test_var_base.py 70.2 KB
Newer Older
L
Leo Chen 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
16 17
import numpy as np
import six
18
import copy
19

20
import paddle
L
Leo Chen 已提交
21 22
import paddle.fluid as fluid
import paddle.fluid.core as core
J
Jiabin Yang 已提交
23
from paddle.fluid.framework import _test_eager_guard, _in_legacy_dygraph
L
Leo Chen 已提交
24 25 26


class TestVarBase(unittest.TestCase):
27

L
Leo Chen 已提交
28 29 30 31 32
    def setUp(self):
        self.shape = [512, 1234]
        self.dtype = np.float32
        self.array = np.random.uniform(0.1, 1, self.shape).astype(self.dtype)

33
    def func_test_to_tensor(self):
34

35
        def check_with_place(place):
36
            with fluid.dygraph.guard():
37
                paddle.set_default_dtype('float32')
38
                # set_default_dtype should not take effect on int
39
                x = paddle.to_tensor(1, place=place, stop_gradient=False)
40
                np.testing.assert_array_equal(x.numpy(), [1])
41 42
                self.assertNotEqual(x.dtype, core.VarDesc.VarType.FP32)

43 44 45
                y = paddle.to_tensor(2, place=x.place)
                self.assertEqual(str(x.place), str(y.place))

46
                # set_default_dtype should not take effect on numpy
47 48 49
                x = paddle.to_tensor(np.array([1.2]).astype('float16'),
                                     place=place,
                                     stop_gradient=False)
50 51
                np.testing.assert_array_equal(x.numpy(),
                                              np.array([1.2], 'float16'))
52 53
                self.assertEqual(x.dtype, core.VarDesc.VarType.FP16)

54 55 56 57
                # set_default_dtype take effect on int
                x = paddle.to_tensor(1, place=place)
                self.assertTrue(x.dtype, core.VarDesc.VarType.INT64)

58
                # set_default_dtype take effect on float
59
                x = paddle.to_tensor(1.2, place=place, stop_gradient=False)
60 61
                np.testing.assert_array_equal(x.numpy(),
                                              np.array([1.2]).astype('float32'))
62
                self.assertEqual(x.dtype, core.VarDesc.VarType.FP32)
Z
Zhou Wei 已提交
63
                clone_x = x.clone()
64 65
                np.testing.assert_array_equal(clone_x.numpy(),
                                              np.array([1.2]).astype('float32'))
Z
Zhou Wei 已提交
66 67 68
                self.assertEqual(clone_x.dtype, core.VarDesc.VarType.FP32)
                y = clone_x**2
                y.backward()
69 70
                np.testing.assert_array_equal(x.grad.numpy(),
                                              np.array([2.4]).astype('float32'))
71
                y = x.cpu()
72
                self.assertEqual(y.place.__repr__(), "Place(cpu)")
73 74
                if core.is_compiled_with_cuda():
                    y = x.pin_memory()
75
                    self.assertEqual(y.place.__repr__(), "Place(gpu_pinned)")
76
                    y = x.cuda()
77
                    self.assertEqual(y.place.__repr__(), "Place(gpu:0)")
78
                    y = x.cuda(None)
79
                    self.assertEqual(y.place.__repr__(), "Place(gpu:0)")
80
                    y = x.cuda(device_id=0)
81
                    self.assertEqual(y.place.__repr__(), "Place(gpu:0)")
82
                    y = x.cuda(blocking=False)
83
                    self.assertEqual(y.place.__repr__(), "Place(gpu:0)")
84
                    y = x.cuda(blocking=True)
85
                    self.assertEqual(y.place.__repr__(), "Place(gpu:0)")
86 87
                    with self.assertRaises(ValueError):
                        y = x.cuda("test")
88

89 90 91 92 93
                # support 'dtype' is core.VarType
                x = paddle.rand((2, 2))
                y = paddle.to_tensor([2, 2], dtype=x.dtype)
                self.assertEqual(y.dtype, core.VarDesc.VarType.FP32)

94
                # set_default_dtype take effect on complex
95
                x = paddle.to_tensor(1 + 2j, place=place, stop_gradient=False)
96
                np.testing.assert_array_equal(x.numpy(), [1 + 2j])
C
chentianyu03 已提交
97
                self.assertEqual(x.dtype, core.VarDesc.VarType.COMPLEX64)
98 99 100

                paddle.set_default_dtype('float64')
                x = paddle.to_tensor(1.2, place=place, stop_gradient=False)
101
                np.testing.assert_array_equal(x.numpy(), [1.2])
102 103 104
                self.assertEqual(x.dtype, core.VarDesc.VarType.FP64)

                x = paddle.to_tensor(1 + 2j, place=place, stop_gradient=False)
105
                np.testing.assert_array_equal(x.numpy(), [1 + 2j])
C
chentianyu03 已提交
106
                self.assertEqual(x.dtype, core.VarDesc.VarType.COMPLEX128)
107

108 109 110 111
                x = paddle.to_tensor(1,
                                     dtype='float32',
                                     place=place,
                                     stop_gradient=False)
112
                np.testing.assert_array_equal(x.numpy(), [1.0])
113 114 115 116 117
                self.assertEqual(x.dtype, core.VarDesc.VarType.FP32)
                self.assertEqual(x.shape, [1])
                self.assertEqual(x.stop_gradient, False)
                self.assertEqual(x.type, core.VarDesc.VarType.LOD_TENSOR)

118 119 120 121 122 123 124 125
                x = paddle.to_tensor((1, 2),
                                     dtype='float32',
                                     place=place,
                                     stop_gradient=False)
                x = paddle.to_tensor([1, 2],
                                     dtype='float32',
                                     place=place,
                                     stop_gradient=False)
126
                np.testing.assert_array_equal(x.numpy(), [1.0, 2.0])
127 128 129 130 131 132
                self.assertEqual(x.dtype, core.VarDesc.VarType.FP32)
                self.assertEqual(x.grad, None)
                self.assertEqual(x.shape, [2])
                self.assertEqual(x.stop_gradient, False)
                self.assertEqual(x.type, core.VarDesc.VarType.LOD_TENSOR)

133 134 135 136
                x = paddle.to_tensor(self.array,
                                     dtype='float32',
                                     place=place,
                                     stop_gradient=False)
137
                np.testing.assert_array_equal(x.numpy(), self.array)
138 139 140 141 142 143 144
                self.assertEqual(x.dtype, core.VarDesc.VarType.FP32)
                self.assertEqual(x.shape, self.shape)
                self.assertEqual(x.stop_gradient, False)
                self.assertEqual(x.type, core.VarDesc.VarType.LOD_TENSOR)

                y = paddle.to_tensor(x)
                y = paddle.to_tensor(y, dtype='float64', place=place)
145
                np.testing.assert_array_equal(y.numpy(), self.array)
146 147 148 149 150
                self.assertEqual(y.dtype, core.VarDesc.VarType.FP64)
                self.assertEqual(y.shape, self.shape)
                self.assertEqual(y.stop_gradient, True)
                self.assertEqual(y.type, core.VarDesc.VarType.LOD_TENSOR)
                z = x + y
151
                np.testing.assert_array_equal(z.numpy(), 2 * self.array)
152

153 154 155
                x = paddle.to_tensor([1 + 2j, 1 - 2j],
                                     dtype='complex64',
                                     place=place)
156
                y = paddle.to_tensor(x)
157
                np.testing.assert_array_equal(x.numpy(), [1 + 2j, 1 - 2j])
C
chentianyu03 已提交
158
                self.assertEqual(y.dtype, core.VarDesc.VarType.COMPLEX64)
159 160
                self.assertEqual(y.shape, [2])

161 162 163 164 165
                paddle.set_default_dtype('float32')
                x = paddle.randn([3, 4])
                x_array = np.array(x)
                self.assertEqual(x_array.shape, x.numpy().shape)
                self.assertEqual(x_array.dtype, x.numpy().dtype)
166
                np.testing.assert_array_equal(x_array, x.numpy())
167 168 169 170 171 172 173 174 175

                x = paddle.to_tensor(1.0)
                self.assertEqual(x.item(), 1.0)
                self.assertTrue(isinstance(x.item(), float))

                x = paddle.randn([3, 2, 2])
                self.assertTrue(isinstance(x.item(5), float))
                self.assertTrue(isinstance(x.item(1, 0, 1), float))
                self.assertEqual(x.item(5), x.item(1, 0, 1))
176 177
                np.testing.assert_array_equal(x.item(1, 0, 1),
                                              x.numpy().item(1, 0, 1))
178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209

                x = paddle.to_tensor([[1.111111, 2.222222, 3.333333]])
                self.assertEqual(x.item(0, 2), x.item(2))
                self.assertAlmostEqual(x.item(2), 3.333333)
                self.assertTrue(isinstance(x.item(0, 2), float))

                x = paddle.to_tensor(1.0, dtype='float64')
                self.assertEqual(x.item(), 1.0)
                self.assertTrue(isinstance(x.item(), float))

                x = paddle.to_tensor(1.0, dtype='float16')
                self.assertEqual(x.item(), 1.0)
                self.assertTrue(isinstance(x.item(), float))

                x = paddle.to_tensor(1, dtype='uint8')
                self.assertEqual(x.item(), 1)
                self.assertTrue(isinstance(x.item(), int))

                x = paddle.to_tensor(1, dtype='int8')
                self.assertEqual(x.item(), 1)
                self.assertTrue(isinstance(x.item(), int))

                x = paddle.to_tensor(1, dtype='int16')
                self.assertEqual(x.item(), 1)
                self.assertTrue(isinstance(x.item(), int))

                x = paddle.to_tensor(1, dtype='int32')
                self.assertEqual(x.item(), 1)
                self.assertTrue(isinstance(x.item(), int))

                x = paddle.to_tensor(1, dtype='int64')
                self.assertEqual(x.item(), 1)
T
tianshuo78520a 已提交
210
                self.assertTrue(isinstance(x.item(), int))
211 212 213 214 215 216 217 218 219

                x = paddle.to_tensor(True)
                self.assertEqual(x.item(), True)
                self.assertTrue(isinstance(x.item(), bool))

                x = paddle.to_tensor(1 + 1j)
                self.assertEqual(x.item(), 1 + 1j)
                self.assertTrue(isinstance(x.item(), complex))

220 221 222 223 224
                # empty tensor
                x = paddle.to_tensor([])
                self.assertEqual(x.shape, [0])
                expected_result = np.array([], dtype='float32')
                self.assertEqual(x.numpy().shape, expected_result.shape)
225
                np.testing.assert_array_equal(x.numpy(), expected_result)
226

