Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
b9421dc1
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
b9421dc1
编写于
12月 01, 2022
作者:
H
heyanru
提交者:
GitHub
12月 01, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[Fluid Clean] remove pixel_shuffle, fsp_matrix, where, sign, unique, unique_with_counts (#48441)
上级
a365024c
变更
12
隐藏空白更改
内联
并排
Showing
12 changed file
with
19 addition
and
486 deletion
+19
-486
python/paddle/fluid/layers/nn.py
python/paddle/fluid/layers/nn.py
+0
-307
python/paddle/fluid/tests/unittests/mlu/test_where_index_op_mlu.py
...ddle/fluid/tests/unittests/mlu/test_where_index_op_mlu.py
+2
-2
python/paddle/fluid/tests/unittests/npu/test_where_index_npu.py
.../paddle/fluid/tests/unittests/npu/test_where_index_npu.py
+2
-2
python/paddle/fluid/tests/unittests/test_fsp_op.py
python/paddle/fluid/tests/unittests/test_fsp_op.py
+0
-27
python/paddle/fluid/tests/unittests/test_layers.py
python/paddle/fluid/tests/unittests/test_layers.py
+1
-10
python/paddle/fluid/tests/unittests/test_sign_op.py
python/paddle/fluid/tests/unittests/test_sign_op.py
+4
-4
python/paddle/fluid/tests/unittests/test_unique.py
python/paddle/fluid/tests/unittests/test_unique.py
+2
-2
python/paddle/fluid/tests/unittests/test_unique_with_counts.py
...n/paddle/fluid/tests/unittests/test_unique_with_counts.py
+3
-2
python/paddle/fluid/tests/unittests/test_var_base.py
python/paddle/fluid/tests/unittests/test_var_base.py
+1
-1
python/paddle/fluid/tests/unittests/test_where_index.py
python/paddle/fluid/tests/unittests/test_where_index.py
+0
-123
python/paddle/fluid/tests/unittests/xpu/test_where_index_xpu.py
.../paddle/fluid/tests/unittests/xpu/test_where_index_xpu.py
+2
-2
python/paddle/fluid/variable_index.py
python/paddle/fluid/variable_index.py
+2
-4
未找到文件。
python/paddle/fluid/layers/nn.py
浏览文件 @
b9421dc1
...
...
@@ -96,8 +96,6 @@ __all__ = [
'resize_trilinear'
,
'resize_nearest'
,
'relu'
,
'unique'
,
'unique_with_counts'
,
'elementwise_add'
,
'elementwise_div'
,
'elementwise_sub'
,
...
...
@@ -117,11 +115,7 @@ __all__ = [
'get_tensor_from_selected_rows'
,
'temporal_shift'
,
'py_func'
,
'pixel_shuffle'
,
'fsp_matrix'
,
'continuous_value_model'
,
'where'
,
'sign'
,
'unfold'
,
'deformable_roi_pooling'
,
'shard_index'
,
...
...
@@ -7020,121 +7014,6 @@ py_func.registered_func = PyFuncRegistry.registered_func
py_func
.
registered_func_num
=
PyFuncRegistry
.
registered_func_num
def
pixel_shuffle
(
x
,
upscale_factor
):
"""
This op rearranges elements in a tensor of shape [N, C, H, W]
to a tensor of shape [N, C/r**2, H*r, W*r].
This is useful for implementing efficient sub-pixel convolution
with a stride of 1/r.
Please refer to the paper: `Real-Time Single Image and Video Super-Resolution
Using an Efficient Sub-Pixel Convolutional Neural Network <https://arxiv.org/abs/1609.05158v2>`_ .
by Shi et. al (2016) for more details.
Parameters:
x(Variable): 4-D tensor, the data type should be float32 or float64.
upscale_factor(int): factor to increase spatial resolution.
Returns:
Out(Variable): Reshaped tensor according to the new dimension.
Raises:
ValueError: If the square of upscale_factor cannot divide the channels of input.
