partial_program.py 41.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import os
16 17
from copy import deepcopy

18
import numpy as np
19

20
import paddle
21
from paddle import _legacy_C_ops
22
from paddle.amp.auto_cast import _in_amp_guard, _in_pure_fp16_guard
23 24 25 26 27 28
from paddle.base import backward, core, framework, program_guard
from paddle.base.compiler import BuildStrategy
from paddle.base.data_feeder import check_type, convert_dtype
from paddle.base.dygraph.base import switch_to_static_graph
from paddle.base.framework import _apply_pass
from paddle.base.unique_name import guard as UniqueNameGuard
29
from paddle.optimizer.lr import LRScheduler
30 31

from . import logging_utils
32 33 34
from .utils import (
    RETURN_NO_VALUE_MAGIC_NUM,
    backend_guard,
35
    construct_grad_names,
36
    tensor_name_guard,
37
)
38

39 40
__all__ = []

41

42
class NestSequence:
43 44 45 46 47 48 49
    """
    A wrapper class that easily to flatten and restore the nest structure of
    given sequence.
    """

    def __init__(self, raw_input, need_check=False):
        self.__raw_input = raw_input
50
        self.__input_list = self.tolist()
51 52 53 54 55 56 57
        self.__var_ids = self._get_var_ids()
        self._check_non_variable(need_check)

    def tolist(self):
        """
        Flattens the nested sequences into single list.
        """
58
        return paddle.utils.flatten(self.__raw_input)
59 60 61 62 63

    def restore(self, value_list):
        """
        Restores the nested sequence from value list.
        """
64
        assert len(self.__input_list) == len(value_list)
65
        return paddle.utils.pack_sequence_as(self.__raw_input, value_list)
66 67 68

    def _get_var_ids(self):
        var_ids = []
69
        for idx, var in enumerate(self.__input_list):
W
wanghuancoder 已提交
70
            if isinstance(var, (framework.Variable, core.eager.Tensor)):
71 72 73 74 75 76 77 78 79 80
                var_ids.append(idx)

        return var_ids

    def _check_non_variable(self, need_check):
        """
        Raises warning if output of traced function contains non-tensor type values.
        """
        if need_check:
            warning_types = set()
81
            for var in self.__input_list:
W
wanghuancoder 已提交
82
                if not isinstance(var, (framework.Variable, core.eager.Tensor)):
83 84
                    warning_types.add(type(var))
            if warning_types:
85
                logging_utils.warn(
86 87
                    "Output of traced function contains non-tensor type values: {}. "
                    "Currently, We don't support to update them while training and will return "
88 89 90 91
                    "what we first saw. Please try to return them as tensor.".format(
                        list(warning_types)
                    )
                )
92 93 94 95 96 97

    @property
    def var_ids(self):
        return self.__var_ids

    def __getitem__(self, item):
98
        return self.__input_list[item]
99

100

101
class LazyInitialized:
102 103 104 105 106 107 108 109 110 111 112 113 114
    """
    Descriptor to implement lazy initialization of property.
    """

    def __init__(self, function):
        self.function = function

    def __get__(self, instance, cls):
        val = self.function(instance)
        setattr(instance, self.function.__name__, val)
        return val


115 116 117 118 119
class ProgramInfo:
    """
    A helper class to recoder Program information
    """

120
    def __init__(self):
121 122 123 124 125
        self.op_size = {
            'fp32': -1,
            'amp': -1,
            'fp16': -1,
        }
126 127 128 129 130 131 132 133 134 135 136 137 138 139
        self.programs = {}
        self.mode = "infer"

    def __call__(self, key, prog_creator):
        """
        Recoder infer program and op size.
        """
        assert key in ['fp32', 'amp', 'fp16']
        if key not in self.programs:
            infer_prog = prog_creator(is_infer_mode=True)
            self.programs[key] = infer_prog
            self.op_size[key] = infer_prog.desc.block(0).op_size()

        return self.programs[key], self.op_size[key]
140 141


X
xiongkun 已提交
142
class PartialProgramLayerHook:
143
    def before_append_backward(self, forward_program):
X
xiongkun 已提交
144 145
        ...

146
    def after_append_backward(self, whole_program, backward_start_idx):
X
xiongkun 已提交
147 148
        ...

149
    def after_infer(self, infer_program):
X
xiongkun 已提交
150 151 152
        ...


153
class PartialProgramLayer:
154
    """
H
hjyp 已提交
155
    PartialProgramLayer wraps all the ops from layers decorated by `@to_static`
156 157 158
    and execute them as a static subgraph.

    .. note::
159 160 161
        **1. This is a very low level API. Users should not use this API
             directly. Please use `partial_program_from(concrete_program)`
             to create it.
162 163 164 165
        **2. LoDTensorArray is not currently supported in the output.

