“0bb9c80ef960d777c5937f8fed8ddf75f2ac6a18”上不存在“paddle/phi/ops/compat/broadcast_tensors_sig.cc”
test_var_base.py 62.5 KB
Newer Older
L
Leo Chen 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import copy
L
Leo Chen 已提交
16
import unittest
17

18 19
import numpy as np

20
import paddle
L
Leo Chen 已提交
21 22
import paddle.fluid as fluid
import paddle.fluid.core as core
23
import paddle.nn.functional as F
24
from paddle.fluid.framework import _in_legacy_dygraph
L
Leo Chen 已提交
25 26 27 28 29 30 31 32


class TestVarBase(unittest.TestCase):
    def setUp(self):
        self.shape = [512, 1234]
        self.dtype = np.float32
        self.array = np.random.uniform(0.1, 1, self.shape).astype(self.dtype)

33
    def test_to_tensor(self):
34
        def check_with_place(place):
35
            with fluid.dygraph.guard():
36
                paddle.set_default_dtype('float32')
37
                # set_default_dtype should not take effect on int
38
                x = paddle.to_tensor(1, place=place, stop_gradient=False)
39
                np.testing.assert_array_equal(x.numpy(), [1])
40 41
                self.assertNotEqual(x.dtype, core.VarDesc.VarType.FP32)

42 43 44
                y = paddle.to_tensor(2, place=x.place)
                self.assertEqual(str(x.place), str(y.place))

45
                # set_default_dtype should not take effect on numpy
46 47 48 49 50 51 52 53
                x = paddle.to_tensor(
                    np.array([1.2]).astype('float16'),
                    place=place,
                    stop_gradient=False,
                )
                np.testing.assert_array_equal(
                    x.numpy(), np.array([1.2], 'float16')
                )
54 55
                self.assertEqual(x.dtype, core.VarDesc.VarType.FP16)

56 57 58 59
                # set_default_dtype take effect on int
                x = paddle.to_tensor(1, place=place)
                self.assertTrue(x.dtype, core.VarDesc.VarType.INT64)

60
                # set_default_dtype take effect on float
61
                x = paddle.to_tensor(1.2, place=place, stop_gradient=False)
62 63 64
                np.testing.assert_array_equal(
                    x.numpy(), np.array([1.2]).astype('float32')
                )
65
                self.assertEqual(x.dtype, core.VarDesc.VarType.FP32)
Z
Zhou Wei 已提交
66
                clone_x = x.clone()
67 68 69
                np.testing.assert_array_equal(
                    clone_x.numpy(), np.array([1.2]).astype('float32')
                )
Z
Zhou Wei 已提交
70 71 72
                self.assertEqual(clone_x.dtype, core.VarDesc.VarType.FP32)
                y = clone_x**2
                y.backward()
73 74 75
                np.testing.assert_array_equal(
                    x.grad.numpy(), np.array([2.4]).astype('float32')
                )
76
                y = x.cpu()
77
                self.assertEqual(y.place.__repr__(), "Place(cpu)")
78 79
                if core.is_compiled_with_cuda():
                    y = x.pin_memory()
80
                    self.assertEqual(y.place.__repr__(), "Place(gpu_pinned)")
81
                    y = x.cuda()
82
                    self.assertEqual(y.place.__repr__(), "Place(gpu:0)")
83
                    y = x.cuda(None)
84
                    self.assertEqual(y.place.__repr__(), "Place(gpu:0)")
85
                    y = x.cuda(device_id=0)
86
                    self.assertEqual(y.place.__repr__(), "Place(gpu:0)")
87
                    y = x.cuda(blocking=False)
88
                    self.assertEqual(y.place.__repr__(), "Place(gpu:0)")
89
                    y = x.cuda(blocking=True)
90
                    self.assertEqual(y.place.__repr__(), "Place(gpu:0)")
91 92
                    with self.assertRaises(ValueError):
                        y = x.cuda("test")
93

94 95 96 97 98
                # support 'dtype' is core.VarType
                x = paddle.rand((2, 2))
                y = paddle.to_tensor([2, 2], dtype=x.dtype)
                self.assertEqual(y.dtype, core.VarDesc.VarType.FP32)

99
                # set_default_dtype take effect on complex
100
                x = paddle.to_tensor(1 + 2j, place=place, stop_gradient=False)
101
                np.testing.assert_array_equal(x.numpy(), [1 + 2j])
C
chentianyu03 已提交
102
                self.assertEqual(x.dtype, core.VarDesc.VarType.COMPLEX64)
103 104 105

                paddle.set_default_dtype('float64')
                x = paddle.to_tensor(1.2, place=place, stop_gradient=False)
106
                np.testing.assert_array_equal(x.numpy(), [1.2])
107 108 109
                self.assertEqual(x.dtype, core.VarDesc.VarType.FP64)

                x = paddle.to_tensor(1 + 2j, place=place, stop_gradient=False)
110
                np.testing.assert_array_equal(x.numpy(), [1 + 2j])
C
chentianyu03 已提交
111
                self.assertEqual(x.dtype, core.VarDesc.VarType.COMPLEX128)
112

113 114 115
                x = paddle.to_tensor(
                    1, dtype='float32', place=place, stop_gradient=False
                )
116
                np.testing.assert_array_equal(x.numpy(), [1.0])
117 118 119 120 121
                self.assertEqual(x.dtype, core.VarDesc.VarType.FP32)
                self.assertEqual(x.shape, [1])
                self.assertEqual(x.stop_gradient, False)
                self.assertEqual(x.type, core.VarDesc.VarType.LOD_TENSOR)

122 123 124 125 126 127
                x = paddle.to_tensor(
                    (1, 2), dtype='float32', place=place, stop_gradient=False
                )
                x = paddle.to_tensor(
                    [1, 2], dtype='float32', place=place, stop_gradient=False
                )
128
                np.testing.assert_array_equal(x.numpy(), [1.0, 2.0])
129
                self.assertEqual(x.dtype, core.VarDesc.VarType.FP32)
130
                self.assertIsNone(x.grad)
131 132 133 134
                self.assertEqual(x.shape, [2])
                self.assertEqual(x.stop_gradient, False)
                self.assertEqual(x.type, core.VarDesc.VarType.LOD_TENSOR)

135 136 137 138 139 140
                x = paddle.to_tensor(
                    self.array,
                    dtype='float32',
                    place=place,
                    stop_gradient=False,
                )
141
                np.testing.assert_array_equal(x.numpy(), self.array)
142 143 144 145 146 147 148
                self.assertEqual(x.dtype, core.VarDesc.VarType.FP32)
                self.assertEqual(x.shape, self.shape)
                self.assertEqual(x.stop_gradient, False)
                self.assertEqual(x.type, core.VarDesc.VarType.LOD_TENSOR)

                y = paddle.to_tensor(x)
                y = paddle.to_tensor(y, dtype='float64', place=place)
149
                np.testing.assert_array_equal(y.numpy(), self.array)
150 151 152 153 154
                self.assertEqual(y.dtype, core.VarDesc.VarType.FP64)
                self.assertEqual(y.shape, self.shape)
                self.assertEqual(y.stop_gradient, True)
                self.assertEqual(y.type, core.VarDesc.VarType.LOD_TENSOR)
                z = x + y
155
                np.testing.assert_array_equal(z.numpy(), 2 * self.array)
156

157 158 159
                x = paddle.to_tensor(
                    [1 + 2j, 1 - 2j], dtype='complex64', place=place
                )
160
                y = paddle.to_tensor(x)
161
                np.testing.assert_array_equal(x.numpy(), [1 + 2j, 1 - 2j])
C
chentianyu03 已提交
162
                self.assertEqual(y.dtype, core.VarDesc.VarType.COMPLEX64)
163 164
                self.assertEqual(y.shape, [2])

165 166 167 168 169
                paddle.set_default_dtype('float32')
                x = paddle.randn([3, 4])
                x_array = np.array(x)
                self.assertEqual(x_array.shape, x.numpy().shape)
                self.assertEqual(x_array.dtype, x.numpy().dtype)
170
                np.testing.assert_array_equal(x_array, x.numpy())
171 172 173 174 175 176 177 178 179

                x = paddle.to_tensor(1.0)
                self.assertEqual(x.item(), 1.0)
                self.assertTrue(isinstance(x.item(), float))

                x = paddle.randn([3, 2, 2])
                self.assertTrue(isinstance(x.item(5), float))
                self.assertTrue(isinstance(x.item(1, 0, 1), float))
                self.assertEqual(x.item(5), x.item(1, 0, 1))
180 181 182
                np.testing.assert_array_equal(
                    x.item(1, 0, 1), x.numpy().item(1, 0, 1)
                )
183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214

                x = paddle.to_tensor([[1.111111, 2.222222, 3.333333]])
                self.assertEqual(x.item(0, 2), x.item(2))
                self.assertAlmostEqual(x.item(2), 3.333333)
                self.assertTrue(isinstance(x.item(0, 2), float))

                x = paddle.to_tensor(1.0, dtype='float64')
                self.assertEqual(x.item(), 1.0)
                self.assertTrue(isinstance(x.item(), float))

                x = paddle.to_tensor(1.0, dtype='float16')
                self.assertEqual(x.item(), 1.0)
                self.assertTrue(isinstance(x.item(), float))

                x = paddle.to_tensor(1, dtype='uint8')
                self.assertEqual(x.item(), 1)
                self.assertTrue(isinstance(x.item(), int))

                x = paddle.to_tensor(1, dtype='int8')
                self.assertEqual(x.item(), 1)
                self.assertTrue(isinstance(x.item(), int))

                x = paddle.to_tensor(1, dtype='int16')
                self.assertEqual(x.item(), 1)
                self.assertTrue(isinstance(x.item(), int))

                x = paddle.to_tensor(1, dtype='int32')
                self.assertEqual(x.item(), 1)
                self.assertTrue(isinstance(x.item(), int))

                x = paddle.to_tensor(1, dtype='int64')
                self.assertEqual(x.item(), 1)
T
tianshuo78520a 已提交
215
                self.assertTrue(isinstance(x.item(), int))
216 217 218 219 220 221 222 223 224

                x = paddle.to_tensor(True)
                self.assertEqual(x.item(), True)
                self.assertTrue(isinstance(x.item(), bool))

                x = paddle.to_tensor(1 + 1j)
                self.assertEqual(x.item(), 1 + 1j)
                self.assertTrue(isinstance(x.item(), complex))

