test_var_base.py 70.2 KB
Newer Older
L
Leo Chen 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import unittest
18 19
import numpy as np
import six
20
import copy
21

22
import paddle
L
Leo Chen 已提交
23 24
import paddle.fluid as fluid
import paddle.fluid.core as core
J
Jiabin Yang 已提交
25
from paddle.fluid.framework import _test_eager_guard, _in_legacy_dygraph
L
Leo Chen 已提交
26 27 28


class TestVarBase(unittest.TestCase):
29

L
Leo Chen 已提交
30 31 32 33 34
    def setUp(self):
        self.shape = [512, 1234]
        self.dtype = np.float32
        self.array = np.random.uniform(0.1, 1, self.shape).astype(self.dtype)

35
    def func_test_to_tensor(self):
36

37
        def check_with_place(place):
38
            with fluid.dygraph.guard():
39
                paddle.set_default_dtype('float32')
40
                # set_default_dtype should not take effect on int
41
                x = paddle.to_tensor(1, place=place, stop_gradient=False)
42
                np.testing.assert_array_equal(x.numpy(), [1])
43 44
                self.assertNotEqual(x.dtype, core.VarDesc.VarType.FP32)

45 46 47
                y = paddle.to_tensor(2, place=x.place)
                self.assertEqual(str(x.place), str(y.place))

48
                # set_default_dtype should not take effect on numpy
49 50 51
                x = paddle.to_tensor(np.array([1.2]).astype('float16'),
                                     place=place,
                                     stop_gradient=False)
52 53
                np.testing.assert_array_equal(x.numpy(),
                                              np.array([1.2], 'float16'))
54 55
                self.assertEqual(x.dtype, core.VarDesc.VarType.FP16)

56 57 58 59
                # set_default_dtype take effect on int
                x = paddle.to_tensor(1, place=place)
                self.assertTrue(x.dtype, core.VarDesc.VarType.INT64)

60
                # set_default_dtype take effect on float
61
                x = paddle.to_tensor(1.2, place=place, stop_gradient=False)
62 63
                np.testing.assert_array_equal(x.numpy(),
                                              np.array([1.2]).astype('float32'))
64
                self.assertEqual(x.dtype, core.VarDesc.VarType.FP32)
Z
Zhou Wei 已提交
65
                clone_x = x.clone()
66 67
                np.testing.assert_array_equal(clone_x.numpy(),
                                              np.array([1.2]).astype('float32'))
Z
Zhou Wei 已提交
68 69 70
                self.assertEqual(clone_x.dtype, core.VarDesc.VarType.FP32)
                y = clone_x**2
                y.backward()
71 72
                np.testing.assert_array_equal(x.grad.numpy(),
                                              np.array([2.4]).astype('float32'))
73
                y = x.cpu()
74
                self.assertEqual(y.place.__repr__(), "Place(cpu)")
75 76
                if core.is_compiled_with_cuda():
                    y = x.pin_memory()
77
                    self.assertEqual(y.place.__repr__(), "Place(gpu_pinned)")
78
                    y = x.cuda()
79
                    self.assertEqual(y.place.__repr__(), "Place(gpu:0)")
80
                    y = x.cuda(None)
81
                    self.assertEqual(y.place.__repr__(), "Place(gpu:0)")
82
                    y = x.cuda(device_id=0)
83
                    self.assertEqual(y.place.__repr__(), "Place(gpu:0)")
84
                    y = x.cuda(blocking=False)
85
                    self.assertEqual(y.place.__repr__(), "Place(gpu:0)")
86
                    y = x.cuda(blocking=True)
87
                    self.assertEqual(y.place.__repr__(), "Place(gpu:0)")
88 89
                    with self.assertRaises(ValueError):
                        y = x.cuda("test")
90

91 92 93 94 95
                # support 'dtype' is core.VarType
                x = paddle.rand((2, 2))
                y = paddle.to_tensor([2, 2], dtype=x.dtype)
                self.assertEqual(y.dtype, core.VarDesc.VarType.FP32)

96
                # set_default_dtype take effect on complex
97
                x = paddle.to_tensor(1 + 2j, place=place, stop_gradient=False)
98
                np.testing.assert_array_equal(x.numpy(), [1 + 2j])
C
chentianyu03 已提交
99
                self.assertEqual(x.dtype, core.VarDesc.VarType.COMPLEX64)
100 101 102

                paddle.set_default_dtype('float64')
                x = paddle.to_tensor(1.2, place=place, stop_gradient=False)
103
                np.testing.assert_array_equal(x.numpy(), [1.2])
104 105 106
                self.assertEqual(x.dtype, core.VarDesc.VarType.FP64)

                x = paddle.to_tensor(1 + 2j, place=place, stop_gradient=False)
107
                np.testing.assert_array_equal(x.numpy(), [1 + 2j])
C
chentianyu03 已提交
108
                self.assertEqual(x.dtype, core.VarDesc.VarType.COMPLEX128)
109

110 111 112 113
                x = paddle.to_tensor(1,
                                     dtype='float32',
                                     place=place,
                                     stop_gradient=False)
114
                np.testing.assert_array_equal(x.numpy(), [1.0])
115 116 117 118 119
                self.assertEqual(x.dtype, core.VarDesc.VarType.FP32)
                self.assertEqual(x.shape, [1])
                self.assertEqual(x.stop_gradient, False)
                self.assertEqual(x.type, core.VarDesc.VarType.LOD_TENSOR)

120 121 122 123 124 125 126 127
                x = paddle.to_tensor((1, 2),
                                     dtype='float32',
                                     place=place,
                                     stop_gradient=False)
                x = paddle.to_tensor([1, 2],
                                     dtype='float32',
                                     place=place,
                                     stop_gradient=False)
128
                np.testing.assert_array_equal(x.numpy(), [1.0, 2.0])
129 130 131 132 133 134
                self.assertEqual(x.dtype, core.VarDesc.VarType.FP32)
                self.assertEqual(x.grad, None)
                self.assertEqual(x.shape, [2])
                self.assertEqual(x.stop_gradient, False)
                self.assertEqual(x.type, core.VarDesc.VarType.LOD_TENSOR)

135 136 137 138
                x = paddle.to_tensor(self.array,
                                     dtype='float32',
                                     place=place,
                                     stop_gradient=False)
139
                np.testing.assert_array_equal(x.numpy(), self.array)
140 141 142 143 144 145 146
                self.assertEqual(x.dtype, core.VarDesc.VarType.FP32)
                self.assertEqual(x.shape, self.shape)
                self.assertEqual(x.stop_gradient, False)
                self.assertEqual(x.type, core.VarDesc.VarType.LOD_TENSOR)

                y = paddle.to_tensor(x)
                y = paddle.to_tensor(y, dtype='float64', place=place)
147
                np.testing.assert_array_equal(y.numpy(), self.array)
148 149 150 151 152
                self.assertEqual(y.dtype, core.VarDesc.VarType.FP64)
                self.assertEqual(y.shape, self.shape)
                self.assertEqual(y.stop_gradient, True)
                self.assertEqual(y.type, core.VarDesc.VarType.LOD_TENSOR)
                z = x + y
153
                np.testing.assert_array_equal(z.numpy(), 2 * self.array)
154

155 156 157
                x = paddle.to_tensor([1 + 2j, 1 - 2j],
                                     dtype='complex64',
                                     place=place)
158
                y = paddle.to_tensor(x)
159
                np.testing.assert_array_equal(x.numpy(), [1 + 2j, 1 - 2j])
C
chentianyu03 已提交
160
                self.assertEqual(y.dtype, core.VarDesc.VarType.COMPLEX64)
161 162
                self.assertEqual(y.shape, [2])

163 164 165 166 167
                paddle.set_default_dtype('float32')
                x = paddle.randn([3, 4])
                x_array = np.array(x)
                self.assertEqual(x_array.shape, x.numpy().shape)
                self.assertEqual(x_array.dtype, x.numpy().dtype)
168
                np.testing.assert_array_equal(x_array, x.numpy())
169 170 171 172 173 174 175 176 177

                x = paddle.to_tensor(1.0)
                self.assertEqual(x.item(), 1.0)
                self.assertTrue(isinstance(x.item(), float))

                x = paddle.randn([3, 2, 2])
                self.assertTrue(isinstance(x.item(5), float))
                self.assertTrue(isinstance(x.item(1, 0, 1), float))
                self.assertEqual(x.item(5), x.item(1, 0, 1))
178 179
                np.testing.assert_array_equal(x.item(1, 0, 1),
                                              x.numpy().item(1, 0, 1))
180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211

                x = paddle.to_tensor([[1.111111, 2.222222, 3.333333]])
                self.assertEqual(x.item(0, 2), x.item(2))
                self.assertAlmostEqual(x.item(2), 3.333333)
                self.assertTrue(isinstance(x.item(0, 2), float))

                x = paddle.to_tensor(1.0, dtype='float64')
                self.assertEqual(x.item(), 1.0)
                self.assertTrue(isinstance(x.item(), float))

                x = paddle.to_tensor(1.0, dtype='float16')
                self.assertEqual(x.item(), 1.0)
                self.assertTrue(isinstance(x.item(), float))

                x = paddle.to_tensor(1, dtype='uint8')
                self.assertEqual(x.item(), 1)
                self.assertTrue(isinstance(x.item(), int))

                x = paddle.to_tensor(1, dtype='int8')
                self.assertEqual(x.item(), 1)
                self.assertTrue(isinstance(x.item(), int))

                x = paddle.to_tensor(1, dtype='int16')
                self.assertEqual(x.item(), 1)
                self.assertTrue(isinstance(x.item(), int))

                x = paddle.to_tensor(1, dtype='int32')
                self.assertEqual(x.item(), 1)
                self.assertTrue(isinstance(x.item(), int))

                x = paddle.to_tensor(1, dtype='int64')
                self.assertEqual(x.item(), 1)
T
tianshuo78520a 已提交
212
                self.assertTrue(isinstance(x.item(), int))
213 214 215 216 217 218 219 220 221

                x = paddle.to_tensor(True)
                self.assertEqual(x.item(), True)
                self.assertTrue(isinstance(x.item(), bool))

                x = paddle.to_tensor(1 + 1j)
                self.assertEqual(x.item(), 1 + 1j)
                self.assertTrue(isinstance(x.item(), complex))

222 223 224 225 226
                # empty tensor
                x = paddle.to_tensor([])
                self.assertEqual(x.shape, [0])
                expected_result = np.array([], dtype='float32')
                self.assertEqual(x.numpy().shape, expected_result.shape)
227
                np.testing.assert_array_equal(x.numpy(), expected_result)
228