    Args:
        main_program(Program): The main program that contains ops need to be executed.
H
hjyp 已提交
166 167
        inputs(list[Variable]): The input list of the decorated function by `@to_static`.
        outputs(list[Variable]): The output list of the decorated function by `@to_static`.
W
wanghuancoder 已提交
168
        parameters(list[Tensor]|None): All trainable parameters included in the program. Default None.
169 170

    Returns:
171
        Layer: A Layer object that run all ops internally in static graph mode.
172 173
    """

174
    def __init__(
175 176 177 178 179 180 181
        self,
        main_program,
        inputs,
        outputs,
        name_generator,
        parameters=None,
        **kwargs
182
    ):
183
        super().__init__()
184 185
        self._inputs = NestSequence(inputs)
        self._outputs = NestSequence(outputs, need_check=True)
186
        self._params = parameters if parameters is not None else []
187
        self._name_generator = name_generator
188

189 190 191
        self._build_strategy = kwargs.get('build_strategy', BuildStrategy())
        assert isinstance(self._build_strategy, BuildStrategy)

192
        self._origin_main_program = self._verify_program(main_program)
193
        with paddle.base.framework._dygraph_guard(paddle.base.dygraph.Tracer()):
194
            self._cuda_graph_vec = self._create_cuda_graph_vec()
195 196
        self._cuda_graph_capture_mode = ""
        self._cuda_graph_pool_id = 0
197
        # Set default mode to train
198
        self.training = True
199
        self._infer_info = ProgramInfo()
200
        self._forward_end_index_map = {}
201

202
        amp_dtype, custom_white_list, custom_black_list = None, None, None
203 204 205
        tracer = framework._dygraph_tracer()
        if tracer:
            custom_white_list, custom_black_list = tracer._get_amp_op_list()
206 207 208 209 210 211 212 213 214 215
            amp_dtype = tracer._amp_dtype
        if amp_dtype is not None and amp_dtype in ['float16', 'bfloat16']:
            # For AMP training
            self._amp_list = (
                paddle.static.amp.fp16_lists.AutoMixedPrecisionLists(
                    custom_white_list=custom_white_list,
                    custom_black_list=custom_black_list,
                    dtype=amp_dtype,
                )
            )
216

217 218
        # program_id -> list(scope)
        self._scope_cache = {}
X
xiongkun 已提交
219
        self._hooker = None
220
        self._backend = kwargs.get('backend', None)
221
        self._grad_var_names = {}
222

223 224 225 226
    def __call__(self, inputs):
        """
        Execute static graph by Interpreter and Return dynamic Tensors.
        """
227
        with UniqueNameGuard(self._name_generator):
228
            in_vars, out_vars, in_var_names = self._prepare(inputs)
229 230 231 232 233 234
            self._cast_fp16_if_pure_fp16(in_vars)
            attrs = self._prepare_attributes()
            attrs.extend(["x_names", in_var_names])

            self._sync_lr_value_with_scheduler()

235 236 237 238 239 240 241 242 243 244 245 246
            with tensor_name_guard(in_vars, in_var_names):
                _legacy_C_ops.run_program(
                    self._valid_vars(in_vars),
                    self._valid_vars(self._params),
                    self._valid_vars(out_vars),
                    self._create_scope_vec(
                        program_id=self.program_id, use_scope_cache=True
                    ),
                    self._double_grads,
                    self._cuda_graph_vec,
                    *attrs
                )
247 248 249 250

            self._update_stop_gradient(out_vars)
            restored_nest_out = self._restore_out(out_vars)
            return self._remove_no_value(restored_nest_out)
251

252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
    def _sync_lr_value_with_scheduler(self):
        """Update lr_var value with calculated by lr_scheduler."""
        main_program = self._origin_main_program
        if hasattr(main_program, 'lr_scheduler') and hasattr(
            main_program, 'lr_var'
        ):
            lr_scheduler = main_program.lr_scheduler
            lr_var = main_program.lr_var

            assert isinstance(lr_scheduler, LRScheduler), "must be LRScheduler"
            lr_scheduler = self._origin_main_program.lr_scheduler
            lr_value = lr_scheduler()
            data = np.array(lr_value).astype(convert_dtype(lr_var.dtype))
            lr_var.set_value(data)

X
xiongkun 已提交
267 268 269
    def set_hooker(self, hooker):
        self._hooker = hooker

270 271 272 273 274 275 276 277
    def _get_scope(self, program_id=None, use_scope_cache=False):
        if use_scope_cache:
            if program_id not in self._scope_cache:
                scope = core.Scope()
                self._scope_cache[program_id] = [scope]
                return scope
            else:
                for scope in self._scope_cache[program_id]:
C
co63oc 已提交
278
                    if scope._can_reused:
279 280 281 282 283 284 285
                        return scope
                scope = core.Scope()
                self._scope_cache[program_id].append(scope)
                return scope
        else:
            return core.Scope()

286 287
    @LazyInitialized
    def _double_grads(self):
288 289
        # TODO: check the affects.
        return None
290

291 292 293 294
    # whole
    @switch_to_static_graph
    def _create_program(self, is_infer_mode=False):
        if is_infer_mode:
X
xiongkun 已提交
295 296 297 298
            infer_program = self._origin_main_program.clone(
                for_test=is_infer_mode
            )
            if self._hooker:
299
                infer_program = self._hooker.after_infer(infer_program)
X
xiongkun 已提交
300
            return infer_program
301 302
        else:
            train_program = self._append_backward_desc(
303 304
                self._origin_main_program
            )
305 306 307
            # Note: Only set grad type once after initializing train program. So we put it here.
            self._set_grad_type(self._params, train_program)
            return train_program
308