225 226 227 228 229
                # empty tensor
                x = paddle.to_tensor([])
                self.assertEqual(x.shape, [0])
                expected_result = np.array([], dtype='float32')
                self.assertEqual(x.numpy().shape, expected_result.shape)
230
                np.testing.assert_array_equal(x.numpy(), expected_result)
231

232 233 234 235 236 237
                numpy_array = np.random.randn(3, 4)
                # covert core.LoDTensor to paddle.Tensor
                lod_tensor = paddle.fluid.core.LoDTensor()
                place = paddle.fluid.framework._current_expected_place()
                lod_tensor.set(numpy_array, place)
                x = paddle.to_tensor(lod_tensor)
238
                np.testing.assert_array_equal(x.numpy(), numpy_array)
239 240 241 242 243 244 245 246
                self.assertEqual(x.type, core.VarDesc.VarType.LOD_TENSOR)
                self.assertEqual(str(x.place), str(place))

                # covert core.Tensor to paddle.Tensor
                x = paddle.to_tensor(numpy_array)
                dlpack = x.value().get_tensor()._to_dlpack()
                tensor_from_dlpack = paddle.fluid.core.from_dlpack(dlpack)
                x = paddle.to_tensor(tensor_from_dlpack)
247
                np.testing.assert_array_equal(x.numpy(), numpy_array)
248 249
                self.assertEqual(x.type, core.VarDesc.VarType.LOD_TENSOR)

250 251 252 253 254 255 256 257
                with self.assertRaises(ValueError):
                    paddle.randn([3, 2, 2]).item()
                with self.assertRaises(ValueError):
                    paddle.randn([3, 2, 2]).item(18)
                with self.assertRaises(ValueError):
                    paddle.randn([3, 2, 2]).item(1, 2)
                with self.assertRaises(ValueError):
                    paddle.randn([3, 2, 2]).item(2, 1, 2)
258 259 260 261 262 263 264 265 266 267 268
                with self.assertRaises(TypeError):
                    paddle.to_tensor('test')
                with self.assertRaises(TypeError):
                    paddle.to_tensor(1, dtype='test')
                with self.assertRaises(ValueError):
                    paddle.to_tensor([[1], [2, 3]])
                with self.assertRaises(ValueError):
                    paddle.to_tensor([[1], [2, 3]], place='test')
                with self.assertRaises(ValueError):
                    paddle.to_tensor([[1], [2, 3]], place=1)

269 270
        check_with_place(core.CPUPlace())
        check_with_place("cpu")
271
        if core.is_compiled_with_cuda():
272 273 274 275
            check_with_place(core.CUDAPinnedPlace())
            check_with_place("gpu_pinned")
            check_with_place(core.CUDAPlace(0))
            check_with_place("gpu:0")
276
        if core.is_compiled_with_npu():
277 278
            check_with_place(core.NPUPlace(0))
            check_with_place("npu:0")
279

280
    def test_to_tensor_not_change_input_stop_gradient(self):
281 282 283 284 285 286 287
        with paddle.fluid.dygraph.guard(core.CPUPlace()):
            a = paddle.zeros([1024])
            a.stop_gradient = False
            b = paddle.to_tensor(a)
            self.assertEqual(a.stop_gradient, False)
            self.assertEqual(b.stop_gradient, True)

288
    def test_to_tensor_change_place(self):
289 290 291 292 293
        if core.is_compiled_with_cuda():
            a_np = np.random.rand(1024, 1024)
            with paddle.fluid.dygraph.guard(core.CPUPlace()):
                a = paddle.to_tensor(a_np, place=paddle.CUDAPinnedPlace())
                a = paddle.to_tensor(a)
294
                self.assertEqual(a.place.__repr__(), "Place(cpu)")
295 296 297 298

            with paddle.fluid.dygraph.guard(core.CUDAPlace(0)):
                a = paddle.to_tensor(a_np, place=paddle.CUDAPinnedPlace())
                a = paddle.to_tensor(a)
299
                self.assertEqual(a.place.__repr__(), "Place(gpu:0)")
300 301 302 303

            with paddle.fluid.dygraph.guard(core.CUDAPlace(0)):
                a = paddle.to_tensor(a_np, place=paddle.CPUPlace())
                a = paddle.to_tensor(a, place=paddle.CUDAPinnedPlace())
304
                self.assertEqual(a.place.__repr__(), "Place(gpu_pinned)")
305

306
    def test_to_tensor_with_lodtensor(self):
307 308 309 310 311 312
        if core.is_compiled_with_cuda():
            a_np = np.random.rand(1024, 1024)
            with paddle.fluid.dygraph.guard(core.CPUPlace()):
                lod_tensor = core.LoDTensor()
                lod_tensor.set(a_np, core.CPUPlace())
                a = paddle.to_tensor(lod_tensor)
313
                np.testing.assert_array_equal(a_np, a.numpy())
314 315 316 317

            with paddle.fluid.dygraph.guard(core.CUDAPlace(0)):
                lod_tensor = core.LoDTensor()
                lod_tensor.set(a_np, core.CUDAPlace(0))
318
                a = paddle.to_tensor(lod_tensor, place=core.CPUPlace())
319
                np.testing.assert_array_equal(a_np, a.numpy())
320
                self.assertTrue(a.place.__repr__(), "Place(cpu)")
321

322
    def test_to_variable(self):
L
Leo Chen 已提交
323 324
        with fluid.dygraph.guard():
            var = fluid.dygraph.to_variable(self.array, name="abc")
325
            np.testing.assert_array_equal(var.numpy(), self.array)
L
Leo Chen 已提交
326 327 328 329 330 331 332
            self.assertEqual(var.name, 'abc')
            # default value
            self.assertEqual(var.persistable, False)
            self.assertEqual(var.stop_gradient, True)
            self.assertEqual(var.shape, self.shape)
            self.assertEqual(var.dtype, core.VarDesc.VarType.FP32)
            self.assertEqual(var.type, core.VarDesc.VarType.LOD_TENSOR)
333 334 335 336 337
            # The type of input must be 'ndarray' or 'Variable', it will raise TypeError
            with self.assertRaises(TypeError):
                var = fluid.dygraph.to_variable("test", name="abc")
            # test to_variable of LayerObjectHelper(LayerHelperBase)
            with self.assertRaises(TypeError):
338
                linear = paddle.nn.Linear(32, 64)
339
                var = linear._helper.to_variable("test", name="abc")
L
Leo Chen 已提交
340

341
    def test_list_to_variable(self):
342 343 344
        with fluid.dygraph.guard():
            array = [[[1, 2], [1, 2], [1.0, 2]], [[1, 2], [1, 2], [1, 2]]]
            var = fluid.dygraph.to_variable(array, dtype='int32')
345
            np.testing.assert_array_equal(var.numpy(), array)
346 347 348 349
            self.assertEqual(var.shape, [2, 3, 2])
            self.assertEqual(var.dtype, core.VarDesc.VarType.INT32)
            self.assertEqual(var.type, core.VarDesc.VarType.LOD_TENSOR)

350
    def test_tuple_to_variable(self):
351 352 353
        with fluid.dygraph.guard():
            array = (((1, 2), (1, 2), (1, 2)), ((1, 2), (1, 2), (1, 2)))
            var = fluid.dygraph.to_variable(array, dtype='float32')
354
            np.testing.assert_array_equal(var.numpy(), array)
355 356 357 358
            self.assertEqual(var.shape, [2, 3, 2])
            self.assertEqual(var.dtype, core.VarDesc.VarType.FP32)
            self.assertEqual(var.type, core.VarDesc.VarType.LOD_TENSOR)

359
    def test_tensor_to_variable(self):
360 361
        with fluid.dygraph.guard():
            t = fluid.Tensor()
L
Leo Chen 已提交
362
            t.set(np.random.random((1024, 1024)), fluid.CPUPlace())
363
            var = fluid.dygraph.to_variable(t)
364
            np.testing.assert_array_equal(t, var.numpy())
365

366
    def test_leaf_tensor(self):
367 368 369 370 371 372
        with fluid.dygraph.guard():
            x = paddle.to_tensor(np.random.uniform(-1, 1, size=[10, 10]))
            self.assertTrue(x.is_leaf)
            y = x + 1
            self.assertTrue(y.is_leaf)

373 374 375
            x = paddle.to_tensor(
                np.random.uniform(-1, 1, size=[10, 10]), stop_gradient=False
            )
376 377 378 379 380
            self.assertTrue(x.is_leaf)
            y = x + 1
            self.assertFalse(y.is_leaf)

            linear = paddle.nn.Linear(10, 10)
381 382 383 384
            input = paddle.to_tensor(
                np.random.uniform(-1, 1, size=[10, 10]).astype('float32'),
                stop_gradient=False,
            )
385 386 387 388 389 390 391
            self.assertTrue(input.is_leaf)

            out = linear(input)
            self.assertTrue(linear.weight.is_leaf)
            self.assertTrue(linear.bias.is_leaf)
            self.assertFalse(out.is_leaf)