227 228 229 230 231 232
                numpy_array = np.random.randn(3, 4)
                # covert core.LoDTensor to paddle.Tensor
                lod_tensor = paddle.fluid.core.LoDTensor()
                place = paddle.fluid.framework._current_expected_place()
                lod_tensor.set(numpy_array, place)
                x = paddle.to_tensor(lod_tensor)
233
                np.testing.assert_array_equal(x.numpy(), numpy_array)
234 235 236 237 238 239 240 241
                self.assertEqual(x.type, core.VarDesc.VarType.LOD_TENSOR)
                self.assertEqual(str(x.place), str(place))

                # covert core.Tensor to paddle.Tensor
                x = paddle.to_tensor(numpy_array)
                dlpack = x.value().get_tensor()._to_dlpack()
                tensor_from_dlpack = paddle.fluid.core.from_dlpack(dlpack)
                x = paddle.to_tensor(tensor_from_dlpack)
242
                np.testing.assert_array_equal(x.numpy(), numpy_array)
243 244
                self.assertEqual(x.type, core.VarDesc.VarType.LOD_TENSOR)

245 246 247 248 249 250 251 252
                with self.assertRaises(ValueError):
                    paddle.randn([3, 2, 2]).item()
                with self.assertRaises(ValueError):
                    paddle.randn([3, 2, 2]).item(18)
                with self.assertRaises(ValueError):
                    paddle.randn([3, 2, 2]).item(1, 2)
                with self.assertRaises(ValueError):
                    paddle.randn([3, 2, 2]).item(2, 1, 2)
253 254 255 256 257 258 259 260 261 262 263
                with self.assertRaises(TypeError):
                    paddle.to_tensor('test')
                with self.assertRaises(TypeError):
                    paddle.to_tensor(1, dtype='test')
                with self.assertRaises(ValueError):
                    paddle.to_tensor([[1], [2, 3]])
                with self.assertRaises(ValueError):
                    paddle.to_tensor([[1], [2, 3]], place='test')
                with self.assertRaises(ValueError):
                    paddle.to_tensor([[1], [2, 3]], place=1)

264 265
        check_with_place(core.CPUPlace())
        check_with_place("cpu")
266
        if core.is_compiled_with_cuda():
267 268 269 270
            check_with_place(core.CUDAPinnedPlace())
            check_with_place("gpu_pinned")
            check_with_place(core.CUDAPlace(0))
            check_with_place("gpu:0")
271
        if core.is_compiled_with_npu():
272 273
            check_with_place(core.NPUPlace(0))
            check_with_place("npu:0")
274

275 276 277 278 279 280
    def test_to_tensor(self):
        with _test_eager_guard():
            self.func_test_to_tensor()
        self.func_test_to_tensor()

    def func_test_to_tensor_not_change_input_stop_gradient(self):
281 282 283 284 285 286 287
        with paddle.fluid.dygraph.guard(core.CPUPlace()):
            a = paddle.zeros([1024])
            a.stop_gradient = False
            b = paddle.to_tensor(a)
            self.assertEqual(a.stop_gradient, False)
            self.assertEqual(b.stop_gradient, True)

288 289 290 291 292 293
    def test_to_tensor_not_change_input_stop_gradient(self):
        with _test_eager_guard():
            self.func_test_to_tensor_not_change_input_stop_gradient()
        self.func_test_to_tensor_not_change_input_stop_gradient()

    def func_test_to_tensor_change_place(self):
294 295 296 297 298
        if core.is_compiled_with_cuda():
            a_np = np.random.rand(1024, 1024)
            with paddle.fluid.dygraph.guard(core.CPUPlace()):
                a = paddle.to_tensor(a_np, place=paddle.CUDAPinnedPlace())
                a = paddle.to_tensor(a)
299
                self.assertEqual(a.place.__repr__(), "Place(cpu)")
300 301 302 303

            with paddle.fluid.dygraph.guard(core.CUDAPlace(0)):
                a = paddle.to_tensor(a_np, place=paddle.CUDAPinnedPlace())
                a = paddle.to_tensor(a)
304
                self.assertEqual(a.place.__repr__(), "Place(gpu:0)")
305 306 307 308

            with paddle.fluid.dygraph.guard(core.CUDAPlace(0)):
                a = paddle.to_tensor(a_np, place=paddle.CPUPlace())
                a = paddle.to_tensor(a, place=paddle.CUDAPinnedPlace())
309
                self.assertEqual(a.place.__repr__(), "Place(gpu_pinned)")
310

311 312 313 314 315 316
    def test_to_tensor_change_place(self):
        with _test_eager_guard():
            self.func_test_to_tensor_change_place()
        self.func_test_to_tensor_change_place()

    def func_test_to_tensor_with_lodtensor(self):
317 318 319 320 321 322
        if core.is_compiled_with_cuda():
            a_np = np.random.rand(1024, 1024)
            with paddle.fluid.dygraph.guard(core.CPUPlace()):
                lod_tensor = core.LoDTensor()
                lod_tensor.set(a_np, core.CPUPlace())
                a = paddle.to_tensor(lod_tensor)
323
                np.testing.assert_array_equal(a_np, a.numpy())
324 325 326 327

            with paddle.fluid.dygraph.guard(core.CUDAPlace(0)):
                lod_tensor = core.LoDTensor()
                lod_tensor.set(a_np, core.CUDAPlace(0))
328
                a = paddle.to_tensor(lod_tensor, place=core.CPUPlace())
329
                np.testing.assert_array_equal(a_np, a.numpy())
330
                self.assertTrue(a.place.__repr__(), "Place(cpu)")
331

332 333 334 335 336 337
    def test_to_tensor_with_lodtensor(self):
        with _test_eager_guard():
            self.func_test_to_tensor_with_lodtensor()
        self.func_test_to_tensor_with_lodtensor()

    def func_test_to_variable(self):
L
Leo Chen 已提交
338 339
        with fluid.dygraph.guard():
            var = fluid.dygraph.to_variable(self.array, name="abc")
340
            np.testing.assert_array_equal(var.numpy(), self.array)
L
Leo Chen 已提交
341 342 343 344 345 346 347
            self.assertEqual(var.name, 'abc')
            # default value
            self.assertEqual(var.persistable, False)
            self.assertEqual(var.stop_gradient, True)
            self.assertEqual(var.shape, self.shape)
            self.assertEqual(var.dtype, core.VarDesc.VarType.FP32)
            self.assertEqual(var.type, core.VarDesc.VarType.LOD_TENSOR)
348 349 350 351 352 353 354
            # The type of input must be 'ndarray' or 'Variable', it will raise TypeError
            with self.assertRaises(TypeError):
                var = fluid.dygraph.to_variable("test", name="abc")
            # test to_variable of LayerObjectHelper(LayerHelperBase)
            with self.assertRaises(TypeError):
                linear = fluid.dygraph.Linear(32, 64)
                var = linear._helper.to_variable("test", name="abc")
L
Leo Chen 已提交
355

356 357 358 359 360 361
    def test_to_variable(self):
        with _test_eager_guard():
            self.func_test_to_variable()
        self.func_test_to_variable()

    def func_test_list_to_variable(self):
362 363 364
        with fluid.dygraph.guard():
            array = [[[1, 2], [1, 2], [1.0, 2]], [[1, 2], [1, 2], [1, 2]]]
            var = fluid.dygraph.to_variable(array, dtype='int32')
365
            np.testing.assert_array_equal(var.numpy(), array)
366 367 368 369
            self.assertEqual(var.shape, [2, 3, 2])
            self.assertEqual(var.dtype, core.VarDesc.VarType.INT32)
            self.assertEqual(var.type, core.VarDesc.VarType.LOD_TENSOR)

370 371 372 373 374 375
    def test_list_to_variable(self):
        with _test_eager_guard():
            self.func_test_list_to_variable()
        self.func_test_list_to_variable()

    def func_test_tuple_to_variable(self):
376 377 378
        with fluid.dygraph.guard():
            array = (((1, 2), (1, 2), (1, 2)), ((1, 2), (1, 2), (1, 2)))
            var = fluid.dygraph.to_variable(array, dtype='float32')
379
            np.testing.assert_array_equal(var.numpy(), array)
380 381 382 383
            self.assertEqual(var.shape, [2, 3, 2])
            self.assertEqual(var.dtype, core.VarDesc.VarType.FP32)
            self.assertEqual(var.type, core.VarDesc.VarType.LOD_TENSOR)

384 385 386 387 388 389
    def test_tuple_to_variable(self):
        with _test_eager_guard():
            self.func_test_tuple_to_variable()
        self.func_test_tuple_to_variable()

    def func_test_tensor_to_variable(self):
390 391
        with fluid.dygraph.guard():
            t = fluid.Tensor()
L
Leo Chen 已提交
392
            t.set(np.random.random((1024, 1024)), fluid.CPUPlace())
393
            var = fluid.dygraph.to_variable(t)
394
            np.testing.assert_array_equal(t, var.numpy())
395

396 397 398 399 400 401
    def test_tensor_to_variable(self):
        with _test_eager_guard():
            self.func_test_tensor_to_variable()
        self.func_test_tensor_to_variable()

    def func_test_leaf_tensor(self):
402 403 404 405 406 407
        with fluid.dygraph.guard():
            x = paddle.to_tensor(np.random.uniform(-1, 1, size=[10, 10]))
            self.assertTrue(x.is_leaf)
            y = x + 1
            self.assertTrue(y.is_leaf)

408 409
            x = paddle.to_tensor(np.random.uniform(-1, 1, size=[10, 10]),
                                 stop_gradient=False)
410 411 412 413 414
            self.assertTrue(x.is_leaf)
            y = x + 1
            self.assertFalse(y.is_leaf)

            linear = paddle.nn.Linear(10, 10)
415 416 417
            input = paddle.to_tensor(np.random.uniform(
                -1, 1, size=[10, 10]).astype('float32'),
                                     stop_gradient=False)
418 419 420 421 422 423 424
            self.assertTrue(input.is_leaf)

            out = linear(input)
            self.assertTrue(linear.weight.is_leaf)
            self.assertTrue(linear.bias.is_leaf)
            self.assertFalse(out.is_leaf)

425 426 427 428 429 430
    def test_leaf_tensor(self):
        with _test_eager_guard():
            self.func_test_leaf_tensor()
        self.func_test_leaf_tensor()

    def func_test_detach(self):
Z
Zhou Wei 已提交
431 432 433 434 435
        with fluid.dygraph.guard():
            x = paddle.to_tensor(1.0, dtype="float64", stop_gradient=False)
            detach_x = x.detach()
            self.assertTrue(detach_x.stop_gradient, True)