309 310 311 312
    @switch_to_static_graph
    def _create_amp_program(self, is_infer_mode=False):
        amp_program = self._origin_main_program.clone(for_test=is_infer_mode)
        with program_guard(amp_program):
313 314
            paddle.static.amp.fp16_utils.cast_model_to_fp16(
                amp_program, self._amp_list, use_fp16_guard=False, level='O1'
315
            )
316
        if is_infer_mode:
317 318
            if self._hooker:
                amp_program = self._hooker.after_infer(amp_program)
319 320 321 322 323
            return amp_program
        else:
            train_amp_program = self._append_backward_desc(amp_program)
            self._set_grad_type(self._params, train_amp_program)
            return train_amp_program
324

325 326 327
    @switch_to_static_graph
    def _create_pure_fp16_program(self, is_infer_mode=False):
        pure_fp16_program = self._origin_main_program.clone(
328 329
            for_test=is_infer_mode
        )
330
        with program_guard(pure_fp16_program):
331
            paddle.static.amp.fp16_utils.cast_model_to_fp16(
332 333
                pure_fp16_program, self._amp_list, use_fp16_guard=False
            )
J
Jiabin Yang 已提交
334

335
        if is_infer_mode:
336 337
            if self._hooker:
                pure_fp16_program = self._hooker.after_infer(pure_fp16_program)
338 339 340
            return pure_fp16_program
        else:
            train_pure_fp16_program = self._append_backward_desc(
341 342
                pure_fp16_program
            )
343 344
            self._set_grad_type(self._params, train_pure_fp16_program)
            return train_pure_fp16_program
345

346
    @switch_to_static_graph
347
    def _create_forward_backward_train_program(self):
348
        whole_program = self._train_program
X
xiongkun 已提交
349
        forward_end_op_index = self.get_forward_end_op_idx(whole_program)
350
        assert forward_end_op_index >= 0
351

352 353 354
        return self._get_forward_backward_program_form(
            whole_program, forward_end_op_index
        )
355

356 357
    @switch_to_static_graph
    def _create_forward_backward_train_amp_program(self):
358
        whole_program = self._train_amp_program
359
        forward_end_op_index = self.get_forward_end_op_idx(whole_program)
360
        assert forward_end_op_index >= 0
361

362 363 364
        return self._get_forward_backward_program_form(
            whole_program, forward_end_op_index
        )
365 366 367

    @switch_to_static_graph
    def _create_forward_backward_train_pure_fp16_program(self):
368
        whole_program = self._train_pure_fp16_program
369
        forward_end_op_index = self.get_forward_end_op_idx(whole_program)
370
        assert forward_end_op_index >= 0
371

372 373 374
        return self._get_forward_backward_program_form(
            whole_program, forward_end_op_index
        )
375 376

    @LazyInitialized
377 378
    def _train_program(self):
        return self._create_program()
379

380
    @LazyInitialized
381
    def _infer_program(self):
382 383
        program, op_size = self._infer_info('fp32', self._create_program)
        return self._build_infer_program(program, op_size)
384

385 386 387 388 389 390
    @LazyInitialized
    def _train_amp_program(self):
        return self._create_amp_program()

    @LazyInitialized
    def _infer_amp_program(self):
391 392
        program, op_size = self._infer_info('amp', self._create_amp_program)
        return self._build_infer_program(program, op_size)
393 394 395

    @LazyInitialized
    def _train_pure_fp16_program(self):
396
        return self._create_pure_fp16_program()
397

398
    @LazyInitialized
399
    def _infer_pure_fp16_program(self):
400 401
        program, op_size = self._infer_info(
            'fp16', self._create_pure_fp16_program
402
        )
403
        return self._build_infer_program(program, op_size)
404

405
    @LazyInitialized
406 407 408
    def _train_forward_backward_program(self):
        program = self._create_forward_backward_train_program()
        return program
409 410

    @LazyInitialized
411 412 413 414
    def _train_amp_forward_backward_program(self):
        program = self._create_forward_backward_train_amp_program()
        return program

415 416 417 418
    @LazyInitialized
    def _empty_backward_program_for_eval(self):
        return paddle.static.Program()

419 420 421 422 423
    @LazyInitialized
    def _train_pure_fp16_forward_backward_program(self):
        program = self._create_forward_backward_train_pure_fp16_program()
        return program

424 425
    @LazyInitialized
    def _train_program_id(self):
426
        program_id = paddle.utils._hash_with_id(self._train_program, self)
427 428 429
        core._set_cached_executor_build_strategy(
            program_id, self._build_strategy
        )
430
        return program_id
431

432 433
    @LazyInitialized
    def _infer_program_id(self):
434
        return paddle.utils._hash_with_id(self._infer_program, self)
435

436 437
    @LazyInitialized
    def _train_amp_program_id(self):
438
        program_id = paddle.utils._hash_with_id(self._train_amp_program, self)
439 440 441
        core._set_cached_executor_build_strategy(
            program_id, self._build_strategy
        )
442 443
        return program_id

444 445
    @LazyInitialized
    def _infer_amp_program_id(self):
446
        return paddle.utils._hash_with_id(self._infer_amp_program, self)
447