Examples:
.. code-block:: python
# declarative mode
import paddle.fluid as fluid
import numpy as np
input = fluid.data(name="input", shape=[2,9,4,4])
output = fluid.layers.pixel_shuffle(x=input, upscale_factor=3)
place = fluid.CPUPlace()
exe = fluid.Executor(place)
exe.run(fluid.default_startup_program())
input_data = np.random.rand(2,9,4,4).astype("float32")
output_data = exe.run(fluid.default_main_program(),
feed={"input":input_data},
fetch_list=[output],
return_numpy=True)
# print(output.shape)
# (2L, 1L, 12L, 12L)
"""
check_variable_and_dtype
(
x
,
'x'
,
[
'float32'
,
'float64'
],
'pixel_shuffle'
)
helper
=
LayerHelper
(
"pixel_shuffle"
,
**
locals
())
out
=
helper
.
create_variable_for_type_inference
(
dtype
=
x
.
dtype
)
if
not
isinstance
(
upscale_factor
,
int
):
raise
TypeError
(
"upscale factor must be int type"
)
helper
.
append_op
(
type
=
"pixel_shuffle"
,
inputs
=
{
"X"
:
x
},
outputs
=
{
"Out"
:
out
},
attrs
=
{
"upscale_factor"
:
upscale_factor
},
)
return
out
def
fsp_matrix
(
x
,
y
):
"""
**FSP matrix op**
This op is used to calculate the flow of solution procedure (FSP) matrix of two 4-D Tensor feature maps.
Given feature map x with shape [x_channel, h, w] and feature map y with shape
[y_channel, h, w], we can get the fsp matrix of x and y in two steps:
1. reshape x into matrix with shape [x_channel, h * w] and reshape and
transpose y into matrix with shape [h * w, y_channel].
2. multiply x and y to get fsp matrix with shape [x_channel, y_channel].
The output is a batch of fsp matrices.
Args:
x (Variable): A 4-D Tensor feature map with shape [batch_size, x_channel, height, width].
A Tensor with type float32, float64.
y (Variable): A 4-D Tensor feature map with shape [batch_size, y_channel, height, width].
The y_channel can be different with the x_channel of Input(X)
while the other dimensions must be the same with Input(X)'s. A Tensor with
type float32, float64.
Returns:
fsp matrix (Variable): The output of FSP op with shape [batch_size, x_channel, y_channel].
The x_channel is the channel of x and the y_channel is the channel of y. A Tensor with
type float32, float64.
Examples:
.. code-block:: python
import paddle.fluid as fluid
data = fluid.data(name='data', shape=[None, 3, 32, 32])
feature_map_0 = fluid.layers.conv2d(data, num_filters=2,
filter_size=3)
feature_map_1 = fluid.layers.conv2d(feature_map_0, num_filters=2,
filter_size=1)
loss = fluid.layers.fsp_matrix(feature_map_0, feature_map_1)
"""
check_variable_and_dtype
(
x
,
'x'
,
[
'float32'
,
'float64'
],
'fsp_matrix'
)
check_variable_and_dtype
(
y
,
'y'
,
[
'float32'
,
'float64'
],
'fsp_matrix'
)
helper
=
LayerHelper
(
'fsp_matrix'
,
**
locals
())
out
=
helper
.
create_variable_for_type_inference
(
dtype
=
helper
.
input_dtype
(
input_param_name
=
'x'
)
)
helper
.
append_op
(
type
=
'fsp'
,
inputs
=
{
'X'
:
x
,
'Y'
:
y
},
outputs
=
{
'Out'
:
out
})
return
out
def
continuous_value_model
(
input
,
cvm
,
use_cvm
=
True
):
r
"""
...
...
@@ -7192,192 +7071,6 @@ def continuous_value_model(input, cvm, use_cvm=True):
return
out
def
where
(
condition
):
"""
Return an int64 tensor with rank 2, specifying the coordinate of true element in `condition`.
