0].numpy(),
            var_tensor[:, :, :, None].numpy(),
            var_tensor[1, ..., 1, None].numpy(),
            var_tensor[2, ..., None, None].numpy(),
            var_tensor[None, 2, 0, ...].numpy(),
            var_tensor[None, 2, None, 1].numpy(),
            var_tensor[None].numpy(),
            var_tensor[0, 0, None, 0, 0, None].numpy(),
845
            var_tensor[None, None, 0, ..., None].numpy(),
846
            var_tensor[..., None, :, None].numpy(),
847 848 849
            var_tensor[0, 1:10:2, None, None, ...].numpy(),
        ]

850 851 852 853 854 855 856 857 858
        np.testing.assert_array_equal(var[0], np_value[1, 0, None])
        np.testing.assert_array_equal(var[1], np_value[None, ..., 1, 0])
        np.testing.assert_array_equal(var[2], np_value[:, :, :, None])
        np.testing.assert_array_equal(var[3], np_value[1, ..., 1, None])
        np.testing.assert_array_equal(var[4], np_value[2, ..., None, None])
        np.testing.assert_array_equal(var[5], np_value[None, 2, 0, ...])
        np.testing.assert_array_equal(var[6], np_value[None, 2, None, 1])
        np.testing.assert_array_equal(var[7], np_value[None])
        np.testing.assert_array_equal(var[8], np_value[0, 0, None, 0, 0, None])
859 860 861
        np.testing.assert_array_equal(
            var[9], np_value[None, None, 0, ..., None]
        )
862
        np.testing.assert_array_equal(var[10], np_value[..., None, :, None])
863

864 865
        # TODO(zyfncg) there is a bug of dimensions when slice step > 1 and
        #              indexs has int type
866
        # self.assertTrue(
867
        #     np.array_equal(var[11], np_value[0, 1:10:2, None, None, ...]))
868

Z
zyfncg 已提交
869 870 871 872
    def _test_bool_index(self):
        shape = (4, 2, 5, 64)
        np_value = np.random.random(shape).astype('float32')
        var_tensor = paddle.to_tensor(np_value)
873 874 875 876 877 878 879 880 881 882
        index = [
            [True, True, True, True],
            [True, False, True, True],
            [True, False, False, True],
            [False, 0, 1, True, True],
            [False, False, False, False],
        ]
        index2d = np.array(
            [[True, True], [False, False], [True, False], [True, True]]
        )
Z
zyfncg 已提交
883 884
        tensor_index = paddle.to_tensor(index2d)
        var = [
885 886 887 888
            var_tensor[index[0]].numpy(),
            var_tensor[index[1]].numpy(),
            var_tensor[index[2]].numpy(),
            var_tensor[index[3]].numpy(),
Z
zyfncg 已提交
889 890
            var_tensor[paddle.to_tensor(index[0])].numpy(),
            var_tensor[tensor_index].numpy(),
891
            var_tensor[paddle.to_tensor(index[4])].numpy(),
Z
zyfncg 已提交
892
        ]
893 894 895 896 897 898 899
        np.testing.assert_array_equal(var[0], np_value[index[0]])
        np.testing.assert_array_equal(var[1], np_value[index[1]])
        np.testing.assert_array_equal(var[2], np_value[index[2]])
        np.testing.assert_array_equal(var[3], np_value[index[3]])
        np.testing.assert_array_equal(var[4], np_value[index[0]])
        np.testing.assert_array_equal(var[5], np_value[index2d])
        np.testing.assert_array_equal(var[6], np_value[index[4]])
900 901 902 903 904 905
        np.testing.assert_array_equal(
            var_tensor[var_tensor > 0.67], np_value[np_value > 0.67]
        )
        np.testing.assert_array_equal(
            var_tensor[var_tensor < 0.55], np_value[np_value < 0.55]
        )
Z
zyfncg 已提交
906 907 908 909 910 911 912 913 914 915

        with self.assertRaises(ValueError):
            var_tensor[[False, False, False, False]]
        with self.assertRaises(ValueError):
            var_tensor[[True, False]]
        with self.assertRaises(ValueError):
            var_tensor[[True, False, False, False, False]]
        with self.assertRaises(IndexError):
            var_tensor[paddle.to_tensor([[True, False, False, False]])]

916 917 918 919 920 921
    def _test_scalar_bool_index(self):
        shape = (1, 2, 5, 64)
        np_value = np.random.random(shape).astype('float32')
        var_tensor = paddle.to_tensor(np_value)
        index = [True]
        tensor_index = paddle.to_tensor(index)
922 923 924
        var = [
            var_tensor[tensor_index].numpy(),
        ]
925
        np.testing.assert_array_equal(var[0], np_value[index])
926