392
    def test_detach(self):
Z
Zhou Wei 已提交
393 394 395 396 397
        with fluid.dygraph.guard():
            x = paddle.to_tensor(1.0, dtype="float64", stop_gradient=False)
            detach_x = x.detach()
            self.assertTrue(detach_x.stop_gradient, True)

398 399 400
            cmp_float = (
                np.allclose if core.is_compiled_with_rocm() else np.array_equal
            )
Z
Zhou Wei 已提交
401
            detach_x[:] = 10.0
Z
zhulei 已提交
402
            self.assertTrue(cmp_float(x.numpy(), [10.0]))
Z
Zhou Wei 已提交
403 404 405

            y = x**2
            y.backward()
Z
zhulei 已提交
406
            self.assertTrue(cmp_float(x.grad.numpy(), [20.0]))
407
            self.assertIsNone(detach_x.grad)
Z
Zhou Wei 已提交
408

409 410 411
            detach_x.stop_gradient = (
                False  # Set stop_gradient to be False, supported auto-grad
            )
Z
Zhou Wei 已提交
412 413
            z = 3 * detach_x**2
            z.backward()
Z
zhulei 已提交
414 415
            self.assertTrue(cmp_float(x.grad.numpy(), [20.0]))
            self.assertTrue(cmp_float(detach_x.grad.numpy(), [60.0]))
416

417 418 419 420 421
            with self.assertRaises(ValueError):
                detach_x[:] = 5.0

            detach_x.stop_gradient = True

Z
Zhou Wei 已提交
422
            # Due to sharing of data with origin Tensor, There are some unsafe operations:
423 424 425 426
            with self.assertRaises(RuntimeError):
                y = 2**x
                detach_x[:] = 5.0
                y.backward()
Z
Zhou Wei 已提交
427

428
    def test_write_property(self):
L
Leo Chen 已提交
429 430 431
        with fluid.dygraph.guard():
            var = fluid.dygraph.to_variable(self.array)

432
            self.assertEqual(var.name, 'generated_tensor_0')
L
Leo Chen 已提交
433 434 435 436 437 438 439 440 441 442 443
            var.name = 'test'
            self.assertEqual(var.name, 'test')

            self.assertEqual(var.persistable, False)
            var.persistable = True
            self.assertEqual(var.persistable, True)

            self.assertEqual(var.stop_gradient, True)
            var.stop_gradient = False
            self.assertEqual(var.stop_gradient, False)

444
    def test_deep_copy(self):
445
        with fluid.dygraph.guard():
446 447 448 449
            if _in_legacy_dygraph():
                empty_var = core.VarBase()
            else:
                empty_var = core.eager.Tensor()
450
            empty_var_copy = copy.deepcopy(empty_var)
451 452 453
            self.assertEqual(
                empty_var.stop_gradient, empty_var_copy.stop_gradient
            )
454 455 456 457
            self.assertEqual(empty_var.persistable, empty_var_copy.persistable)
            self.assertEqual(empty_var.type, empty_var_copy.type)
            self.assertEqual(empty_var.dtype, empty_var_copy.dtype)

458 459
            x = paddle.to_tensor([2.0], stop_gradient=False)
            y = paddle.to_tensor([3.0], stop_gradient=False)
460 461 462 463 464 465 466 467 468
            z = x * y
            memo = {}
            x_copy = copy.deepcopy(x, memo)
            y_copy = copy.deepcopy(y, memo)

            self.assertEqual(x_copy.stop_gradient, y_copy.stop_gradient)
            self.assertEqual(x_copy.persistable, y_copy.persistable)
            self.assertEqual(x_copy.type, y_copy.type)
            self.assertEqual(x_copy.dtype, y_copy.dtype)
469 470
            np.testing.assert_array_equal(x.numpy(), x_copy.numpy())
            np.testing.assert_array_equal(y.numpy(), y_copy.numpy())
471 472

            self.assertNotEqual(id(x), id(x_copy))
473
            np.testing.assert_array_equal(x.numpy(), [2.0])
474

475
            with self.assertRaises(ValueError):
476
                x_copy[:] = 5.0
477

478 479 480 481 482 483 484 485 486
            with self.assertRaises(RuntimeError):
                copy.deepcopy(z)

            x_copy2 = copy.deepcopy(x, memo)
            y_copy2 = copy.deepcopy(y, memo)
            self.assertEqual(id(x_copy), id(x_copy2))
            self.assertEqual(id(y_copy), id(y_copy2))

            # test copy selected rows
487
            if _in_legacy_dygraph():
488 489 490 491 492 493 494
                x = core.VarBase(
                    core.VarDesc.VarType.FP32,
                    [3, 100],
                    "selected_rows",
                    core.VarDesc.VarType.SELECTED_ROWS,
                    True,
                )
495
            else:
496 497 498 499 500 501 502
                x = core.eager.Tensor(
                    core.VarDesc.VarType.FP32,
                    [3, 100],
                    "selected_rows",
                    core.VarDesc.VarType.SELECTED_ROWS,
                    True,
                )
503

504
            selected_rows = x.value().get_selected_rows()
505 506 507
            selected_rows.get_tensor().set(
                np.random.rand(3, 100), core.CPUPlace()
            )
508 509 510 511 512 513 514 515 516 517
            selected_rows.set_height(10)
            selected_rows.set_rows([3, 5, 7])
            x_copy = copy.deepcopy(x)

            self.assertEqual(x_copy.stop_gradient, x.stop_gradient)
            self.assertEqual(x_copy.persistable, x.persistable)
            self.assertEqual(x_copy.type, x.type)
            self.assertEqual(x_copy.dtype, x.dtype)

            copy_selected_rows = x_copy.value().get_selected_rows()
518 519 520
            self.assertEqual(
                copy_selected_rows.height(), selected_rows.height()
            )
521
            self.assertEqual(copy_selected_rows.rows(), selected_rows.rows())
522 523
            np.testing.assert_array_equal(
                np.array(copy_selected_rows.get_tensor()),
524 525
                np.array(selected_rows.get_tensor()),
            )
526

L
Leo Chen 已提交
527
    # test some patched methods
528
    def test_set_value(self):
L
Leo Chen 已提交
529 530 531 532 533 534 535
        with fluid.dygraph.guard():
            var = fluid.dygraph.to_variable(self.array)
            tmp1 = np.random.uniform(0.1, 1, [2, 2, 3]).astype(self.dtype)
            self.assertRaises(AssertionError, var.set_value, tmp1)

            tmp2 = np.random.uniform(0.1, 1, self.shape).astype(self.dtype)
            var.set_value(tmp2)
536
            np.testing.assert_array_equal(var.numpy(), tmp2)
L
Leo Chen 已提交
537

538
    def test_to_string(self):
L
Leo Chen 已提交
539 540
        with fluid.dygraph.guard():
            var = fluid.dygraph.to_variable(self.array)
541
            self.assertTrue(isinstance(str(var), str))
L
Leo Chen 已提交
542

543
    def test_element_size(self):
544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577
        with fluid.dygraph.guard():
            x = paddle.to_tensor(1, dtype='bool')
            self.assertEqual(x.element_size(), 1)

            x = paddle.to_tensor(1, dtype='float16')
            self.assertEqual(x.element_size(), 2)

            x = paddle.to_tensor(1, dtype='float32')
            self.assertEqual(x.element_size(), 4)

            x = paddle.to_tensor(1, dtype='float64')
            self.assertEqual(x.element_size(), 8)

            x = paddle.to_tensor(1, dtype='int8')
            self.assertEqual(x.element_size(), 1)

            x = paddle.to_tensor(1, dtype='int16')
            self.assertEqual(x.element_size(), 2)

            x = paddle.to_tensor(1, dtype='int32')
            self.assertEqual(x.element_size(), 4)

            x = paddle.to_tensor(1, dtype='int64')
            self.assertEqual(x.element_size(), 8)

            x = paddle.to_tensor(1, dtype='uint8')
            self.assertEqual(x.element_size(), 1)

            x = paddle.to_tensor(1, dtype='complex64')
            self.assertEqual(x.element_size(), 8)

            x = paddle.to_tensor(1, dtype='complex128')
            self.assertEqual(x.element_size(), 16)

578
    def test_backward(self):
L
Leo Chen 已提交
579 580 581
        with fluid.dygraph.guard():
            var = fluid.dygraph.to_variable(self.array)
            var.stop_gradient = False
582
            loss = F.relu(var)
L
Leo Chen 已提交
583 584 585 586
            loss.backward()
            grad_var = var._grad_ivar()
            self.assertEqual(grad_var.shape, self.shape)

587
    def test_gradient(self):
L
Leo Chen 已提交
588 589 590
        with fluid.dygraph.guard():
            var = fluid.dygraph.to_variable(self.array)
            var.stop_gradient = False
591
            loss = F.relu(var)
L
Leo Chen 已提交
592 593 594 595
            loss.backward()
            grad_var = var.gradient()
            self.assertEqual(grad_var.shape, self.array.shape)

596
    def test_block(self):
L
Leo Chen 已提交
597 598
        with fluid.dygraph.guard():
            var = fluid.dygraph.to_variable(self.array)
599 600 601
            self.assertEqual(
                var.block, fluid.default_main_program().global_block()
            )
L
Leo Chen 已提交
602