229 230 231 232 233 234
                numpy_array = np.random.randn(3, 4)
                # covert core.LoDTensor to paddle.Tensor
                lod_tensor = paddle.fluid.core.LoDTensor()
                place = paddle.fluid.framework._current_expected_place()
                lod_tensor.set(numpy_array, place)
                x = paddle.to_tensor(lod_tensor)
235
                np.testing.assert_array_equal(x.numpy(), numpy_array)
236 237 238 239 240 241 242 243
                self.assertEqual(x.type, core.VarDesc.VarType.LOD_TENSOR)
                self.assertEqual(str(x.place), str(place))

                # covert core.Tensor to paddle.Tensor
                x = paddle.to_tensor(numpy_array)
                dlpack = x.value().get_tensor()._to_dlpack()
                tensor_from_dlpack = paddle.fluid.core.from_dlpack(dlpack)
                x = paddle.to_tensor(tensor_from_dlpack)
244
                np.testing.assert_array_equal(x.numpy(), numpy_array)
245 246
                self.assertEqual(x.type, core.VarDesc.VarType.LOD_TENSOR)

247 248 249 250 251 252 253 254
                with self.assertRaises(ValueError):
                    paddle.randn([3, 2, 2]).item()
                with self.assertRaises(ValueError):
                    paddle.randn([3, 2, 2]).item(18)
                with self.assertRaises(ValueError):
                    paddle.randn([3, 2, 2]).item(1, 2)
                with self.assertRaises(ValueError):
                    paddle.randn([3, 2, 2]).item(2, 1, 2)
255 256 257 258 259 260 261 262 263 264 265
                with self.assertRaises(TypeError):
                    paddle.to_tensor('test')
                with self.assertRaises(TypeError):
                    paddle.to_tensor(1, dtype='test')
                with self.assertRaises(ValueError):
                    paddle.to_tensor([[1], [2, 3]])
                with self.assertRaises(ValueError):
                    paddle.to_tensor([[1], [2, 3]], place='test')
                with self.assertRaises(ValueError):
                    paddle.to_tensor([[1], [2, 3]], place=1)

266 267
        check_with_place(core.CPUPlace())
        check_with_place("cpu")
268
        if core.is_compiled_with_cuda():
269 270 271 272
            check_with_place(core.CUDAPinnedPlace())
            check_with_place("gpu_pinned")
            check_with_place(core.CUDAPlace(0))
            check_with_place("gpu:0")
273
        if core.is_compiled_with_npu():
274 275
            check_with_place(core.NPUPlace(0))
            check_with_place("npu:0")
276

277 278 279 280 281 282
    def test_to_tensor(self):
        with _test_eager_guard():
            self.func_test_to_tensor()
        self.func_test_to_tensor()

    def func_test_to_tensor_not_change_input_stop_gradient(self):
283 284 285 286 287 288 289
        with paddle.fluid.dygraph.guard(core.CPUPlace()):
            a = paddle.zeros([1024])
            a.stop_gradient = False
            b = paddle.to_tensor(a)
            self.assertEqual(a.stop_gradient, False)
            self.assertEqual(b.stop_gradient, True)

290 291 292 293 294 295
    def test_to_tensor_not_change_input_stop_gradient(self):
        with _test_eager_guard():
            self.func_test_to_tensor_not_change_input_stop_gradient()
        self.func_test_to_tensor_not_change_input_stop_gradient()

    def func_test_to_tensor_change_place(self):
296 297 298 299 300
        if core.is_compiled_with_cuda():
            a_np = np.random.rand(1024, 1024)
            with paddle.fluid.dygraph.guard(core.CPUPlace()):
                a = paddle.to_tensor(a_np, place=paddle.CUDAPinnedPlace())
                a = paddle.to_tensor(a)
301
                self.assertEqual(a.place.__repr__(), "Place(cpu)")
302 303 304 305

            with paddle.fluid.dygraph.guard(core.CUDAPlace(0)):
                a = paddle.to_tensor(a_np, place=paddle.CUDAPinnedPlace())
                a = paddle.to_tensor(a)
306
                self.assertEqual(a.place.__repr__(), "Place(gpu:0)")
307 308 309 310

            with paddle.fluid.dygraph.guard(core.CUDAPlace(0)):
                a = paddle.to_tensor(a_np, place=paddle.CPUPlace())
                a = paddle.to_tensor(a, place=paddle.CUDAPinnedPlace())
311
                self.assertEqual(a.place.__repr__(), "Place(gpu_pinned)")
312

313 314 315 316 317 318
    def test_to_tensor_change_place(self):
        with _test_eager_guard():
            self.func_test_to_tensor_change_place()
        self.func_test_to_tensor_change_place()

    def func_test_to_tensor_with_lodtensor(self):
319 320 321 322 323 324
        if core.is_compiled_with_cuda():
            a_np = np.random.rand(1024, 1024)
            with paddle.fluid.dygraph.guard(core.CPUPlace()):
                lod_tensor = core.LoDTensor()
                lod_tensor.set(a_np, core.CPUPlace())
                a = paddle.to_tensor(lod_tensor)
325
                np.testing.assert_array_equal(a_np, a.numpy())
326 327 328 329

            with paddle.fluid.dygraph.guard(core.CUDAPlace(0)):
                lod_tensor = core.LoDTensor()
                lod_tensor.set(a_np, core.CUDAPlace(0))
330
                a = paddle.to_tensor(lod_tensor, place=core.CPUPlace())
331
                np.testing.assert_array_equal(a_np, a.numpy())
332
                self.assertTrue(a.place.__repr__(), "Place(cpu)")
333

334 335 336 337 338 339
    def test_to_tensor_with_lodtensor(self):
        with _test_eager_guard():
            self.func_test_to_tensor_with_lodtensor()
        self.func_test_to_tensor_with_lodtensor()

    def func_test_to_variable(self):
L
Leo Chen 已提交
340 341
        with fluid.dygraph.guard():
            var = fluid.dygraph.to_variable(self.array, name="abc")
342
            np.testing.assert_array_equal(var.numpy(), self.array)
L
Leo Chen 已提交
343 344 345 346 347 348 349
            self.assertEqual(var.name, 'abc')
            # default value
            self.assertEqual(var.persistable, False)
            self.assertEqual(var.stop_gradient, True)
            self.assertEqual(var.shape, self.shape)
            self.assertEqual(var.dtype, core.VarDesc.VarType.FP32)
            self.assertEqual(var.type, core.VarDesc.VarType.LOD_TENSOR)
350 351 352 353 354 355 356
            # The type of input must be 'ndarray' or 'Variable', it will raise TypeError
            with self.assertRaises(TypeError):
                var = fluid.dygraph.to_variable("test", name="abc")
            # test to_variable of LayerObjectHelper(LayerHelperBase)
            with self.assertRaises(TypeError):
                linear = fluid.dygraph.Linear(32, 64)
                var = linear._helper.to_variable("test", name="abc")
L
Leo Chen 已提交
357

358 359 360 361 362 363
    def test_to_variable(self):
        with _test_eager_guard():
            self.func_test_to_variable()
        self.func_test_to_variable()

    def func_test_list_to_variable(self):
364 365 366
        with fluid.dygraph.guard():
            array = [[[1, 2], [1, 2], [1.0, 2]], [[1, 2], [1, 2], [1, 2]]]
            var = fluid.dygraph.to_variable(array, dtype='int32')
367
            np.testing.assert_array_equal(var.numpy(), array)
368 369 370 371
            self.assertEqual(var.shape, [2, 3, 2])
            self.assertEqual(var.dtype, core.VarDesc.VarType.INT32)
            self.assertEqual(var.type, core.VarDesc.VarType.LOD_TENSOR)

372 373 374 375 376 377
    def test_list_to_variable(self):
        with _test_eager_guard():
            self.func_test_list_to_variable()
        self.func_test_list_to_variable()

    def func_test_tuple_to_variable(self):
378 379 380
        with fluid.dygraph.guard():
            array = (((1, 2), (1, 2), (1, 2)), ((1, 2), (1, 2), (1, 2)))
            var = fluid.dygraph.to_variable(array, dtype='float32')
381
            np.testing.assert_array_equal(var.numpy(), array)
382 383 384 385
            self.assertEqual(var.shape, [2, 3, 2])
            self.assertEqual(var.dtype, core.VarDesc.VarType.FP32)
            self.assertEqual(var.type, core.VarDesc.VarType.LOD_TENSOR)

386 387 388 389 390 391
    def test_tuple_to_variable(self):
        with _test_eager_guard():
            self.func_test_tuple_to_variable()
        self.func_test_tuple_to_variable()

    def func_test_tensor_to_variable(self):
392 393
        with fluid.dygraph.guard():
            t = fluid.Tensor()
L
Leo Chen 已提交
394
            t.set(np.random.random((1024, 1024)), fluid.CPUPlace())
395
            var = fluid.dygraph.to_variable(t)
396
            np.testing.assert_array_equal(t, var.numpy())
397

398 399 400 401 402 403
    def test_tensor_to_variable(self):
        with _test_eager_guard():
            self.func_test_tensor_to_variable()
        self.func_test_tensor_to_variable()

    def func_test_leaf_tensor(self):
404 405 406 407 408 409
        with fluid.dygraph.guard():
            x = paddle.to_tensor(np.random.uniform(-1, 1, size=[10, 10]))
            self.assertTrue(x.is_leaf)
            y = x + 1
            self.assertTrue(y.is_leaf)

410 411
            x = paddle.to_tensor(np.random.uniform(-1, 1, size=[10, 10]),
                                 stop_gradient=False)
412 413 414 415 416
            self.assertTrue(x.is_leaf)
            y = x + 1
            self.assertFalse(y.is_leaf)

            linear = paddle.nn.Linear(10, 10)
417 418 419
            input = paddle.to_tensor(np.random.uniform(
                -1, 1, size=[10, 10]).astype('float32'),
                                     stop_gradient=False)
420 421 422 423 424 425 426
            self.assertTrue(input.is_leaf)

            out = linear(input)
            self.assertTrue(linear.weight.is_leaf)
            self.assertTrue(linear.bias.is_leaf)
            self.assertFalse(out.is_leaf)

427 428 429 430 431 432
    def test_leaf_tensor(self):
        with _test_eager_guard():
            self.func_test_leaf_tensor()
        self.func_test_leaf_tensor()

    def func_test_detach(self):
Z
Zhou Wei 已提交
433 434 435 436 437
        with fluid.dygraph.guard():
            x = paddle.to_tensor(1.0, dtype="float64", stop_gradient=False)
            detach_x = x.detach()
            self.assertTrue(detach_x.stop_gradient, True)