Z
zhulei 已提交
436 437
            cmp_float = np.allclose if core.is_compiled_with_rocm(
            ) else np.array_equal
Z
Zhou Wei 已提交
438
            detach_x[:] = 10.0
Z
zhulei 已提交
439
            self.assertTrue(cmp_float(x.numpy(), [10.0]))
Z
Zhou Wei 已提交
440 441 442

            y = x**2
            y.backward()
Z
zhulei 已提交
443
            self.assertTrue(cmp_float(x.grad.numpy(), [20.0]))
Z
Zhou Wei 已提交
444 445 446 447 448
            self.assertEqual(detach_x.grad, None)

            detach_x.stop_gradient = False  # Set stop_gradient to be False, supported auto-grad
            z = 3 * detach_x**2
            z.backward()
Z
zhulei 已提交
449 450
            self.assertTrue(cmp_float(x.grad.numpy(), [20.0]))
            self.assertTrue(cmp_float(detach_x.grad.numpy(), [60.0]))
451

452 453 454 455 456
            with self.assertRaises(ValueError):
                detach_x[:] = 5.0

            detach_x.stop_gradient = True

Z
Zhou Wei 已提交
457
            # Due to sharing of data with origin Tensor, There are some unsafe operations:
458 459 460 461
            with self.assertRaises(RuntimeError):
                y = 2**x
                detach_x[:] = 5.0
                y.backward()
Z
Zhou Wei 已提交
462

463 464 465 466 467 468
    def test_detach(self):
        with _test_eager_guard():
            self.func_test_detach()
        self.func_test_detach()

    def func_test_write_property(self):
L
Leo Chen 已提交
469 470 471
        with fluid.dygraph.guard():
            var = fluid.dygraph.to_variable(self.array)

472
            self.assertEqual(var.name, 'generated_tensor_0')
L
Leo Chen 已提交
473 474 475 476 477 478 479 480 481 482 483
            var.name = 'test'
            self.assertEqual(var.name, 'test')

            self.assertEqual(var.persistable, False)
            var.persistable = True
            self.assertEqual(var.persistable, True)

            self.assertEqual(var.stop_gradient, True)
            var.stop_gradient = False
            self.assertEqual(var.stop_gradient, False)

484 485 486 487 488 489
    def test_write_property(self):
        with _test_eager_guard():
            self.func_test_write_property()
        self.func_test_write_property()

    def func_test_deep_copy(self):
490
        with fluid.dygraph.guard():
491 492 493 494
            if _in_legacy_dygraph():
                empty_var = core.VarBase()
            else:
                empty_var = core.eager.Tensor()
495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512
            empty_var_copy = copy.deepcopy(empty_var)
            self.assertEqual(empty_var.stop_gradient,
                             empty_var_copy.stop_gradient)
            self.assertEqual(empty_var.persistable, empty_var_copy.persistable)
            self.assertEqual(empty_var.type, empty_var_copy.type)
            self.assertEqual(empty_var.dtype, empty_var_copy.dtype)

            x = paddle.to_tensor([2.], stop_gradient=False)
            y = paddle.to_tensor([3.], stop_gradient=False)
            z = x * y
            memo = {}
            x_copy = copy.deepcopy(x, memo)
            y_copy = copy.deepcopy(y, memo)

            self.assertEqual(x_copy.stop_gradient, y_copy.stop_gradient)
            self.assertEqual(x_copy.persistable, y_copy.persistable)
            self.assertEqual(x_copy.type, y_copy.type)
            self.assertEqual(x_copy.dtype, y_copy.dtype)
513 514
            np.testing.assert_array_equal(x.numpy(), x_copy.numpy())
            np.testing.assert_array_equal(y.numpy(), y_copy.numpy())
515 516

            self.assertNotEqual(id(x), id(x_copy))
517
            np.testing.assert_array_equal(x.numpy(), [2.0])
518

519 520 521
            with self.assertRaises(ValueError):
                x_copy[:] = 5.

522 523 524 525 526 527 528 529 530
            with self.assertRaises(RuntimeError):
                copy.deepcopy(z)

            x_copy2 = copy.deepcopy(x, memo)
            y_copy2 = copy.deepcopy(y, memo)
            self.assertEqual(id(x_copy), id(x_copy2))
            self.assertEqual(id(y_copy), id(y_copy2))

            # test copy selected rows
531 532 533 534 535 536 537 538 539
            if _in_legacy_dygraph():
                x = core.VarBase(core.VarDesc.VarType.FP32, [3, 100],
                                 "selected_rows",
                                 core.VarDesc.VarType.SELECTED_ROWS, True)
            else:
                x = core.eager.Tensor(core.VarDesc.VarType.FP32, [3, 100],
                                      "selected_rows",
                                      core.VarDesc.VarType.SELECTED_ROWS, True)

540
            selected_rows = x.value().get_selected_rows()
541 542
            selected_rows.get_tensor().set(np.random.rand(3, 100),
                                           core.CPUPlace())
543 544 545 546 547 548 549 550 551 552 553 554 555
            selected_rows.set_height(10)
            selected_rows.set_rows([3, 5, 7])
            x_copy = copy.deepcopy(x)

            self.assertEqual(x_copy.stop_gradient, x.stop_gradient)
            self.assertEqual(x_copy.persistable, x.persistable)
            self.assertEqual(x_copy.type, x.type)
            self.assertEqual(x_copy.dtype, x.dtype)

            copy_selected_rows = x_copy.value().get_selected_rows()
            self.assertEqual(copy_selected_rows.height(),
                             selected_rows.height())
            self.assertEqual(copy_selected_rows.rows(), selected_rows.rows())
556 557 558
            np.testing.assert_array_equal(
                np.array(copy_selected_rows.get_tensor()),
                np.array(selected_rows.get_tensor()))
559

560 561 562 563 564
    def test_deep_copy(self):
        with _test_eager_guard():
            self.func_test_deep_copy()
        self.func_test_deep_copy()

L
Leo Chen 已提交
565
    # test some patched methods
566
    def func_test_set_value(self):
L
Leo Chen 已提交
567 568 569 570 571 572 573
        with fluid.dygraph.guard():
            var = fluid.dygraph.to_variable(self.array)
            tmp1 = np.random.uniform(0.1, 1, [2, 2, 3]).astype(self.dtype)
            self.assertRaises(AssertionError, var.set_value, tmp1)

            tmp2 = np.random.uniform(0.1, 1, self.shape).astype(self.dtype)
            var.set_value(tmp2)
574
            np.testing.assert_array_equal(var.numpy(), tmp2)
L
Leo Chen 已提交
575

576 577 578 579 580 581
    def test_set_value(self):
        with _test_eager_guard():
            self.func_test_set_value()
        self.func_test_set_value()

    def func_test_to_string(self):
L
Leo Chen 已提交
582 583
        with fluid.dygraph.guard():
            var = fluid.dygraph.to_variable(self.array)
584
            self.assertTrue(isinstance(str(var), str))
L
Leo Chen 已提交
585

586 587 588 589 590 591
    def test_to_string(self):
        with _test_eager_guard():
            self.func_test_to_string()
        self.func_test_to_string()

    def func_test_element_size(self):
592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625
        with fluid.dygraph.guard():
            x = paddle.to_tensor(1, dtype='bool')
            self.assertEqual(x.element_size(), 1)

            x = paddle.to_tensor(1, dtype='float16')
            self.assertEqual(x.element_size(), 2)

            x = paddle.to_tensor(1, dtype='float32')
            self.assertEqual(x.element_size(), 4)

            x = paddle.to_tensor(1, dtype='float64')
            self.assertEqual(x.element_size(), 8)

            x = paddle.to_tensor(1, dtype='int8')
            self.assertEqual(x.element_size(), 1)

            x = paddle.to_tensor(1, dtype='int16')
            self.assertEqual(x.element_size(), 2)

            x = paddle.to_tensor(1, dtype='int32')
            self.assertEqual(x.element_size(), 4)

            x = paddle.to_tensor(1, dtype='int64')
            self.assertEqual(x.element_size(), 8)

            x = paddle.to_tensor(1, dtype='uint8')
            self.assertEqual(x.element_size(), 1)

            x = paddle.to_tensor(1, dtype='complex64')
            self.assertEqual(x.element_size(), 8)

            x = paddle.to_tensor(1, dtype='complex128')
            self.assertEqual(x.element_size(), 16)

626 627 628 629 630 631
    def test_element_size(self):
        with _test_eager_guard():
            self.func_test_element_size()
        self.func_test_element_size()

    def func_test_backward(self):
L
Leo Chen 已提交
632 633 634 635 636 637 638 639
        with fluid.dygraph.guard():
            var = fluid.dygraph.to_variable(self.array)
            var.stop_gradient = False
            loss = fluid.layers.relu(var)
            loss.backward()
            grad_var = var._grad_ivar()
            self.assertEqual(grad_var.shape, self.shape)

640 641 642 643 644 645
    def test_backward(self):
        with _test_eager_guard():
            self.func_test_backward()
        self.func_test_backward()

    def func_test_gradient(self):
L
Leo Chen 已提交
646 647 648 649 650 651 652 653
        with fluid.dygraph.guard():
            var = fluid.dygraph.to_variable(self.array)
            var.stop_gradient = False
            loss = fluid.layers.relu(var)
            loss.backward()
            grad_var = var.gradient()
            self.assertEqual(grad_var.shape, self.array.shape)

654 655 656 657 658 659
    def test_gradient(self):
        with _test_eager_guard():
            self.func_test_gradient()
        self.func_test_gradient()

    def func_test_block(self):
L
Leo Chen 已提交
660 661 662 663 664
        with fluid.dygraph.guard():
            var = fluid.dygraph.to_variable(self.array)
            self.assertEqual(var.block,
                             fluid.default_main_program().global_block())

665 666 667 668 669
    def test_block(self):
        with _test_eager_guard():
            self.func_test_block()
        self.func_test_block()

670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694
    def _test_slice(self):
        w = fluid.dygraph.to_variable(
            np.random.random((784, 100, 100)).astype('float64'))

        for i in range(3):
            nw = w[i]
            self.assertEqual((100, 100), tuple(nw.shape))

        nw = w[:]
        self.assertEqual((784, 100, 100), tuple(nw.shape))

        nw = w[:, :]
        self.assertEqual((784, 100, 100), tuple(nw.shape))

        nw = w[:, :, -1]
        self.assertEqual((784, 100), tuple(nw.shape))

        nw = w[1, 1, 1]

        self.assertEqual(len(nw.shape), 1)
        self.assertEqual(nw.shape[0], 1)

        nw = w[:, :, :-1]
        self.assertEqual((784, 100, 99), tuple(nw.shape))