448 449
    @LazyInitialized
    def _train_pure_fp16_program_id(self):
450 451 452
        program_id = paddle.utils._hash_with_id(
            self._train_pure_fp16_program, self
        )
453 454 455
        core._set_cached_executor_build_strategy(
            program_id, self._build_strategy
        )
456 457
        return program_id

458 459
    @LazyInitialized
    def _infer_pure_fp16_program_id(self):
460
        return paddle.utils._hash_with_id(self._infer_pure_fp16_program, self)
461

X
xiongkun 已提交
462
    def get_forward_end_op_idx(self, program):
463 464 465
        return self._forward_end_index_map[
            paddle.utils._hash_with_id(program, self)
        ]
X
xiongkun 已提交
466

467
    @property
468 469 470 471 472 473 474 475 476 477 478 479 480 481
    def program(self):
        """
        Return current train or eval program.
        """
        if self.training:
            return self.train_program
        else:
            return self.infer_program

    @property
    def program_id(self):
        """
        Return current train or eval program hash id.
        """
482 483 484 485 486 487 488 489 490 491 492 493 494 495 496
        if self.training:
            if _in_amp_guard():
                return self._train_amp_program_id
            elif _in_pure_fp16_guard():
                return self._train_pure_fp16_program_id
            else:
                return self._train_program_id
        else:
            if _in_amp_guard():
                return self._infer_amp_program_id
            elif _in_pure_fp16_guard():
                return self._infer_pure_fp16_program_id
            else:
                return self._infer_program_id

497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549
    @property
    def train_program(self):
        if _in_amp_guard():
            return self._train_amp_program
        elif _in_pure_fp16_guard():
            return self._train_pure_fp16_program
        else:
            return self._train_program

    @property
    def infer_program(self):
        if _in_amp_guard():
            return self._infer_amp_program
        elif _in_pure_fp16_guard():
            return self._infer_pure_fp16_program
        else:
            return self._infer_program

    @property
    def forward_program(self):
        if self.training:
            if _in_amp_guard():
                progs = self._train_amp_forward_backward_program
            elif _in_pure_fp16_guard():
                progs = self._train_pure_fp16_forward_backward_program
            else:
                progs = self._train_forward_backward_program
            return progs[0]
        else:
            return self.infer_program

    @property
    def backward_program(self):
        if self.training:
            if _in_amp_guard():
                progs = self._train_amp_forward_backward_program
            elif _in_pure_fp16_guard():
                progs = self._train_pure_fp16_forward_backward_program
            else:
                progs = self._train_forward_backward_program
            return progs[1]
        else:
            """
            Can't just return paddle.static.Program(), because self.backward_program is a property,
            whenever we call this method, a tmp Program() object is created and is gc immediatly
            after executed the following line in PartialProgramLayer.__call__.

            >>> self.backward_program.desc.block(0),

            When we access RunProgramAPI, it's possible to get an invalid backward_program address.
            """
            return self._empty_backward_program_for_eval

550 551 552 553 554 555 556 557 558 559 560 561
    def _verify_program(self, main_program):
        """
        Verify that the program parameter is initialized, prune some unused params,
        and remove redundant op callstack.
        """
        # 1. Check all params from main program can be found in self._params
        self._check_params_all_inited(main_program)
        # 2. Prune the parameters not used anywhere in the program.
        self._prune_unused_params(main_program)

        return main_program

562 563 564
    def prepare_gradient_aggregation(
        self, start_idx, main_program, target_program
    ):
565 566 567 568 569 570 571
        """
        Why we need add gradient aggregation operation ?
        In some cases, if non leaf nodes are used as output, gradient overwriting will occur, such as
        def forward(self, in):
            x = 2 * in  # <---- x is a non-leaf node in program.
            y = x + 3
            return x, y
572

573 574 575 576 577 578 579 580 581
        loss = forward(in)[0].sum()
        loss.backward()  # <----- x@grad will be overwrited by elementwise_add_grad Op
        """

        def _need_aggregation(var):
            """
            if exist a op whose inputs is var, then return True
            """
            if not isinstance(var, framework.Variable) or var.type not in [
582 583
                core.VarDesc.VarType.LOD_TENSOR,
                core.VarDesc.VarType.SELECTED_ROWS,
584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599
            ]:
                return False
            if var.dtype not in [paddle.float32, paddle.float64]:
                return False
            for op in main_program.block(0).ops:
                for in_arg in op.input_arg_names:
                    if in_arg == var.name:
                        return True
            return False

        def _insert_aggregation_ops_for_var(target_program, var):
            suffix = "@dy2static"
            var_grad_name = var.grad_name
            new_grad_name = var.name + suffix + "@GRAD"
            finded_ops = list(
                filter(
600 601
                    lambda x: x[0] >= start_idx
                    and any(
602 603
                        out_arg == var_grad_name
                        for out_arg in x[1].output_arg_names
604 605 606 607
                    ),
                    enumerate(target_program.block(0).ops),
                )
            )
608 609 610 611 612 613