Args:
condition(Variable): A bool tensor with rank at least 1, the data type is bool.
Returns:
Variable, the output data type is int64. : The tensor variable storing a 2-D tensor, which involves all coordinate.
Examples:
.. code-block:: python
import paddle.fluid as fluid
import paddle.fluid.layers as layers
import numpy as np
# condition is a tensor [True, False, True]
condition = layers.assign(np.array([1, 0, 1], dtype='int32'))
condition = layers.cast(condition, 'bool')
out = layers.where(condition) # [[0], [2]]
# condition is a tensor [[True, False], [False, True]]
condition = layers.assign(np.array([[1, 0], [0, 1]], dtype='int32'))
condition = layers.cast(condition, 'bool')
out = layers.where(condition) # [[0, 0], [1, 1]]
# condition is a tensor [False, False, False]
condition = layers.assign(np.array([0, 0, 0], dtype='int32'))
condition = layers.cast(condition, 'bool')
out = layers.where(condition) # [[]]
"""
if
in_dygraph_mode
():
return
_C_ops
.
nonzero
(
condition
)
if
_in_legacy_dygraph
():
return
_legacy_C_ops
.
where_index
(
condition
)
helper
=
LayerHelper
(
"where_index"
,
**
locals
())
out
=
helper
.
create_variable_for_type_inference
(
dtype
=
core
.
VarDesc
.
VarType
.
INT64
)
helper
.
append_op
(
type
=
'where_index'
,
inputs
=
{
'Condition'
:
condition
},
outputs
=
{
'Out'
:
[
out
]},
)
return
out
@
deprecated
(
since
=
"2.0.0"
,
update_to
=
"paddle.sign"
)
def
sign
(
x
):
r
"""
This OP returns sign of every element in `x`: 1 for positive, -1 for negative and 0 for zero.
Args:
x(Variable|numpy.ndarray): The input variable could be N-D tensor or N-D numpy array, \
the input data type is float32 or float64.
Returns:
Variable, the output data type is the same as input data type. : The output sign tensor with identical shape to input :attr:`x`.
Examples:
.. code-block:: python
import paddle.fluid as fluid
import numpy as np
# [1.0, 0.0, -1.0]
data = fluid.layers.sign(np.array([3.0, 0.0, -2.0], dtype='float32'))
"""
helper
=
LayerHelper
(
"sign"
,
**
locals
())
check_type
(
x
,
'x'
,
(
Variable
,
np
.
ndarray
),
'sign'
)
if
isinstance
(
x
,
np
.
ndarray
):
x
=
assign
(
x
)
check_dtype
(
x
.
dtype
,
'x'
,
[
'float16'
,
'float32'
,
'float64'
],
'sign'
)
out
=
helper
.
create_variable_for_type_inference
(
dtype
=
x
.
dtype
)
helper
.
append_op
(
type
=
'sign'
,
inputs
=
{
'X'
:
[
x
]},
outputs
=
{
'Out'
:
[
out
]})
return
out
def
unique
(
x
,
dtype
=
'int32'
):
r
"""
Return a unique tensor for `x` and an index tensor pointing to this unique tensor.
Args:
x(Tensor): A 1-D input tensor, it's data type should be float32, float64, int32, int64.
dtype(np.dtype|str, optional): The type of index tensor: int32, int64. Default: int32.
Returns:
tuple: (out, index). `out` is the unique tensor for `x`, with identical dtype to `x`, and \
`index` is an index tensor pointing to `out`, by which user can recover the original `x` tensor.