695 696 697 698
        tensor_array = np.array([[[1, 2, 3], [4, 5, 6], [7, 8, 9]],
                                 [[10, 11, 12], [13, 14, 15], [16, 17, 18]],
                                 [[19, 20, 21], [22, 23, 24],
                                  [25, 26, 27]]]).astype('float32')
699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715
        var = fluid.dygraph.to_variable(tensor_array)
        var1 = var[0, 1, 1]
        var2 = var[1:]
        var3 = var[0:1]
        var4 = var[::-1]
        var5 = var[1, 1:, 1:]
        var_reshape = fluid.layers.reshape(var, [3, -1, 3])
        var6 = var_reshape[:, :, -1]
        var7 = var[:, :, :-1]
        var8 = var[:1, :1, :1]
        var9 = var[:-1, :-1, :-1]
        var10 = var[::-1, :1, :-1]
        var11 = var[:-1, ::-1, -1:]
        var12 = var[1:2, 2:, ::-1]
        var13 = var[2:10, 2:, -2:-1]
        var14 = var[1:-1, 0:2, ::-1]
        var15 = var[::-1, ::-1, ::-1]
716
        var16 = var[-4:4]
717 718
        var17 = var[:, 0, 0:0]
        var18 = var[:, 1:1:2]
719 720 721

        vars = [
            var, var1, var2, var3, var4, var5, var6, var7, var8, var9, var10,
722
            var11, var12, var13, var14, var15, var16, var17, var18
723 724 725
        ]
        local_out = [var.numpy() for var in vars]

726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751
        np.testing.assert_array_equal(local_out[1], tensor_array[0, 1, 1:2])
        np.testing.assert_array_equal(local_out[2], tensor_array[1:])
        np.testing.assert_array_equal(local_out[3], tensor_array[0:1])
        np.testing.assert_array_equal(local_out[4], tensor_array[::-1])
        np.testing.assert_array_equal(local_out[5], tensor_array[1, 1:, 1:])
        np.testing.assert_array_equal(
            local_out[6],
            tensor_array.reshape((3, -1, 3))[:, :, -1])
        np.testing.assert_array_equal(local_out[7], tensor_array[:, :, :-1])
        np.testing.assert_array_equal(local_out[8], tensor_array[:1, :1, :1])
        np.testing.assert_array_equal(local_out[9], tensor_array[:-1, :-1, :-1])
        np.testing.assert_array_equal(local_out[10],
                                      tensor_array[::-1, :1, :-1])
        np.testing.assert_array_equal(local_out[11], tensor_array[:-1, ::-1,
                                                                  -1:])
        np.testing.assert_array_equal(local_out[12], tensor_array[1:2,
                                                                  2:, ::-1])
        np.testing.assert_array_equal(local_out[13], tensor_array[2:10, 2:,
                                                                  -2:-1])
        np.testing.assert_array_equal(local_out[14], tensor_array[1:-1,
                                                                  0:2, ::-1])
        np.testing.assert_array_equal(local_out[15],
                                      tensor_array[::-1, ::-1, ::-1])
        np.testing.assert_array_equal(local_out[16], tensor_array[-4:4])
        np.testing.assert_array_equal(local_out[17], tensor_array[:, 0, 0:0])
        np.testing.assert_array_equal(local_out[18], tensor_array[:, 1:1:2])
752

753
    def _test_slice_for_tensor_attr(self):
754 755 756 757
        tensor_array = np.array([[[1, 2, 3], [4, 5, 6], [7, 8, 9]],
                                 [[10, 11, 12], [13, 14, 15], [16, 17, 18]],
                                 [[19, 20, 21], [22, 23, 24],
                                  [25, 26, 27]]]).astype('float32')
758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790

        var = paddle.to_tensor(tensor_array)

        one = paddle.ones(shape=[1], dtype="int32")
        two = paddle.full(shape=[1], fill_value=2, dtype="int32")
        negative_one = paddle.full(shape=[1], fill_value=-1, dtype="int32")
        four = paddle.full(shape=[1], fill_value=4, dtype="int32")

        var = fluid.dygraph.to_variable(tensor_array)
        var1 = var[0, one, one]
        var2 = var[one:]
        var3 = var[0:one]
        var4 = var[::negative_one]
        var5 = var[one, one:, one:]
        var_reshape = fluid.layers.reshape(var, [3, negative_one, 3])
        var6 = var_reshape[:, :, negative_one]
        var7 = var[:, :, :negative_one]
        var8 = var[:one, :one, :1]
        var9 = var[:-1, :negative_one, :negative_one]
        var10 = var[::negative_one, :one, :negative_one]
        var11 = var[:negative_one, ::-1, negative_one:]
        var12 = var[one:2, 2:, ::negative_one]
        var13 = var[two:10, 2:, -2:negative_one]
        var14 = var[1:negative_one, 0:2, ::negative_one]
        var15 = var[::negative_one, ::-1, ::negative_one]
        var16 = var[-4:4]

        vars = [
            var, var1, var2, var3, var4, var5, var6, var7, var8, var9, var10,
            var11, var12, var13, var14, var15, var16
        ]
        local_out = [var.numpy() for var in vars]

791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814
        np.testing.assert_array_equal(local_out[1], tensor_array[0, 1, 1:2])
        np.testing.assert_array_equal(local_out[2], tensor_array[1:])
        np.testing.assert_array_equal(local_out[3], tensor_array[0:1])
        np.testing.assert_array_equal(local_out[4], tensor_array[::-1])
        np.testing.assert_array_equal(local_out[5], tensor_array[1, 1:, 1:])
        np.testing.assert_array_equal(
            local_out[6],
            tensor_array.reshape((3, -1, 3))[:, :, -1])
        np.testing.assert_array_equal(local_out[7], tensor_array[:, :, :-1])
        np.testing.assert_array_equal(local_out[8], tensor_array[:1, :1, :1])
        np.testing.assert_array_equal(local_out[9], tensor_array[:-1, :-1, :-1])
        np.testing.assert_array_equal(local_out[10],
                                      tensor_array[::-1, :1, :-1])
        np.testing.assert_array_equal(local_out[11], tensor_array[:-1, ::-1,
                                                                  -1:])
        np.testing.assert_array_equal(local_out[12], tensor_array[1:2,
                                                                  2:, ::-1])
        np.testing.assert_array_equal(local_out[13], tensor_array[2:10, 2:,
                                                                  -2:-1])
        np.testing.assert_array_equal(local_out[14], tensor_array[1:-1,
                                                                  0:2, ::-1])
        np.testing.assert_array_equal(local_out[15],
                                      tensor_array[::-1, ::-1, ::-1])
        np.testing.assert_array_equal(local_out[16], tensor_array[-4:4])
815

816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836
    def _test_for_getitem_ellipsis_index(self):
        shape = (64, 3, 5, 256)
        np_fp32_value = np.random.random(shape).astype('float32')
        np_int_value = np.random.randint(1, 100, shape)

        var_fp32 = paddle.to_tensor(np_fp32_value)
        var_int = paddle.to_tensor(np_int_value)

        def assert_getitem_ellipsis_index(var_tensor, var_np):
            var = [
                var_tensor[..., 0].numpy(),
                var_tensor[..., 1, 0].numpy(),
                var_tensor[0, ..., 1, 0].numpy(),
                var_tensor[1, ..., 1].numpy(),
                var_tensor[2, ...].numpy(),
                var_tensor[2, 0, ...].numpy(),
                var_tensor[2, 0, 1, ...].numpy(),
                var_tensor[...].numpy(),
                var_tensor[:, ..., 100].numpy(),
            ]

837 838 839 840 841 842 843 844 845
            np.testing.assert_array_equal(var[0], var_np[..., 0])
            np.testing.assert_array_equal(var[1], var_np[..., 1, 0])
            np.testing.assert_array_equal(var[2], var_np[0, ..., 1, 0])
            np.testing.assert_array_equal(var[3], var_np[1, ..., 1])
            np.testing.assert_array_equal(var[4], var_np[2, ...])
            np.testing.assert_array_equal(var[5], var_np[2, 0, ...])
            np.testing.assert_array_equal(var[6], var_np[2, 0, 1, ...])
            np.testing.assert_array_equal(var[7], var_np[...])
            np.testing.assert_array_equal(var[8], var_np[:, ..., 100])
846 847 848 849 850 851 852

        var_fp32 = paddle.to_tensor(np_fp32_value)
        var_int = paddle.to_tensor(np_int_value)

        assert_getitem_ellipsis_index(var_fp32, np_fp32_value)
        assert_getitem_ellipsis_index(var_int, np_int_value)

853 854
        # test 1 dim tensor
        var_one_dim = paddle.to_tensor([1, 2, 3, 4])
855 856
        np.testing.assert_array_equal(var_one_dim[..., 0].numpy(),
                                      np.array([1]))
857

858 859 860 861 862 863 864 865 866 867 868 869 870 871 872
    def _test_none_index(self):
        shape = (8, 64, 5, 256)
        np_value = np.random.random(shape).astype('float32')
        var_tensor = paddle.to_tensor(np_value)

        var = [
            var_tensor[1, 0, None].numpy(),
            var_tensor[None, ..., 1, 0].numpy(),
            var_tensor[:, :, :, None].numpy(),
            var_tensor[1, ..., 1, None].numpy(),
            var_tensor[2, ..., None, None].numpy(),
            var_tensor[None, 2, 0, ...].numpy(),
            var_tensor[None, 2, None, 1].numpy(),
            var_tensor[None].numpy(),
            var_tensor[0, 0, None, 0, 0, None].numpy(),
873
            var_tensor[None, None, 0, ..., None].numpy(),
874
            var_tensor[..., None, :, None].numpy(),
875 876 877
            var_tensor[0, 1:10:2, None, None, ...].numpy(),
        ]

878 879 880 881 882 883 884 885 886 887 888 889
        np.testing.assert_array_equal(var[0], np_value[1, 0, None])
        np.testing.assert_array_equal(var[1], np_value[None, ..., 1, 0])
        np.testing.assert_array_equal(var[2], np_value[:, :, :, None])
        np.testing.assert_array_equal(var[3], np_value[1, ..., 1, None])
        np.testing.assert_array_equal(var[4], np_value[2, ..., None, None])
        np.testing.assert_array_equal(var[5], np_value[None, 2, 0, ...])
        np.testing.assert_array_equal(var[6], np_value[None, 2, None, 1])
        np.testing.assert_array_equal(var[7], np_value[None])
        np.testing.assert_array_equal(var[8], np_value[0, 0, None, 0, 0, None])
        np.testing.assert_array_equal(var[9], np_value[None, None, 0, ...,
                                                       None])
        np.testing.assert_array_equal(var[10], np_value[..., None, :, None])
890