H
hong 已提交
927 928 929 930 931
    def _test_for_var(self):
        np_value = np.random.random((30, 100, 100)).astype('float32')
        w = fluid.dygraph.to_variable(np_value)

        for i, e in enumerate(w):
932
            np.testing.assert_array_equal(e.numpy(), np_value[i])
H
hong 已提交
933

934 935 936
    def _test_numpy_index(self):
        array = np.arange(120).reshape([4, 5, 6])
        t = paddle.to_tensor(array)
937 938
        np.testing.assert_array_equal(t[np.longlong(0)].numpy(), array[0])
        np.testing.assert_array_equal(
939 940 941
            t[np.longlong(0) : np.longlong(4) : np.longlong(2)].numpy(),
            array[0:4:2],
        )
942 943
        np.testing.assert_array_equal(t[np.int64(0)].numpy(), array[0])
        np.testing.assert_array_equal(
944 945
            t[np.int32(1) : np.int32(4) : np.int32(2)].numpy(), array[1:4:2]
        )
946
        np.testing.assert_array_equal(
947 948
            t[np.int16(0) : np.int16(4) : np.int16(2)].numpy(), array[0:4:2]
        )
949 950 951 952 953 954

    def _test_list_index(self):
        # case1:
        array = np.arange(120).reshape([6, 5, 4])
        x = paddle.to_tensor(array)
        py_idx = [[0, 2, 0, 1, 3], [0, 0, 1, 2, 0]]
J
JYChen 已提交
955 956 957 958 959 960 961 962 963 964 965 966 967

        # note(chenjianye):
        # Non-tuple sequence for multidimensional indexing is supported in numpy < 1.23.
        # For List case, the outermost `[]` will be treated as tuple `()` in version less than 1.23,
        # which is used to wrap index elements for multiple axes.
        # And from 1.23, this will be treat as a whole and only works on one axis.
        #
        # e.g. x[[[0],[1]]] == x[([0],[1])] == x[[0],[1]] (in version < 1.23)
        #      x[[[0],[1]]] == x[array([[0],[1]])] (in version >= 1.23)
        #
        # Here, we just modify the code to remove the impact of numpy version changes,
        # changing x[[[0],[1]]] to x[tuple([[0],[1]])] == x[([0],[1])] == x[[0],[1]].
        # Whether the paddle behavior in this case will change is still up for debate.
968
        idx = [paddle.to_tensor(py_idx[0]), paddle.to_tensor(py_idx[1])]
J
JYChen 已提交
969 970
        np.testing.assert_array_equal(x[idx].numpy(), array[tuple(py_idx)])
        np.testing.assert_array_equal(x[py_idx].numpy(), array[tuple(py_idx)])
971 972
        # case2:
        tensor_x = paddle.to_tensor(
973 974
            np.zeros(12).reshape(2, 6).astype(np.float32)
        )
975 976
        tensor_y1 = paddle.zeros([1], dtype='int32') + 2
        tensor_y2 = paddle.zeros([1], dtype='int32') + 5
977 978
        tensor_x[:, tensor_y1:tensor_y2] = 42
        res = tensor_x.numpy()
979 980 981 982 983 984
        exp = np.array(
            [
                [0.0, 0.0, 42.0, 42.0, 42.0, 0.0],
                [0.0, 0.0, 42.0, 42.0, 42.0, 0.0],
            ]
        )
985
        np.testing.assert_array_equal(res, exp)
986

W
WeiXin 已提交
987 988 989
        # case3:
        row = np.array([0, 1, 2])
        col = np.array([2, 1, 3])
990
        np.testing.assert_array_equal(array[row, col], x[row, col].numpy())
W
WeiXin 已提交
991

992
    def test_slice(self):
L
Leo Chen 已提交
993
        with fluid.dygraph.guard():
994
            self._test_slice()
995
            self._test_slice_for_tensor_attr()
H
hong 已提交
996
            self._test_for_var()
997
            self._test_for_getitem_ellipsis_index()
998
            self._test_none_index()
Z
zyfncg 已提交
999
            self._test_bool_index()
1000
            self._test_scalar_bool_index()
1001 1002
            self._test_numpy_index()
            self._test_list_index()
1003

L
Leo Chen 已提交
1004
            var = fluid.dygraph.to_variable(self.array)
1005 1006
            np.testing.assert_array_equal(var[1, :].numpy(), self.array[1, :])
            np.testing.assert_array_equal(var[::-1].numpy(), self.array[::-1])
L
Leo Chen 已提交
1007

H
hong 已提交
1008 1009 1010
            with self.assertRaises(IndexError):
                y = var[self.shape[0]]

1011 1012 1013
            with self.assertRaises(IndexError):
                y = var[0 - self.shape[0] - 1]

W
WeiXin 已提交
1014 1015 1016 1017
            with self.assertRaises(IndexError):
                mask = np.array([1, 0, 1, 0], dtype=bool)
                var[paddle.to_tensor([0, 1]), mask]