603 604
    def _test_slice(self):
        w = fluid.dygraph.to_variable(
605 606
            np.random.random((784, 100, 100)).astype('float64')
        )
607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628

        for i in range(3):
            nw = w[i]
            self.assertEqual((100, 100), tuple(nw.shape))

        nw = w[:]
        self.assertEqual((784, 100, 100), tuple(nw.shape))

        nw = w[:, :]
        self.assertEqual((784, 100, 100), tuple(nw.shape))

        nw = w[:, :, -1]
        self.assertEqual((784, 100), tuple(nw.shape))

        nw = w[1, 1, 1]

        self.assertEqual(len(nw.shape), 1)
        self.assertEqual(nw.shape[0], 1)

        nw = w[:, :, :-1]
        self.assertEqual((784, 100, 99), tuple(nw.shape))

629 630 631 632 633 634 635
        tensor_array = np.array(
            [
                [[1, 2, 3], [4, 5, 6], [7, 8, 9]],
                [[10, 11, 12], [13, 14, 15], [16, 17, 18]],
                [[19, 20, 21], [22, 23, 24], [25, 26, 27]],
            ]
        ).astype('float32')
636 637 638 639 640 641
        var = fluid.dygraph.to_variable(tensor_array)
        var1 = var[0, 1, 1]
        var2 = var[1:]
        var3 = var[0:1]
        var4 = var[::-1]
        var5 = var[1, 1:, 1:]
642
        var_reshape = paddle.reshape(var, [3, -1, 3])
643 644 645 646 647 648 649 650 651 652
        var6 = var_reshape[:, :, -1]
        var7 = var[:, :, :-1]
        var8 = var[:1, :1, :1]
        var9 = var[:-1, :-1, :-1]
        var10 = var[::-1, :1, :-1]
        var11 = var[:-1, ::-1, -1:]
        var12 = var[1:2, 2:, ::-1]
        var13 = var[2:10, 2:, -2:-1]
        var14 = var[1:-1, 0:2, ::-1]
        var15 = var[::-1, ::-1, ::-1]
653
        var16 = var[-4:4]
654 655
        var17 = var[:, 0, 0:0]
        var18 = var[:, 1:1:2]
656 657

        vars = [
658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676
            var,
            var1,
            var2,
            var3,
            var4,
            var5,
            var6,
            var7,
            var8,
            var9,
            var10,
            var11,
            var12,
            var13,
            var14,
            var15,
            var16,
            var17,
            var18,
677 678 679
        ]
        local_out = [var.numpy() for var in vars]

680 681 682 683 684 685
        np.testing.assert_array_equal(local_out[1], tensor_array[0, 1, 1:2])
        np.testing.assert_array_equal(local_out[2], tensor_array[1:])
        np.testing.assert_array_equal(local_out[3], tensor_array[0:1])
        np.testing.assert_array_equal(local_out[4], tensor_array[::-1])
        np.testing.assert_array_equal(local_out[5], tensor_array[1, 1:, 1:])
        np.testing.assert_array_equal(
686 687
            local_out[6], tensor_array.reshape((3, -1, 3))[:, :, -1]
        )
688 689 690
        np.testing.assert_array_equal(local_out[7], tensor_array[:, :, :-1])
        np.testing.assert_array_equal(local_out[8], tensor_array[:1, :1, :1])
        np.testing.assert_array_equal(local_out[9], tensor_array[:-1, :-1, :-1])
691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708
        np.testing.assert_array_equal(
            local_out[10], tensor_array[::-1, :1, :-1]
        )
        np.testing.assert_array_equal(
            local_out[11], tensor_array[:-1, ::-1, -1:]
        )
        np.testing.assert_array_equal(
            local_out[12], tensor_array[1:2, 2:, ::-1]
        )
        np.testing.assert_array_equal(
            local_out[13], tensor_array[2:10, 2:, -2:-1]
        )
        np.testing.assert_array_equal(
            local_out[14], tensor_array[1:-1, 0:2, ::-1]
        )
        np.testing.assert_array_equal(
            local_out[15], tensor_array[::-1, ::-1, ::-1]
        )
709 710 711
        np.testing.assert_array_equal(local_out[16], tensor_array[-4:4])
        np.testing.assert_array_equal(local_out[17], tensor_array[:, 0, 0:0])
        np.testing.assert_array_equal(local_out[18], tensor_array[:, 1:1:2])
712

713
    def _test_slice_for_tensor_attr(self):
714 715 716 717 718 719 720
        tensor_array = np.array(
            [
                [[1, 2, 3], [4, 5, 6], [7, 8, 9]],
                [[10, 11, 12], [13, 14, 15], [16, 17, 18]],
                [[19, 20, 21], [22, 23, 24], [25, 26, 27]],
            ]
        ).astype('float32')
721 722 723 724 725 726 727 728 729 730 731 732 733 734

        var = paddle.to_tensor(tensor_array)

        one = paddle.ones(shape=[1], dtype="int32")
        two = paddle.full(shape=[1], fill_value=2, dtype="int32")
        negative_one = paddle.full(shape=[1], fill_value=-1, dtype="int32")
        four = paddle.full(shape=[1], fill_value=4, dtype="int32")

        var = fluid.dygraph.to_variable(tensor_array)
        var1 = var[0, one, one]
        var2 = var[one:]
        var3 = var[0:one]
        var4 = var[::negative_one]
        var5 = var[one, one:, one:]
735
        var_reshape = paddle.reshape(var, [3, negative_one, 3])
736 737 738 739 740 741 742 743 744 745 746 747 748
        var6 = var_reshape[:, :, negative_one]
        var7 = var[:, :, :negative_one]
        var8 = var[:one, :one, :1]
        var9 = var[:-1, :negative_one, :negative_one]
        var10 = var[::negative_one, :one, :negative_one]
        var11 = var[:negative_one, ::-1, negative_one:]
        var12 = var[one:2, 2:, ::negative_one]
        var13 = var[two:10, 2:, -2:negative_one]
        var14 = var[1:negative_one, 0:2, ::negative_one]
        var15 = var[::negative_one, ::-1, ::negative_one]
        var16 = var[-4:4]

        vars = [
749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765
            var,
            var1,
            var2,
            var3,
            var4,
            var5,
            var6,
            var7,
            var8,
            var9,
            var10,
            var11,
            var12,
            var13,
            var14,
            var15,
            var16,
766 767 768
        ]
        local_out = [var.numpy() for var in vars]

769 770 771 772 773 774
        np.testing.assert_array_equal(local_out[1], tensor_array[0, 1, 1:2])
        np.testing.assert_array_equal(local_out[2], tensor_array[1:])
        np.testing.assert_array_equal(local_out[3], tensor_array[0:1])
        np.testing.assert_array_equal(local_out[4], tensor_array[::-1])
        np.testing.assert_array_equal(local_out[5], tensor_array[1, 1:, 1:])
        np.testing.assert_array_equal(
775 776
            local_out[6], tensor_array.reshape((3, -1, 3))[:, :, -1]
        )
777 778 779
        np.testing.assert_array_equal(local_out[7], tensor_array[:, :, :-1])
        np.testing.assert_array_equal(local_out[8], tensor_array[:1, :1, :1])
        np.testing.assert_array_equal(local_out[9], tensor_array[:-1, :-1, :-1])
780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797
        np.testing.assert_array_equal(
            local_out[10], tensor_array[::-1, :1, :-1]
        )
        np.testing.assert_array_equal(
            local_out[11], tensor_array[:-1, ::-1, -1:]
        )
        np.testing.assert_array_equal(
            local_out[12], tensor_array[1:2, 2:, ::-1]
        )
        np.testing.assert_array_equal(
            local_out[13], tensor_array[2:10, 2:, -2:-1]
        )
        np.testing.assert_array_equal(
            local_out[14], tensor_array[1:-1, 0:2, ::-1]
        )
        np.testing.assert_array_equal(
            local_out[15], tensor_array[::-1, ::-1, ::-1]
        )
798
        np.testing.assert_array_equal(local_out[16], tensor_array[-4:4])
799

800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820
    def _test_for_getitem_ellipsis_index(self):
        shape = (64, 3, 5, 256)
        np_fp32_value = np.random.random(shape).astype('float32')
        np_int_value = np.random.randint(1, 100, shape)

        var_fp32 = paddle.to_tensor(np_fp32_value)
        var_int = paddle.to_tensor(np_int_value)

        def assert_getitem_ellipsis_index(var_tensor, var_np):
            var = [
                var_tensor[..., 0].numpy(),
                var_tensor[..., 1, 0].numpy(),
                var_tensor[0, ..., 1, 0].numpy(),
                var_tensor[1, ..., 1].numpy(),
                var_tensor[2, ...].numpy(),
                var_tensor[2, 0, ...].numpy(),
                var_tensor[2, 0, 1, ...].numpy(),
                var_tensor[...].numpy(),
                var_tensor[:, ..., 100].numpy(),
            ]

821 822 823 824 825 826 827 828 829
            np.testing.assert_array_equal(var[0], var_np[..., 0])
            np.testing.assert_array_equal(var[1], var_np[..., 1, 0])
            np.testing.assert_array_equal(var[2], var_np[0, ..., 1, 0])
            np.testing.assert_array_equal(var[3], var_np[1, ..., 1])
            np.testing.assert_array_equal(var[4], var_np[2, ...])
            np.testing.assert_array_equal(var[5], var_np[2, 0, ...])
            np.testing.assert_array_equal(var[6], var_np[2, 0, 1, ...])
            np.testing.assert_array_equal(var[7], var_np[...])
            np.testing.assert_array_equal(var[8], var_np[:, ..., 100])
830 831 832 833 834 835 836

        var_fp32 = paddle.to_tensor(np_fp32_value)
        var_int = paddle.to_tensor(np_int_value)

        assert_getitem_ellipsis_index(var_fp32, np_fp32_value)
        assert_getitem_ellipsis_index(var_int, np_int_value)

837 838
        # test 1 dim tensor
        var_one_dim = paddle.to_tensor([1, 2, 3, 4])
839 840 841
        np.testing.assert_array_equal(
            var_one_dim[..., 0].numpy(), np.array([1])
        )
842