891 892
        # TODO(zyfncg) there is a bug of dimensions when slice step > 1 and
        #              indexs has int type
893
        # self.assertTrue(
894
        #     np.array_equal(var[11], np_value[0, 1:10:2, None, None, ...]))
895

Z
zyfncg 已提交
896 897 898 899 900
    def _test_bool_index(self):
        shape = (4, 2, 5, 64)
        np_value = np.random.random(shape).astype('float32')
        var_tensor = paddle.to_tensor(np_value)
        index = [[True, True, True, True], [True, False, True, True],
901 902
                 [True, False, False, True], [False, 0, 1, True, True],
                 [False, False, False, False]]
Z
zyfncg 已提交
903 904 905 906
        index2d = np.array([[True, True], [False, False], [True, False],
                            [True, True]])
        tensor_index = paddle.to_tensor(index2d)
        var = [
907 908
            var_tensor[index[0]].numpy(), var_tensor[index[1]].numpy(),
            var_tensor[index[2]].numpy(), var_tensor[index[3]].numpy(),
Z
zyfncg 已提交
909 910
            var_tensor[paddle.to_tensor(index[0])].numpy(),
            var_tensor[tensor_index].numpy(),
911
            var_tensor[paddle.to_tensor(index[4])].numpy()
Z
zyfncg 已提交
912
        ]
913 914 915 916 917 918 919 920 921 922 923
        np.testing.assert_array_equal(var[0], np_value[index[0]])
        np.testing.assert_array_equal(var[1], np_value[index[1]])
        np.testing.assert_array_equal(var[2], np_value[index[2]])
        np.testing.assert_array_equal(var[3], np_value[index[3]])
        np.testing.assert_array_equal(var[4], np_value[index[0]])
        np.testing.assert_array_equal(var[5], np_value[index2d])
        np.testing.assert_array_equal(var[6], np_value[index[4]])
        np.testing.assert_array_equal(var_tensor[var_tensor > 0.67],
                                      np_value[np_value > 0.67])
        np.testing.assert_array_equal(var_tensor[var_tensor < 0.55],
                                      np_value[np_value < 0.55])
Z
zyfncg 已提交
924 925 926 927 928 929 930 931 932 933

        with self.assertRaises(ValueError):
            var_tensor[[False, False, False, False]]
        with self.assertRaises(ValueError):
            var_tensor[[True, False]]
        with self.assertRaises(ValueError):
            var_tensor[[True, False, False, False, False]]
        with self.assertRaises(IndexError):
            var_tensor[paddle.to_tensor([[True, False, False, False]])]

934 935 936 937 938 939
    def _test_scalar_bool_index(self):
        shape = (1, 2, 5, 64)
        np_value = np.random.random(shape).astype('float32')
        var_tensor = paddle.to_tensor(np_value)
        index = [True]
        tensor_index = paddle.to_tensor(index)
940 941 942
        var = [
            var_tensor[tensor_index].numpy(),
        ]
943
        np.testing.assert_array_equal(var[0], np_value[index])
944

H
hong 已提交
945 946 947 948 949
    def _test_for_var(self):
        np_value = np.random.random((30, 100, 100)).astype('float32')
        w = fluid.dygraph.to_variable(np_value)

        for i, e in enumerate(w):
950
            np.testing.assert_array_equal(e.numpy(), np_value[i])
H
hong 已提交
951

952 953 954
    def _test_numpy_index(self):
        array = np.arange(120).reshape([4, 5, 6])
        t = paddle.to_tensor(array)
955 956 957 958 959 960 961 962 963
        np.testing.assert_array_equal(t[np.longlong(0)].numpy(), array[0])
        np.testing.assert_array_equal(
            t[np.longlong(0):np.longlong(4):np.longlong(2)].numpy(),
            array[0:4:2])
        np.testing.assert_array_equal(t[np.int64(0)].numpy(), array[0])
        np.testing.assert_array_equal(
            t[np.int32(1):np.int32(4):np.int32(2)].numpy(), array[1:4:2])
        np.testing.assert_array_equal(
            t[np.int16(0):np.int16(4):np.int16(2)].numpy(), array[0:4:2])
964 965 966 967 968 969 970

    def _test_list_index(self):
        # case1:
        array = np.arange(120).reshape([6, 5, 4])
        x = paddle.to_tensor(array)
        py_idx = [[0, 2, 0, 1, 3], [0, 0, 1, 2, 0]]
        idx = [paddle.to_tensor(py_idx[0]), paddle.to_tensor(py_idx[1])]
971 972
        np.testing.assert_array_equal(x[idx].numpy(), array[py_idx])
        np.testing.assert_array_equal(x[py_idx].numpy(), array[py_idx])
973 974 975
        # case2:
        tensor_x = paddle.to_tensor(
            np.zeros(12).reshape(2, 6).astype(np.float32))
976 977
        tensor_y1 = paddle.zeros([1], dtype='int32') + 2
        tensor_y2 = paddle.zeros([1], dtype='int32') + 5
978 979 980 981
        tensor_x[:, tensor_y1:tensor_y2] = 42
        res = tensor_x.numpy()
        exp = np.array([[0., 0., 42., 42., 42., 0.],
                        [0., 0., 42., 42., 42., 0.]])
982
        np.testing.assert_array_equal(res, exp)
983

W
WeiXin 已提交
984 985 986
        # case3:
        row = np.array([0, 1, 2])
        col = np.array([2, 1, 3])
987
        np.testing.assert_array_equal(array[row, col], x[row, col].numpy())
W
WeiXin 已提交
988

W
wanghuancoder 已提交
989
    def func_test_slice(self):
L
Leo Chen 已提交
990
        with fluid.dygraph.guard():
991
            self._test_slice()
992
            self._test_slice_for_tensor_attr()
H
hong 已提交
993
            self._test_for_var()
994
            self._test_for_getitem_ellipsis_index()
995
            self._test_none_index()
Z
zyfncg 已提交
996
            self._test_bool_index()
997
            self._test_scalar_bool_index()
998 999
            self._test_numpy_index()
            self._test_list_index()
1000

L
Leo Chen 已提交
1001
            var = fluid.dygraph.to_variable(self.array)
1002 1003
            np.testing.assert_array_equal(var[1, :].numpy(), self.array[1, :])
            np.testing.assert_array_equal(var[::-1].numpy(), self.array[::-1])
L
Leo Chen 已提交
1004

H
hong 已提交
1005 1006 1007
            with self.assertRaises(IndexError):
                y = var[self.shape[0]]

1008 1009 1010
            with self.assertRaises(IndexError):
                y = var[0 - self.shape[0] - 1]

W
WeiXin 已提交
1011 1012 1013 1014
            with self.assertRaises(IndexError):
                mask = np.array([1, 0, 1, 0], dtype=bool)
                var[paddle.to_tensor([0, 1]), mask]

W
wanghuancoder 已提交
1015 1016 1017 1018 1019
    def test_slice(self):
        with _test_eager_guard():
            self.func_test_slice()
        self.func_test_slice()

1020
    def func_test_var_base_to_np(self):
L
Leo Chen 已提交
1021 1022
        with fluid.dygraph.guard():
            var = fluid.dygraph.to_variable(self.array)
1023 1024
            np.testing.assert_array_equal(var.numpy(),
                                          fluid.framework._var_base_to_np(var))
L
Leo Chen 已提交
1025

1026 1027 1028 1029 1030 1031
    def test_var_base_to_np(self):
        with _test_eager_guard():
            self.func_test_var_base_to_np()
        self.func_test_var_base_to_np()

    def func_test_var_base_as_np(self):
1032 1033
        with fluid.dygraph.guard():
            var = fluid.dygraph.to_variable(self.array)
1034 1035 1036
            np.testing.assert_array_equal(var.numpy(), np.array(var))
            np.testing.assert_array_equal(var.numpy(),
                                          np.array(var, dtype=np.float32))
1037

1038 1039 1040 1041 1042 1043
    def test_var_base_as_np(self):
        with _test_eager_guard():
            self.func_test_var_base_as_np()
        self.func_test_var_base_as_np()

    def func_test_if(self):
1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061
        with fluid.dygraph.guard():
            var1 = fluid.dygraph.to_variable(np.array([[[0]]]))
            var2 = fluid.dygraph.to_variable(np.array([[[1]]]))

            var1_bool = False
            var2_bool = False

            if var1:
                var1_bool = True

            if var2:
                var2_bool = True

            assert var1_bool == False, "if var1 should be false"
            assert var2_bool == True, "if var2 should be true"
            assert bool(var1) == False, "bool(var1) is False"
            assert bool(var2) == True, "bool(var2) is True"

1062 1063 1064 1065 1066 1067
    def test_if(self):
        with _test_eager_guard():
            self.func_test_if()
        self.func_test_if()

    def func_test_to_static_var(self):
1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089
        with fluid.dygraph.guard():
            # Convert VarBase into Variable or Parameter
            var_base = fluid.dygraph.to_variable(self.array, name="var_base_1")
            static_var = var_base._to_static_var()
            self._assert_to_static(var_base, static_var)

            var_base = fluid.dygraph.to_variable(self.array, name="var_base_2")
            static_param = var_base._to_static_var(to_parameter=True)
            self._assert_to_static(var_base, static_param, True)

            # Convert ParamBase into Parameter
            fc = fluid.dygraph.Linear(
                10,
                20,
                param_attr=fluid.ParamAttr(
                    learning_rate=0.001,
                    do_model_average=True,
                    regularizer=fluid.regularizer.L1Decay()))
            weight = fc.parameters()[0]
            static_param = weight._to_static_var()
            self._assert_to_static(weight, static_param, True)

1090 1091 1092 1093 1094
    def test_to_static_var(self):
        with _test_eager_guard():
            self.func_test_to_static_var()
        self.func_test_to_static_var()