Z
zhulei 已提交
438 439
            cmp_float = np.allclose if core.is_compiled_with_rocm(
            ) else np.array_equal
Z
Zhou Wei 已提交
440
            detach_x[:] = 10.0
Z
zhulei 已提交
441
            self.assertTrue(cmp_float(x.numpy(), [10.0]))
Z
Zhou Wei 已提交
442 443 444

            y = x**2
            y.backward()
Z
zhulei 已提交
445
            self.assertTrue(cmp_float(x.grad.numpy(), [20.0]))
Z
Zhou Wei 已提交
446 447 448 449 450
            self.assertEqual(detach_x.grad, None)

            detach_x.stop_gradient = False  # Set stop_gradient to be False, supported auto-grad
            z = 3 * detach_x**2
            z.backward()
Z
zhulei 已提交
451 452
            self.assertTrue(cmp_float(x.grad.numpy(), [20.0]))
            self.assertTrue(cmp_float(detach_x.grad.numpy(), [60.0]))
453

454 455 456 457 458
            with self.assertRaises(ValueError):
                detach_x[:] = 5.0

            detach_x.stop_gradient = True

Z
Zhou Wei 已提交
459
            # Due to sharing of data with origin Tensor, There are some unsafe operations:
460 461 462 463
            with self.assertRaises(RuntimeError):
                y = 2**x
                detach_x[:] = 5.0
                y.backward()
Z
Zhou Wei 已提交
464

465 466 467 468 469 470
    def test_detach(self):
        with _test_eager_guard():
            self.func_test_detach()
        self.func_test_detach()

    def func_test_write_property(self):
L
Leo Chen 已提交
471 472 473
        with fluid.dygraph.guard():
            var = fluid.dygraph.to_variable(self.array)

474
            self.assertEqual(var.name, 'generated_tensor_0')
L
Leo Chen 已提交
475 476 477 478 479 480 481 482 483 484 485
            var.name = 'test'
            self.assertEqual(var.name, 'test')

            self.assertEqual(var.persistable, False)
            var.persistable = True
            self.assertEqual(var.persistable, True)

            self.assertEqual(var.stop_gradient, True)
            var.stop_gradient = False
            self.assertEqual(var.stop_gradient, False)

486 487 488 489 490 491
    def test_write_property(self):
        with _test_eager_guard():
            self.func_test_write_property()
        self.func_test_write_property()

    def func_test_deep_copy(self):
492
        with fluid.dygraph.guard():
493 494 495 496
            if _in_legacy_dygraph():
                empty_var = core.VarBase()
            else:
                empty_var = core.eager.Tensor()
497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514
            empty_var_copy = copy.deepcopy(empty_var)
            self.assertEqual(empty_var.stop_gradient,
                             empty_var_copy.stop_gradient)
            self.assertEqual(empty_var.persistable, empty_var_copy.persistable)
            self.assertEqual(empty_var.type, empty_var_copy.type)
            self.assertEqual(empty_var.dtype, empty_var_copy.dtype)

            x = paddle.to_tensor([2.], stop_gradient=False)
            y = paddle.to_tensor([3.], stop_gradient=False)
            z = x * y
            memo = {}
            x_copy = copy.deepcopy(x, memo)
            y_copy = copy.deepcopy(y, memo)

            self.assertEqual(x_copy.stop_gradient, y_copy.stop_gradient)
            self.assertEqual(x_copy.persistable, y_copy.persistable)
            self.assertEqual(x_copy.type, y_copy.type)
            self.assertEqual(x_copy.dtype, y_copy.dtype)
515 516
            np.testing.assert_array_equal(x.numpy(), x_copy.numpy())
            np.testing.assert_array_equal(y.numpy(), y_copy.numpy())
517 518

            self.assertNotEqual(id(x), id(x_copy))
519
            np.testing.assert_array_equal(x.numpy(), [2.0])
520

521 522 523
            with self.assertRaises(ValueError):
                x_copy[:] = 5.

524 525 526 527 528 529 530 531 532
            with self.assertRaises(RuntimeError):
                copy.deepcopy(z)

            x_copy2 = copy.deepcopy(x, memo)
            y_copy2 = copy.deepcopy(y, memo)
            self.assertEqual(id(x_copy), id(x_copy2))
            self.assertEqual(id(y_copy), id(y_copy2))

            # test copy selected rows
533 534 535 536 537 538 539 540 541
            if _in_legacy_dygraph():
                x = core.VarBase(core.VarDesc.VarType.FP32, [3, 100],
                                 "selected_rows",
                                 core.VarDesc.VarType.SELECTED_ROWS, True)
            else:
                x = core.eager.Tensor(core.VarDesc.VarType.FP32, [3, 100],
                                      "selected_rows",
                                      core.VarDesc.VarType.SELECTED_ROWS, True)

542
            selected_rows = x.value().get_selected_rows()
543 544
            selected_rows.get_tensor().set(np.random.rand(3, 100),
                                           core.CPUPlace())
545 546 547 548 549 550 551 552 553 554 555 556 557
            selected_rows.set_height(10)
            selected_rows.set_rows([3, 5, 7])
            x_copy = copy.deepcopy(x)

            self.assertEqual(x_copy.stop_gradient, x.stop_gradient)
            self.assertEqual(x_copy.persistable, x.persistable)
            self.assertEqual(x_copy.type, x.type)
            self.assertEqual(x_copy.dtype, x.dtype)

            copy_selected_rows = x_copy.value().get_selected_rows()
            self.assertEqual(copy_selected_rows.height(),
                             selected_rows.height())
            self.assertEqual(copy_selected_rows.rows(), selected_rows.rows())
558 559 560
            np.testing.assert_array_equal(
                np.array(copy_selected_rows.get_tensor()),
                np.array(selected_rows.get_tensor()))
561

562 563 564 565 566
    def test_deep_copy(self):
        with _test_eager_guard():
            self.func_test_deep_copy()
        self.func_test_deep_copy()

L
Leo Chen 已提交
567
    # test some patched methods
568
    def func_test_set_value(self):
L
Leo Chen 已提交
569 570 571 572 573 574 575
        with fluid.dygraph.guard():
            var = fluid.dygraph.to_variable(self.array)
            tmp1 = np.random.uniform(0.1, 1, [2, 2, 3]).astype(self.dtype)
            self.assertRaises(AssertionError, var.set_value, tmp1)

            tmp2 = np.random.uniform(0.1, 1, self.shape).astype(self.dtype)
            var.set_value(tmp2)
576
            np.testing.assert_array_equal(var.numpy(), tmp2)
L
Leo Chen 已提交
577

578 579 580 581 582 583
    def test_set_value(self):
        with _test_eager_guard():
            self.func_test_set_value()
        self.func_test_set_value()

    def func_test_to_string(self):
L
Leo Chen 已提交
584 585
        with fluid.dygraph.guard():
            var = fluid.dygraph.to_variable(self.array)
586
            self.assertTrue(isinstance(str(var), str))
L
Leo Chen 已提交
587

588 589 590 591 592 593
    def test_to_string(self):
        with _test_eager_guard():
            self.func_test_to_string()
        self.func_test_to_string()

    def func_test_element_size(self):
594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627
        with fluid.dygraph.guard():
            x = paddle.to_tensor(1, dtype='bool')
            self.assertEqual(x.element_size(), 1)

            x = paddle.to_tensor(1, dtype='float16')
            self.assertEqual(x.element_size(), 2)

            x = paddle.to_tensor(1, dtype='float32')
            self.assertEqual(x.element_size(), 4)

            x = paddle.to_tensor(1, dtype='float64')
            self.assertEqual(x.element_size(), 8)

            x = paddle.to_tensor(1, dtype='int8')
            self.assertEqual(x.element_size(), 1)

            x = paddle.to_tensor(1, dtype='int16')
            self.assertEqual(x.element_size(), 2)

            x = paddle.to_tensor(1, dtype='int32')
            self.assertEqual(x.element_size(), 4)

            x = paddle.to_tensor(1, dtype='int64')
            self.assertEqual(x.element_size(), 8)

            x = paddle.to_tensor(1, dtype='uint8')
            self.assertEqual(x.element_size(), 1)

            x = paddle.to_tensor(1, dtype='complex64')
            self.assertEqual(x.element_size(), 8)

            x = paddle.to_tensor(1, dtype='complex128')
            self.assertEqual(x.element_size(), 16)

628 629 630 631 632 633
    def test_element_size(self):
        with _test_eager_guard():
            self.func_test_element_size()
        self.func_test_element_size()

    def func_test_backward(self):
L
Leo Chen 已提交
634 635 636 637 638 639 640 641
        with fluid.dygraph.guard():
            var = fluid.dygraph.to_variable(self.array)
            var.stop_gradient = False
            loss = fluid.layers.relu(var)
            loss.backward()
            grad_var = var._grad_ivar()
            self.assertEqual(grad_var.shape, self.shape)

642 643 644 645 646 647
    def test_backward(self):
        with _test_eager_guard():
            self.func_test_backward()
        self.func_test_backward()

    def func_test_gradient(self):
L
Leo Chen 已提交
648 649 650 651 652 653 654 655
        with fluid.dygraph.guard():
            var = fluid.dygraph.to_variable(self.array)
            var.stop_gradient = False
            loss = fluid.layers.relu(var)
            loss.backward()
            grad_var = var.gradient()
            self.assertEqual(grad_var.shape, self.array.shape)

656 657 658 659 660 661
    def test_gradient(self):
        with _test_eager_guard():
            self.func_test_gradient()
        self.func_test_gradient()

    def func_test_block(self):
L
Leo Chen 已提交
662 663 664 665 666
        with fluid.dygraph.guard():
            var = fluid.dygraph.to_variable(self.array)
            self.assertEqual(var.block,
                             fluid.default_main_program().global_block())

667 668 669 670 671
    def test_block(self):
        with _test_eager_guard():
            self.func_test_block()
        self.func_test_block()

672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696
    def _test_slice(self):
        w = fluid.dygraph.to_variable(
            np.random.random((784, 100, 100)).astype('float64'))

        for i in range(3):
            nw = w[i]
            self.assertEqual((100, 100), tuple(nw.shape))

        nw = w[:]
        self.assertEqual((784, 100, 100), tuple(nw.shape))

        nw = w[:, :]
        self.assertEqual((784, 100, 100), tuple(nw.shape))

        nw = w[:, :, -1]
        self.assertEqual((784, 100), tuple(nw.shape))

        nw = w[1, 1, 1]

        self.assertEqual(len(nw.shape), 1)
        self.assertEqual(nw.shape[0], 1)

        nw = w[:, :, :-1]
        self.assertEqual((784, 100, 99), tuple(nw.shape))