Examples:
.. code-block:: python
import numpy as np
import paddle.fluid as fluid
x = fluid.layers.assign(np.array([2, 3, 3, 1, 5, 3], dtype='int32'))
out, index = fluid.layers.unique(x) # out is [2, 3, 1, 5]; index is [0, 1, 1, 2, 3, 1]
"""
check_variable_and_dtype
(
x
,
"x"
,
[
'float32'
,
'float64'
,
'int32'
,
'int64'
],
"unique"
)
helper
=
LayerHelper
(
"unique"
,
**
locals
())
out
=
helper
.
create_variable_for_type_inference
(
dtype
=
x
.
dtype
)
index
=
helper
.
create_variable_for_type_inference
(
dtype
)
helper
.
append_op
(
type
=
'unique'
,
inputs
=
{
'X'
:
x
},
attrs
=
{
'dtype'
:
convert_np_dtype_to_dtype_
(
dtype
)},
outputs
=
{
'Out'
:
[
out
],
'Index'
:
[
index
]},
)
return
out
,
index
def
unique_with_counts
(
x
,
dtype
=
'int32'
):
r
"""
This OP return a unique tensor for `x` , and count tensor that the count of unique result in raw input, \
and an index tensor pointing to this unique tensor.
**NOTICE**: This op support the variable type of Tensor only.
Args:
x(Variable): A 1-D input tensor with input shape of :math:`[N]` , the input data type is float32, float64, int32, int64.
dtype(np.dtype|core.VarDesc.VarType|str): The type of count and index tensor, it could be int32, int64. Default value is int32.
Returns:
tuple, the variable type in tuple is Tensor, the output :attr:`out` data type is the same as input :attr:`x`, \
and data type of output :attr:`index` and :attr:`count` will be int32 or int64.: The :attr:`out` is unique tensor for input :attr:`x`,\
the data shape is :math:`[K]`, the `K` may be different to the `N` in shape of :attr:`x`. :attr:`index` is an index tensor pointing\
to :attr:`out`, the data shape is :math:`[N]` , the data shape is the same as input :attr:`x`. :attr:`count` is count of unique element in\
the :attr:`x`, the data shape is :math:`[K]`, the data shape is the same as output :attr:`out`.
Examples:
.. code-block:: python
import numpy as np
import paddle.fluid as fluid
x = fluid.layers.assign(np.array([2, 3, 3, 1, 5, 3], dtype='int32'))
out, index, count = fluid.layers.unique_with_counts(x) # out is [2, 3, 1, 5]; index is [0, 1, 1, 2, 3, 1]
# count is [1, 3, 1, 1]
# x.shape=(6,) out.shape=(4,), index.shape=(6,), count.shape=(4,)
"""
check_variable_and_dtype
(
x
,
"x"
,
[
'float32'
,
'float64'
,
'int32'
,
'int64'
],
"unique_with_counts"
)
if
not
(
dtype
==
'int32'
or
dtype
==
'int64'
):
raise
TypeError
(
"Op unique_with_counts, index dtype must be int32 or int64"
)
if
x
is
None
or
len
(
x
.
shape
)
!=
1
:
raise
ValueError
(
"Op unique_with_counts, x must not be null and size of dim must be 1"
)
helper
=
LayerHelper
(
"unique_with_counts"
,
**
locals
())
out
=
helper
.
create_variable_for_type_inference
(
dtype
=
x
.
dtype
)
index
=
helper
.
create_variable_for_type_inference
(
dtype
)
count
=
helper
.
create_variable_for_type_inference
(
dtype
)
helper
.
append_op
(
type
=
'unique_with_counts'
,
inputs
=
{
'X'
:
x
},
attrs
=
{
'dtype'
:
convert_np_dtype_to_dtype_
(
dtype
)},
outputs
=
{
'Out'
:
[
out
],
'Index'
:
[
index
],
'Count'
:
[
count
]},
)
return
out
,
index
,
count
def
unfold
(
x
,
kernel_sizes
,
strides
=
1
,
paddings
=
0
,
dilations
=
1
,
name
=
None
):
r
"""
...
...
python/paddle/fluid/tests/unittests/mlu/test_where_index_op_mlu.py
浏览文件 @
b9421dc1
...
...