843 844 845 846 847 848 849 850 851 852 853 854 855 856 857
    def _test_none_index(self):
        shape = (8, 64, 5, 256)
        np_value = np.random.random(shape).astype('float32')
        var_tensor = paddle.to_tensor(np_value)

        var = [
            var_tensor[1, 0, None].numpy(),
            var_tensor[None, ..., 1, 0].numpy(),
            var_tensor[:, :, :, None].numpy(),
            var_tensor[1, ..., 1, None].numpy(),
            var_tensor[2, ..., None, None].numpy(),
            var_tensor[None, 2, 0, ...].numpy(),
            var_tensor[None, 2, None, 1].numpy(),
            var_tensor[None].numpy(),
            var_tensor[0, 0, None, 0, 0, None].numpy(),
858
            var_tensor[None, None, 0, ..., None].numpy(),
859
            var_tensor[..., None, :, None].numpy(),
860 861 862
            var_tensor[0, 1:10:2, None, None, ...].numpy(),
        ]

863 864 865 866 867 868 869 870 871
        np.testing.assert_array_equal(var[0], np_value[1, 0, None])
        np.testing.assert_array_equal(var[1], np_value[None, ..., 1, 0])
        np.testing.assert_array_equal(var[2], np_value[:, :, :, None])
        np.testing.assert_array_equal(var[3], np_value[1, ..., 1, None])
        np.testing.assert_array_equal(var[4], np_value[2, ..., None, None])
        np.testing.assert_array_equal(var[5], np_value[None, 2, 0, ...])
        np.testing.assert_array_equal(var[6], np_value[None, 2, None, 1])
        np.testing.assert_array_equal(var[7], np_value[None])
        np.testing.assert_array_equal(var[8], np_value[0, 0, None, 0, 0, None])
872 873 874
        np.testing.assert_array_equal(
            var[9], np_value[None, None, 0, ..., None]
        )
875
        np.testing.assert_array_equal(var[10], np_value[..., None, :, None])
876

877 878
        # TODO(zyfncg) there is a bug of dimensions when slice step > 1 and
        #              indexs has int type
879
        # self.assertTrue(
880
        #     np.array_equal(var[11], np_value[0, 1:10:2, None, None, ...]))
881

Z
zyfncg 已提交
882 883 884 885
    def _test_bool_index(self):
        shape = (4, 2, 5, 64)
        np_value = np.random.random(shape).astype('float32')
        var_tensor = paddle.to_tensor(np_value)
886 887 888 889 890 891 892 893 894 895
        index = [
            [True, True, True, True],
            [True, False, True, True],
            [True, False, False, True],
            [False, 0, 1, True, True],
            [False, False, False, False],
        ]
        index2d = np.array(
            [[True, True], [False, False], [True, False], [True, True]]
        )
Z
zyfncg 已提交
896 897
        tensor_index = paddle.to_tensor(index2d)
        var = [
898 899 900 901
            var_tensor[index[0]].numpy(),
            var_tensor[index[1]].numpy(),
            var_tensor[index[2]].numpy(),
            var_tensor[index[3]].numpy(),
Z
zyfncg 已提交
902 903
            var_tensor[paddle.to_tensor(index[0])].numpy(),
            var_tensor[tensor_index].numpy(),
904
            var_tensor[paddle.to_tensor(index[4])].numpy(),
Z
zyfncg 已提交
905
        ]
906 907 908 909 910 911 912
        np.testing.assert_array_equal(var[0], np_value[index[0]])
        np.testing.assert_array_equal(var[1], np_value[index[1]])
        np.testing.assert_array_equal(var[2], np_value[index[2]])
        np.testing.assert_array_equal(var[3], np_value[index[3]])
        np.testing.assert_array_equal(var[4], np_value[index[0]])
        np.testing.assert_array_equal(var[5], np_value[index2d])
        np.testing.assert_array_equal(var[6], np_value[index[4]])
913 914 915 916 917 918
        np.testing.assert_array_equal(
            var_tensor[var_tensor > 0.67], np_value[np_value > 0.67]
        )
        np.testing.assert_array_equal(
            var_tensor[var_tensor < 0.55], np_value[np_value < 0.55]
        )
Z
zyfncg 已提交
919 920 921 922 923 924 925 926 927 928

        with self.assertRaises(ValueError):
            var_tensor[[False, False, False, False]]
        with self.assertRaises(ValueError):
            var_tensor[[True, False]]
        with self.assertRaises(ValueError):
            var_tensor[[True, False, False, False, False]]
        with self.assertRaises(IndexError):
            var_tensor[paddle.to_tensor([[True, False, False, False]])]

929 930 931 932 933 934
    def _test_scalar_bool_index(self):
        shape = (1, 2, 5, 64)
        np_value = np.random.random(shape).astype('float32')
        var_tensor = paddle.to_tensor(np_value)
        index = [True]
        tensor_index = paddle.to_tensor(index)
935 936 937
        var = [
            var_tensor[tensor_index].numpy(),
        ]
938
        np.testing.assert_array_equal(var[0], np_value[index])
939

H
hong 已提交
940 941 942 943 944
    def _test_for_var(self):
        np_value = np.random.random((30, 100, 100)).astype('float32')
        w = fluid.dygraph.to_variable(np_value)

        for i, e in enumerate(w):
945
            np.testing.assert_array_equal(e.numpy(), np_value[i])
H
hong 已提交
946

947 948 949
    def _test_numpy_index(self):
        array = np.arange(120).reshape([4, 5, 6])
        t = paddle.to_tensor(array)
950 951
        np.testing.assert_array_equal(t[np.longlong(0)].numpy(), array[0])
        np.testing.assert_array_equal(
952 953 954
            t[np.longlong(0) : np.longlong(4) : np.longlong(2)].numpy(),
            array[0:4:2],
        )
955 956
        np.testing.assert_array_equal(t[np.int64(0)].numpy(), array[0])
        np.testing.assert_array_equal(
957 958
            t[np.int32(1) : np.int32(4) : np.int32(2)].numpy(), array[1:4:2]
        )
959
        np.testing.assert_array_equal(
960 961
            t[np.int16(0) : np.int16(4) : np.int16(2)].numpy(), array[0:4:2]
        )
962 963 964 965 966 967 968

    def _test_list_index(self):
        # case1:
        array = np.arange(120).reshape([6, 5, 4])
        x = paddle.to_tensor(array)
        py_idx = [[0, 2, 0, 1, 3], [0, 0, 1, 2, 0]]
        idx = [paddle.to_tensor(py_idx[0]), paddle.to_tensor(py_idx[1])]
969 970
        np.testing.assert_array_equal(x[idx].numpy(), array[py_idx])
        np.testing.assert_array_equal(x[py_idx].numpy(), array[py_idx])
971 972
        # case2:
        tensor_x = paddle.to_tensor(
973 974
            np.zeros(12).reshape(2, 6).astype(np.float32)
        )
975 976
        tensor_y1 = paddle.zeros([1], dtype='int32') + 2
        tensor_y2 = paddle.zeros([1], dtype='int32') + 5
977 978
        tensor_x[:, tensor_y1:tensor_y2] = 42
        res = tensor_x.numpy()
979 980 981 982 983 984
        exp = np.array(
            [
                [0.0, 0.0, 42.0, 42.0, 42.0, 0.0],
                [0.0, 0.0, 42.0, 42.0, 42.0, 0.0],
            ]
        )
985
        np.testing.assert_array_equal(res, exp)
986

W
WeiXin 已提交
987 988 989
        # case3:
        row = np.array([0, 1, 2])
        col = np.array([2, 1, 3])
990
        np.testing.assert_array_equal(array[row, col], x[row, col].numpy())
W
WeiXin 已提交
991

992
    def test_slice(self):
L
Leo Chen 已提交
993
        with fluid.dygraph.guard():
994
            self._test_slice()
995
            self._test_slice_for_tensor_attr()
H
hong 已提交
996
            self._test_for_var()
997
            self._test_for_getitem_ellipsis_index()
998
            self._test_none_index()
Z
zyfncg 已提交
999
            self._test_bool_index()
1000
            self._test_scalar_bool_index()
1001 1002
            self._test_numpy_index()
            self._test_list_index()
1003

L
Leo Chen 已提交
1004
            var = fluid.dygraph.to_variable(self.array)
1005 1006
            np.testing.assert_array_equal(var[1, :].numpy(), self.array[1, :])
            np.testing.assert_array_equal(var[::-1].numpy(), self.array[::-1])
L
Leo Chen 已提交
1007

H
hong 已提交
1008 1009 1010
            with self.assertRaises(IndexError):
                y = var[self.shape[0]]

1011 1012 1013
            with self.assertRaises(IndexError):
                y = var[0 - self.shape[0] - 1]

W
WeiXin 已提交
1014 1015 1016 1017
            with self.assertRaises(IndexError):
                mask = np.array([1, 0, 1, 0], dtype=bool)
                var[paddle.to_tensor([0, 1]), mask]

1018
    def test_var_base_to_np(self):
L
Leo Chen 已提交
1019 1020
        with fluid.dygraph.guard():
            var = fluid.dygraph.to_variable(self.array)
1021 1022 1023
            np.testing.assert_array_equal(
                var.numpy(), fluid.framework._var_base_to_np(var)
            )
L
Leo Chen 已提交
1024

1025
    def test_var_base_as_np(self):
1026 1027
        with fluid.dygraph.guard():
            var = fluid.dygraph.to_variable(self.array)
1028
            np.testing.assert_array_equal(var.numpy(), np.array(var))
1029 1030 1031
            np.testing.assert_array_equal(
                var.numpy(), np.array(var, dtype=np.float32)
            )
1032