697 698 699 700
        tensor_array = np.array([[[1, 2, 3], [4, 5, 6], [7, 8, 9]],
                                 [[10, 11, 12], [13, 14, 15], [16, 17, 18]],
                                 [[19, 20, 21], [22, 23, 24],
                                  [25, 26, 27]]]).astype('float32')
701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717
        var = fluid.dygraph.to_variable(tensor_array)
        var1 = var[0, 1, 1]
        var2 = var[1:]
        var3 = var[0:1]
        var4 = var[::-1]
        var5 = var[1, 1:, 1:]
        var_reshape = fluid.layers.reshape(var, [3, -1, 3])
        var6 = var_reshape[:, :, -1]
        var7 = var[:, :, :-1]
        var8 = var[:1, :1, :1]
        var9 = var[:-1, :-1, :-1]
        var10 = var[::-1, :1, :-1]
        var11 = var[:-1, ::-1, -1:]
        var12 = var[1:2, 2:, ::-1]
        var13 = var[2:10, 2:, -2:-1]
        var14 = var[1:-1, 0:2, ::-1]
        var15 = var[::-1, ::-1, ::-1]
718
        var16 = var[-4:4]
719 720
        var17 = var[:, 0, 0:0]
        var18 = var[:, 1:1:2]
721 722 723

        vars = [
            var, var1, var2, var3, var4, var5, var6, var7, var8, var9, var10,
724
            var11, var12, var13, var14, var15, var16, var17, var18
725 726 727
        ]
        local_out = [var.numpy() for var in vars]

728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753
        np.testing.assert_array_equal(local_out[1], tensor_array[0, 1, 1:2])
        np.testing.assert_array_equal(local_out[2], tensor_array[1:])
        np.testing.assert_array_equal(local_out[3], tensor_array[0:1])
        np.testing.assert_array_equal(local_out[4], tensor_array[::-1])
        np.testing.assert_array_equal(local_out[5], tensor_array[1, 1:, 1:])
        np.testing.assert_array_equal(
            local_out[6],
            tensor_array.reshape((3, -1, 3))[:, :, -1])
        np.testing.assert_array_equal(local_out[7], tensor_array[:, :, :-1])
        np.testing.assert_array_equal(local_out[8], tensor_array[:1, :1, :1])
        np.testing.assert_array_equal(local_out[9], tensor_array[:-1, :-1, :-1])
        np.testing.assert_array_equal(local_out[10],
                                      tensor_array[::-1, :1, :-1])
        np.testing.assert_array_equal(local_out[11], tensor_array[:-1, ::-1,
                                                                  -1:])
        np.testing.assert_array_equal(local_out[12], tensor_array[1:2,
                                                                  2:, ::-1])
        np.testing.assert_array_equal(local_out[13], tensor_array[2:10, 2:,
                                                                  -2:-1])
        np.testing.assert_array_equal(local_out[14], tensor_array[1:-1,
                                                                  0:2, ::-1])
        np.testing.assert_array_equal(local_out[15],
                                      tensor_array[::-1, ::-1, ::-1])
        np.testing.assert_array_equal(local_out[16], tensor_array[-4:4])
        np.testing.assert_array_equal(local_out[17], tensor_array[:, 0, 0:0])
        np.testing.assert_array_equal(local_out[18], tensor_array[:, 1:1:2])
754

755
    def _test_slice_for_tensor_attr(self):
756 757 758 759
        tensor_array = np.array([[[1, 2, 3], [4, 5, 6], [7, 8, 9]],
                                 [[10, 11, 12], [13, 14, 15], [16, 17, 18]],
                                 [[19, 20, 21], [22, 23, 24],
                                  [25, 26, 27]]]).astype('float32')
760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792

        var = paddle.to_tensor(tensor_array)

        one = paddle.ones(shape=[1], dtype="int32")
        two = paddle.full(shape=[1], fill_value=2, dtype="int32")
        negative_one = paddle.full(shape=[1], fill_value=-1, dtype="int32")
        four = paddle.full(shape=[1], fill_value=4, dtype="int32")

        var = fluid.dygraph.to_variable(tensor_array)
        var1 = var[0, one, one]
        var2 = var[one:]
        var3 = var[0:one]
        var4 = var[::negative_one]
        var5 = var[one, one:, one:]
        var_reshape = fluid.layers.reshape(var, [3, negative_one, 3])
        var6 = var_reshape[:, :, negative_one]
        var7 = var[:, :, :negative_one]
        var8 = var[:one, :one, :1]
        var9 = var[:-1, :negative_one, :negative_one]
        var10 = var[::negative_one, :one, :negative_one]
        var11 = var[:negative_one, ::-1, negative_one:]
        var12 = var[one:2, 2:, ::negative_one]
        var13 = var[two:10, 2:, -2:negative_one]
        var14 = var[1:negative_one, 0:2, ::negative_one]
        var15 = var[::negative_one, ::-1, ::negative_one]
        var16 = var[-4:4]

        vars = [
            var, var1, var2, var3, var4, var5, var6, var7, var8, var9, var10,
            var11, var12, var13, var14, var15, var16
        ]
        local_out = [var.numpy() for var in vars]

793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816
        np.testing.assert_array_equal(local_out[1], tensor_array[0, 1, 1:2])
        np.testing.assert_array_equal(local_out[2], tensor_array[1:])
        np.testing.assert_array_equal(local_out[3], tensor_array[0:1])
        np.testing.assert_array_equal(local_out[4], tensor_array[::-1])
        np.testing.assert_array_equal(local_out[5], tensor_array[1, 1:, 1:])
        np.testing.assert_array_equal(
            local_out[6],
            tensor_array.reshape((3, -1, 3))[:, :, -1])
        np.testing.assert_array_equal(local_out[7], tensor_array[:, :, :-1])
        np.testing.assert_array_equal(local_out[8], tensor_array[:1, :1, :1])
        np.testing.assert_array_equal(local_out[9], tensor_array[:-1, :-1, :-1])
        np.testing.assert_array_equal(local_out[10],
                                      tensor_array[::-1, :1, :-1])
        np.testing.assert_array_equal(local_out[11], tensor_array[:-1, ::-1,
                                                                  -1:])
        np.testing.assert_array_equal(local_out[12], tensor_array[1:2,
                                                                  2:, ::-1])
        np.testing.assert_array_equal(local_out[13], tensor_array[2:10, 2:,
                                                                  -2:-1])
        np.testing.assert_array_equal(local_out[14], tensor_array[1:-1,
                                                                  0:2, ::-1])
        np.testing.assert_array_equal(local_out[15],
                                      tensor_array[::-1, ::-1, ::-1])
        np.testing.assert_array_equal(local_out[16], tensor_array[-4:4])
817

818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838
    def _test_for_getitem_ellipsis_index(self):
        shape = (64, 3, 5, 256)
        np_fp32_value = np.random.random(shape).astype('float32')
        np_int_value = np.random.randint(1, 100, shape)

        var_fp32 = paddle.to_tensor(np_fp32_value)
        var_int = paddle.to_tensor(np_int_value)

        def assert_getitem_ellipsis_index(var_tensor, var_np):
            var = [
                var_tensor[..., 0].numpy(),
                var_tensor[..., 1, 0].numpy(),
                var_tensor[0, ..., 1, 0].numpy(),
                var_tensor[1, ..., 1].numpy(),
                var_tensor[2, ...].numpy(),
                var_tensor[2, 0, ...].numpy(),
                var_tensor[2, 0, 1, ...].numpy(),
                var_tensor[...].numpy(),
                var_tensor[:, ..., 100].numpy(),
            ]

839 840 841 842 843 844 845 846 847
            np.testing.assert_array_equal(var[0], var_np[..., 0])
            np.testing.assert_array_equal(var[1], var_np[..., 1, 0])
            np.testing.assert_array_equal(var[2], var_np[0, ..., 1, 0])
            np.testing.assert_array_equal(var[3], var_np[1, ..., 1])
            np.testing.assert_array_equal(var[4], var_np[2, ...])
            np.testing.assert_array_equal(var[5], var_np[2, 0, ...])
            np.testing.assert_array_equal(var[6], var_np[2, 0, 1, ...])
            np.testing.assert_array_equal(var[7], var_np[...])
            np.testing.assert_array_equal(var[8], var_np[:, ..., 100])
848 849 850 851 852 853 854

        var_fp32 = paddle.to_tensor(np_fp32_value)
        var_int = paddle.to_tensor(np_int_value)

        assert_getitem_ellipsis_index(var_fp32, np_fp32_value)
        assert_getitem_ellipsis_index(var_int, np_int_value)

855 856
        # test 1 dim tensor
        var_one_dim = paddle.to_tensor([1, 2, 3, 4])
857 858
        np.testing.assert_array_equal(var_one_dim[..., 0].numpy(),
                                      np.array([1]))
859

860 861 862 863 864 865 866 867 868 869 870 871 872 873 874
    def _test_none_index(self):
        shape = (8, 64, 5, 256)
        np_value = np.random.random(shape).astype('float32')
        var_tensor = paddle.to_tensor(np_value)

        var = [
            var_tensor[1, 0, None].numpy(),
            var_tensor[None, ..., 1, 0].numpy(),
            var_tensor[:, :, :, None].numpy(),
            var_tensor[1, ..., 1, None].numpy(),
            var_tensor[2, ..., None, None].numpy(),
            var_tensor[None, 2, 0, ...].numpy(),
            var_tensor[None, 2, None, 1].numpy(),
            var_tensor[None].numpy(),
            var_tensor[0, 0, None, 0, 0, None].numpy(),
875
            var_tensor[None, None, 0, ..., None].numpy(),
876
            var_tensor[..., None, :, None].numpy(),
877 878 879
            var_tensor[0, 1:10:2, None, None, ...].numpy(),
        ]

880 881 882 883 884 885 886 887 888 889 890 891
        np.testing.assert_array_equal(var[0], np_value[1, 0, None])
        np.testing.assert_array_equal(var[1], np_value[None, ..., 1, 0])
        np.testing.assert_array_equal(var[2], np_value[:, :, :, None])
        np.testing.assert_array_equal(var[3], np_value[1, ..., 1, None])
        np.testing.assert_array_equal(var[4], np_value[2, ..., None, None])
        np.testing.assert_array_equal(var[5], np_value[None, 2, 0, ...])
        np.testing.assert_array_equal(var[6], np_value[None, 2, None, 1])
        np.testing.assert_array_equal(var[7], np_value[None])
        np.testing.assert_array_equal(var[8], np_value[0, 0, None, 0, 0, None])
        np.testing.assert_array_equal(var[9], np_value[None, None, 0, ...,
                                                       None])
        np.testing.assert_array_equal(var[10], np_value[..., None, :, None])
892