@@ -108,7 +108,7 @@ class TestWhereOpError(unittest.TestCase):
def
test_api
(
self
):
with
program_guard
(
Program
(),
Program
()):
cond
=
fluid
.
layers
.
data
(
name
=
'cond'
,
shape
=
[
4
],
dtype
=
'bool'
)
result
=
fluid
.
layers
.
where
(
cond
)
result
=
paddle
.
nonzero
(
cond
)
exe
=
fluid
.
Executor
(
paddle
.
device
.
MLUPlace
(
0
))
exe
.
run
(
fluid
.
default_startup_program
())
...
...
@@ -119,7 +119,7 @@ class TestWhereOpError(unittest.TestCase):
class
TestWhereRaiseError
(
unittest
.
TestCase
):
def
test_errors
(
self
):
def
test_type
():
fluid
.
layers
.
where
([
10
])
paddle
.
nonzero
([
10
])
self
.
assertRaises
(
TypeError
,
test_type
)
...
...
python/paddle/fluid/tests/unittests/npu/test_where_index_npu.py
浏览文件 @
b9421dc1
...
...
@@ -98,7 +98,7 @@ class TestWhereOpError(unittest.TestCase):
def
test_api
(
self
):
with
program_guard
(
Program
(),
Program
()):
cond
=
fluid
.
layers
.
data
(
name
=
'cond'
,
shape
=
[
4
],
dtype
=
'bool'
)
result
=
fluid
.
layers
.
where
(
cond
)
result
=
paddle
.
nonzero
(
cond
)
exe
=
fluid
.
Executor
(
paddle
.
NPUPlace
(
0
))
exe
.
run
(
fluid
.
default_startup_program
())
...
...
@@ -109,7 +109,7 @@ class TestWhereOpError(unittest.TestCase):
class
TestWhereRaiseError
(
unittest
.
TestCase
):
def
test_errors
(
self
):
def
test_type
():
fluid
.
layers
.
where
([
10
])
paddle
.
nonzero
([
10
])
self
.
assertRaises
(
TypeError
,
test_type
)
...
...
python/paddle/fluid/tests/unittests/test_fsp_op.py
浏览文件 @
b9421dc1
...
...
@@ -17,8 +17,6 @@ import unittest
import
numpy
as
np
from
op_test
import
OpTest
import
paddle.fluid
as
fluid
def
fsp_matrix
(
a
,
b
):
batch
=
a
.
shape
[
0
]
...
...
@@ -62,30 +60,5 @@ class TestFSPOp(OpTest):
self
.
check_grad
([
'X'
,
'Y'
],
'Out'
)
class
BadInputTest
(
unittest
.
TestCase
):
def
test_error
(
self
):
with
fluid
.
program_guard
(
fluid
.
Program
()):
def
test_bad_x
():
data
=
fluid
.
layers
.
data
(
name
=
'data'
,
shape
=
[
3
,
32
,
32
])
feature_map_0
=
[
1
,
2
,
3
]
feature_map_1
=
fluid
.
layers
.
conv2d
(
data
,
num_filters
=
2
,
filter_size
=
3
)
loss
=
fluid
.
layers
.
fsp_matrix
(
feature_map_0
,
feature_map_1
)
self
.
assertRaises
(
TypeError
,
test_bad_x
)
def
test_bad_y
():
data
=
fluid
.
layers
.
data
(
name
=
'data'
,
shape
=
[
3
,
32
,
32
])
feature_map_0
=
fluid
.
layers
.
conv2d
(
data
,
num_filters
=
2
,
filter_size
=
3
)
feature_map_1
=
[
1
,
2
,
3
]
loss
=
fluid
.
layers
.
fsp_matrix
(
feature_map_0
,
feature_map_1
)
self
.
assertRaises
(
TypeError
,
test_bad_y
)
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_layers.py
浏览文件 @
b9421dc1
...
...
