partial_program.py 40.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import os
16 17
from copy import deepcopy

18
import numpy as np
19

20
import paddle
21
from paddle import _legacy_C_ops
22
from paddle.amp.auto_cast import _in_amp_guard, _in_pure_fp16_guard
23
from paddle.fluid import backward, core, framework, program_guard
24
from paddle.fluid.compiler import BuildStrategy
25
from paddle.fluid.data_feeder import check_type, convert_dtype
26 27
from paddle.fluid.dygraph.base import switch_to_static_graph
from paddle.fluid.framework import _apply_pass
28
from paddle.optimizer.lr import LRScheduler
29 30

from . import logging_utils
31 32 33
from .utils import (
    RETURN_NO_VALUE_MAGIC_NUM,
    backend_guard,
34
    construct_grad_names,
35
)
36

37 38
__all__ = []

39

40
class NestSequence:
41 42 43 44 45 46 47
    """
    A wrapper class that easily to flatten and restore the nest structure of
    given sequence.
    """

    def __init__(self, raw_input, need_check=False):
        self.__raw_input = raw_input
48
        self.__input_list = self.tolist()
49 50 51 52 53 54 55
        self.__var_ids = self._get_var_ids()
        self._check_non_variable(need_check)

    def tolist(self):
        """
        Flattens the nested sequences into single list.
        """
56
        return paddle.utils.flatten(self.__raw_input)
57 58 59 60 61

    def restore(self, value_list):
        """
        Restores the nested sequence from value list.
        """
62
        assert len(self.__input_list) == len(value_list)
63
        return paddle.utils.pack_sequence_as(self.__raw_input, value_list)
64 65 66

    def _get_var_ids(self):
        var_ids = []
67
        for idx, var in enumerate(self.__input_list):
W
wanghuancoder 已提交
68
            if isinstance(var, (framework.Variable, core.eager.Tensor)):
69 70 71 72 73 74 75 76 77 78
                var_ids.append(idx)

        return var_ids

    def _check_non_variable(self, need_check):
        """
        Raises warning if output of traced function contains non-tensor type values.
        """
        if need_check:
            warning_types = set()
79
            for var in self.__input_list:
W
wanghuancoder 已提交
80
                if not isinstance(var, (framework.Variable, core.eager.Tensor)):
81 82
                    warning_types.add(type(var))
            if warning_types:
83
                logging_utils.warn(
84 85
                    "Output of traced function contains non-tensor type values: {}. "
                    "Currently, We don't support to update them while training and will return "
86 87 88 89
                    "what we first saw. Please try to return them as tensor.".format(
                        list(warning_types)
                    )
                )
90 91 92 93 94 95

    @property
    def var_ids(self):
        return self.__var_ids

    def __getitem__(self, item):
96
        return self.__input_list[item]
97

98

99
class LazyInitialized:
100 101 102 103 104 105 106 107 108 109 110 111 112
    """
    Descriptor to implement lazy initialization of property.
    """

    def __init__(self, function):
        self.function = function

    def __get__(self, instance, cls):
        val = self.function(instance)
        setattr(instance, self.function.__name__, val)
        return val


113 114 115 116 117
class ProgramInfo:
    """
    A helper class to recoder Program information
    """

118
    def __init__(self):
119 120 121 122 123
        self.op_size = {
            'fp32': -1,
            'amp': -1,
            'fp16': -1,
        }
124 125 126 127 128 129 130 131 132 133 134 135 136 137
        self.programs = {}
        self.mode = "infer"

    def __call__(self, key, prog_creator):
        """
        Recoder infer program and op size.
        """
        assert key in ['fp32', 'amp', 'fp16']
        if key not in self.programs:
            infer_prog = prog_creator(is_infer_mode=True)
            self.programs[key] = infer_prog
            self.op_size[key] = infer_prog.desc.block(0).op_size()

        return self.programs[key], self.op_size[key]
138 139


X
xiongkun 已提交
140
class PartialProgramLayerHook:
141
    def before_append_backward(self, forward_program):
X
xiongkun 已提交
142 143
        ...

144
    def after_append_backward(self, whole_program, backward_start_idx):
X
xiongkun 已提交
145 146
        ...

147
    def after_infer(self, infer_program):
X
xiongkun 已提交
148 149 150
        ...