1033
    def test_if(self):
1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046
        with fluid.dygraph.guard():
            var1 = fluid.dygraph.to_variable(np.array([[[0]]]))
            var2 = fluid.dygraph.to_variable(np.array([[[1]]]))

            var1_bool = False
            var2_bool = False

            if var1:
                var1_bool = True

            if var2:
                var2_bool = True

1047 1048 1049 1050
            assert not var1_bool, "if var1 should be false"
            assert var2_bool, "if var2 should be true"
            assert not bool(var1), "bool(var1) is False"
            assert bool(var2), "bool(var2) is True"
1051

1052
    def test_to_static_var(self):
1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063
        with fluid.dygraph.guard():
            # Convert VarBase into Variable or Parameter
            var_base = fluid.dygraph.to_variable(self.array, name="var_base_1")
            static_var = var_base._to_static_var()
            self._assert_to_static(var_base, static_var)

            var_base = fluid.dygraph.to_variable(self.array, name="var_base_2")
            static_param = var_base._to_static_var(to_parameter=True)
            self._assert_to_static(var_base, static_param, True)

            # Convert ParamBase into Parameter
1064
            fc = paddle.nn.Linear(
1065 1066
                10,
                20,
1067
                weight_attr=paddle.ParamAttr(
1068 1069
                    learning_rate=0.001,
                    do_model_average=True,
1070
                    regularizer=paddle.regularizer.L1Decay(),
1071 1072
                ),
            )
1073 1074 1075 1076 1077 1078 1079 1080 1081 1082
            weight = fc.parameters()[0]
            static_param = weight._to_static_var()
            self._assert_to_static(weight, static_param, True)

    def _assert_to_static(self, var_base, static_var, is_param=False):
        if is_param:
            self.assertTrue(isinstance(static_var, fluid.framework.Parameter))
            self.assertTrue(static_var.persistable, True)
            if isinstance(var_base, fluid.framework.ParamBase):
                for attr in ['trainable', 'is_distributed', 'do_model_average']:
1083 1084 1085
                    self.assertEqual(
                        getattr(var_base, attr), getattr(static_var, attr)
                    )
1086

1087 1088 1089
                self.assertEqual(
                    static_var.optimize_attr['learning_rate'], 0.001
                )
1090
                self.assertTrue(
1091 1092 1093 1094
                    isinstance(
                        static_var.regularizer, fluid.regularizer.L1Decay
                    )
                )
1095 1096 1097 1098 1099 1100 1101 1102 1103
        else:
            self.assertTrue(isinstance(static_var, fluid.framework.Variable))

        attr_keys = ['block', 'dtype', 'type', 'name']
        for attr in attr_keys:
            self.assertEqual(getattr(var_base, attr), getattr(static_var, attr))

        self.assertListEqual(list(var_base.shape), list(static_var.shape))

1104
    def test_tensor_str(self):
Z
Zhou Wei 已提交
1105
        paddle.enable_static()
1106
        paddle.disable_static(paddle.CPUPlace())
C
cnn 已提交
1107
        paddle.seed(10)
1108 1109 1110 1111
        a = paddle.rand([10, 20])
        paddle.set_printoptions(4, 100, 3)
        a_str = str(a)

1112
        expected = '''Tensor(shape=[10, 20], dtype=float32, place=Place(cpu), stop_gradient=True,
1113 1114 1115 1116 1117 1118 1119 1120 1121 1122
       [[0.2727, 0.5489, 0.8655, ..., 0.2916, 0.8525, 0.9000],
        [0.3806, 0.8996, 0.0928, ..., 0.9535, 0.8378, 0.6409],
        [0.1484, 0.4038, 0.8294, ..., 0.0148, 0.6520, 0.4250],
        ...,
        [0.3426, 0.1909, 0.7240, ..., 0.4218, 0.2676, 0.5679],
        [0.5561, 0.2081, 0.0676, ..., 0.9778, 0.3302, 0.9559],
        [0.2665, 0.8483, 0.5389, ..., 0.4956, 0.6862, 0.9178]])'''

        self.assertEqual(a_str, expected)

1123
    def test_tensor_str2(self):
1124 1125 1126 1127
        paddle.disable_static(paddle.CPUPlace())
        a = paddle.to_tensor([[1.5111111, 1.0], [0, 0]])
        a_str = str(a)

1128
        expected = '''Tensor(shape=[2, 2], dtype=float32, place=Place(cpu), stop_gradient=True,
1129 1130 1131 1132 1133
       [[1.5111, 1.    ],
        [0.    , 0.    ]])'''

        self.assertEqual(a_str, expected)

1134
    def test_tensor_str3(self):
1135 1136 1137 1138
        paddle.disable_static(paddle.CPUPlace())
        a = paddle.to_tensor([[-1.5111111, 1.0], [0, -0.5]])
        a_str = str(a)

1139
        expected = '''Tensor(shape=[2, 2], dtype=float32, place=Place(cpu), stop_gradient=True,
1140 1141 1142 1143 1144
       [[-1.5111,  1.    ],
        [ 0.    , -0.5000]])'''

        self.assertEqual(a_str, expected)

1145
    def test_tensor_str_scaler(self):
1146 1147 1148 1149
        paddle.disable_static(paddle.CPUPlace())
        a = paddle.to_tensor(np.array(False))
        a_str = str(a)

1150
        expected = '''Tensor(shape=[], dtype=bool, place=Place(cpu), stop_gradient=True,
1151 1152 1153 1154
       False)'''

        self.assertEqual(a_str, expected)

1155
    def test_tensor_str_shape_with_zero(self):
1156 1157
        paddle.disable_static(paddle.CPUPlace())
        x = paddle.ones((10, 10))
1158
        y = paddle.nonzero(x == 0)
1159 1160
        a_str = str(y)

1161
        expected = '''Tensor(shape=[0, 2], dtype=int64, place=Place(cpu), stop_gradient=True,
1162 1163 1164 1165
       [])'''

        self.assertEqual(a_str, expected)

1166
    def test_tensor_str_linewidth(self):
1167 1168 1169
        paddle.disable_static(paddle.CPUPlace())
        paddle.seed(2021)
        x = paddle.rand([128])
1170 1171 1172
        paddle.set_printoptions(
            precision=4, threshold=1000, edgeitems=3, linewidth=80
        )
1173 1174
        a_str = str(x)

1175
        expected = '''Tensor(shape=[128], dtype=float32, place=Place(cpu), stop_gradient=True,
1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193
       [0.3759, 0.0278, 0.2489, 0.3110, 0.9105, 0.7381, 0.1905, 0.4726, 0.2435,
        0.9142, 0.3367, 0.7243, 0.7664, 0.9915, 0.2921, 0.1363, 0.8096, 0.2915,
        0.9564, 0.9972, 0.2573, 0.2597, 0.3429, 0.2484, 0.9579, 0.7003, 0.4126,
        0.4274, 0.0074, 0.9686, 0.9910, 0.0144, 0.6564, 0.2932, 0.7114, 0.9301,
        0.6421, 0.0538, 0.1273, 0.5771, 0.9336, 0.6416, 0.1832, 0.9311, 0.7702,
        0.7474, 0.4479, 0.3382, 0.5579, 0.0444, 0.9802, 0.9874, 0.3038, 0.5640,
        0.2408, 0.5489, 0.8866, 0.1006, 0.5881, 0.7560, 0.7928, 0.8604, 0.4670,
        0.9285, 0.1482, 0.4541, 0.1307, 0.6221, 0.4902, 0.1147, 0.4415, 0.2987,
        0.7276, 0.2077, 0.7551, 0.9652, 0.4369, 0.2282, 0.0047, 0.2934, 0.4308,
        0.4190, 0.1442, 0.3650, 0.3056, 0.6535, 0.1211, 0.8721, 0.7408, 0.4220,
        0.5937, 0.3123, 0.9198, 0.0275, 0.5338, 0.4622, 0.7521, 0.3609, 0.4703,
        0.1736, 0.8976, 0.7616, 0.3756, 0.2416, 0.2907, 0.3246, 0.4305, 0.5717,
        0.0735, 0.0361, 0.5534, 0.4399, 0.9260, 0.6525, 0.3064, 0.4573, 0.9210,
        0.8269, 0.2424, 0.7494, 0.8945, 0.7098, 0.8078, 0.4707, 0.5715, 0.7232,
        0.4678, 0.5047])'''

        self.assertEqual(a_str, expected)

1194
    def test_tensor_str_linewidth2(self):
1195 1196 1197 1198 1199 1200
        paddle.disable_static(paddle.CPUPlace())
        paddle.seed(2021)
        x = paddle.rand([128])
        paddle.set_printoptions(precision=4, linewidth=160, sci_mode=True)
        a_str = str(x)