1095 1096 1097 1098 1099 1100
    def _assert_to_static(self, var_base, static_var, is_param=False):
        if is_param:
            self.assertTrue(isinstance(static_var, fluid.framework.Parameter))
            self.assertTrue(static_var.persistable, True)
            if isinstance(var_base, fluid.framework.ParamBase):
                for attr in ['trainable', 'is_distributed', 'do_model_average']:
1101 1102
                    self.assertEqual(getattr(var_base, attr),
                                     getattr(static_var, attr))
1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117

                self.assertEqual(static_var.optimize_attr['learning_rate'],
                                 0.001)
                self.assertTrue(
                    isinstance(static_var.regularizer,
                               fluid.regularizer.L1Decay))
        else:
            self.assertTrue(isinstance(static_var, fluid.framework.Variable))

        attr_keys = ['block', 'dtype', 'type', 'name']
        for attr in attr_keys:
            self.assertEqual(getattr(var_base, attr), getattr(static_var, attr))

        self.assertListEqual(list(var_base.shape), list(static_var.shape))

1118
    def func_test_tensor_str(self):
Z
Zhou Wei 已提交
1119
        paddle.enable_static()
1120
        paddle.disable_static(paddle.CPUPlace())
C
cnn 已提交
1121
        paddle.seed(10)
1122 1123 1124 1125
        a = paddle.rand([10, 20])
        paddle.set_printoptions(4, 100, 3)
        a_str = str(a)

1126
        expected = '''Tensor(shape=[10, 20], dtype=float32, place=Place(cpu), stop_gradient=True,
1127 1128 1129 1130 1131 1132 1133 1134 1135 1136
       [[0.2727, 0.5489, 0.8655, ..., 0.2916, 0.8525, 0.9000],
        [0.3806, 0.8996, 0.0928, ..., 0.9535, 0.8378, 0.6409],
        [0.1484, 0.4038, 0.8294, ..., 0.0148, 0.6520, 0.4250],
        ...,
        [0.3426, 0.1909, 0.7240, ..., 0.4218, 0.2676, 0.5679],
        [0.5561, 0.2081, 0.0676, ..., 0.9778, 0.3302, 0.9559],
        [0.2665, 0.8483, 0.5389, ..., 0.4956, 0.6862, 0.9178]])'''

        self.assertEqual(a_str, expected)

1137 1138 1139 1140 1141 1142
    def test_tensor_str(self):
        with _test_eager_guard():
            self.func_test_tensor_str()
        self.func_test_tensor_str()

    def func_test_tensor_str2(self):
1143 1144 1145 1146
        paddle.disable_static(paddle.CPUPlace())
        a = paddle.to_tensor([[1.5111111, 1.0], [0, 0]])
        a_str = str(a)

1147
        expected = '''Tensor(shape=[2, 2], dtype=float32, place=Place(cpu), stop_gradient=True,
1148 1149 1150 1151 1152
       [[1.5111, 1.    ],
        [0.    , 0.    ]])'''

        self.assertEqual(a_str, expected)

1153 1154 1155 1156 1157 1158
    def test_tensor_str2(self):
        with _test_eager_guard():
            self.func_test_tensor_str2()
        self.func_test_tensor_str2()

    def func_test_tensor_str3(self):
1159 1160 1161 1162
        paddle.disable_static(paddle.CPUPlace())
        a = paddle.to_tensor([[-1.5111111, 1.0], [0, -0.5]])
        a_str = str(a)

1163
        expected = '''Tensor(shape=[2, 2], dtype=float32, place=Place(cpu), stop_gradient=True,
1164 1165 1166 1167 1168
       [[-1.5111,  1.    ],
        [ 0.    , -0.5000]])'''

        self.assertEqual(a_str, expected)

1169 1170 1171 1172 1173 1174
    def test_tensor_str3(self):
        with _test_eager_guard():
            self.func_test_tensor_str3()
        self.func_test_tensor_str3()

    def func_test_tensor_str_scaler(self):
1175 1176 1177 1178
        paddle.disable_static(paddle.CPUPlace())
        a = paddle.to_tensor(np.array(False))
        a_str = str(a)

1179
        expected = '''Tensor(shape=[], dtype=bool, place=Place(cpu), stop_gradient=True,
1180 1181 1182 1183
       False)'''

        self.assertEqual(a_str, expected)

1184 1185 1186 1187 1188 1189
    def test_tensor_str_scaler(self):
        with _test_eager_guard():
            self.func_test_tensor_str_scaler()
        self.func_test_tensor_str_scaler()

    def func_test_tensor_str_shape_with_zero(self):
1190 1191 1192 1193 1194
        paddle.disable_static(paddle.CPUPlace())
        x = paddle.ones((10, 10))
        y = paddle.fluid.layers.where(x == 0)
        a_str = str(y)

1195
        expected = '''Tensor(shape=[0, 2], dtype=int64, place=Place(cpu), stop_gradient=True,
1196 1197 1198 1199
       [])'''

        self.assertEqual(a_str, expected)

1200 1201 1202 1203 1204 1205
    def test_tensor_str_shape_with_zero(self):
        with _test_eager_guard():
            self.func_test_tensor_str_shape_with_zero()
        self.func_test_tensor_str_shape_with_zero()

    def func_test_tensor_str_linewidth(self):
1206 1207 1208
        paddle.disable_static(paddle.CPUPlace())
        paddle.seed(2021)
        x = paddle.rand([128])
1209 1210 1211 1212
        paddle.set_printoptions(precision=4,
                                threshold=1000,
                                edgeitems=3,
                                linewidth=80)
1213 1214
        a_str = str(x)

1215
        expected = '''Tensor(shape=[128], dtype=float32, place=Place(cpu), stop_gradient=True,
1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233
       [0.3759, 0.0278, 0.2489, 0.3110, 0.9105, 0.7381, 0.1905, 0.4726, 0.2435,
        0.9142, 0.3367, 0.7243, 0.7664, 0.9915, 0.2921, 0.1363, 0.8096, 0.2915,
        0.9564, 0.9972, 0.2573, 0.2597, 0.3429, 0.2484, 0.9579, 0.7003, 0.4126,
        0.4274, 0.0074, 0.9686, 0.9910, 0.0144, 0.6564, 0.2932, 0.7114, 0.9301,
        0.6421, 0.0538, 0.1273, 0.5771, 0.9336, 0.6416, 0.1832, 0.9311, 0.7702,
        0.7474, 0.4479, 0.3382, 0.5579, 0.0444, 0.9802, 0.9874, 0.3038, 0.5640,
        0.2408, 0.5489, 0.8866, 0.1006, 0.5881, 0.7560, 0.7928, 0.8604, 0.4670,
        0.9285, 0.1482, 0.4541, 0.1307, 0.6221, 0.4902, 0.1147, 0.4415, 0.2987,
        0.7276, 0.2077, 0.7551, 0.9652, 0.4369, 0.2282, 0.0047, 0.2934, 0.4308,
        0.4190, 0.1442, 0.3650, 0.3056, 0.6535, 0.1211, 0.8721, 0.7408, 0.4220,
        0.5937, 0.3123, 0.9198, 0.0275, 0.5338, 0.4622, 0.7521, 0.3609, 0.4703,
        0.1736, 0.8976, 0.7616, 0.3756, 0.2416, 0.2907, 0.3246, 0.4305, 0.5717,
        0.0735, 0.0361, 0.5534, 0.4399, 0.9260, 0.6525, 0.3064, 0.4573, 0.9210,
        0.8269, 0.2424, 0.7494, 0.8945, 0.7098, 0.8078, 0.4707, 0.5715, 0.7232,
        0.4678, 0.5047])'''

        self.assertEqual(a_str, expected)

1234 1235 1236 1237 1238 1239
    def test_tensor_str_linewidth(self):
        with _test_eager_guard():
            self.func_test_tensor_str_linewidth()
        self.func_test_tensor_str_linewidth()

    def func_test_tensor_str_linewidth2(self):
1240 1241 1242 1243 1244 1245
        paddle.disable_static(paddle.CPUPlace())
        paddle.seed(2021)
        x = paddle.rand([128])
        paddle.set_printoptions(precision=4, linewidth=160, sci_mode=True)
        a_str = str(x)

1246
        expected = '''Tensor(shape=[128], dtype=float32, place=Place(cpu), stop_gradient=True,
1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260
       [3.7587e-01, 2.7798e-02, 2.4891e-01, 3.1097e-01, 9.1053e-01, 7.3811e-01, 1.9045e-01, 4.7258e-01, 2.4354e-01, 9.1415e-01, 3.3666e-01, 7.2428e-01,
        7.6640e-01, 9.9146e-01, 2.9215e-01, 1.3625e-01, 8.0957e-01, 2.9153e-01, 9.5642e-01, 9.9718e-01, 2.5732e-01, 2.5973e-01, 3.4292e-01, 2.4841e-01,
        9.5794e-01, 7.0029e-01, 4.1260e-01, 4.2737e-01, 7.3788e-03, 9.6863e-01, 9.9102e-01, 1.4416e-02, 6.5640e-01, 2.9318e-01, 7.1136e-01, 9.3008e-01,
        6.4209e-01, 5.3849e-02, 1.2730e-01, 5.7712e-01, 9.3359e-01, 6.4155e-01, 1.8320e-01, 9.3110e-01, 7.7021e-01, 7.4736e-01, 4.4793e-01, 3.3817e-01,
        5.5794e-01, 4.4412e-02, 9.8023e-01, 9.8735e-01, 3.0376e-01, 5.6397e-01, 2.4082e-01, 5.4893e-01, 8.8659e-01, 1.0065e-01, 5.8812e-01, 7.5600e-01,
        7.9280e-01, 8.6041e-01, 4.6701e-01, 9.2852e-01, 1.4821e-01, 4.5410e-01, 1.3074e-01, 6.2210e-01, 4.9024e-01, 1.1466e-01, 4.4154e-01, 2.9868e-01,
        7.2758e-01, 2.0766e-01, 7.5508e-01, 9.6522e-01, 4.3688e-01, 2.2823e-01, 4.7394e-03, 2.9342e-01, 4.3083e-01, 4.1902e-01, 1.4416e-01, 3.6500e-01,
        3.0560e-01, 6.5350e-01, 1.2115e-01, 8.7206e-01, 7.4081e-01, 4.2203e-01, 5.9372e-01, 3.1230e-01, 9.1979e-01, 2.7486e-02, 5.3383e-01, 4.6224e-01,
        7.5211e-01, 3.6094e-01, 4.7034e-01, 1.7355e-01, 8.9763e-01, 7.6165e-01, 3.7557e-01, 2.4157e-01, 2.9074e-01, 3.2458e-01, 4.3049e-01, 5.7171e-01,
        7.3509e-02, 3.6087e-02, 5.5341e-01, 4.3993e-01, 9.2601e-01, 6.5248e-01, 3.0640e-01, 4.5727e-01, 9.2104e-01, 8.2688e-01, 2.4243e-01, 7.4937e-01,
        8.9448e-01, 7.0981e-01, 8.0783e-01, 4.7065e-01, 5.7154e-01, 7.2319e-01, 4.6777e-01, 5.0465e-01])'''

        self.assertEqual(a_str, expected)