@@ -3677,21 +3677,12 @@ class TestBook(LayerTest):
out
=
layers
.
temporal_shift
(
x
,
seg_num
=
2
,
shift_ratio
=
0.2
)
return
out
def
make_fsp_matrix
(
self
):
with
program_guard
(
fluid
.
default_main_program
(),
fluid
.
default_startup_program
()
):
x
=
self
.
_get_data
(
name
=
"X"
,
shape
=
[
16
,
4
,
4
],
dtype
=
"float32"
)
y
=
self
.
_get_data
(
name
=
"Y"
,
shape
=
[
8
,
4
,
4
],
dtype
=
"float32"
)
out
=
layers
.
fsp_matrix
(
x
,
y
)
return
out
def
make_pixel_shuffle
(
self
):
with
program_guard
(
fluid
.
default_main_program
(),
fluid
.
default_startup_program
()
):
x
=
self
.
_get_data
(
name
=
"X"
,
shape
=
[
9
,
4
,
4
],
dtype
=
"float32"
)
out
=
layers
.
pixel_shuffle
(
x
,
upscale_factor
=
3
)
out
=
paddle
.
nn
.
functional
.
pixel_shuffle
(
x
,
upscale_factor
=
3
)
return
out
def
make_mse_loss
(
self
):
...
...
python/paddle/fluid/tests/unittests/test_sign_op.py
浏览文件 @
b9421dc1
...
...
@@ -46,7 +46,7 @@ class TestSignOpError(unittest.TestCase):
with
program_guard
(
Program
(),
Program
()):
# The input type of sign_op must be Variable or numpy.ndarray.
input1
=
12
self
.
assertRaises
(
TypeError
,
fluid
.
layers
.
sign
,
input1
)
self
.
assertRaises
(
TypeError
,
paddle
.
sign
,
input1
)
# The input dtype of sign_op must be float16, float32, float64.
input2
=
fluid
.
layers
.
data
(
name
=
'input2'
,
shape
=
[
12
,
10
],
dtype
=
"int32"
...
...
@@ -54,12 +54,12 @@ class TestSignOpError(unittest.TestCase):
input3
=
fluid
.
layers
.
data
(
name
=
'input3'
,
shape
=
[
12
,
10
],
dtype
=
"int64"
)
self
.
assertRaises
(
TypeError
,
fluid
.
layers
.
sign
,
input2
)
self
.
assertRaises
(
TypeError
,
fluid
.
layers
.
sign
,
input3
)
self
.
assertRaises
(
TypeError
,
paddle
.
sign
,
input2
)
self
.
assertRaises
(
TypeError
,
paddle
.
sign
,
input3
)
input4
=
fluid
.
layers
.
data
(
name
=
'input4'
,
shape
=
[
4
],
dtype
=
"float16"
)
fluid
.
layers
.
sign
(
input4
)
paddle
.
sign
(
input4
)
class
TestSignAPI
(
unittest
.
TestCase
):
...
...
python/paddle/fluid/tests/unittests/test_unique.py
浏览文件 @
b9421dc1
...
...
@@ -74,13 +74,13 @@ class TestRandom(TestUniqueOp):
class
TestUniqueRaiseError
(
unittest
.
TestCase
):
def
test_errors
(
self
):
def
test_type
():
fluid
.
layers
.
unique
([
10
])
paddle
.
unique
([
10
])
self
.
assertRaises
(
TypeError
,
test_type
)
def
test_dtype
():
data
=
fluid
.
data
(
shape
=
[
10
],
dtype
=
"float16"
,
name
=
"input"
)
fluid
.
layers
.
unique
(
data
)
paddle
.
unique
(
data
)
self
.
assertRaises
(
TypeError
,
test_dtype
)
...
...
python/paddle/fluid/tests/unittests/test_unique_with_counts.py
浏览文件 @
b9421dc1
...
...
@@ -17,6 +17,7 @@ import unittest
import
numpy
as
np
from
op_test
import
OpTest
import
paddle
import
paddle.fluid
as
fluid
import
paddle.fluid.core
as
core
...