1201
        expected = '''Tensor(shape=[128], dtype=float32, place=Place(cpu), stop_gradient=True,
1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215
       [3.7587e-01, 2.7798e-02, 2.4891e-01, 3.1097e-01, 9.1053e-01, 7.3811e-01, 1.9045e-01, 4.7258e-01, 2.4354e-01, 9.1415e-01, 3.3666e-01, 7.2428e-01,
        7.6640e-01, 9.9146e-01, 2.9215e-01, 1.3625e-01, 8.0957e-01, 2.9153e-01, 9.5642e-01, 9.9718e-01, 2.5732e-01, 2.5973e-01, 3.4292e-01, 2.4841e-01,
        9.5794e-01, 7.0029e-01, 4.1260e-01, 4.2737e-01, 7.3788e-03, 9.6863e-01, 9.9102e-01, 1.4416e-02, 6.5640e-01, 2.9318e-01, 7.1136e-01, 9.3008e-01,
        6.4209e-01, 5.3849e-02, 1.2730e-01, 5.7712e-01, 9.3359e-01, 6.4155e-01, 1.8320e-01, 9.3110e-01, 7.7021e-01, 7.4736e-01, 4.4793e-01, 3.3817e-01,
        5.5794e-01, 4.4412e-02, 9.8023e-01, 9.8735e-01, 3.0376e-01, 5.6397e-01, 2.4082e-01, 5.4893e-01, 8.8659e-01, 1.0065e-01, 5.8812e-01, 7.5600e-01,
        7.9280e-01, 8.6041e-01, 4.6701e-01, 9.2852e-01, 1.4821e-01, 4.5410e-01, 1.3074e-01, 6.2210e-01, 4.9024e-01, 1.1466e-01, 4.4154e-01, 2.9868e-01,
        7.2758e-01, 2.0766e-01, 7.5508e-01, 9.6522e-01, 4.3688e-01, 2.2823e-01, 4.7394e-03, 2.9342e-01, 4.3083e-01, 4.1902e-01, 1.4416e-01, 3.6500e-01,
        3.0560e-01, 6.5350e-01, 1.2115e-01, 8.7206e-01, 7.4081e-01, 4.2203e-01, 5.9372e-01, 3.1230e-01, 9.1979e-01, 2.7486e-02, 5.3383e-01, 4.6224e-01,
        7.5211e-01, 3.6094e-01, 4.7034e-01, 1.7355e-01, 8.9763e-01, 7.6165e-01, 3.7557e-01, 2.4157e-01, 2.9074e-01, 3.2458e-01, 4.3049e-01, 5.7171e-01,
        7.3509e-02, 3.6087e-02, 5.5341e-01, 4.3993e-01, 9.2601e-01, 6.5248e-01, 3.0640e-01, 4.5727e-01, 9.2104e-01, 8.2688e-01, 2.4243e-01, 7.4937e-01,
        8.9448e-01, 7.0981e-01, 8.0783e-01, 4.7065e-01, 5.7154e-01, 7.2319e-01, 4.6777e-01, 5.0465e-01])'''

        self.assertEqual(a_str, expected)

1216
    def test_tensor_str_bf16(self):
1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228
        paddle.disable_static(paddle.CPUPlace())
        a = paddle.to_tensor([[1.5, 1.0], [0, 0]])
        a = paddle.cast(a, dtype=core.VarDesc.VarType.BF16)
        paddle.set_printoptions(precision=4)
        a_str = str(a)

        expected = '''Tensor(shape=[2, 2], dtype=bfloat16, place=Place(cpu), stop_gradient=True,
       [[1.5000, 1.    ],
        [0.    , 0.    ]])'''

        self.assertEqual(a_str, expected)

1229
    def test_print_tensor_dtype(self):
L
Leo Chen 已提交
1230 1231 1232 1233 1234 1235 1236
        paddle.disable_static(paddle.CPUPlace())
        a = paddle.rand([1])
        a_str = str(a.dtype)

        expected = 'paddle.float32'

        self.assertEqual(a_str, expected)
1237

L
Leo Chen 已提交
1238

1239
class TestVarBaseSetitem(unittest.TestCase):
1240
    def func_setUp(self):
1241 1242 1243
        self.set_dtype()
        self.tensor_x = paddle.to_tensor(np.ones((4, 2, 3)).astype(self.dtype))
        self.np_value = np.random.random((2, 3)).astype(self.dtype)
1244 1245
        self.tensor_value = paddle.to_tensor(self.np_value)

1246 1247 1248
    def set_dtype(self):
        self.dtype = "int32"

1249
    def _test(self, value):
J
Jiabin Yang 已提交
1250
        if _in_legacy_dygraph():
W
wanghuancoder 已提交
1251
            self.assertEqual(self.tensor_x.inplace_version, 0)
1252

1253
        id_origin = id(self.tensor_x)
1254
        self.tensor_x[0] = value
J
Jiabin Yang 已提交
1255
        if _in_legacy_dygraph():
W
wanghuancoder 已提交
1256
            self.assertEqual(self.tensor_x.inplace_version, 1)
1257

1258
        if isinstance(value, (int, float)):
1259
            result = np.zeros((2, 3)).astype(self.dtype) + value
1260 1261 1262 1263

        else:
            result = self.np_value

1264
        np.testing.assert_array_equal(self.tensor_x[0].numpy(), result)
1265 1266 1267
        self.assertEqual(id_origin, id(self.tensor_x))

        self.tensor_x[1:2] = value
J
Jiabin Yang 已提交
1268
        if _in_legacy_dygraph():
W
wanghuancoder 已提交
1269
            self.assertEqual(self.tensor_x.inplace_version, 2)
1270
        np.testing.assert_array_equal(self.tensor_x[1].numpy(), result)
1271 1272 1273
        self.assertEqual(id_origin, id(self.tensor_x))

        self.tensor_x[...] = value
J
Jiabin Yang 已提交
1274
        if _in_legacy_dygraph():
W
wanghuancoder 已提交
1275
            self.assertEqual(self.tensor_x.inplace_version, 3)
1276
        np.testing.assert_array_equal(self.tensor_x[3].numpy(), result)
1277 1278
        self.assertEqual(id_origin, id(self.tensor_x))

W
wanghuancoder 已提交
1279
    def func_test_value_tensor(self):
1280 1281
        self._test(self.tensor_value)

W
wanghuancoder 已提交
1282
    def test_value_tensor(self):
1283
        self.func_setUp()
W
wanghuancoder 已提交
1284 1285 1286
        self.func_test_value_tensor()

    def func_test_value_numpy(self):
1287 1288
        self._test(self.np_value)

W
wanghuancoder 已提交
1289
    def test_value_numpy(self):
1290
        self.func_setUp()
W
wanghuancoder 已提交
1291 1292 1293
        self.func_test_value_numpy()

    def func_test_value_int(self):
1294 1295
        self._test(10)

W
wanghuancoder 已提交
1296
    def test_value_int(self):
1297
        self.func_setUp()
W
wanghuancoder 已提交
1298 1299
        self.func_test_value_int()

1300 1301 1302 1303 1304 1305 1306 1307 1308 1309

class TestVarBaseSetitemInt64(TestVarBaseSetitem):
    def set_dtype(self):
        self.dtype = "int64"


class TestVarBaseSetitemFp32(TestVarBaseSetitem):
    def set_dtype(self):
        self.dtype = "float32"

1310
    def func_test_value_float(self):
1311 1312 1313
        paddle.disable_static()
        self._test(3.3)

1314 1315 1316 1317
    def test_value_float(self):
        self.func_setUp()
        self.func_test_value_float()

1318

1319 1320 1321 1322 1323
class TestVarBaseSetitemFp64(TestVarBaseSetitem):
    def set_dtype(self):
        self.dtype = "float64"


1324
class TestVarBaseSetitemBoolIndex(unittest.TestCase):
1325
    def func_setUp(self):
1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346
        paddle.disable_static()
        self.set_dtype()
        self.set_input()

    def set_input(self):
        self.tensor_x = paddle.to_tensor(np.ones((4, 2, 3)).astype(self.dtype))
        self.np_value = np.random.random((2, 3)).astype(self.dtype)
        self.tensor_value = paddle.to_tensor(self.np_value)

    def set_dtype(self):
        self.dtype = "int32"

    def _test(self, value):
        paddle.disable_static()
        self.assertEqual(self.tensor_x.inplace_version, 0)

        id_origin = id(self.tensor_x)
        index_1 = paddle.to_tensor(np.array([True, False, False, False]))
        self.tensor_x[index_1] = value
        self.assertEqual(self.tensor_x.inplace_version, 1)

1347
        if isinstance(value, (int, float)):
1348 1349 1350 1351 1352
            result = np.zeros((2, 3)).astype(self.dtype) + value

        else:
            result = self.np_value

1353
        np.testing.assert_array_equal(self.tensor_x[0].numpy(), result)
1354 1355 1356 1357 1358
        self.assertEqual(id_origin, id(self.tensor_x))

        index_2 = paddle.to_tensor(np.array([False, True, False, False]))
        self.tensor_x[index_2] = value
        self.assertEqual(self.tensor_x.inplace_version, 2)
1359
        np.testing.assert_array_equal(self.tensor_x[1].numpy(), result)
1360 1361 1362 1363 1364
        self.assertEqual(id_origin, id(self.tensor_x))

        index_3 = paddle.to_tensor(np.array([True, True, True, True]))
        self.tensor_x[index_3] = value
        self.assertEqual(self.tensor_x.inplace_version, 3)
1365
        np.testing.assert_array_equal(self.tensor_x[3].numpy(), result)
1366 1367
        self.assertEqual(id_origin, id(self.tensor_x))

1368
    def func_test_value_tensor(self):
1369 1370 1371
        paddle.disable_static()
        self._test(self.tensor_value)

1372 1373 1374 1375 1376
    def test_value_tensor(self):
        self.func_setUp()
        self.func_test_value_tensor()

    def func_test_value_numpy(self):
1377 1378 1379
        paddle.disable_static()
        self._test(self.np_value)

1380 1381 1382 1383 1384
    def test_value_numpy(self):
        self.func_setUp()
        self.func_test_value_numpy()

    def func_test_value_int(self):
1385 1386 1387
        paddle.disable_static()
        self._test(10)

1388 1389 1390 1391
    def test_value_int(self):
        self.func_setUp()
        self.func_test_value_int()