1261 1262 1263 1264 1265 1266
    def test_tensor_str_linewidth2(self):
        with _test_eager_guard():
            self.func_test_tensor_str_linewidth2()
        self.func_test_tensor_str_linewidth2()

    def func_tensor_str_bf16(self):
1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278
        paddle.disable_static(paddle.CPUPlace())
        a = paddle.to_tensor([[1.5, 1.0], [0, 0]])
        a = paddle.cast(a, dtype=core.VarDesc.VarType.BF16)
        paddle.set_printoptions(precision=4)
        a_str = str(a)

        expected = '''Tensor(shape=[2, 2], dtype=bfloat16, place=Place(cpu), stop_gradient=True,
       [[1.5000, 1.    ],
        [0.    , 0.    ]])'''

        self.assertEqual(a_str, expected)

1279 1280 1281 1282 1283
    def test_tensor_str_bf16(self):
        with _test_eager_guard():
            self.func_tensor_str_bf16()
        self.func_tensor_str_bf16()

1284 1285 1286 1287 1288 1289
    def test_tensor_str_bf16(self):
        with _test_eager_guard():
            self.func_tensor_str_bf16()
        self.func_tensor_str_bf16()

    def func_test_print_tensor_dtype(self):
L
Leo Chen 已提交
1290 1291 1292 1293 1294 1295 1296
        paddle.disable_static(paddle.CPUPlace())
        a = paddle.rand([1])
        a_str = str(a.dtype)

        expected = 'paddle.float32'

        self.assertEqual(a_str, expected)
1297 1298 1299 1300 1301

    def test_print_tensor_dtype(self):
        with _test_eager_guard():
            self.func_test_print_tensor_dtype()
        self.func_test_print_tensor_dtype()
L
Leo Chen 已提交
1302

L
Leo Chen 已提交
1303

1304
class TestVarBaseSetitem(unittest.TestCase):
1305

1306
    def func_setUp(self):
1307 1308 1309
        self.set_dtype()
        self.tensor_x = paddle.to_tensor(np.ones((4, 2, 3)).astype(self.dtype))
        self.np_value = np.random.random((2, 3)).astype(self.dtype)
1310 1311
        self.tensor_value = paddle.to_tensor(self.np_value)

1312 1313 1314
    def set_dtype(self):
        self.dtype = "int32"

1315
    def _test(self, value):
J
Jiabin Yang 已提交
1316
        if _in_legacy_dygraph():
W
wanghuancoder 已提交
1317
            self.assertEqual(self.tensor_x.inplace_version, 0)
1318

1319
        id_origin = id(self.tensor_x)
1320
        self.tensor_x[0] = value
J
Jiabin Yang 已提交
1321
        if _in_legacy_dygraph():
W
wanghuancoder 已提交
1322
            self.assertEqual(self.tensor_x.inplace_version, 1)
1323 1324

        if isinstance(value, (six.integer_types, float)):
1325
            result = np.zeros((2, 3)).astype(self.dtype) + value
1326 1327 1328 1329

        else:
            result = self.np_value

1330
        np.testing.assert_array_equal(self.tensor_x[0].numpy(), result)
1331 1332 1333
        self.assertEqual(id_origin, id(self.tensor_x))

        self.tensor_x[1:2] = value
J
Jiabin Yang 已提交
1334
        if _in_legacy_dygraph():
W
wanghuancoder 已提交
1335
            self.assertEqual(self.tensor_x.inplace_version, 2)
1336
        np.testing.assert_array_equal(self.tensor_x[1].numpy(), result)
1337 1338 1339
        self.assertEqual(id_origin, id(self.tensor_x))

        self.tensor_x[...] = value
J
Jiabin Yang 已提交
1340
        if _in_legacy_dygraph():
W
wanghuancoder 已提交
1341
            self.assertEqual(self.tensor_x.inplace_version, 3)
1342
        np.testing.assert_array_equal(self.tensor_x[3].numpy(), result)
1343 1344
        self.assertEqual(id_origin, id(self.tensor_x))

W
wanghuancoder 已提交
1345
    def func_test_value_tensor(self):
1346 1347
        self._test(self.tensor_value)

W
wanghuancoder 已提交
1348 1349
    def test_value_tensor(self):
        with _test_eager_guard():
1350
            self.func_setUp()
W
wanghuancoder 已提交
1351
            self.func_test_value_tensor()
1352
        self.func_setUp()
W
wanghuancoder 已提交
1353 1354 1355
        self.func_test_value_tensor()

    def func_test_value_numpy(self):
1356 1357
        self._test(self.np_value)

W
wanghuancoder 已提交
1358 1359
    def test_value_numpy(self):
        with _test_eager_guard():
1360
            self.func_setUp()
W
wanghuancoder 已提交
1361
            self.func_test_value_numpy()
1362
        self.func_setUp()
W
wanghuancoder 已提交
1363 1364 1365
        self.func_test_value_numpy()

    def func_test_value_int(self):
1366 1367
        self._test(10)

W
wanghuancoder 已提交
1368 1369
    def test_value_int(self):
        with _test_eager_guard():
1370
            self.func_setUp()
W
wanghuancoder 已提交
1371
            self.func_test_value_int()
1372
        self.func_setUp()
W
wanghuancoder 已提交
1373 1374
        self.func_test_value_int()

1375 1376

class TestVarBaseSetitemInt64(TestVarBaseSetitem):
1377

1378 1379 1380 1381 1382
    def set_dtype(self):
        self.dtype = "int64"


class TestVarBaseSetitemFp32(TestVarBaseSetitem):
1383

1384 1385 1386
    def set_dtype(self):
        self.dtype = "float32"

1387
    def func_test_value_float(self):
1388 1389 1390
        paddle.disable_static()
        self._test(3.3)

1391 1392 1393 1394 1395 1396 1397
    def test_value_float(self):
        with _test_eager_guard():
            self.func_setUp()
            self.func_test_value_float()
        self.func_setUp()
        self.func_test_value_float()

1398

1399
class TestVarBaseSetitemFp64(TestVarBaseSetitem):
1400

1401 1402 1403 1404
    def set_dtype(self):
        self.dtype = "float64"


1405
class TestVarBaseSetitemBoolIndex(unittest.TestCase):
1406

1407
    def func_setUp(self):
1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434
        paddle.disable_static()
        self.set_dtype()
        self.set_input()

    def set_input(self):
        self.tensor_x = paddle.to_tensor(np.ones((4, 2, 3)).astype(self.dtype))
        self.np_value = np.random.random((2, 3)).astype(self.dtype)
        self.tensor_value = paddle.to_tensor(self.np_value)

    def set_dtype(self):
        self.dtype = "int32"

    def _test(self, value):
        paddle.disable_static()
        self.assertEqual(self.tensor_x.inplace_version, 0)

        id_origin = id(self.tensor_x)
        index_1 = paddle.to_tensor(np.array([True, False, False, False]))
        self.tensor_x[index_1] = value
        self.assertEqual(self.tensor_x.inplace_version, 1)

        if isinstance(value, (six.integer_types, float)):
            result = np.zeros((2, 3)).astype(self.dtype) + value

        else:
            result = self.np_value

1435
        np.testing.assert_array_equal(self.tensor_x[0].numpy(), result)
1436 1437 1438 1439 1440
        self.assertEqual(id_origin, id(self.tensor_x))

        index_2 = paddle.to_tensor(np.array([False, True, False, False]))
        self.tensor_x[index_2] = value
        self.assertEqual(self.tensor_x.inplace_version, 2)
1441
        np.testing.assert_array_equal(self.tensor_x[1].numpy(), result)
1442 1443 1444 1445 1446
        self.assertEqual(id_origin, id(self.tensor_x))

        index_3 = paddle.to_tensor(np.array([True, True, True, True]))
        self.tensor_x[index_3] = value
        self.assertEqual(self.tensor_x.inplace_version, 3)
1447
        np.testing.assert_array_equal(self.tensor_x[3].numpy(), result)
1448 1449
        self.assertEqual(id_origin, id(self.tensor_x))

1450
    def func_test_value_tensor(self):
1451 1452 1453
        paddle.disable_static()
        self._test(self.tensor_value)

1454 1455 1456 1457 1458 1459 1460 1461
    def test_value_tensor(self):
        with _test_eager_guard():
            self.func_setUp()
            self.func_test_value_tensor()
        self.func_setUp()
        self.func_test_value_tensor()

    def func_test_value_numpy(self):
1462 1463 1464
        paddle.disable_static()
        self._test(self.np_value)

1465 1466 1467 1468 1469 1470 1471 1472
    def test_value_numpy(self):
        with _test_eager_guard():
            self.func_setUp()
            self.func_test_value_numpy()
        self.func_setUp()
        self.func_test_value_numpy()

    def func_test_value_int(self):
1473 1474 1475
        paddle.disable_static()
        self._test(10)

1476 1477 1478 1479 1480 1481 1482
    def test_value_int(self):
        with _test_eager_guard():
            self.func_setUp()
            self.func_test_value_int()
        self.func_setUp()
        self.func_test_value_int()

1483 1484

class TestVarBaseSetitemBoolScalarIndex(unittest.TestCase):
1485

1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505
    def set_input(self):
        self.tensor_x = paddle.to_tensor(np.ones((1, 2, 3)).astype(self.dtype))
        self.np_value = np.random.random((2, 3)).astype(self.dtype)
        self.tensor_value = paddle.to_tensor(self.np_value)

    def _test(self, value):
        paddle.disable_static()
        self.assertEqual(self.tensor_x.inplace_version, 0)

        id_origin = id(self.tensor_x)
        index = paddle.to_tensor(np.array([True]))
        self.tensor_x[index] = value
        self.assertEqual(self.tensor_x.inplace_version, 1)

        if isinstance(value, (six.integer_types, float)):
            result = np.zeros((2, 3)).astype(self.dtype) + value

        else:
            result = self.np_value

1506
        np.testing.assert_array_equal(self.tensor_x[0].numpy(), result)
1507 1508 1509
        self.assertEqual(id_origin, id(self.tensor_x))


1510
class TestVarBaseInplaceVersion(unittest.TestCase):
1511

1512
    def func_test_setitem(self):
1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523
        paddle.disable_static()

        var = paddle.ones(shape=[4, 2, 3], dtype="float32")
        self.assertEqual(var.inplace_version, 0)

        var[1] = 1
        self.assertEqual(var.inplace_version, 1)

        var[1:2] = 1
        self.assertEqual(var.inplace_version, 2)