1018
    def test_var_base_to_np(self):
L
Leo Chen 已提交
1019 1020
        with fluid.dygraph.guard():
            var = fluid.dygraph.to_variable(self.array)
W
wanghuancoder 已提交
1021
            np.testing.assert_array_equal(var.numpy(), var.numpy(False))
L
Leo Chen 已提交
1022

1023
    def test_var_base_as_np(self):
1024 1025
        with fluid.dygraph.guard():
            var = fluid.dygraph.to_variable(self.array)
1026
            np.testing.assert_array_equal(var.numpy(), np.array(var))
1027 1028 1029
            np.testing.assert_array_equal(
                var.numpy(), np.array(var, dtype=np.float32)
            )
1030

1031
    def test_if(self):
1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044
        with fluid.dygraph.guard():
            var1 = fluid.dygraph.to_variable(np.array([[[0]]]))
            var2 = fluid.dygraph.to_variable(np.array([[[1]]]))

            var1_bool = False
            var2_bool = False

            if var1:
                var1_bool = True

            if var2:
                var2_bool = True

1045 1046 1047 1048
            assert not var1_bool, "if var1 should be false"
            assert var2_bool, "if var2 should be true"
            assert not bool(var1), "bool(var1) is False"
            assert bool(var2), "bool(var2) is True"
1049

1050
    def test_to_static_var(self):
1051
        with fluid.dygraph.guard():
W
wanghuancoder 已提交
1052
            # Convert Tensor into Variable or Parameter
1053 1054 1055 1056 1057 1058 1059 1060
            var_base = fluid.dygraph.to_variable(self.array, name="var_base_1")
            static_var = var_base._to_static_var()
            self._assert_to_static(var_base, static_var)

            var_base = fluid.dygraph.to_variable(self.array, name="var_base_2")
            static_param = var_base._to_static_var(to_parameter=True)
            self._assert_to_static(var_base, static_param, True)

W
wanghuancoder 已提交
1061
            # Convert EagerParamBase into Parameter
1062
            fc = paddle.nn.Linear(
1063 1064
                10,
                20,
1065
                weight_attr=paddle.ParamAttr(
1066 1067
                    learning_rate=0.001,
                    do_model_average=True,
1068
                    regularizer=paddle.regularizer.L1Decay(),
1069 1070
                ),
            )
1071 1072 1073 1074 1075 1076 1077 1078
            weight = fc.parameters()[0]
            static_param = weight._to_static_var()
            self._assert_to_static(weight, static_param, True)

    def _assert_to_static(self, var_base, static_var, is_param=False):
        if is_param:
            self.assertTrue(isinstance(static_var, fluid.framework.Parameter))
            self.assertTrue(static_var.persistable, True)
W
wanghuancoder 已提交
1079
            if isinstance(var_base, fluid.framework.EagerParamBase):
1080
                for attr in ['trainable', 'is_distributed', 'do_model_average']:
1081 1082 1083
                    self.assertEqual(
                        getattr(var_base, attr), getattr(static_var, attr)
                    )
1084

1085 1086 1087
                self.assertEqual(
                    static_var.optimize_attr['learning_rate'], 0.001
                )
1088
                self.assertTrue(
1089 1090 1091 1092
                    isinstance(
                        static_var.regularizer, fluid.regularizer.L1Decay
                    )
                )
1093 1094 1095 1096 1097 1098 1099 1100 1101
        else:
            self.assertTrue(isinstance(static_var, fluid.framework.Variable))

        attr_keys = ['block', 'dtype', 'type', 'name']
        for attr in attr_keys:
            self.assertEqual(getattr(var_base, attr), getattr(static_var, attr))

        self.assertListEqual(list(var_base.shape), list(static_var.shape))

1102
    def test_tensor_str(self):
Z
Zhou Wei 已提交
1103
        paddle.enable_static()
1104
        paddle.disable_static(paddle.CPUPlace())
C
cnn 已提交
1105
        paddle.seed(10)
1106 1107 1108 1109
        a = paddle.rand([10, 20])
        paddle.set_printoptions(4, 100, 3)
        a_str = str(a)

1110
        expected = '''Tensor(shape=[10, 20], dtype=float32, place=Place(cpu), stop_gradient=True,
1111 1112 1113 1114 1115 1116 1117 1118 1119 1120
       [[0.2727, 0.5489, 0.8655, ..., 0.2916, 0.8525, 0.9000],
        [0.3806, 0.8996, 0.0928, ..., 0.9535, 0.8378, 0.6409],
        [0.1484, 0.4038, 0.8294, ..., 0.0148, 0.6520, 0.4250],
        ...,
        [0.3426, 0.1909, 0.7240, ..., 0.4218, 0.2676, 0.5679],
        [0.5561, 0.2081, 0.0676, ..., 0.9778, 0.3302, 0.9559],
        [0.2665, 0.8483, 0.5389, ..., 0.4956, 0.6862, 0.9178]])'''

        self.assertEqual(a_str, expected)