151
class PartialProgramLayer:
152
    """
H
hjyp 已提交
153
    PartialProgramLayer wraps all the ops from layers decorated by `@to_static`
154 155 156
    and execute them as a static subgraph.

    .. note::
157 158 159
        **1. This is a very low level API. Users should not use this API
             directly. Please use `partial_program_from(concrete_program)`
             to create it.
160 161 162 163
        **2. LoDTensorArray is not currently supported in the output.

    Args:
        main_program(Program): The main program that contains ops need to be executed.
H
hjyp 已提交
164 165
        inputs(list[Variable]): The input list of the decorated function by `@to_static`.
        outputs(list[Variable]): The output list of the decorated function by `@to_static`.
W
wanghuancoder 已提交
166
        parameters(list[Tensor]|None): All trainable parameters included in the program. Default None.
167 168

    Returns:
169
        Layer: A Layer object that run all ops internally in static graph mode.
170 171
    """

172 173 174
    def __init__(
        self, main_program, inputs, outputs, parameters=None, **kwargs
    ):
175
        super().__init__()
176 177
        self._inputs = NestSequence(inputs)
        self._outputs = NestSequence(outputs, need_check=True)
178
        self._params = parameters if parameters is not None else []
179

180 181 182
        self._build_strategy = kwargs.get('build_strategy', BuildStrategy())
        assert isinstance(self._build_strategy, BuildStrategy)

183
        self._origin_main_program = self._verify_program(main_program)
184 185 186
        self._cuda_graph_vec = self._create_cuda_graph_vec()
        self._cuda_graph_capture_mode = ""
        self._cuda_graph_pool_id = 0
187
        # Set default mode to train
188
        self.training = True
189
        self._infer_info = ProgramInfo()
190
        self._forward_end_index_map = {}
191

192
        amp_dtype, custom_white_list, custom_black_list = None, None, None
193 194 195
        tracer = framework._dygraph_tracer()
        if tracer:
            custom_white_list, custom_black_list = tracer._get_amp_op_list()
196 197 198 199 200 201 202 203 204 205
            amp_dtype = tracer._amp_dtype
        if amp_dtype is not None and amp_dtype in ['float16', 'bfloat16']:
            # For AMP training
            self._amp_list = (
                paddle.static.amp.fp16_lists.AutoMixedPrecisionLists(
                    custom_white_list=custom_white_list,
                    custom_black_list=custom_black_list,
                    dtype=amp_dtype,
                )
            )
206

207 208
        # program_id -> list(scope)
        self._scope_cache = {}
X
xiongkun 已提交
209
        self._hooker = None
210
        self._backend = kwargs.get('backend', None)
211
        self._grad_var_names = {}
212

213 214 215 216 217 218 219 220
    def __call__(self, inputs):
        """
        Execute static graph by Interpreter and Return dynamic Tensors.
        """
        in_vars, out_vars = self._prepare(inputs)
        self._cast_fp16_if_pure_fp16(in_vars)
        attrs = self._prepare_attributes()

221 222
        self._sync_lr_value_with_scheduler()

223 224 225 226 227 228 229 230 231 232 233
        _legacy_C_ops.run_program(
            self._valid_vars(in_vars),
            self._valid_vars(self._params),
            self._valid_vars(out_vars),
            self._create_scope_vec(
                program_id=self.program_id, use_scope_cache=True
            ),
            self._double_grads,
            self._cuda_graph_vec,
            *attrs
        )
X
xiongkun 已提交
234
        self._update_stop_gradient(out_vars)
235 236 237
        restored_nest_out = self._restore_out(out_vars)
        return self._remove_no_value(restored_nest_out)

238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
    def _sync_lr_value_with_scheduler(self):
        """Update lr_var value with calculated by lr_scheduler."""
        main_program = self._origin_main_program
        if hasattr(main_program, 'lr_scheduler') and hasattr(
            main_program, 'lr_var'
        ):
            lr_scheduler = main_program.lr_scheduler
            lr_var = main_program.lr_var

            assert isinstance(lr_scheduler, LRScheduler), "must be LRScheduler"
            lr_scheduler = self._origin_main_program.lr_scheduler
            lr_value = lr_scheduler()
            data = np.array(lr_value).astype(convert_dtype(lr_var.dtype))
            lr_var.set_value(data)

X
xiongkun 已提交
253 254 255
    def set_hooker(self, hooker):
        self._hooker = hooker