            # len(finded_ops) may equals zero when stop_gradient works.
            # len(finded_ops) may > 1, because we may have fill_constant op.
            if len(finded_ops) == 0:
                return None
            # step1: create a new var named var.name@GRAD
614 615 616 617 618 619
            target_program.block(0).create_var(
                name=new_grad_name,
                type=var.type,
                dtype=var.dtype,
                shape=var.shape,
            )
620 621 622 623 624 625 626 627 628 629
            # step2: rename the var.name@GRAD to var.name@GRAD@dy2static
            for idx, op in finded_ops:
                op._rename_input(var_grad_name, new_grad_name)
                op._rename_output(var_grad_name, new_grad_name)
            # step3: insert sum op to aggregate the gradient.
            #        var.name@GRAD = sum(var.name@dy2static@GRAD, var.name@GRAD)
            target_program.block(0)._insert_op(
                finded_ops[-1][0] + 1,
                type='sum',
                inputs={'X': [var_grad_name, new_grad_name]},
630 631
                outputs={"Out": var_grad_name},
            )
632 633 634
            return None

        to_processed_vars = list(
635 636
            filter(_need_aggregation, self._outputs.tolist())
        )
637 638 639
        for _var in to_processed_vars:
            _insert_aggregation_ops_for_var(target_program, _var)

640
    @switch_to_static_graph
641
    def _append_backward_desc(self, main_program):
642
        program = main_program.clone(for_test=False)
X
xiongkun 已提交
643
        if self._hooker:
644
            program = self._hooker.before_append_backward(program)
645
        targets = []
646
        for out in self._outputs.tolist():
647 648 649
            if isinstance(out, framework.Variable):
                targets.append(program.global_block().var(out.name))

X
xiongkun 已提交
650
        start_idx = len(program.block(0).ops) + len(self._outputs.tolist())
651
        if targets:
652
            start_idx = len(program.block(0).ops) + len(self._outputs.tolist())
653
            with backend_guard(self._backend):
654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680
                check_type(
                    targets,
                    'targets',
                    (framework.Variable, list, tuple),
                    'paddle.static.gradients',
                )
                grad_info_map = backward.calc_gradient_helper(
                    targets=targets, inputs=[]
                )

                x_vars = [
                    program.block(0).var(var.name)
                    for var in self._inputs
                    if isinstance(var, framework.Variable)
                ]
                param_vars = [
                    program.block(0).var(param.name) for param in self._params
                ]
                out_vars = [
                    program.block(0).var(var.name)
                    for var in self._outputs
                    if isinstance(var, framework.Variable)
                ]

                self._grad_var_names = construct_grad_names(
                    grad_info_map, x_vars, param_vars, out_vars
                )
681

X
xiongkun 已提交
682 683
            if self._hooker:
                program, start_idx = self._hooker.after_append_backward(
684
                    program, start_idx
X
xiongkun 已提交
685
                )
686 687 688
            self.prepare_gradient_aggregation(
                start_idx + 1, main_program, program
            )
689

X
xiongkun 已提交
690
        self._forward_end_index_map[
691
            paddle.utils._hash_with_id(program, self)
X
xiongkun 已提交
692
        ] = start_idx - len(self._outputs.tolist())
693 694
        return program

695 696 697
    def _prune_unused_params(self, program):
        """
        Prune the parameters not used anywhere in the program.
H
hjyp 已提交
698
        The `@to_static` may only decorated a sub function which
699 700 701 702 703 704
        contains some unused parameters created in `__init__`.
        So prune these parameters to avoid unnecessary operations in
        `run_program_op`.
        """
        required_params = []
        for param in self._params:
705
            found_param = False
706
            for block in program.blocks:
707
                for op in block.ops:
708 709 710 711
                    if (
                        param.name in op.input_arg_names
                        or param.name in op.output_arg_names
                    ):
712 713 714 715
                        required_params.append(param)
                        found_param = True
                        break
                if found_param:
716 717 718 719
                    break

        self._params = required_params

720 721 722 723 724 725 726 727 728 729 730
    def _cast_fp16_if_pure_fp16(self, in_vars):
        if _in_pure_fp16_guard():
            for i, var in enumerate(in_vars):
                name = var.name
                if (
                    self.program.global_block().has_var(name)
                    and self.program.global_block().var(name).dtype
                    == paddle.float16
                ):
                    in_vars[i] = var.astype('float16')
                    in_vars[i].name = name
731

732
    def _prepare_attributes(self):
733
        attrs = [
734 735 736 737
            'forward_global_block',
            self.forward_program.desc.block(0),
            'backward_global_block',
            self.backward_program.desc.block(0),
738 739 740 741
            'is_test',
            not self.training,
            'program_id',
            self.program_id,
742
        ]
X
xiongkun 已提交
743

744 745 746 747 748 749 750
        if self.training:
            # NOTE: In the case of higher-order gradient, the names of the parameter grads may be like
            # `grad/grad/grad/linear_0.w_0@GRAD` instead of simply `linear_0.w_0@GRAD`, so we get
            # the correct names of the parameter grads from program. And out grads are similar to above.
            attrs.extend(
                (
                    'param_grad_names',
751
                    self._grad_var_names.get('param', []),
752
                    'out_grad_names',
753 754 755
                    self._grad_var_names.get('out', []),
                    'x_grad_names',
                    self._grad_var_names.get('x', []),
756 757
                )
            )
758 759
        if self._cuda_graph_capture_mode:
            attrs.extend(
760 761 762 763 764 765 766
                (
                    'cuda_graph_capture_mode',
                    self._cuda_graph_capture_mode,
                    'cuda_graph_pool_id',
                    self._cuda_graph_pool_id,
                )
            )
767
        return attrs
768