1121
    def test_tensor_str2(self):
1122 1123 1124 1125
        paddle.disable_static(paddle.CPUPlace())
        a = paddle.to_tensor([[1.5111111, 1.0], [0, 0]])
        a_str = str(a)

1126
        expected = '''Tensor(shape=[2, 2], dtype=float32, place=Place(cpu), stop_gradient=True,
1127 1128 1129 1130 1131
       [[1.5111, 1.    ],
        [0.    , 0.    ]])'''

        self.assertEqual(a_str, expected)

1132
    def test_tensor_str3(self):
1133 1134 1135 1136
        paddle.disable_static(paddle.CPUPlace())
        a = paddle.to_tensor([[-1.5111111, 1.0], [0, -0.5]])
        a_str = str(a)

1137
        expected = '''Tensor(shape=[2, 2], dtype=float32, place=Place(cpu), stop_gradient=True,
1138 1139 1140 1141 1142
       [[-1.5111,  1.    ],
        [ 0.    , -0.5000]])'''

        self.assertEqual(a_str, expected)

1143
    def test_tensor_str_scaler(self):
1144 1145 1146 1147
        paddle.disable_static(paddle.CPUPlace())
        a = paddle.to_tensor(np.array(False))
        a_str = str(a)

1148
        expected = '''Tensor(shape=[], dtype=bool, place=Place(cpu), stop_gradient=True,
1149 1150 1151 1152
       False)'''

        self.assertEqual(a_str, expected)

1153
    def test_tensor_str_shape_with_zero(self):
1154 1155
        paddle.disable_static(paddle.CPUPlace())
        x = paddle.ones((10, 10))
1156
        y = paddle.nonzero(x == 0)
1157 1158
        a_str = str(y)

1159
        expected = '''Tensor(shape=[0, 2], dtype=int64, place=Place(cpu), stop_gradient=True,
1160 1161 1162 1163
       [])'''

        self.assertEqual(a_str, expected)

1164
    def test_tensor_str_linewidth(self):
1165 1166 1167
        paddle.disable_static(paddle.CPUPlace())
        paddle.seed(2021)
        x = paddle.rand([128])
1168 1169 1170
        paddle.set_printoptions(
            precision=4, threshold=1000, edgeitems=3, linewidth=80
        )
1171 1172
        a_str = str(x)

1173
        expected = '''Tensor(shape=[128], dtype=float32, place=Place(cpu), stop_gradient=True,
1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191
       [0.3759, 0.0278, 0.2489, 0.3110, 0.9105, 0.7381, 0.1905, 0.4726, 0.2435,
        0.9142, 0.3367, 0.7243, 0.7664, 0.9915, 0.2921, 0.1363, 0.8096, 0.2915,
        0.9564, 0.9972, 0.2573, 0.2597, 0.3429, 0.2484, 0.9579, 0.7003, 0.4126,
        0.4274, 0.0074, 0.9686, 0.9910, 0.0144, 0.6564, 0.2932, 0.7114, 0.9301,
        0.6421, 0.0538, 0.1273, 0.5771, 0.9336, 0.6416, 0.1832, 0.9311, 0.7702,
        0.7474, 0.4479, 0.3382, 0.5579, 0.0444, 0.9802, 0.9874, 0.3038, 0.5640,
        0.2408, 0.5489, 0.8866, 0.1006, 0.5881, 0.7560, 0.7928, 0.8604, 0.4670,
        0.9285, 0.1482, 0.4541, 0.1307, 0.6221, 0.4902, 0.1147, 0.4415, 0.2987,
        0.7276, 0.2077, 0.7551, 0.9652, 0.4369, 0.2282, 0.0047, 0.2934, 0.4308,
        0.4190, 0.1442, 0.3650, 0.3056, 0.6535, 0.1211, 0.8721, 0.7408, 0.4220,
        0.5937, 0.3123, 0.9198, 0.0275, 0.5338, 0.4622, 0.7521, 0.3609, 0.4703,
        0.1736, 0.8976, 0.7616, 0.3756, 0.2416, 0.2907, 0.3246, 0.4305, 0.5717,
        0.0735, 0.0361, 0.5534, 0.4399, 0.9260, 0.6525, 0.3064, 0.4573, 0.9210,
        0.8269, 0.2424, 0.7494, 0.8945, 0.7098, 0.8078, 0.4707, 0.5715, 0.7232,
        0.4678, 0.5047])'''

        self.assertEqual(a_str, expected)

1192
    def test_tensor_str_linewidth2(self):
1193 1194 1195 1196 1197 1198
        paddle.disable_static(paddle.CPUPlace())
        paddle.seed(2021)
        x = paddle.rand([128])
        paddle.set_printoptions(precision=4, linewidth=160, sci_mode=True)
        a_str = str(x)