256 257 258 259 260 261 262 263
    def _get_scope(self, program_id=None, use_scope_cache=False):
        if use_scope_cache:
            if program_id not in self._scope_cache:
                scope = core.Scope()
                self._scope_cache[program_id] = [scope]
                return scope
            else:
                for scope in self._scope_cache[program_id]:
C
co63oc 已提交
264
                    if scope._can_reused:
265 266 267 268 269 270 271
                        return scope
                scope = core.Scope()
                self._scope_cache[program_id].append(scope)
                return scope
        else:
            return core.Scope()

272 273
    @LazyInitialized
    def _double_grads(self):
274 275
        # TODO: check the affects.
        return None
276

277 278 279 280
    # whole
    @switch_to_static_graph
    def _create_program(self, is_infer_mode=False):
        if is_infer_mode:
X
xiongkun 已提交
281 282 283 284
            infer_program = self._origin_main_program.clone(
                for_test=is_infer_mode
            )
            if self._hooker:
285
                infer_program = self._hooker.after_infer(infer_program)
X
xiongkun 已提交
286
            return infer_program
287 288
        else:
            train_program = self._append_backward_desc(
289 290
                self._origin_main_program
            )
291 292 293
            # Note: Only set grad type once after initializing train program. So we put it here.
            self._set_grad_type(self._params, train_program)
            return train_program
294

295 296 297 298
    @switch_to_static_graph
    def _create_amp_program(self, is_infer_mode=False):
        amp_program = self._origin_main_program.clone(for_test=is_infer_mode)
        with program_guard(amp_program):
299 300
            paddle.static.amp.fp16_utils.cast_model_to_fp16(
                amp_program, self._amp_list, use_fp16_guard=False, level='O1'
301
            )
302
        if is_infer_mode:
303 304
            if self._hooker:
                amp_program = self._hooker.after_infer(amp_program)
305 306 307 308 309
            return amp_program
        else:
            train_amp_program = self._append_backward_desc(amp_program)
            self._set_grad_type(self._params, train_amp_program)
            return train_amp_program
310

311 312 313
    @switch_to_static_graph
    def _create_pure_fp16_program(self, is_infer_mode=False):
        pure_fp16_program = self._origin_main_program.clone(
314 315
            for_test=is_infer_mode
        )
316
        with program_guard(pure_fp16_program):
317
            paddle.static.amp.fp16_utils.cast_model_to_fp16(
318 319
                pure_fp16_program, self._amp_list, use_fp16_guard=False
            )
J
Jiabin Yang 已提交
320

321
        if is_infer_mode:
322 323
            if self._hooker:
                pure_fp16_program = self._hooker.after_infer(pure_fp16_program)
324 325 326
            return pure_fp16_program
        else:
            train_pure_fp16_program = self._append_backward_desc(
327 328
                pure_fp16_program
            )
329 330
            self._set_grad_type(self._params, train_pure_fp16_program)
            return train_pure_fp16_program
331

332
    @switch_to_static_graph
333
    def _create_forward_backward_train_program(self):
334
        whole_program = self._train_program
X
xiongkun 已提交
335
        forward_end_op_index = self.get_forward_end_op_idx(whole_program)
336
        assert forward_end_op_index >= 0
337

338 339 340
        return self._get_forward_backward_program_form(
            whole_program, forward_end_op_index
        )
341

342 343
    @switch_to_static_graph
    def _create_forward_backward_train_amp_program(self):
344
        whole_program = self._train_amp_program
345
        forward_end_op_index = self.get_forward_end_op_idx(whole_program)
346
        assert forward_end_op_index >= 0
347

348 349 350
        return self._get_forward_backward_program_form(
            whole_program, forward_end_op_index
        )
351 352 353

    @switch_to_static_graph
    def _create_forward_backward_train_pure_fp16_program(self):
354
        whole_program = self._train_pure_fp16_program
355
        forward_end_op_index = self.get_forward_end_op_idx(whole_program)
356
        assert forward_end_op_index >= 0
357

358 359 360
        return self._get_forward_backward_program_form(
            whole_program, forward_end_op_index
        )
361 362

    @LazyInitialized
363 364
    def _train_program(self):
        return self._create_program()
365

366
    @LazyInitialized
367
    def _infer_program(self):
368 369
        program, op_size = self._infer_info('fp32', self._create_program)
        return self._build_infer_program(program, op_size)
370