769 770 771 772 773 774 775 776 777 778 779 780
    @switch_to_static_graph
    def _build_infer_program(self, infer_program, forward_end_op_index):
        forward_skip_vars = self._parse_skip_gc_vars(infer_program)
        builded_infer_program = add_build_strategy_for(
            infer_program,
            0,
            forward_end_op_index,
            self._build_strategy,
            forward_skip_vars,
        )
        self._apply_inplace_pass(builded_infer_program, None)
        return builded_infer_program
781

782
    @switch_to_static_graph
783 784 785
    def _get_forward_backward_program_form(
        self, whole_program, forward_end_op_index
    ):
786 787
        # NOTE(dev): We apply build_strategy for backward firstly to
        # avoid skipping more gc variables.
788
        backward_start_op_index = forward_end_op_index + len(
789 790
            self._outputs.var_ids
        )
791
        backward_end_op_index = whole_program.desc.block(0).op_size()
792 793
        # For Backward process in CINN, all param@GRAD shoule be skipped for GC, because
        # they will be shared in scope and used by optimizer.
794 795 796
        backward_skip_vars = self._parse_skip_gc_vars(
            whole_program
        ) + self._grad_var_names.get('param', [])
797
        backward_builded_program = add_build_strategy_for(
798 799 800 801
            whole_program,
            backward_start_op_index,
            backward_end_op_index,
            self._build_strategy,
802 803 804 805 806 807 808 809 810 811 812 813
            backward_skip_vars,
        )

        forward_skip_vars = self._parse_skip_gc_vars(
            whole_program, backward_builded_program
        )
        forward_builded_program = add_build_strategy_for(
            whole_program,
            0,
            forward_end_op_index,
            self._build_strategy,
            forward_skip_vars,
814
        )
815

816 817 818
        self._apply_inplace_pass(
            forward_builded_program, backward_builded_program
        )
819 820 821 822 823 824
        return [forward_builded_program, backward_builded_program]

    def _apply_inplace_pass(self, forward_program, backward_program):
        attr_types = {
            "use_cuda": "bool",
            "mem_opt_skip_vars": "list[str]",
825
            "for_partial_block": "bool",
826 827 828 829
        }
        empty_startup_program = paddle.static.Program()
        use_cuda = True if core.is_compiled_with_cuda() else False
        # skip data var
830 831 832 833
        forward_mem_opt_skip_vars = self._parse_skip_gc_vars(
            forward_program, backward_program
        )
        backward_mem_opt_skip_vars = self._parse_skip_gc_vars(forward_program)
834 835 836 837 838 839
        if forward_program:
            attrs = {
                "use_cuda": use_cuda,
                "mem_opt_skip_vars": forward_mem_opt_skip_vars,
                "for_partial_block": True,
            }
840 841 842 843 844 845 846 847
            if not os.getenv("FLAGS_enable_new_ir_in_executor"):
                _apply_pass(
                    forward_program,
                    empty_startup_program,
                    "buffer_shared_inplace_pass",
                    attrs,
                    attr_types,
                )
848 849 850 851 852 853
        if backward_program:
            attrs = {
                "use_cuda": use_cuda,
                "mem_opt_skip_vars": backward_mem_opt_skip_vars,
                "for_partial_block": True,
            }
854 855 856 857 858 859 860 861
            if not os.getenv("FLAGS_enable_new_ir_in_executor"):
                _apply_pass(
                    backward_program,
                    empty_startup_program,
                    "buffer_shared_inplace_pass",
                    attrs,
                    attr_types,
                )
862

863 864 865 866 867 868 869
    @LazyInitialized
    def _inout_var_names(self):
        """
        Returns Variable Names from self._inputs and self.outputs
        """
        var_names = []
        for var in self._inputs:
870
            if isinstance(var, paddle.base.framework.Variable):
871 872
                var_names.append(var.desc.name())
        for var in self._outputs:
873
            if isinstance(var, paddle.base.framework.Variable):
874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889
                var_names.append(var.desc.name())
        return var_names

    def _parse_skip_gc_vars(self, program, backward_program=None):
        """
        Parse variables that need to skip GC after execute it.
        If specify backward_program, it will keep the variables used in backward.
        """
        # skip data var, DO NOT ignore this deepcopy
        skip_vars = deepcopy(self._inout_var_names)
        for var_name, var in program.global_block().vars.items():
            if var.is_data:
                skip_vars.append(var_name)

        if backward_program:
            for var_name in core.parse_safe_eager_deletion_skip_vars(
890
                backward_program.desc, True
891 892 893 894
            ):
                skip_vars.append(var_name)
        return skip_vars