1199
        expected = '''Tensor(shape=[128], dtype=float32, place=Place(cpu), stop_gradient=True,
1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213
       [3.7587e-01, 2.7798e-02, 2.4891e-01, 3.1097e-01, 9.1053e-01, 7.3811e-01, 1.9045e-01, 4.7258e-01, 2.4354e-01, 9.1415e-01, 3.3666e-01, 7.2428e-01,
        7.6640e-01, 9.9146e-01, 2.9215e-01, 1.3625e-01, 8.0957e-01, 2.9153e-01, 9.5642e-01, 9.9718e-01, 2.5732e-01, 2.5973e-01, 3.4292e-01, 2.4841e-01,
        9.5794e-01, 7.0029e-01, 4.1260e-01, 4.2737e-01, 7.3788e-03, 9.6863e-01, 9.9102e-01, 1.4416e-02, 6.5640e-01, 2.9318e-01, 7.1136e-01, 9.3008e-01,
        6.4209e-01, 5.3849e-02, 1.2730e-01, 5.7712e-01, 9.3359e-01, 6.4155e-01, 1.8320e-01, 9.3110e-01, 7.7021e-01, 7.4736e-01, 4.4793e-01, 3.3817e-01,
        5.5794e-01, 4.4412e-02, 9.8023e-01, 9.8735e-01, 3.0376e-01, 5.6397e-01, 2.4082e-01, 5.4893e-01, 8.8659e-01, 1.0065e-01, 5.8812e-01, 7.5600e-01,
        7.9280e-01, 8.6041e-01, 4.6701e-01, 9.2852e-01, 1.4821e-01, 4.5410e-01, 1.3074e-01, 6.2210e-01, 4.9024e-01, 1.1466e-01, 4.4154e-01, 2.9868e-01,
        7.2758e-01, 2.0766e-01, 7.5508e-01, 9.6522e-01, 4.3688e-01, 2.2823e-01, 4.7394e-03, 2.9342e-01, 4.3083e-01, 4.1902e-01, 1.4416e-01, 3.6500e-01,
        3.0560e-01, 6.5350e-01, 1.2115e-01, 8.7206e-01, 7.4081e-01, 4.2203e-01, 5.9372e-01, 3.1230e-01, 9.1979e-01, 2.7486e-02, 5.3383e-01, 4.6224e-01,
        7.5211e-01, 3.6094e-01, 4.7034e-01, 1.7355e-01, 8.9763e-01, 7.6165e-01, 3.7557e-01, 2.4157e-01, 2.9074e-01, 3.2458e-01, 4.3049e-01, 5.7171e-01,
        7.3509e-02, 3.6087e-02, 5.5341e-01, 4.3993e-01, 9.2601e-01, 6.5248e-01, 3.0640e-01, 4.5727e-01, 9.2104e-01, 8.2688e-01, 2.4243e-01, 7.4937e-01,
        8.9448e-01, 7.0981e-01, 8.0783e-01, 4.7065e-01, 5.7154e-01, 7.2319e-01, 4.6777e-01, 5.0465e-01])'''

        self.assertEqual(a_str, expected)

1214
    def test_tensor_str_bf16(self):
1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226
        paddle.disable_static(paddle.CPUPlace())
        a = paddle.to_tensor([[1.5, 1.0], [0, 0]])
        a = paddle.cast(a, dtype=core.VarDesc.VarType.BF16)
        paddle.set_printoptions(precision=4)
        a_str = str(a)

        expected = '''Tensor(shape=[2, 2], dtype=bfloat16, place=Place(cpu), stop_gradient=True,
       [[1.5000, 1.    ],
        [0.    , 0.    ]])'''

        self.assertEqual(a_str, expected)

1227
    def test_print_tensor_dtype(self):
L
Leo Chen 已提交
1228 1229 1230 1231 1232 1233 1234
        paddle.disable_static(paddle.CPUPlace())
        a = paddle.rand([1])
        a_str = str(a.dtype)

        expected = 'paddle.float32'

        self.assertEqual(a_str, expected)
1235

L
Leo Chen 已提交
1236

1237
class TestVarBaseSetitem(unittest.TestCase):
1238
    def func_setUp(self):
1239 1240 1241
        self.set_dtype()
        self.tensor_x = paddle.to_tensor(np.ones((4, 2, 3)).astype(self.dtype))
        self.np_value = np.random.random((2, 3)).astype(self.dtype)
1242 1243
        self.tensor_value = paddle.to_tensor(self.np_value)

1244 1245 1246
    def set_dtype(self):
        self.dtype = "int32"