893 894
        # TODO(zyfncg) there is a bug of dimensions when slice step > 1 and
        #              indexs has int type
895
        # self.assertTrue(
896
        #     np.array_equal(var[11], np_value[0, 1:10:2, None, None, ...]))
897

Z
zyfncg 已提交
898 899 900 901 902
    def _test_bool_index(self):
        shape = (4, 2, 5, 64)
        np_value = np.random.random(shape).astype('float32')
        var_tensor = paddle.to_tensor(np_value)
        index = [[True, True, True, True], [True, False, True, True],
903 904
                 [True, False, False, True], [False, 0, 1, True, True],
                 [False, False, False, False]]
Z
zyfncg 已提交
905 906 907 908
        index2d = np.array([[True, True], [False, False], [True, False],
                            [True, True]])
        tensor_index = paddle.to_tensor(index2d)
        var = [
909 910
            var_tensor[index[0]].numpy(), var_tensor[index[1]].numpy(),
            var_tensor[index[2]].numpy(), var_tensor[index[3]].numpy(),
Z
zyfncg 已提交
911 912
            var_tensor[paddle.to_tensor(index[0])].numpy(),
            var_tensor[tensor_index].numpy(),
913
            var_tensor[paddle.to_tensor(index[4])].numpy()
Z
zyfncg 已提交
914
        ]
915 916 917 918 919 920 921 922 923 924 925
        np.testing.assert_array_equal(var[0], np_value[index[0]])
        np.testing.assert_array_equal(var[1], np_value[index[1]])
        np.testing.assert_array_equal(var[2], np_value[index[2]])
        np.testing.assert_array_equal(var[3], np_value[index[3]])
        np.testing.assert_array_equal(var[4], np_value[index[0]])
        np.testing.assert_array_equal(var[5], np_value[index2d])
        np.testing.assert_array_equal(var[6], np_value[index[4]])
        np.testing.assert_array_equal(var_tensor[var_tensor > 0.67],
                                      np_value[np_value > 0.67])
        np.testing.assert_array_equal(var_tensor[var_tensor < 0.55],
                                      np_value[np_value < 0.55])
Z
zyfncg 已提交
926 927 928 929 930 931 932 933 934 935

        with self.assertRaises(ValueError):
            var_tensor[[False, False, False, False]]
        with self.assertRaises(ValueError):
            var_tensor[[True, False]]
        with self.assertRaises(ValueError):
            var_tensor[[True, False, False, False, False]]
        with self.assertRaises(IndexError):
            var_tensor[paddle.to_tensor([[True, False, False, False]])]

936 937 938 939 940 941
    def _test_scalar_bool_index(self):
        shape = (1, 2, 5, 64)
        np_value = np.random.random(shape).astype('float32')
        var_tensor = paddle.to_tensor(np_value)
        index = [True]
        tensor_index = paddle.to_tensor(index)
942 943 944
        var = [
            var_tensor[tensor_index].numpy(),
        ]
945
        np.testing.assert_array_equal(var[0], np_value[index])
946

H
hong 已提交
947 948 949 950 951
    def _test_for_var(self):
        np_value = np.random.random((30, 100, 100)).astype('float32')
        w = fluid.dygraph.to_variable(np_value)

        for i, e in enumerate(w):
952
            np.testing.assert_array_equal(e.numpy(), np_value[i])
H
hong 已提交
953

954 955 956
    def _test_numpy_index(self):
        array = np.arange(120).reshape([4, 5, 6])
        t = paddle.to_tensor(array)
957 958 959 960 961 962 963 964 965
        np.testing.assert_array_equal(t[np.longlong(0)].numpy(), array[0])
        np.testing.assert_array_equal(
            t[np.longlong(0):np.longlong(4):np.longlong(2)].numpy(),
            array[0:4:2])
        np.testing.assert_array_equal(t[np.int64(0)].numpy(), array[0])
        np.testing.assert_array_equal(
            t[np.int32(1):np.int32(4):np.int32(2)].numpy(), array[1:4:2])
        np.testing.assert_array_equal(
            t[np.int16(0):np.int16(4):np.int16(2)].numpy(), array[0:4:2])
966 967 968 969 970 971 972

    def _test_list_index(self):
        # case1:
        array = np.arange(120).reshape([6, 5, 4])
        x = paddle.to_tensor(array)
        py_idx = [[0, 2, 0, 1, 3], [0, 0, 1, 2, 0]]
        idx = [paddle.to_tensor(py_idx[0]), paddle.to_tensor(py_idx[1])]
973 974
        np.testing.assert_array_equal(x[idx].numpy(), array[py_idx])
        np.testing.assert_array_equal(x[py_idx].numpy(), array[py_idx])
975 976 977
        # case2:
        tensor_x = paddle.to_tensor(
            np.zeros(12).reshape(2, 6).astype(np.float32))
978 979
        tensor_y1 = paddle.zeros([1], dtype='int32') + 2
        tensor_y2 = paddle.zeros([1], dtype='int32') + 5
980 981 982 983
        tensor_x[:, tensor_y1:tensor_y2] = 42
        res = tensor_x.numpy()
        exp = np.array([[0., 0., 42., 42., 42., 0.],
                        [0., 0., 42., 42., 42., 0.]])
984
        np.testing.assert_array_equal(res, exp)
985

W
WeiXin 已提交
986 987 988
        # case3:
        row = np.array([0, 1, 2])
        col = np.array([2, 1, 3])
989
        np.testing.assert_array_equal(array[row, col], x[row, col].numpy())
W
WeiXin 已提交
990

W
wanghuancoder 已提交
991
    def func_test_slice(self):
L
Leo Chen 已提交
992
        with fluid.dygraph.guard():
993
            self._test_slice()
994
            self._test_slice_for_tensor_attr()
H
hong 已提交
995
            self._test_for_var()
996
            self._test_for_getitem_ellipsis_index()
997
            self._test_none_index()
Z
zyfncg 已提交
998
            self._test_bool_index()
999
            self._test_scalar_bool_index()
1000 1001
            self._test_numpy_index()
            self._test_list_index()
1002

L
Leo Chen 已提交
1003
            var = fluid.dygraph.to_variable(self.array)
1004 1005
            np.testing.assert_array_equal(var[1, :].numpy(), self.array[1, :])
            np.testing.assert_array_equal(var[::-1].numpy(), self.array[::-1])
L
Leo Chen 已提交
1006

H
hong 已提交
1007 1008 1009
            with self.assertRaises(IndexError):
                y = var[self.shape[0]]

1010 1011 1012
            with self.assertRaises(IndexError):
                y = var[0 - self.shape[0] - 1]

W
WeiXin 已提交
1013 1014 1015 1016
            with self.assertRaises(IndexError):
                mask = np.array([1, 0, 1, 0], dtype=bool)
                var[paddle.to_tensor([0, 1]), mask]

W
wanghuancoder 已提交
1017 1018 1019 1020 1021
    def test_slice(self):
        with _test_eager_guard():
            self.func_test_slice()
        self.func_test_slice()

1022
    def func_test_var_base_to_np(self):
L
Leo Chen 已提交
1023 1024
        with fluid.dygraph.guard():
            var = fluid.dygraph.to_variable(self.array)
1025 1026
            np.testing.assert_array_equal(var.numpy(),
                                          fluid.framework._var_base_to_np(var))
L
Leo Chen 已提交
1027

1028 1029 1030 1031 1032 1033
    def test_var_base_to_np(self):
        with _test_eager_guard():
            self.func_test_var_base_to_np()
        self.func_test_var_base_to_np()

    def func_test_var_base_as_np(self):
1034 1035
        with fluid.dygraph.guard():
            var = fluid.dygraph.to_variable(self.array)
1036 1037 1038
            np.testing.assert_array_equal(var.numpy(), np.array(var))
            np.testing.assert_array_equal(var.numpy(),
                                          np.array(var, dtype=np.float32))
1039

1040 1041 1042 1043 1044 1045
    def test_var_base_as_np(self):
        with _test_eager_guard():
            self.func_test_var_base_as_np()
        self.func_test_var_base_as_np()

    def func_test_if(self):
1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063
        with fluid.dygraph.guard():
            var1 = fluid.dygraph.to_variable(np.array([[[0]]]))
            var2 = fluid.dygraph.to_variable(np.array([[[1]]]))

            var1_bool = False
            var2_bool = False

            if var1:
                var1_bool = True

            if var2:
                var2_bool = True

            assert var1_bool == False, "if var1 should be false"
            assert var2_bool == True, "if var2 should be true"
            assert bool(var1) == False, "bool(var1) is False"
            assert bool(var2) == True, "bool(var2) is True"

1064 1065 1066 1067 1068 1069
    def test_if(self):
        with _test_eager_guard():
            self.func_test_if()
        self.func_test_if()

    def func_test_to_static_var(self):
1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091
        with fluid.dygraph.guard():
            # Convert VarBase into Variable or Parameter
            var_base = fluid.dygraph.to_variable(self.array, name="var_base_1")
            static_var = var_base._to_static_var()
            self._assert_to_static(var_base, static_var)

            var_base = fluid.dygraph.to_variable(self.array, name="var_base_2")
            static_param = var_base._to_static_var(to_parameter=True)
            self._assert_to_static(var_base, static_param, True)

            # Convert ParamBase into Parameter
            fc = fluid.dygraph.Linear(
                10,
                20,
                param_attr=fluid.ParamAttr(
                    learning_rate=0.001,
                    do_model_average=True,
                    regularizer=fluid.regularizer.L1Decay()))
            weight = fc.parameters()[0]
            static_param = weight._to_static_var()
            self._assert_to_static(weight, static_param, True)

1092 1093 1094 1095 1096
    def test_to_static_var(self):
        with _test_eager_guard():
            self.func_test_to_static_var()
        self.func_test_to_static_var()