1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407

class TestVarBaseSetitemBoolScalarIndex(unittest.TestCase):
    def set_input(self):
        self.tensor_x = paddle.to_tensor(np.ones((1, 2, 3)).astype(self.dtype))
        self.np_value = np.random.random((2, 3)).astype(self.dtype)
        self.tensor_value = paddle.to_tensor(self.np_value)

    def _test(self, value):
        paddle.disable_static()
        self.assertEqual(self.tensor_x.inplace_version, 0)

        id_origin = id(self.tensor_x)
        index = paddle.to_tensor(np.array([True]))
        self.tensor_x[index] = value
        self.assertEqual(self.tensor_x.inplace_version, 1)

1408
        if isinstance(value, (int, float)):
1409 1410 1411 1412 1413
            result = np.zeros((2, 3)).astype(self.dtype) + value

        else:
            result = self.np_value

1414
        np.testing.assert_array_equal(self.tensor_x[0].numpy(), result)
1415 1416 1417
        self.assertEqual(id_origin, id(self.tensor_x))


1418
class TestVarBaseInplaceVersion(unittest.TestCase):
1419
    def test_setitem(self):
1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430
        paddle.disable_static()

        var = paddle.ones(shape=[4, 2, 3], dtype="float32")
        self.assertEqual(var.inplace_version, 0)

        var[1] = 1
        self.assertEqual(var.inplace_version, 1)

        var[1:2] = 1
        self.assertEqual(var.inplace_version, 2)

1431
    def test_bump_inplace_version(self):
1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442
        paddle.disable_static()
        var = paddle.ones(shape=[4, 2, 3], dtype="float32")
        self.assertEqual(var.inplace_version, 0)

        var._bump_inplace_version()
        self.assertEqual(var.inplace_version, 1)

        var._bump_inplace_version()
        self.assertEqual(var.inplace_version, 2)


1443
class TestVarBaseSlice(unittest.TestCase):
1444
    def test_slice(self):
1445 1446 1447 1448 1449 1450 1451 1452 1453
        paddle.disable_static()
        np_x = np.random.random((3, 8, 8))
        x = paddle.to_tensor(np_x, dtype="float64")
        actual_x = x._slice(0, 1)
        actual_x = paddle.to_tensor(actual_x)
        self.assertEqual(actual_x.numpy().all(), np_x[0:1].all())


class TestVarBaseClear(unittest.TestCase):
1454
    def test_clear(self):
1455 1456 1457 1458 1459 1460 1461 1462
        paddle.disable_static()
        np_x = np.random.random((3, 8, 8))
        x = paddle.to_tensor(np_x, dtype="float64")
        x._clear()
        self.assertEqual(str(x), "Tensor(Not initialized)")


class TestVarBaseOffset(unittest.TestCase):
1463
    def test_offset(self):
1464 1465 1466 1467 1468 1469 1470 1471 1472
        paddle.disable_static()
        np_x = np.random.random((3, 8, 8))
        x = paddle.to_tensor(np_x, dtype="float64")
        expected_offset = 0
        actual_x = x._slice(expected_offset, 1)
        actual_x = paddle.to_tensor(actual_x)
        self.assertEqual(actual_x._offset(), expected_offset)


1473
class TestVarBaseShareBufferTo(unittest.TestCase):
1474
    def test_share_buffer_To(self):
1475
        paddle.disable_static()
1476 1477 1478
        np_src = np.random.random((3, 8, 8))
        src = paddle.to_tensor(np_src, dtype="float64")
        # empty_var
1479 1480 1481 1482
        if _in_legacy_dygraph():
            dst = core.VarBase()
        else:
            dst = core.eager.Tensor()
1483 1484
        src._share_buffer_to(dst)
        self.assertEqual(src._is_shared_buffer_with(dst), True)
1485 1486 1487


class TestVarBaseTo(unittest.TestCase):
1488
    def func_setUp(self):
1489 1490 1491 1492
        paddle.disable_static()
        self.np_x = np.random.random((3, 8, 8))
        self.x = paddle.to_tensor(self.np_x, dtype="float32")

1493
    def func_test_to_api(self):
1494 1495
        x_double = self.x._to(dtype='double')
        self.assertEqual(x_double.dtype, paddle.fluid.core.VarDesc.VarType.FP64)
1496
        np.testing.assert_allclose(self.np_x, x_double, rtol=1e-05)
1497 1498 1499

        x_ = self.x._to()
        self.assertEqual(self.x.dtype, paddle.fluid.core.VarDesc.VarType.FP64)
1500
        np.testing.assert_allclose(self.np_x, x_, rtol=1e-05)
1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513

        if paddle.fluid.is_compiled_with_cuda():
            x_gpu = self.x._to(device=paddle.CUDAPlace(0))
            self.assertTrue(x_gpu.place.is_gpu_place())
            self.assertEqual(x_gpu.place.gpu_device_id(), 0)

            x_gpu0 = self.x._to(device='gpu:0')
            self.assertTrue(x_gpu0.place.is_gpu_place())
            self.assertEqual(x_gpu0.place.gpu_device_id(), 0)

            x_gpu1 = self.x._to(device='gpu:0', dtype="float64")
            self.assertTrue(x_gpu1.place.is_gpu_place())
            self.assertEqual(x_gpu1.place.gpu_device_id(), 0)
1514 1515 1516
            self.assertEqual(
                x_gpu1.dtype, paddle.fluid.core.VarDesc.VarType.FP64
            )
1517 1518 1519 1520

            x_gpu2 = self.x._to(device='gpu:0', dtype="float16")
            self.assertTrue(x_gpu2.place.is_gpu_place())
            self.assertEqual(x_gpu2.place.gpu_device_id(), 0)
1521 1522 1523
            self.assertEqual(
                x_gpu2.dtype, paddle.fluid.core.VarDesc.VarType.FP16
            )
1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541

        x_cpu = self.x._to(device=paddle.CPUPlace())
        self.assertTrue(x_cpu.place.is_cpu_place())

        x_cpu0 = self.x._to(device='cpu')
        self.assertTrue(x_cpu0.place.is_cpu_place())

        x_cpu1 = self.x._to(device=paddle.CPUPlace(), dtype="float64")
        self.assertTrue(x_cpu1.place.is_cpu_place())
        self.assertEqual(x_cpu1.dtype, paddle.fluid.core.VarDesc.VarType.FP64)

        x_cpu2 = self.x._to(device='cpu', dtype="float16")
        self.assertTrue(x_cpu2.place.is_cpu_place())
        self.assertEqual(x_cpu2.dtype, paddle.fluid.core.VarDesc.VarType.FP16)

        self.assertRaises(ValueError, self.x._to, device=1)
        self.assertRaises(AssertionError, self.x._to, blocking=1)

1542 1543 1544 1545
    def test_to_api(self):
        self.func_setUp()
        self.func_test_to_api()

1546 1547

class TestVarBaseInitVarBaseFromTensorWithDevice(unittest.TestCase):
1548
    def test_varbase_init(self):
1549 1550 1551 1552 1553 1554 1555
        paddle.disable_static()
        t = fluid.Tensor()
        np_x = np.random.random((3, 8, 8))
        t.set(np_x, fluid.CPUPlace())

        if paddle.fluid.is_compiled_with_cuda():
            device = paddle.CUDAPlace(0)
1556 1557 1558 1559
            if _in_legacy_dygraph():
                tmp = fluid.core.VarBase(t, device)
            else:
                tmp = fluid.core.eager.Tensor(t, device)
1560 1561 1562 1563
            self.assertTrue(tmp.place.is_gpu_place())
            self.assertEqual(tmp.numpy().all(), np_x.all())

        device = paddle.CPUPlace()
1564 1565 1566 1567
        if _in_legacy_dygraph():
            tmp = fluid.core.VarBase(t, device)
        else:
            tmp = fluid.core.eager.Tensor(t, device)
1568 1569 1570 1571
        self.assertEqual(tmp.numpy().all(), np_x.all())


class TestVarBaseNumel(unittest.TestCase):
1572
    def test_numel_normal(self):
1573 1574 1575 1576 1577 1578 1579
        paddle.disable_static()
        np_x = np.random.random((3, 8, 8))
        x = paddle.to_tensor(np_x, dtype="float64")
        x_actual_numel = x._numel()
        x_expected_numel = np.product((3, 8, 8))
        self.assertEqual(x_actual_numel, x_expected_numel)

1580
    def test_numel_without_holder(self):
1581
        paddle.disable_static()
1582 1583 1584 1585
        if _in_legacy_dygraph():
            x_without_holder = core.VarBase()
        else:
            x_without_holder = core.eager.Tensor()
1586 1587 1588
        x_actual_numel = x_without_holder._numel()
        self.assertEqual(x_actual_numel, 0)

1589 1590

class TestVarBaseCopyGradientFrom(unittest.TestCase):
1591
    def test_copy_gradient_from(self):
1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602
        paddle.disable_static()
        np_x = np.random.random((2, 2))
        np_y = np.random.random((2, 2))
        x = paddle.to_tensor(np_x, dtype="float64", stop_gradient=False)
        y = paddle.to_tensor(np_y, dtype="float64")
        out = x + x
        out.backward()
        x._copy_gradient_from(y)
        self.assertEqual(x.grad.numpy().all(), np_y.all())


1603 1604
class TestEagerTensorGradNameValue(unittest.TestCase):
    def test_eager_tensor_grad_name_value(self):
1605 1606 1607 1608 1609 1610 1611 1612
        a_np = np.array([2, 3]).astype('float32')
        a = paddle.to_tensor(a_np)
        a.stop_gradient = False
        b = a**2
        self.assertIsNone(a._grad_value())
        b.backward()
        # Note, for new dygraph, there are no generated grad name, so we skip the name check.
        self.assertIsNotNone(a._grad_value())
1613 1614


L
Leo Chen 已提交
1615 1616
if __name__ == '__main__':
    unittest.main()