...
@@ -82,13 +83,13 @@ class TestRandom(TestUniqueWithCountsOp):
class
TestUniqueWithCountsRaiseError
(
unittest
.
TestCase
):
def
test_errors
(
self
):
def
test_type
():
fluid
.
layers
.
unique_with_counts
([
10
])
paddle
.
unique
([
10
])
self
.
assertRaises
(
TypeError
,
test_type
)
def
test_dtype
():
data
=
fluid
.
data
(
shape
=
[
10
],
dtype
=
"float16"
,
name
=
"input"
)
fluid
.
layers
.
unique_with_counts
(
data
)
paddle
.
unique
(
data
)
self
.
assertRaises
(
TypeError
,
test_dtype
)
...
...
python/paddle/fluid/tests/unittests/test_var_base.py
浏览文件 @
b9421dc1
...
...
@@ -1289,7 +1289,7 @@ class TestVarBase(unittest.TestCase):
def
func_test_tensor_str_shape_with_zero
(
self
):
paddle
.
disable_static
(
paddle
.
CPUPlace
())
x
=
paddle
.
ones
((
10
,
10
))
y
=
paddle
.
fluid
.
layers
.
where
(
x
==
0
)
y
=
paddle
.
nonzero
(
x
==
0
)
a_str
=
str
(
y
)
expected
=
'''Tensor(shape=[0, 2], dtype=int64, place=Place(cpu), stop_gradient=True,
...
...
python/paddle/fluid/tests/unittests/test_where_index.py
已删除
100644 → 0
浏览文件 @
a365024c
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
unittest
import
numpy
as
np
from
op_test
import
OpTest
import
paddle.fluid
as
fluid
import
paddle.fluid.core
as
core
from
paddle.fluid
import
Program
,
program_guard
from
paddle.fluid.op
import
Operator
class
TestWhereIndexOp
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"where_index"
self
.
init_config
()
def
test_check_output
(
self
):
self
.
check_output
()
def
init_config
(
self
):
self
.
inputs
=
{
'Condition'
:
np
.
array
([
True
,
False
,
True
]),
}
self
.
outputs
=
{
'Out'
:
np
.
array
([[
0
],
[
2
]],
dtype
=
'int64'
)}
class
TestAllFalse
(
unittest
.
TestCase
):
def
setUp
(
self
):
self
.
op_type
=
"where_index"
self
.
init_config
()
def
check_with_place
(
self
,
place
):
scope
=
core
.
Scope
()
condition
=
scope
.
var
(
'Condition'
).
get_tensor
()
condition
.
set
(
self
.
cond_data
,
place
)
out
=
scope
.
var
(
"Out"
).
get_tensor
()
out
.
set
(
np
.
full
(
self
.
shape
,
0
).
astype
(
'int64'
),
place
)
op
=
Operator
(
"where_index"
,
Condition
=
"Condition"
,
Out
=
"Out"
)
op
.
run
(
scope
,
place
)
out_array
=
np
.
array
(
out
)
self
.
assertTrue
((
out_array
==
self
.
out_data
).
all
())
def
init_config
(
self
):
self
.
cond_data
=
np
.
array
([
False
,
False
,
False
])
self
.
shape
=
(
3
,
1
)
self
.
out_data
=
np
.
array
([],
dtype
=
'int64'
)
def
test_all_false
(
self
):
self
.
check_with_place
(
core
.
CPUPlace
())
if
core
.
is_compiled_with_cuda
():
self
.
check_with_place
(
core
.