1097 1098 1099 1100 1101 1102
    def _assert_to_static(self, var_base, static_var, is_param=False):
        if is_param:
            self.assertTrue(isinstance(static_var, fluid.framework.Parameter))
            self.assertTrue(static_var.persistable, True)
            if isinstance(var_base, fluid.framework.ParamBase):
                for attr in ['trainable', 'is_distributed', 'do_model_average']:
1103 1104
                    self.assertEqual(getattr(var_base, attr),
                                     getattr(static_var, attr))
1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119

                self.assertEqual(static_var.optimize_attr['learning_rate'],
                                 0.001)
                self.assertTrue(
                    isinstance(static_var.regularizer,
                               fluid.regularizer.L1Decay))
        else:
            self.assertTrue(isinstance(static_var, fluid.framework.Variable))

        attr_keys = ['block', 'dtype', 'type', 'name']
        for attr in attr_keys:
            self.assertEqual(getattr(var_base, attr), getattr(static_var, attr))

        self.assertListEqual(list(var_base.shape), list(static_var.shape))

1120
    def func_test_tensor_str(self):
Z
Zhou Wei 已提交
1121
        paddle.enable_static()
1122
        paddle.disable_static(paddle.CPUPlace())
C
cnn 已提交
1123
        paddle.seed(10)
1124 1125 1126 1127
        a = paddle.rand([10, 20])
        paddle.set_printoptions(4, 100, 3)
        a_str = str(a)

1128
        expected = '''Tensor(shape=[10, 20], dtype=float32, place=Place(cpu), stop_gradient=True,
1129 1130 1131 1132 1133 1134 1135 1136 1137 1138
       [[0.2727, 0.5489, 0.8655, ..., 0.2916, 0.8525, 0.9000],
        [0.3806, 0.8996, 0.0928, ..., 0.9535, 0.8378, 0.6409],
        [0.1484, 0.4038, 0.8294, ..., 0.0148, 0.6520, 0.4250],
        ...,
        [0.3426, 0.1909, 0.7240, ..., 0.4218, 0.2676, 0.5679],
        [0.5561, 0.2081, 0.0676, ..., 0.9778, 0.3302, 0.9559],
        [0.2665, 0.8483, 0.5389, ..., 0.4956, 0.6862, 0.9178]])'''

        self.assertEqual(a_str, expected)

1139 1140 1141 1142 1143 1144
    def test_tensor_str(self):
        with _test_eager_guard():
            self.func_test_tensor_str()
        self.func_test_tensor_str()

    def func_test_tensor_str2(self):
1145 1146 1147 1148
        paddle.disable_static(paddle.CPUPlace())
        a = paddle.to_tensor([[1.5111111, 1.0], [0, 0]])
        a_str = str(a)

1149
        expected = '''Tensor(shape=[2, 2], dtype=float32, place=Place(cpu), stop_gradient=True,
1150 1151 1152 1153 1154
       [[1.5111, 1.    ],
        [0.    , 0.    ]])'''

        self.assertEqual(a_str, expected)

1155 1156 1157 1158 1159 1160
    def test_tensor_str2(self):
        with _test_eager_guard():
            self.func_test_tensor_str2()
        self.func_test_tensor_str2()

    def func_test_tensor_str3(self):
1161 1162 1163 1164
        paddle.disable_static(paddle.CPUPlace())
        a = paddle.to_tensor([[-1.5111111, 1.0], [0, -0.5]])
        a_str = str(a)

1165
        expected = '''Tensor(shape=[2, 2], dtype=float32, place=Place(cpu), stop_gradient=True,
1166 1167 1168 1169 1170
       [[-1.5111,  1.    ],
        [ 0.    , -0.5000]])'''

        self.assertEqual(a_str, expected)

1171 1172 1173 1174 1175 1176
    def test_tensor_str3(self):
        with _test_eager_guard():
            self.func_test_tensor_str3()
        self.func_test_tensor_str3()

    def func_test_tensor_str_scaler(self):
1177 1178 1179 1180
        paddle.disable_static(paddle.CPUPlace())
        a = paddle.to_tensor(np.array(False))
        a_str = str(a)

1181
        expected = '''Tensor(shape=[], dtype=bool, place=Place(cpu), stop_gradient=True,
1182 1183 1184 1185
       False)'''

        self.assertEqual(a_str, expected)

1186 1187 1188 1189 1190 1191
    def test_tensor_str_scaler(self):
        with _test_eager_guard():
            self.func_test_tensor_str_scaler()
        self.func_test_tensor_str_scaler()

    def func_test_tensor_str_shape_with_zero(self):
1192 1193 1194 1195 1196
        paddle.disable_static(paddle.CPUPlace())
        x = paddle.ones((10, 10))
        y = paddle.fluid.layers.where(x == 0)
        a_str = str(y)

1197
        expected = '''Tensor(shape=[0, 2], dtype=int64, place=Place(cpu), stop_gradient=True,
1198 1199 1200 1201
       [])'''

        self.assertEqual(a_str, expected)

1202 1203 1204 1205 1206 1207
    def test_tensor_str_shape_with_zero(self):
        with _test_eager_guard():
            self.func_test_tensor_str_shape_with_zero()
        self.func_test_tensor_str_shape_with_zero()

    def func_test_tensor_str_linewidth(self):
1208 1209 1210
        paddle.disable_static(paddle.CPUPlace())
        paddle.seed(2021)
        x = paddle.rand([128])
1211 1212 1213 1214
        paddle.set_printoptions(precision=4,
                                threshold=1000,
                                edgeitems=3,
                                linewidth=80)
1215 1216
        a_str = str(x)

1217
        expected = '''Tensor(shape=[128], dtype=float32, place=Place(cpu), stop_gradient=True,
1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235
       [0.3759, 0.0278, 0.2489, 0.3110, 0.9105, 0.7381, 0.1905, 0.4726, 0.2435,
        0.9142, 0.3367, 0.7243, 0.7664, 0.9915, 0.2921, 0.1363, 0.8096, 0.2915,
        0.9564, 0.9972, 0.2573, 0.2597, 0.3429, 0.2484, 0.9579, 0.7003, 0.4126,
        0.4274, 0.0074, 0.9686, 0.9910, 0.0144, 0.6564, 0.2932, 0.7114, 0.9301,
        0.6421, 0.0538, 0.1273, 0.5771, 0.9336, 0.6416, 0.1832, 0.9311, 0.7702,
        0.7474, 0.4479, 0.3382, 0.5579, 0.0444, 0.9802, 0.9874, 0.3038, 0.5640,
        0.2408, 0.5489, 0.8866, 0.1006, 0.5881, 0.7560, 0.7928, 0.8604, 0.4670,
        0.9285, 0.1482, 0.4541, 0.1307, 0.6221, 0.4902, 0.1147, 0.4415, 0.2987,
        0.7276, 0.2077, 0.7551, 0.9652, 0.4369, 0.2282, 0.0047, 0.2934, 0.4308,
        0.4190, 0.1442, 0.3650, 0.3056, 0.6535, 0.1211, 0.8721, 0.7408, 0.4220,
        0.5937, 0.3123, 0.9198, 0.0275, 0.5338, 0.4622, 0.7521, 0.3609, 0.4703,
        0.1736, 0.8976, 0.7616, 0.3756, 0.2416, 0.2907, 0.3246, 0.4305, 0.5717,
        0.0735, 0.0361, 0.5534, 0.4399, 0.9260, 0.6525, 0.3064, 0.4573, 0.9210,
        0.8269, 0.2424, 0.7494, 0.8945, 0.7098, 0.8078, 0.4707, 0.5715, 0.7232,
        0.4678, 0.5047])'''

        self.assertEqual(a_str, expected)

1236 1237 1238 1239 1240 1241
    def test_tensor_str_linewidth(self):
        with _test_eager_guard():
            self.func_test_tensor_str_linewidth()
        self.func_test_tensor_str_linewidth()

    def func_test_tensor_str_linewidth2(self):
1242 1243 1244 1245 1246 1247
        paddle.disable_static(paddle.CPUPlace())
        paddle.seed(2021)
        x = paddle.rand([128])
        paddle.set_printoptions(precision=4, linewidth=160, sci_mode=True)
        a_str = str(x)

1248
        expected = '''Tensor(shape=[128], dtype=float32, place=Place(cpu), stop_gradient=True,
1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262
       [3.7587e-01, 2.7798e-02, 2.4891e-01, 3.1097e-01, 9.1053e-01, 7.3811e-01, 1.9045e-01, 4.7258e-01, 2.4354e-01, 9.1415e-01, 3.3666e-01, 7.2428e-01,
        7.6640e-01, 9.9146e-01, 2.9215e-01, 1.3625e-01, 8.0957e-01, 2.9153e-01, 9.5642e-01, 9.9718e-01, 2.5732e-01, 2.5973e-01, 3.4292e-01, 2.4841e-01,
        9.5794e-01, 7.0029e-01, 4.1260e-01, 4.2737e-01, 7.3788e-03, 9.6863e-01, 9.9102e-01, 1.4416e-02, 6.5640e-01, 2.9318e-01, 7.1136e-01, 9.3008e-01,
        6.4209e-01, 5.3849e-02, 1.2730e-01, 5.7712e-01, 9.3359e-01, 6.4155e-01, 1.8320e-01, 9.3110e-01, 7.7021e-01, 7.4736e-01, 4.4793e-01, 3.3817e-01,
        5.5794e-01, 4.4412e-02, 9.8023e-01, 9.8735e-01, 3.0376e-01, 5.6397e-01, 2.4082e-01, 5.4893e-01, 8.8659e-01, 1.0065e-01, 5.8812e-01, 7.5600e-01,
        7.9280e-01, 8.6041e-01, 4.6701e-01, 9.2852e-01, 1.4821e-01, 4.5410e-01, 1.3074e-01, 6.2210e-01, 4.9024e-01, 1.1466e-01, 4.4154e-01, 2.9868e-01,
        7.2758e-01, 2.0766e-01, 7.5508e-01, 9.6522e-01, 4.3688e-01, 2.2823e-01, 4.7394e-03, 2.9342e-01, 4.3083e-01, 4.1902e-01, 1.4416e-01, 3.6500e-01,
        3.0560e-01, 6.5350e-01, 1.2115e-01, 8.7206e-01, 7.4081e-01, 4.2203e-01, 5.9372e-01, 3.1230e-01, 9.1979e-01, 2.7486e-02, 5.3383e-01, 4.6224e-01,
        7.5211e-01, 3.6094e-01, 4.7034e-01, 1.7355e-01, 8.9763e-01, 7.6165e-01, 3.7557e-01, 2.4157e-01, 2.9074e-01, 3.2458e-01, 4.3049e-01, 5.7171e-01,
        7.3509e-02, 3.6087e-02, 5.5341e-01, 4.3993e-01, 9.2601e-01, 6.5248e-01, 3.0640e-01, 4.5727e-01, 9.2104e-01, 8.2688e-01, 2.4243e-01, 7.4937e-01,
        8.9448e-01, 7.0981e-01, 8.0783e-01, 4.7065e-01, 5.7154e-01, 7.2319e-01, 4.6777e-01, 5.0465e-01])'''

        self.assertEqual(a_str, expected)