371 372 373 374 375 376
    @LazyInitialized
    def _train_amp_program(self):
        return self._create_amp_program()

    @LazyInitialized
    def _infer_amp_program(self):
377 378
        program, op_size = self._infer_info('amp', self._create_amp_program)
        return self._build_infer_program(program, op_size)
379 380 381

    @LazyInitialized
    def _train_pure_fp16_program(self):
382
        return self._create_pure_fp16_program()
383

384
    @LazyInitialized
385
    def _infer_pure_fp16_program(self):
386 387
        program, op_size = self._infer_info(
            'fp16', self._create_pure_fp16_program
388
        )
389
        return self._build_infer_program(program, op_size)
390

391
    @LazyInitialized
392 393 394
    def _train_forward_backward_program(self):
        program = self._create_forward_backward_train_program()
        return program
395 396

    @LazyInitialized
397 398 399 400
    def _train_amp_forward_backward_program(self):
        program = self._create_forward_backward_train_amp_program()
        return program

401 402 403 404
    @LazyInitialized
    def _empty_backward_program_for_eval(self):
        return paddle.static.Program()

405 406 407 408 409
    @LazyInitialized
    def _train_pure_fp16_forward_backward_program(self):
        program = self._create_forward_backward_train_pure_fp16_program()
        return program

410 411
    @LazyInitialized
    def _train_program_id(self):
412
        program_id = paddle.utils._hash_with_id(self._train_program, self)
413 414 415
        core._set_cached_executor_build_strategy(
            program_id, self._build_strategy
        )
416
        return program_id
417

418 419
    @LazyInitialized
    def _infer_program_id(self):
420
        return paddle.utils._hash_with_id(self._infer_program, self)
421

422 423
    @LazyInitialized
    def _train_amp_program_id(self):
424
        program_id = paddle.utils._hash_with_id(self._train_amp_program, self)
425 426 427
        core._set_cached_executor_build_strategy(
            program_id, self._build_strategy
        )
428 429
        return program_id

430 431
    @LazyInitialized
    def _infer_amp_program_id(self):
432
        return paddle.utils._hash_with_id(self._infer_amp_program, self)
433

434 435
    @LazyInitialized
    def _train_pure_fp16_program_id(self):
436 437 438
        program_id = paddle.utils._hash_with_id(
            self._train_pure_fp16_program, self
        )
439 440 441
        core._set_cached_executor_build_strategy(
            program_id, self._build_strategy
        )
442 443
        return program_id

444 445
    @LazyInitialized
    def _infer_pure_fp16_program_id(self):
446
        return paddle.utils._hash_with_id(self._infer_pure_fp16_program, self)
447

X
xiongkun 已提交
448
    def get_forward_end_op_idx(self, program):
449 450 451
        return self._forward_end_index_map[
            paddle.utils._hash_with_id(program, self)
        ]
X
xiongkun 已提交
452

453
    @property
454 455 456 457 458 459 460 461 462 463 464 465 466 467
    def program(self):
        """
        Return current train or eval program.
        """
        if self.training:
            return self.train_program
        else:
            return self.infer_program

    @property
    def program_id(self):
        """
        Return current train or eval program hash id.
        """
468 469 470 471 472 473 474 475 476 477 478 479 480 481 482
        if self.training:
            if _in_amp_guard():
                return self._train_amp_program_id
            elif _in_pure_fp16_guard():
                return self._train_pure_fp16_program_id
            else:
                return self._train_program_id
        else:
            if _in_amp_guard():
                return self._infer_amp_program_id
            elif _in_pure_fp16_guard():
                return self._infer_pure_fp16_program_id
            else:
                return self._infer_program_id

483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535
    @property
    def train_program(self):
        if _in_amp_guard():
            return self._train_amp_program
        elif _in_pure_fp16_guard():
            return self._train_pure_fp16_program
        else:
            return self._train_program

    @property
    def infer_program(self):
        if _in_amp_guard():
            return self._infer_amp_program
        elif _in_pure_fp16_guard():
            return self._infer_pure_fp16_program
        else:
            return self._infer_program

    @property
    def forward_program(self):
        if self.training:
            if _in_amp_guard():
                progs = self._train_amp_forward_backward_program
            elif _in_pure_fp16_guard():
                progs = self._train_pure_fp16_forward_backward_program
            else:
                progs = self._train_forward_backward_program
            return progs[0]
        else:
            return self.infer_program

    @property
    def backward_program(self):
        if self.training:
            if _in_amp_guard():
                progs = self._train_amp_forward_backward_program
            elif _in_pure_fp16_guard():
                progs = self._train_pure_fp16_forward_backward_program
            else:
                progs = self._train_forward_backward_program
            return progs[1]
        else:
            """
            Can't just return paddle.static.Program(), because self.backward_program is a property,
            whenever we call this method, a tmp Program() object is created and is gc immediatly
            after executed the following line in PartialProgramLayer.__call__.