895 896 897 898 899
    def _prepare(self, inputs):
        """
        Prepare inputs, outputs, attrs.
        """
        assert isinstance(inputs, (tuple, list))
900
        # Flatten inputs with nested structure into single list.
901
        flatten_inputs = paddle.utils.flatten(inputs)
W
wanghuancoder 已提交
902
        # Convert variable into Tensor and feed in training data.
903
        input_vars = []
904
        input_var_names = []
905
        expected_place = framework._current_expected_place()
906
        for i, value in enumerate(flatten_inputs):
907
            if isinstance(value, np.ndarray):
J
Jiabin Yang 已提交
908
                var = None
W
wanghuancoder 已提交
909 910 911 912 913 914 915 916
                var = core.eager.Tensor(
                    value=value,
                    name=self._inputs[i].desc.name(),
                    persistable=False,
                    place=expected_place,
                    zero_copy=True,
                )
            elif isinstance(value, core.eager.Tensor):
917 918 919 920
                # NOTE(Aurelius84): If var is on CPUPlace, it will be transformed multi times
                # into CUDAPlace when it's as input of multi Ops. so we move it in advance
                # to avoid this problem.
                if value.stop_gradient and not value.place._equals(
921 922
                    expected_place
                ):
923 924
                    var = value._copy_to(expected_place, False)
                    var.stop_gradient = True
925 926
                else:
                    var = value
927 928
            else:
                continue
929
            input_var_names.append(self._inputs[i].desc.name())
930
            input_vars.append(var)
931

W
wanghuancoder 已提交
932
        # mapping from name(string) -> Tensor
933
        out_tensor_map = {}
934

935 936
        def create_out(var_id):
            var = self._outputs[var_id]
937
            assert isinstance(var, framework.Variable)
938
            var_desc = var.desc
939

940 941
            if var_desc.name() in out_tensor_map:
                return out_tensor_map[var_desc.name()]
942

943
            out = core.eager.Tensor(
W
wanghuancoder 已提交
944 945 946 947 948 949
                var_desc.dtype(),
                var_desc.shape(),
                var_desc.name(),
                var_desc.type(),
                False,
            )
950 951 952
            out.stop_gradient = var.stop_gradient
            out_tensor_map[var_desc.name()] = out
            return out
953

W
wanghuancoder 已提交
954
        # Create Tensor to receive output data.
955 956
        out_vars = list(map(create_out, self._outputs.var_ids))

957
        return input_vars, out_vars, input_var_names
958

959
    def _create_scope_vec(self, program_id=None, use_scope_cache=False):
960
        # Hold forward variables
J
Jiabin Yang 已提交
961
        tmp_scope_vec = None
962 963 964
        inner_scope = self._get_scope(
            program_id=program_id, use_scope_cache=use_scope_cache
        )
W
wanghuancoder 已提交
965
        tmp_scope_vec = [inner_scope]
966
        return tmp_scope_vec
967

968
    def _create_cuda_graph_vec(self):
W
wanghuancoder 已提交
969
        var = core.eager.Tensor(
970 971 972 973 974 975
            core.VarDesc.VarType.FP32,
            [],
            "cuda_graph",
            core.VarDesc.VarType.RAW,
            True,
        )
976 977 978
        var.stop_gradient = True
        return var

X
xiongkun 已提交
979 980 981 982 983 984 985 986 987 988 989
    def _update_stop_gradient(self, out_vars):
        # Update stop_gradient for all outputs
        def set_stop_gradient(var_id, eager_tensor):
            var = self._outputs[var_id]
            assert isinstance(var, framework.Variable)
            eager_tensor.stop_gradient = var.stop_gradient
            return None

        for idx, var in zip(self._outputs.var_ids, out_vars):
            set_stop_gradient(idx, var)

990 991
    def _restore_out(self, out_vars):
        """
W
wanghuancoder 已提交
992
        Restores same nested outputs by only replacing the Variable with Tensor.
993 994 995 996 997 998
        """

        flatten_outputs = self._outputs.tolist()
        for i, idx in enumerate(self._outputs.var_ids):
            flatten_outputs[idx] = out_vars[i]
        outs = self._outputs.restore(flatten_outputs)
999
        if outs is not None and len(outs) == 1:
1000 1001 1002 1003
            outs = outs[0]

        return outs

1004 1005 1006 1007
    @switch_to_static_graph
    def _clone_for_test(self, main_program):
        return main_program.clone(for_test=True)

1008
    def _is_no_value(self, var):
W
wanghuancoder 已提交
1009
        if isinstance(var, core.eager.Tensor) and var.shape == [1]:
1010 1011
            # NOTE: .numpy() will insert MemcpySync operation, it hits performance.
            if var.numpy()[0] == RETURN_NO_VALUE_MAGIC_NUM:
1012 1013 1014 1015 1016 1017 1018
                return True
        return False

    def _remove_no_value(self, out_vars):
        """
        Removes invalid value for various-length return statement
        """
W
wanghuancoder 已提交
1019
        if isinstance(out_vars, core.eager.Tensor):
1020 1021 1022 1023 1024
            if self._is_no_value(out_vars):
                return None
            return out_vars
        elif isinstance(out_vars, (tuple, list)):
            if isinstance(out_vars, tuple):
1025 1026 1027
                res = tuple(
                    var for var in out_vars if not self._is_no_value(var)
                )
1028 1029 1030 1031
            else:
                # isinstance(out_vars, list)
                res = [var for var in out_vars if not self._is_no_value(var)]