1263 1264 1265 1266 1267 1268
    def test_tensor_str_linewidth2(self):
        with _test_eager_guard():
            self.func_test_tensor_str_linewidth2()
        self.func_test_tensor_str_linewidth2()

    def func_tensor_str_bf16(self):
1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280
        paddle.disable_static(paddle.CPUPlace())
        a = paddle.to_tensor([[1.5, 1.0], [0, 0]])
        a = paddle.cast(a, dtype=core.VarDesc.VarType.BF16)
        paddle.set_printoptions(precision=4)
        a_str = str(a)

        expected = '''Tensor(shape=[2, 2], dtype=bfloat16, place=Place(cpu), stop_gradient=True,
       [[1.5000, 1.    ],
        [0.    , 0.    ]])'''

        self.assertEqual(a_str, expected)

1281 1282 1283 1284 1285
    def test_tensor_str_bf16(self):
        with _test_eager_guard():
            self.func_tensor_str_bf16()
        self.func_tensor_str_bf16()

1286 1287 1288 1289 1290 1291
    def test_tensor_str_bf16(self):
        with _test_eager_guard():
            self.func_tensor_str_bf16()
        self.func_tensor_str_bf16()

    def func_test_print_tensor_dtype(self):
L
Leo Chen 已提交
1292 1293 1294 1295 1296 1297 1298
        paddle.disable_static(paddle.CPUPlace())
        a = paddle.rand([1])
        a_str = str(a.dtype)

        expected = 'paddle.float32'

        self.assertEqual(a_str, expected)
1299 1300 1301 1302 1303

    def test_print_tensor_dtype(self):
        with _test_eager_guard():
            self.func_test_print_tensor_dtype()
        self.func_test_print_tensor_dtype()
L
Leo Chen 已提交
1304

L
Leo Chen 已提交
1305

1306
class TestVarBaseSetitem(unittest.TestCase):
1307

1308
    def func_setUp(self):
1309 1310 1311
        self.set_dtype()
        self.tensor_x = paddle.to_tensor(np.ones((4, 2, 3)).astype(self.dtype))
        self.np_value = np.random.random((2, 3)).astype(self.dtype)
1312 1313
        self.tensor_value = paddle.to_tensor(self.np_value)

1314 1315 1316
    def set_dtype(self):
        self.dtype = "int32"

1317
    def _test(self, value):
J
Jiabin Yang 已提交
1318
        if _in_legacy_dygraph():
W
wanghuancoder 已提交
1319
            self.assertEqual(self.tensor_x.inplace_version, 0)
1320

1321
        id_origin = id(self.tensor_x)
1322
        self.tensor_x[0] = value
J
Jiabin Yang 已提交
1323
        if _in_legacy_dygraph():
W
wanghuancoder 已提交
1324
            self.assertEqual(self.tensor_x.inplace_version, 1)
1325 1326

        if isinstance(value, (six.integer_types, float)):
1327
            result = np.zeros((2, 3)).astype(self.dtype) + value
1328 1329 1330 1331

        else:
            result = self.np_value

1332
        np.testing.assert_array_equal(self.tensor_x[0].numpy(), result)
1333 1334 1335
        self.assertEqual(id_origin, id(self.tensor_x))

        self.tensor_x[1:2] = value
J
Jiabin Yang 已提交
1336
        if _in_legacy_dygraph():
W
wanghuancoder 已提交
1337
            self.assertEqual(self.tensor_x.inplace_version, 2)
1338
        np.testing.assert_array_equal(self.tensor_x[1].numpy(), result)
1339 1340 1341
        self.assertEqual(id_origin, id(self.tensor_x))

        self.tensor_x[...] = value
J
Jiabin Yang 已提交
1342
        if _in_legacy_dygraph():
W
wanghuancoder 已提交
1343
            self.assertEqual(self.tensor_x.inplace_version, 3)
1344
        np.testing.assert_array_equal(self.tensor_x[3].numpy(), result)
1345 1346
        self.assertEqual(id_origin, id(self.tensor_x))

W
wanghuancoder 已提交
1347
    def func_test_value_tensor(self):
1348 1349
        self._test(self.tensor_value)

W
wanghuancoder 已提交
1350 1351
    def test_value_tensor(self):
        with _test_eager_guard():
1352
            self.func_setUp()
W
wanghuancoder 已提交
1353
            self.func_test_value_tensor()
1354
        self.func_setUp()
W
wanghuancoder 已提交
1355 1356 1357
        self.func_test_value_tensor()

    def func_test_value_numpy(self):
1358 1359
        self._test(self.np_value)

W
wanghuancoder 已提交
1360 1361
    def test_value_numpy(self):
        with _test_eager_guard():
1362
            self.func_setUp()
W
wanghuancoder 已提交
1363
            self.func_test_value_numpy()
1364
        self.func_setUp()
W
wanghuancoder 已提交
1365 1366 1367
        self.func_test_value_numpy()

    def func_test_value_int(self):
1368 1369
        self._test(10)

W
wanghuancoder 已提交
1370 1371
    def test_value_int(self):
        with _test_eager_guard():
1372
            self.func_setUp()
W
wanghuancoder 已提交
1373
            self.func_test_value_int()
1374
        self.func_setUp()
W
wanghuancoder 已提交
1375 1376
        self.func_test_value_int()

1377 1378

class TestVarBaseSetitemInt64(TestVarBaseSetitem):
1379

1380 1381 1382 1383 1384
    def set_dtype(self):
        self.dtype = "int64"


class TestVarBaseSetitemFp32(TestVarBaseSetitem):
1385

1386 1387 1388
    def set_dtype(self):
        self.dtype = "float32"

1389
    def func_test_value_float(self):
1390 1391 1392
        paddle.disable_static()
        self._test(3.3)

1393 1394 1395 1396 1397 1398 1399
    def test_value_float(self):
        with _test_eager_guard():
            self.func_setUp()
            self.func_test_value_float()
        self.func_setUp()
        self.func_test_value_float()

1400

1401
class TestVarBaseSetitemFp64(TestVarBaseSetitem):
1402

1403 1404 1405 1406
    def set_dtype(self):
        self.dtype = "float64"


1407
class TestVarBaseSetitemBoolIndex(unittest.TestCase):
1408

1409
    def func_setUp(self):
1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436
        paddle.disable_static()
        self.set_dtype()
        self.set_input()

    def set_input(self):
        self.tensor_x = paddle.to_tensor(np.ones((4, 2, 3)).astype(self.dtype))
        self.np_value = np.random.random((2, 3)).astype(self.dtype)
        self.tensor_value = paddle.to_tensor(self.np_value)

    def set_dtype(self):
        self.dtype = "int32"

    def _test(self, value):
        paddle.disable_static()
        self.assertEqual(self.tensor_x.inplace_version, 0)

        id_origin = id(self.tensor_x)
        index_1 = paddle.to_tensor(np.array([True, False, False, False]))
        self.tensor_x[index_1] = value
        self.assertEqual(self.tensor_x.inplace_version, 1)

        if isinstance(value, (six.integer_types, float)):
            result = np.zeros((2, 3)).astype(self.dtype) + value

        else:
            result = self.np_value

1437
        np.testing.assert_array_equal(self.tensor_x[0].numpy(), result)
1438 1439 1440 1441 1442
        self.assertEqual(id_origin, id(self.tensor_x))

        index_2 = paddle.to_tensor(np.array([False, True, False, False]))
        self.tensor_x[index_2] = value
        self.assertEqual(self.tensor_x.inplace_version, 2)
1443
        np.testing.assert_array_equal(self.tensor_x[1].numpy(), result)
1444 1445 1446 1447 1448
        self.assertEqual(id_origin, id(self.tensor_x))

        index_3 = paddle.to_tensor(np.array([True, True, True, True]))
        self.tensor_x[index_3] = value
        self.assertEqual(self.tensor_x.inplace_version, 3)
1449
        np.testing.assert_array_equal(self.tensor_x[3].numpy(), result)
1450 1451
        self.assertEqual(id_origin, id(self.tensor_x))

1452
    def func_test_value_tensor(self):
1453 1454 1455
        paddle.disable_static()
        self._test(self.tensor_value)

1456 1457 1458 1459 1460 1461 1462 1463
    def test_value_tensor(self):
        with _test_eager_guard():
            self.func_setUp()
            self.func_test_value_tensor()
        self.func_setUp()
        self.func_test_value_tensor()

    def func_test_value_numpy(self):
1464 1465 1466
        paddle.disable_static()
        self._test(self.np_value)

1467 1468 1469 1470 1471 1472 1473 1474
    def test_value_numpy(self):
        with _test_eager_guard():
            self.func_setUp()
            self.func_test_value_numpy()
        self.func_setUp()
        self.func_test_value_numpy()

    def func_test_value_int(self):
1475 1476 1477
        paddle.disable_static()
        self._test(10)

1478 1479 1480 1481 1482 1483 1484
    def test_value_int(self):
        with _test_eager_guard():
            self.func_setUp()
            self.func_test_value_int()
        self.func_setUp()
        self.func_test_value_int()

1485 1486

class TestVarBaseSetitemBoolScalarIndex(unittest.TestCase):
1487

1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507
    def set_input(self):
        self.tensor_x = paddle.to_tensor(np.ones((1, 2, 3)).astype(self.dtype))
        self.np_value = np.random.random((2, 3)).astype(self.dtype)
        self.tensor_value = paddle.to_tensor(self.np_value)

    def _test(self, value):
        paddle.disable_static()
        self.assertEqual(self.tensor_x.inplace_version, 0)

        id_origin = id(self.tensor_x)
        index = paddle.to_tensor(np.array([True]))
        self.tensor_x[index] = value
        self.assertEqual(self.tensor_x.inplace_version, 1)

        if isinstance(value, (six.integer_types, float)):
            result = np.zeros((2, 3)).astype(self.dtype) + value

        else:
            result = self.np_value

1508
        np.testing.assert_array_equal(self.tensor_x[0].numpy(), result)
1509 1510 1511
        self.assertEqual(id_origin, id(self.tensor_x))