1247
    def _test(self, value):
1248
        id_origin = id(self.tensor_x)
1249
        self.tensor_x[0] = value
1250
        if isinstance(value, (int, float)):
1251
            result = np.zeros((2, 3)).astype(self.dtype) + value
1252 1253 1254 1255

        else:
            result = self.np_value

1256
        np.testing.assert_array_equal(self.tensor_x[0].numpy(), result)
1257 1258 1259
        self.assertEqual(id_origin, id(self.tensor_x))

        self.tensor_x[1:2] = value
1260
        np.testing.assert_array_equal(self.tensor_x[1].numpy(), result)
1261 1262 1263
        self.assertEqual(id_origin, id(self.tensor_x))

        self.tensor_x[...] = value
1264
        np.testing.assert_array_equal(self.tensor_x[3].numpy(), result)
1265 1266
        self.assertEqual(id_origin, id(self.tensor_x))

W
wanghuancoder 已提交
1267
    def func_test_value_tensor(self):
1268 1269
        self._test(self.tensor_value)

W
wanghuancoder 已提交
1270
    def test_value_tensor(self):
1271
        self.func_setUp()
W
wanghuancoder 已提交
1272 1273 1274
        self.func_test_value_tensor()

    def func_test_value_numpy(self):
1275 1276
        self._test(self.np_value)

W
wanghuancoder 已提交
1277
    def test_value_numpy(self):
1278
        self.func_setUp()
W
wanghuancoder 已提交
1279 1280 1281
        self.func_test_value_numpy()

    def func_test_value_int(self):
1282 1283
        self._test(10)

W
wanghuancoder 已提交
1284
    def test_value_int(self):
1285
        self.func_setUp()
W
wanghuancoder 已提交
1286 1287
        self.func_test_value_int()

1288 1289 1290 1291 1292 1293 1294 1295 1296 1297

class TestVarBaseSetitemInt64(TestVarBaseSetitem):
    def set_dtype(self):
        self.dtype = "int64"


class TestVarBaseSetitemFp32(TestVarBaseSetitem):
    def set_dtype(self):
        self.dtype = "float32"

1298
    def func_test_value_float(self):
1299 1300 1301
        paddle.disable_static()
        self._test(3.3)

1302 1303 1304 1305
    def test_value_float(self):
        self.func_setUp()
        self.func_test_value_float()

1306

1307 1308 1309 1310 1311
class TestVarBaseSetitemFp64(TestVarBaseSetitem):
    def set_dtype(self):
        self.dtype = "float64"


1312
class TestVarBaseSetitemBoolIndex(unittest.TestCase):
1313
    def func_setUp(self):
1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334
        paddle.disable_static()
        self.set_dtype()
        self.set_input()

    def set_input(self):
        self.tensor_x = paddle.to_tensor(np.ones((4, 2, 3)).astype(self.dtype))
        self.np_value = np.random.random((2, 3)).astype(self.dtype)
        self.tensor_value = paddle.to_tensor(self.np_value)

    def set_dtype(self):
        self.dtype = "int32"

    def _test(self, value):
        paddle.disable_static()
        self.assertEqual(self.tensor_x.inplace_version, 0)

        id_origin = id(self.tensor_x)
        index_1 = paddle.to_tensor(np.array([True, False, False, False]))
        self.tensor_x[index_1] = value
        self.assertEqual(self.tensor_x.inplace_version, 1)

1335
        if isinstance(value, (int, float)):
1336 1337 1338 1339 1340
            result = np.zeros((2, 3)).astype(self.dtype) + value

        else:
            result = self.np_value

1341
        np.testing.assert_array_equal(self.tensor_x[0].numpy(), result)
1342 1343 1344 1345 1346
        self.assertEqual(id_origin, id(self.tensor_x))

        index_2 = paddle.to_tensor(np.array([False, True, False, False]))
        self.tensor_x[index_2] = value
        self.assertEqual(self.tensor_x.inplace_version, 2)
1347
        np.testing.assert_array_equal(self.tensor_x[1].numpy(), result)
1348 1349 1350 1351 1352
        self.assertEqual(id_origin, id(self.tensor_x))

        index_3 = paddle.to_tensor(np.array([True, True, True, True]))
        self.tensor_x[index_3] = value
        self.assertEqual(self.tensor_x.inplace_version, 3)
1353
        np.testing.assert_array_equal(self.tensor_x[3].numpy(), result)
1354 1355
        self.assertEqual(id_origin, id(self.tensor_x))

1356
    def func_test_value_tensor(self):
1357 1358 1359
        paddle.disable_static()
        self._test(self.tensor_value)

1360 1361 1362 1363 1364
    def test_value_tensor(self):
        self.func_setUp()
        self.func_test_value_tensor()

    def func_test_value_numpy(self):
1365 1366 1367
        paddle.disable_static()
        self._test(self.np_value)

1368 1369 1370 1371 1372
    def test_value_numpy(self):
        self.func_setUp()
        self.func_test_value_numpy()

    def func_test_value_int(self):
1373 1374 1375
        paddle.disable_static()
        self._test(10)

1376 1377 1378 1379
    def test_value_int(self):
        self.func_setUp()
        self.func_test_value_int()