1032
            has_removed = len(out_vars) > len(res)
1033 1034 1035 1036 1037 1038 1039 1040 1041 1042
            # len(out_vars) > len(res) means we have removed var. This is
            # preventing out_vars is empty or just one element at the beginning
            if len(res) == 0 and has_removed:
                return None
            elif len(res) == 1 and has_removed:
                return res[0]
            return res

        return out_vars

1043
    def _set_grad_type(self, params, train_program):
1044 1045
        # NOTE: if user set sparse gradient mode, the param's gradient
        # will be SelectedRows, not LoDTensor. But tracer will just
W
wanghuancoder 已提交
1046
        # set param grad Tensor by forward Tensor(LoDTensor)
1047 1048 1049 1050 1051
        # If we don't change grad_var type here, RunProgramOp need
        # transform SelectedRows to LoDTensor forcibly, it may not
        # be user wanted result.
        for param in params:
            grad_name = param.name + core.grad_var_suffix()
1052
            grad_var = train_program.desc.block(0).find_var(grad_name.encode())
1053 1054 1055 1056 1057
            # NOTE: cannot find var desc maybe no problem, such as in batch_norm
            if grad_var is None:
                continue
            param._set_grad_type(grad_var.type())

1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070
    def _remove_op_call_stack(self, main_program):
        """
        Remove op's python call stack with redundant low-level error messages related to
        transforamtions to avoid confusing users.
        """
        assert isinstance(main_program, framework.Program)
        for block in main_program.blocks:
            for op in block.ops:
                if op.has_attr("op_callstack"):
                    op._remove_attr("op_callstack")

        return main_program

1071 1072 1073
    def _check_params_all_inited(self, main_program):
        """
        Check all params from main program are already initialized, see details as follows:
W
wanghuancoder 已提交
1074
            1. all parameters in self._params should be type `framework.EagerParamBase` which are created in dygraph.
1075
            2. all parameters from transformed program can be found in self._params.
W
wanghuancoder 已提交
1076
               Because they share same data with EagerParamBase of original dygraph.
1077 1078 1079 1080
        """
        if not isinstance(self._params, (list, tuple)):
            raise TypeError(
                "Type of self._params in PartialProgramLayer should be list or tuple, but received %s."
1081 1082
                % type(self._params)
            )
1083

1084 1085 1086
        param_and_buffer_names_set = set()
        for i, var in enumerate(self._params):
            # self._params constains parameters and buffers with persistable=True.
W
wanghuancoder 已提交
1087
            if not isinstance(var, core.eager.Tensor):
1088
                raise TypeError(
1089 1090 1091 1092
                    'Type of self._params[{}] in PartialProgramLayer should be Parameter or Variable, but received {}.'.format(
                        i, type(var)
                    )
                )
1093
            param_and_buffer_names_set.add(var.name)
1094 1095

        for block in main_program.blocks:
1096
            for name, var in block.vars.items():
1097
                if isinstance(var, framework.Parameter):
1098
                    if name not in param_and_buffer_names_set:
1099
                        raise ValueError(
1100 1101 1102 1103 1104 1105
                            "\n\tWe don't support to define layer with parameters in the function decorated by `@to_static`."
                            "\n\tBut we found parameter(%s) was created in the decorated function."
                            "\n"
                            "\n\tRevise suggestion: "
                            "\n\t\t1. Please ensure all your sublayers are inheritted from nn.Layer."
                            "\n\t\t2. Please use nn.ParameterList and nn.LayerList as container instead of using a native Python container such as List"
1106 1107
                            % name
                        )
1108

1109
    def _valid_vars(self, vars):
1110
        return vars if vars else None
1111

1112

1113
def partial_program_from(concrete_program, from_method=False):
1114
    inputs = concrete_program.inputs
1115 1116 1117

    # NOTE(SigureMo): Remove the first arg `self` from method args.
    if inputs and from_method:
1118 1119
        inputs = inputs[1:]

1120 1121 1122 1123
    return PartialProgramLayer(
        concrete_program.main_program,
        inputs,
        concrete_program.outputs,
1124
        concrete_program.name_generator,
1125 1126 1127
        concrete_program.parameters,
        **concrete_program.kwargs
    )
1128 1129 1130


@switch_to_static_graph
1131
def add_build_strategy_for(
1132
    program, start_op_index, end_op_index, build_strategy=None, skip_vars=None
1133 1134
):
    if start_op_index < end_op_index:
1135 1136
        compiled_program = paddle.static.CompiledProgram(
            core.Graph(program.desc, start_op_index, end_op_index),
1137 1138
            build_strategy=build_strategy,
        )
1139 1140 1141
        if skip_vars:
            # TODO(Aurelius84): Need to unify name with C++, such as kSkipVarNames.
            compiled_program._graph.set("skip_gc_vars", set(skip_vars))
1142 1143 1144
        compiled_program._compile(
            core.Scope(), framework._current_expected_place()
        )
1145 1146
        ir_graph = framework.IrGraph(compiled_program._graph)
        builded_program = ir_graph.to_program()
1147 1148 1149 1150
        if hasattr(compiled_program._program, 'lr_scheduler'):
            builded_program.lr_scheduler = (
                compiled_program._program.lr_scheduler
            )
1151
    else:
X
xiongkun 已提交
1152
        # can't just create a new program, we need copy the vardesc.
1153
        builded_program = paddle.static.Program()
X
xiongkun 已提交
1154 1155
        for var in program.block(0).vars.values():
            builded_program.block(0)._clone_variable(var, False)
1156
    return builded_program