1524 1525 1526 1527 1528 1529
    def test_setitem(self):
        with _test_eager_guard():
            self.func_test_setitem()
        self.func_test_setitem()

    def func_test_bump_inplace_version(self):
1530 1531 1532 1533 1534 1535 1536 1537 1538 1539
        paddle.disable_static()
        var = paddle.ones(shape=[4, 2, 3], dtype="float32")
        self.assertEqual(var.inplace_version, 0)

        var._bump_inplace_version()
        self.assertEqual(var.inplace_version, 1)

        var._bump_inplace_version()
        self.assertEqual(var.inplace_version, 2)

1540 1541 1542 1543 1544
    def test_bump_inplace_version(self):
        with _test_eager_guard():
            self.func_test_bump_inplace_version()
        self.func_test_bump_inplace_version()

1545

1546
class TestVarBaseSlice(unittest.TestCase):
1547

1548
    def func_test_slice(self):
1549 1550 1551 1552 1553 1554 1555
        paddle.disable_static()
        np_x = np.random.random((3, 8, 8))
        x = paddle.to_tensor(np_x, dtype="float64")
        actual_x = x._slice(0, 1)
        actual_x = paddle.to_tensor(actual_x)
        self.assertEqual(actual_x.numpy().all(), np_x[0:1].all())

1556 1557 1558 1559 1560
    def test_slice(self):
        with _test_eager_guard():
            self.func_test_slice()
        self.func_test_slice()

1561 1562

class TestVarBaseClear(unittest.TestCase):
1563

1564
    def func_test_clear(self):
1565 1566 1567 1568 1569 1570
        paddle.disable_static()
        np_x = np.random.random((3, 8, 8))
        x = paddle.to_tensor(np_x, dtype="float64")
        x._clear()
        self.assertEqual(str(x), "Tensor(Not initialized)")

1571 1572 1573 1574 1575
    def test_clear(self):
        with _test_eager_guard():
            self.func_test_clear()
        self.func_test_clear()

1576 1577

class TestVarBaseOffset(unittest.TestCase):
1578

1579
    def func_offset(self):
1580 1581 1582 1583 1584 1585 1586 1587
        paddle.disable_static()
        np_x = np.random.random((3, 8, 8))
        x = paddle.to_tensor(np_x, dtype="float64")
        expected_offset = 0
        actual_x = x._slice(expected_offset, 1)
        actual_x = paddle.to_tensor(actual_x)
        self.assertEqual(actual_x._offset(), expected_offset)

1588 1589 1590 1591 1592
    def test_offset(self):
        with _test_eager_guard():
            self.func_offset()
        self.func_offset()

1593

1594
class TestVarBaseShareBufferTo(unittest.TestCase):
1595

1596
    def func_test_share_buffer_To(self):
1597
        paddle.disable_static()
1598 1599 1600
        np_src = np.random.random((3, 8, 8))
        src = paddle.to_tensor(np_src, dtype="float64")
        # empty_var
1601 1602 1603 1604
        if _in_legacy_dygraph():
            dst = core.VarBase()
        else:
            dst = core.eager.Tensor()
1605 1606
        src._share_buffer_to(dst)
        self.assertEqual(src._is_shared_buffer_with(dst), True)
1607

1608 1609 1610 1611 1612
    def test_share_buffer_To(self):
        with _test_eager_guard():
            self.func_test_share_buffer_To()
        self.func_test_share_buffer_To()

1613 1614

class TestVarBaseTo(unittest.TestCase):
1615

1616
    def func_setUp(self):
1617 1618 1619 1620
        paddle.disable_static()
        self.np_x = np.random.random((3, 8, 8))
        self.x = paddle.to_tensor(self.np_x, dtype="float32")

1621
    def func_test_to_api(self):
1622 1623
        x_double = self.x._to(dtype='double')
        self.assertEqual(x_double.dtype, paddle.fluid.core.VarDesc.VarType.FP64)
1624
        np.testing.assert_allclose(self.np_x, x_double, rtol=1e-05)
1625 1626 1627

        x_ = self.x._to()
        self.assertEqual(self.x.dtype, paddle.fluid.core.VarDesc.VarType.FP64)
1628
        np.testing.assert_allclose(self.np_x, x_, rtol=1e-05)
1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667

        if paddle.fluid.is_compiled_with_cuda():
            x_gpu = self.x._to(device=paddle.CUDAPlace(0))
            self.assertTrue(x_gpu.place.is_gpu_place())
            self.assertEqual(x_gpu.place.gpu_device_id(), 0)

            x_gpu0 = self.x._to(device='gpu:0')
            self.assertTrue(x_gpu0.place.is_gpu_place())
            self.assertEqual(x_gpu0.place.gpu_device_id(), 0)

            x_gpu1 = self.x._to(device='gpu:0', dtype="float64")
            self.assertTrue(x_gpu1.place.is_gpu_place())
            self.assertEqual(x_gpu1.place.gpu_device_id(), 0)
            self.assertEqual(x_gpu1.dtype,
                             paddle.fluid.core.VarDesc.VarType.FP64)

            x_gpu2 = self.x._to(device='gpu:0', dtype="float16")
            self.assertTrue(x_gpu2.place.is_gpu_place())
            self.assertEqual(x_gpu2.place.gpu_device_id(), 0)
            self.assertEqual(x_gpu2.dtype,
                             paddle.fluid.core.VarDesc.VarType.FP16)

        x_cpu = self.x._to(device=paddle.CPUPlace())
        self.assertTrue(x_cpu.place.is_cpu_place())

        x_cpu0 = self.x._to(device='cpu')
        self.assertTrue(x_cpu0.place.is_cpu_place())

        x_cpu1 = self.x._to(device=paddle.CPUPlace(), dtype="float64")
        self.assertTrue(x_cpu1.place.is_cpu_place())
        self.assertEqual(x_cpu1.dtype, paddle.fluid.core.VarDesc.VarType.FP64)

        x_cpu2 = self.x._to(device='cpu', dtype="float16")
        self.assertTrue(x_cpu2.place.is_cpu_place())
        self.assertEqual(x_cpu2.dtype, paddle.fluid.core.VarDesc.VarType.FP16)

        self.assertRaises(ValueError, self.x._to, device=1)
        self.assertRaises(AssertionError, self.x._to, blocking=1)

1668 1669 1670 1671 1672 1673 1674
    def test_to_api(self):
        with _test_eager_guard():
            self.func_setUp()
            self.func_test_to_api()
        self.func_setUp()
        self.func_test_to_api()

1675 1676

class TestVarBaseInitVarBaseFromTensorWithDevice(unittest.TestCase):
1677

1678
    def func_test_varbase_init(self):
1679 1680 1681 1682 1683 1684 1685
        paddle.disable_static()
        t = fluid.Tensor()
        np_x = np.random.random((3, 8, 8))
        t.set(np_x, fluid.CPUPlace())

        if paddle.fluid.is_compiled_with_cuda():
            device = paddle.CUDAPlace(0)
1686 1687 1688 1689
            if _in_legacy_dygraph():
                tmp = fluid.core.VarBase(t, device)
            else:
                tmp = fluid.core.eager.Tensor(t, device)
1690 1691 1692 1693
            self.assertTrue(tmp.place.is_gpu_place())
            self.assertEqual(tmp.numpy().all(), np_x.all())

        device = paddle.CPUPlace()
1694 1695 1696 1697
        if _in_legacy_dygraph():
            tmp = fluid.core.VarBase(t, device)
        else:
            tmp = fluid.core.eager.Tensor(t, device)
1698 1699
        self.assertEqual(tmp.numpy().all(), np_x.all())

1700 1701 1702 1703 1704
    def test_varbase_init(self):
        with _test_eager_guard():
            self.func_test_varbase_init()
        self.func_test_varbase_init()

1705 1706

class TestVarBaseNumel(unittest.TestCase):
1707

1708
    def func_test_numel_normal(self):
1709 1710 1711 1712 1713 1714 1715
        paddle.disable_static()
        np_x = np.random.random((3, 8, 8))
        x = paddle.to_tensor(np_x, dtype="float64")
        x_actual_numel = x._numel()
        x_expected_numel = np.product((3, 8, 8))
        self.assertEqual(x_actual_numel, x_expected_numel)

1716 1717 1718 1719 1720 1721
    def test_numel_normal(self):
        with _test_eager_guard():
            self.func_test_numel_normal()
        self.func_test_numel_normal()

    def func_test_numel_without_holder(self):
1722
        paddle.disable_static()
1723 1724 1725 1726
        if _in_legacy_dygraph():
            x_without_holder = core.VarBase()
        else:
            x_without_holder = core.eager.Tensor()
1727 1728 1729
        x_actual_numel = x_without_holder._numel()
        self.assertEqual(x_actual_numel, 0)

1730 1731 1732 1733 1734
    def ttest_numel_without_holder(self):
        with _test_eager_guard():
            self.func_test_numel_without_holder()
        self.func_test_numel_without_holder()

1735 1736

class TestVarBaseCopyGradientFrom(unittest.TestCase):
1737

1738
    def func_test_copy_gradient_from(self):
1739 1740 1741 1742 1743 1744 1745 1746 1747 1748
        paddle.disable_static()
        np_x = np.random.random((2, 2))
        np_y = np.random.random((2, 2))
        x = paddle.to_tensor(np_x, dtype="float64", stop_gradient=False)
        y = paddle.to_tensor(np_y, dtype="float64")
        out = x + x
        out.backward()
        x._copy_gradient_from(y)
        self.assertEqual(x.grad.numpy().all(), np_y.all())

1749 1750 1751 1752 1753
    def test_copy_gradient_from(self):
        with _test_eager_guard():
            self.func_test_copy_gradient_from()
        self.func_test_copy_gradient_from()

1754

1755
class TestEagerTensorGradNameValue(unittest.TestCase):
1756

1757 1758 1759 1760 1761 1762 1763 1764
    def test_eager_tensor_grad_name_value(self):
        with _test_eager_guard():
            a_np = np.array([2, 3]).astype('float32')
            a = paddle.to_tensor(a_np)
            a.stop_gradient = False
            b = a**2
            self.assertEqual(a._grad_value(), None)
            b.backward()
1765
            # Note, for new dygraph, there are no generated grad name, so we skip the name check.
1766 1767 1768
            self.assertNotEqual(a._grad_value(), None)


L
Leo Chen 已提交
1769 1770
if __name__ == '__main__':
    unittest.main()