1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395

class TestVarBaseSetitemBoolScalarIndex(unittest.TestCase):
    def set_input(self):
        self.tensor_x = paddle.to_tensor(np.ones((1, 2, 3)).astype(self.dtype))
        self.np_value = np.random.random((2, 3)).astype(self.dtype)
        self.tensor_value = paddle.to_tensor(self.np_value)

    def _test(self, value):
        paddle.disable_static()
        self.assertEqual(self.tensor_x.inplace_version, 0)

        id_origin = id(self.tensor_x)
        index = paddle.to_tensor(np.array([True]))
        self.tensor_x[index] = value
        self.assertEqual(self.tensor_x.inplace_version, 1)

1396
        if isinstance(value, (int, float)):
1397 1398 1399 1400 1401
            result = np.zeros((2, 3)).astype(self.dtype) + value

        else:
            result = self.np_value

1402
        np.testing.assert_array_equal(self.tensor_x[0].numpy(), result)
1403 1404 1405
        self.assertEqual(id_origin, id(self.tensor_x))


1406
class TestVarBaseInplaceVersion(unittest.TestCase):
1407
    def test_setitem(self):
1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418
        paddle.disable_static()

        var = paddle.ones(shape=[4, 2, 3], dtype="float32")
        self.assertEqual(var.inplace_version, 0)

        var[1] = 1
        self.assertEqual(var.inplace_version, 1)

        var[1:2] = 1
        self.assertEqual(var.inplace_version, 2)

1419
    def test_bump_inplace_version(self):
1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430
        paddle.disable_static()
        var = paddle.ones(shape=[4, 2, 3], dtype="float32")
        self.assertEqual(var.inplace_version, 0)

        var._bump_inplace_version()
        self.assertEqual(var.inplace_version, 1)

        var._bump_inplace_version()
        self.assertEqual(var.inplace_version, 2)


1431
class TestVarBaseSlice(unittest.TestCase):
1432
    def test_slice(self):
1433 1434 1435 1436 1437 1438 1439 1440 1441
        paddle.disable_static()
        np_x = np.random.random((3, 8, 8))
        x = paddle.to_tensor(np_x, dtype="float64")
        actual_x = x._slice(0, 1)
        actual_x = paddle.to_tensor(actual_x)
        self.assertEqual(actual_x.numpy().all(), np_x[0:1].all())


class TestVarBaseClear(unittest.TestCase):
1442
    def test_clear(self):
1443 1444 1445 1446 1447 1448 1449 1450
        paddle.disable_static()
        np_x = np.random.random((3, 8, 8))
        x = paddle.to_tensor(np_x, dtype="float64")
        x._clear()
        self.assertEqual(str(x), "Tensor(Not initialized)")


class TestVarBaseOffset(unittest.TestCase):
1451
    def test_offset(self):
1452 1453 1454 1455 1456 1457 1458 1459 1460
        paddle.disable_static()
        np_x = np.random.random((3, 8, 8))
        x = paddle.to_tensor(np_x, dtype="float64")
        expected_offset = 0
        actual_x = x._slice(expected_offset, 1)
        actual_x = paddle.to_tensor(actual_x)
        self.assertEqual(actual_x._offset(), expected_offset)


1461
class TestVarBaseShareBufferTo(unittest.TestCase):
1462
    def test_share_buffer_To(self):
1463
        paddle.disable_static()
1464 1465 1466
        np_src = np.random.random((3, 8, 8))
        src = paddle.to_tensor(np_src, dtype="float64")
        # empty_var
姜永久 已提交
1467
        dst = core.eager.Tensor()
1468 1469
        src._share_buffer_to(dst)
        self.assertEqual(src._is_shared_buffer_with(dst), True)
1470 1471 1472


class TestVarBaseTo(unittest.TestCase):
1473
    def func_setUp(self):
1474 1475 1476 1477
        paddle.disable_static()
        self.np_x = np.random.random((3, 8, 8))
        self.x = paddle.to_tensor(self.np_x, dtype="float32")

1478
    def func_test_to_api(self):
1479 1480
        x_double = self.x._to(dtype='double')
        self.assertEqual(x_double.dtype, paddle.fluid.core.VarDesc.VarType.FP64)
1481
        np.testing.assert_allclose(self.np_x, x_double, rtol=1e-05)
1482 1483 1484

        x_ = self.x._to()
        self.assertEqual(self.x.dtype, paddle.fluid.core.VarDesc.VarType.FP64)
1485
        np.testing.assert_allclose(self.np_x, x_, rtol=1e-05)
1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498

        if paddle.fluid.is_compiled_with_cuda():
            x_gpu = self.x._to(device=paddle.CUDAPlace(0))
            self.assertTrue(x_gpu.place.is_gpu_place())
            self.assertEqual(x_gpu.place.gpu_device_id(), 0)