1512
class TestVarBaseInplaceVersion(unittest.TestCase):
1513

1514
    def func_test_setitem(self):
1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525
        paddle.disable_static()

        var = paddle.ones(shape=[4, 2, 3], dtype="float32")
        self.assertEqual(var.inplace_version, 0)

        var[1] = 1
        self.assertEqual(var.inplace_version, 1)

        var[1:2] = 1
        self.assertEqual(var.inplace_version, 2)

1526 1527 1528 1529 1530 1531
    def test_setitem(self):
        with _test_eager_guard():
            self.func_test_setitem()
        self.func_test_setitem()

    def func_test_bump_inplace_version(self):
1532 1533 1534 1535 1536 1537 1538 1539 1540 1541
        paddle.disable_static()
        var = paddle.ones(shape=[4, 2, 3], dtype="float32")
        self.assertEqual(var.inplace_version, 0)

        var._bump_inplace_version()
        self.assertEqual(var.inplace_version, 1)

        var._bump_inplace_version()
        self.assertEqual(var.inplace_version, 2)

1542 1543 1544 1545 1546
    def test_bump_inplace_version(self):
        with _test_eager_guard():
            self.func_test_bump_inplace_version()
        self.func_test_bump_inplace_version()

1547

1548
class TestVarBaseSlice(unittest.TestCase):
1549

1550
    def func_test_slice(self):
1551 1552 1553 1554 1555 1556 1557
        paddle.disable_static()
        np_x = np.random.random((3, 8, 8))
        x = paddle.to_tensor(np_x, dtype="float64")
        actual_x = x._slice(0, 1)
        actual_x = paddle.to_tensor(actual_x)
        self.assertEqual(actual_x.numpy().all(), np_x[0:1].all())

1558 1559 1560 1561 1562
    def test_slice(self):
        with _test_eager_guard():
            self.func_test_slice()
        self.func_test_slice()

1563 1564

class TestVarBaseClear(unittest.TestCase):
1565

1566
    def func_test_clear(self):
1567 1568 1569 1570 1571 1572
        paddle.disable_static()
        np_x = np.random.random((3, 8, 8))
        x = paddle.to_tensor(np_x, dtype="float64")
        x._clear()
        self.assertEqual(str(x), "Tensor(Not initialized)")

1573 1574 1575 1576 1577
    def test_clear(self):
        with _test_eager_guard():
            self.func_test_clear()
        self.func_test_clear()

1578 1579

class TestVarBaseOffset(unittest.TestCase):
1580

1581
    def func_offset(self):
1582 1583 1584 1585 1586 1587 1588 1589
        paddle.disable_static()
        np_x = np.random.random((3, 8, 8))
        x = paddle.to_tensor(np_x, dtype="float64")
        expected_offset = 0
        actual_x = x._slice(expected_offset, 1)
        actual_x = paddle.to_tensor(actual_x)
        self.assertEqual(actual_x._offset(), expected_offset)

1590 1591 1592 1593 1594
    def test_offset(self):
        with _test_eager_guard():
            self.func_offset()
        self.func_offset()

1595

1596
class TestVarBaseShareBufferTo(unittest.TestCase):
1597

1598
    def func_test_share_buffer_To(self):
1599
        paddle.disable_static()
1600 1601 1602
        np_src = np.random.random((3, 8, 8))
        src = paddle.to_tensor(np_src, dtype="float64")
        # empty_var
1603 1604 1605 1606
        if _in_legacy_dygraph():
            dst = core.VarBase()
        else:
            dst = core.eager.Tensor()
1607 1608
        src._share_buffer_to(dst)
        self.assertEqual(src._is_shared_buffer_with(dst), True)
1609

1610 1611 1612 1613 1614
    def test_share_buffer_To(self):
        with _test_eager_guard():
            self.func_test_share_buffer_To()
        self.func_test_share_buffer_To()

1615 1616

class TestVarBaseTo(unittest.TestCase):
1617

1618
    def func_setUp(self):
1619 1620 1621 1622
        paddle.disable_static()
        self.np_x = np.random.random((3, 8, 8))
        self.x = paddle.to_tensor(self.np_x, dtype="float32")

1623
    def func_test_to_api(self):
1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669
        x_double = self.x._to(dtype='double')
        self.assertEqual(x_double.dtype, paddle.fluid.core.VarDesc.VarType.FP64)
        self.assertTrue(np.allclose(self.np_x, x_double))

        x_ = self.x._to()
        self.assertEqual(self.x.dtype, paddle.fluid.core.VarDesc.VarType.FP64)
        self.assertTrue(np.allclose(self.np_x, x_))

        if paddle.fluid.is_compiled_with_cuda():
            x_gpu = self.x._to(device=paddle.CUDAPlace(0))
            self.assertTrue(x_gpu.place.is_gpu_place())
            self.assertEqual(x_gpu.place.gpu_device_id(), 0)

            x_gpu0 = self.x._to(device='gpu:0')
            self.assertTrue(x_gpu0.place.is_gpu_place())
            self.assertEqual(x_gpu0.place.gpu_device_id(), 0)

            x_gpu1 = self.x._to(device='gpu:0', dtype="float64")
            self.assertTrue(x_gpu1.place.is_gpu_place())
            self.assertEqual(x_gpu1.place.gpu_device_id(), 0)
            self.assertEqual(x_gpu1.dtype,
                             paddle.fluid.core.VarDesc.VarType.FP64)

            x_gpu2 = self.x._to(device='gpu:0', dtype="float16")
            self.assertTrue(x_gpu2.place.is_gpu_place())
            self.assertEqual(x_gpu2.place.gpu_device_id(), 0)
            self.assertEqual(x_gpu2.dtype,
                             paddle.fluid.core.VarDesc.VarType.FP16)

        x_cpu = self.x._to(device=paddle.CPUPlace())
        self.assertTrue(x_cpu.place.is_cpu_place())

        x_cpu0 = self.x._to(device='cpu')
        self.assertTrue(x_cpu0.place.is_cpu_place())

        x_cpu1 = self.x._to(device=paddle.CPUPlace(), dtype="float64")
        self.assertTrue(x_cpu1.place.is_cpu_place())
        self.assertEqual(x_cpu1.dtype, paddle.fluid.core.VarDesc.VarType.FP64)

        x_cpu2 = self.x._to(device='cpu', dtype="float16")
        self.assertTrue(x_cpu2.place.is_cpu_place())
        self.assertEqual(x_cpu2.dtype, paddle.fluid.core.VarDesc.VarType.FP16)

        self.assertRaises(ValueError, self.x._to, device=1)
        self.assertRaises(AssertionError, self.x._to, blocking=1)

1670 1671 1672 1673 1674 1675 1676
    def test_to_api(self):
        with _test_eager_guard():
            self.func_setUp()
            self.func_test_to_api()
        self.func_setUp()
        self.func_test_to_api()

1677 1678

class TestVarBaseInitVarBaseFromTensorWithDevice(unittest.TestCase):
1679

1680
    def func_test_varbase_init(self):
1681 1682 1683 1684 1685 1686 1687
        paddle.disable_static()
        t = fluid.Tensor()
        np_x = np.random.random((3, 8, 8))
        t.set(np_x, fluid.CPUPlace())

        if paddle.fluid.is_compiled_with_cuda():
            device = paddle.CUDAPlace(0)
1688 1689 1690 1691
            if _in_legacy_dygraph():
                tmp = fluid.core.VarBase(t, device)
            else:
                tmp = fluid.core.eager.Tensor(t, device)
1692 1693 1694 1695
            self.assertTrue(tmp.place.is_gpu_place())
            self.assertEqual(tmp.numpy().all(), np_x.all())

        device = paddle.CPUPlace()
1696 1697 1698 1699
        if _in_legacy_dygraph():
            tmp = fluid.core.VarBase(t, device)
        else:
            tmp = fluid.core.eager.Tensor(t, device)
1700 1701
        self.assertEqual(tmp.numpy().all(), np_x.all())

1702 1703 1704 1705 1706
    def test_varbase_init(self):
        with _test_eager_guard():
            self.func_test_varbase_init()
        self.func_test_varbase_init()

1707 1708

class TestVarBaseNumel(unittest.TestCase):
1709

1710
    def func_test_numel_normal(self):
1711 1712 1713 1714 1715 1716 1717
        paddle.disable_static()
        np_x = np.random.random((3, 8, 8))
        x = paddle.to_tensor(np_x, dtype="float64")
        x_actual_numel = x._numel()
        x_expected_numel = np.product((3, 8, 8))
        self.assertEqual(x_actual_numel, x_expected_numel)

1718 1719 1720 1721 1722 1723
    def test_numel_normal(self):
        with _test_eager_guard():
            self.func_test_numel_normal()
        self.func_test_numel_normal()

    def func_test_numel_without_holder(self):
1724
        paddle.disable_static()
1725 1726 1727 1728
        if _in_legacy_dygraph():
            x_without_holder = core.VarBase()
        else:
            x_without_holder = core.eager.Tensor()
1729 1730 1731
        x_actual_numel = x_without_holder._numel()
        self.assertEqual(x_actual_numel, 0)

1732 1733 1734 1735 1736
    def ttest_numel_without_holder(self):
        with _test_eager_guard():
            self.func_test_numel_without_holder()
        self.func_test_numel_without_holder()

1737 1738

class TestVarBaseCopyGradientFrom(unittest.TestCase):
1739

1740
    def func_test_copy_gradient_from(self):
1741 1742 1743 1744 1745 1746 1747 1748 1749 1750
        paddle.disable_static()
        np_x = np.random.random((2, 2))
        np_y = np.random.random((2, 2))
        x = paddle.to_tensor(np_x, dtype="float64", stop_gradient=False)
        y = paddle.to_tensor(np_y, dtype="float64")
        out = x + x
        out.backward()
        x._copy_gradient_from(y)
        self.assertEqual(x.grad.numpy().all(), np_y.all())

1751 1752 1753 1754 1755
    def test_copy_gradient_from(self):
        with _test_eager_guard():
            self.func_test_copy_gradient_from()
        self.func_test_copy_gradient_from()

1756

1757
class TestEagerTensorGradNameValue(unittest.TestCase):
1758

1759 1760 1761 1762 1763 1764 1765 1766
    def test_eager_tensor_grad_name_value(self):
        with _test_eager_guard():
            a_np = np.array([2, 3]).astype('float32')
            a = paddle.to_tensor(a_np)
            a.stop_gradient = False
            b = a**2
            self.assertEqual(a._grad_value(), None)
            b.backward()
1767
            # Note, for new dygraph, there are no generated grad name, so we skip the name check.
1768 1769 1770
            self.assertNotEqual(a._grad_value(), None)


L
Leo Chen 已提交
1771 1772
if __name__ == '__main__':
    unittest.main()