CUDAPlace
(
0
))
class
TestRank2
(
TestWhereIndexOp
):
def
init_config
(
self
):
self
.
inputs
=
{
'Condition'
:
np
.
array
([[
True
,
False
],
[
False
,
True
]]),
}
self
.
outputs
=
{
'Out'
:
np
.
array
([[
0
,
0
],
[
1
,
1
]],
dtype
=
'int64'
)}
class
TestRank3
(
TestWhereIndexOp
):
def
init_config
(
self
):
self
.
inputs
=
{
'Condition'
:
np
.
array
(
[
[[
True
,
False
],
[
False
,
True
]],
[[
False
,
True
],
[
True
,
False
]],
[[
False
,
False
],
[
False
,
True
]],
]
),
}
self
.
outputs
=
{
'Out'
:
np
.
array
(
[[
0
,
0
,
0
],
[
0
,
1
,
1
],
[
1
,
0
,
1
],
[
1
,
1
,
0
],
[
2
,
1
,
1
]],
dtype
=
'int64'
,
)
}
class
TestWhereOpError
(
unittest
.
TestCase
):
def
test_api
(
self
):
with
program_guard
(
Program
(),
Program
()):
cond
=
fluid
.
layers
.
data
(
name
=
'cond'
,
shape
=
[
4
],
dtype
=
'bool'
)
result
=
fluid
.
layers
.
where
(
cond
)
exe
=
fluid
.
Executor
(
fluid
.
CPUPlace
())
exe
.
run
(
fluid
.
default_startup_program
())
cond_i
=
np
.
array
([
True
,
False
,
False
,
False
]).
astype
(
"bool"
)
out
=
exe
.
run
(
fluid
.
default_main_program
(),
feed
=
{
'cond'
:
cond_i
})
class
TestWhereRaiseError
(
unittest
.
TestCase
):
def
test_errors
(
self
):
def
test_type
():
fluid
.
layers
.
where
([
10
])
self
.
assertRaises
(
TypeError
,
test_type
)
if
__name__
==
"__main__"
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/xpu/test_where_index_xpu.py
浏览文件 @
b9421dc1
...
...
@@ -102,7 +102,7 @@ class TestWhereOpError(unittest.TestCase):
def
test_api
(
self
):
with
program_guard
(
Program
(),
Program
()):
cond
=
fluid
.
layers
.
data
(
name
=
'cond'
,
shape
=
[
4
],
dtype
=
'bool'
)
result
=
fluid
.
layers
.
where
(
cond
)
result
=
paddle
.
nonzero
(
cond
)
exe
=
fluid
.
Executor
(
paddle
.
XPUPlace
(
0
))
exe
.
run
(
fluid
.
default_startup_program
())
...
...
@@ -113,7 +113,7 @@ class TestWhereOpError(unittest.TestCase):
class
TestWhereRaiseError
(
unittest
.
TestCase
):
def
test_errors
(
self
):
def
test_type
():
fluid
.
layers
.
where
([
10
])
paddle
.
nonzero
([
10
])
self
.
assertRaises
(
TypeError
,
test_type
)
...
...
python/paddle/fluid/variable_index.py
浏览文件 @
b9421dc1
...
...
@@ -331,10 +331,9 @@ def get_value_for_bool_tensor(var, item):
)
def
idx_not_empty
(
var
,
item
):
from
.layers.nn
import
where
from
..tensor
import
gather_nd
bool_2_idx
=
where
(
item
==
True
)
bool_2_idx
=
paddle
.
nonzero
(
item
==
True
)
return
gather_nd
(
var
,
bool_2_idx
)
def
idx_empty
(
var
):
...
...
@@ -864,13 +863,12 @@ def set_value_for_bool_tensor(var, item, value):
def
idx_not_empty
(
var
,
item
,
value
):
from
.framework
import
Variable
from
.layers
import
assign
from
.layers.nn
import
where
from
..tensor
import
gather_nd
,
scatter_nd_add
if
not
isinstance
(
value
,
Variable
):
value
=
assign
(
value
).
cast
(
var
.
dtype
)
idx
=
where
(
item
)
idx
=
paddle
.
nonzero
(
item
)
gather_val
=
gather_nd
(
var
,
idx
)
gather_val_new
=
value
-
gather_val
out
=
scatter_nd_add
(
var
,
idx
,
gather_val_new
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录