            x_gpu0 = self.x._to(device='gpu:0')
            self.assertTrue(x_gpu0.place.is_gpu_place())
            self.assertEqual(x_gpu0.place.gpu_device_id(), 0)

            x_gpu1 = self.x._to(device='gpu:0', dtype="float64")
            self.assertTrue(x_gpu1.place.is_gpu_place())
            self.assertEqual(x_gpu1.place.gpu_device_id(), 0)
1499 1500 1501
            self.assertEqual(
                x_gpu1.dtype, paddle.fluid.core.VarDesc.VarType.FP64
            )
1502 1503 1504 1505

            x_gpu2 = self.x._to(device='gpu:0', dtype="float16")
            self.assertTrue(x_gpu2.place.is_gpu_place())
            self.assertEqual(x_gpu2.place.gpu_device_id(), 0)
1506 1507 1508
            self.assertEqual(
                x_gpu2.dtype, paddle.fluid.core.VarDesc.VarType.FP16
            )
1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526

        x_cpu = self.x._to(device=paddle.CPUPlace())
        self.assertTrue(x_cpu.place.is_cpu_place())

        x_cpu0 = self.x._to(device='cpu')
        self.assertTrue(x_cpu0.place.is_cpu_place())

        x_cpu1 = self.x._to(device=paddle.CPUPlace(), dtype="float64")
        self.assertTrue(x_cpu1.place.is_cpu_place())
        self.assertEqual(x_cpu1.dtype, paddle.fluid.core.VarDesc.VarType.FP64)

        x_cpu2 = self.x._to(device='cpu', dtype="float16")
        self.assertTrue(x_cpu2.place.is_cpu_place())
        self.assertEqual(x_cpu2.dtype, paddle.fluid.core.VarDesc.VarType.FP16)

        self.assertRaises(ValueError, self.x._to, device=1)
        self.assertRaises(AssertionError, self.x._to, blocking=1)

1527 1528 1529 1530
    def test_to_api(self):
        self.func_setUp()
        self.func_test_to_api()

1531 1532

class TestVarBaseInitVarBaseFromTensorWithDevice(unittest.TestCase):
1533
    def test_varbase_init(self):
1534 1535 1536 1537 1538 1539 1540
        paddle.disable_static()
        t = fluid.Tensor()
        np_x = np.random.random((3, 8, 8))
        t.set(np_x, fluid.CPUPlace())

        if paddle.fluid.is_compiled_with_cuda():
            device = paddle.CUDAPlace(0)
姜永久 已提交
1541
            tmp = fluid.core.eager.Tensor(t, device)
1542 1543 1544 1545
            self.assertTrue(tmp.place.is_gpu_place())
            self.assertEqual(tmp.numpy().all(), np_x.all())

        device = paddle.CPUPlace()
姜永久 已提交
1546
        tmp = fluid.core.eager.Tensor(t, device)
1547 1548 1549 1550
        self.assertEqual(tmp.numpy().all(), np_x.all())


class TestVarBaseNumel(unittest.TestCase):
1551
    def test_numel_normal(self):
1552 1553 1554 1555 1556 1557 1558
        paddle.disable_static()
        np_x = np.random.random((3, 8, 8))
        x = paddle.to_tensor(np_x, dtype="float64")
        x_actual_numel = x._numel()
        x_expected_numel = np.product((3, 8, 8))
        self.assertEqual(x_actual_numel, x_expected_numel)

1559
    def test_numel_without_holder(self):
1560
        paddle.disable_static()
姜永久 已提交
1561
        x_without_holder = core.eager.Tensor()
1562 1563 1564
        x_actual_numel = x_without_holder._numel()
        self.assertEqual(x_actual_numel, 0)

1565 1566

class TestVarBaseCopyGradientFrom(unittest.TestCase):
1567
    def test_copy_gradient_from(self):
1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578
        paddle.disable_static()
        np_x = np.random.random((2, 2))
        np_y = np.random.random((2, 2))
        x = paddle.to_tensor(np_x, dtype="float64", stop_gradient=False)
        y = paddle.to_tensor(np_y, dtype="float64")
        out = x + x
        out.backward()
        x._copy_gradient_from(y)
        self.assertEqual(x.grad.numpy().all(), np_y.all())


1579 1580
class TestEagerTensorGradNameValue(unittest.TestCase):
    def test_eager_tensor_grad_name_value(self):
1581 1582 1583 1584 1585 1586 1587 1588
        a_np = np.array([2, 3]).astype('float32')
        a = paddle.to_tensor(a_np)
        a.stop_gradient = False
        b = a**2
        self.assertIsNone(a._grad_value())
        b.backward()
        # Note, for new dygraph, there are no generated grad name, so we skip the name check.
        self.assertIsNotNone(a._grad_value())
1589 1590


L
Leo Chen 已提交
1591 1592
if __name__ == '__main__':
    unittest.main()