            >>> self.backward_program.desc.block(0),

            When we access RunProgramAPI, it's possible to get an invalid backward_program address.
            """
            return self._empty_backward_program_for_eval

536 537 538 539 540 541 542 543 544 545 546 547
    def _verify_program(self, main_program):
        """
        Verify that the program parameter is initialized, prune some unused params,
        and remove redundant op callstack.
        """
        # 1. Check all params from main program can be found in self._params
        self._check_params_all_inited(main_program)
        # 2. Prune the parameters not used anywhere in the program.
        self._prune_unused_params(main_program)

        return main_program

548 549 550
    def prepare_gradient_aggregation(
        self, start_idx, main_program, target_program
    ):
551 552 553 554 555 556 557
        """
        Why we need add gradient aggregation operation ?
        In some cases, if non leaf nodes are used as output, gradient overwriting will occur, such as
        def forward(self, in):
            x = 2 * in  # <---- x is a non-leaf node in program.
            y = x + 3
            return x, y
558

559 560 561 562 563 564 565 566 567
        loss = forward(in)[0].sum()
        loss.backward()  # <----- x@grad will be overwrited by elementwise_add_grad Op
        """

        def _need_aggregation(var):
            """
            if exist a op whose inputs is var, then return True
            """
            if not isinstance(var, framework.Variable) or var.type not in [
568 569
                core.VarDesc.VarType.LOD_TENSOR,
                core.VarDesc.VarType.SELECTED_ROWS,
570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585
            ]:
                return False
            if var.dtype not in [paddle.float32, paddle.float64]:
                return False
            for op in main_program.block(0).ops:
                for in_arg in op.input_arg_names:
                    if in_arg == var.name:
                        return True
            return False

        def _insert_aggregation_ops_for_var(target_program, var):
            suffix = "@dy2static"
            var_grad_name = var.grad_name
            new_grad_name = var.name + suffix + "@GRAD"
            finded_ops = list(
                filter(
586 587
                    lambda x: x[0] >= start_idx
                    and any(
588 589
                        out_arg == var_grad_name
                        for out_arg in x[1].output_arg_names
590 591 592 593
                    ),
                    enumerate(target_program.block(0).ops),
                )
            )
594 595 596 597 598 599

            # len(finded_ops) may equals zero when stop_gradient works.
            # len(finded_ops) may > 1, because we may have fill_constant op.
            if len(finded_ops) == 0:
                return None
            # step1: create a new var named var.name@GRAD
600 601 602 603 604 605
            target_program.block(0).create_var(
                name=new_grad_name,
                type=var.type,
                dtype=var.dtype,
                shape=var.shape,
            )
606 607 608 609 610 611 612 613 614 615
            # step2: rename the var.name@GRAD to var.name@GRAD@dy2static
            for idx, op in finded_ops:
                op._rename_input(var_grad_name, new_grad_name)
                op._rename_output(var_grad_name, new_grad_name)
            # step3: insert sum op to aggregate the gradient.
            #        var.name@GRAD = sum(var.name@dy2static@GRAD, var.name@GRAD)
            target_program.block(0)._insert_op(
                finded_ops[-1][0] + 1,
                type='sum',
                inputs={'X': [var_grad_name, new_grad_name]},
616 617
                outputs={"Out": var_grad_name},
            )
618 619 620
            return None

        to_processed_vars = list(
621 622
            filter(_need_aggregation, self._outputs.tolist())
        )
623 624 625
        for _var in to_processed_vars:
            _insert_aggregation_ops_for_var(target_program, _var)

626
    @switch_to_static_graph
627
    def _append_backward_desc(self, main_program):
628
        program = main_program.clone(for_test=False)
X
xiongkun 已提交
629
        if self._hooker:
630
            program = self._hooker.before_append_backward(program)
631
        targets = []
632
        for out in self._outputs.tolist():
633 634 635
            if isinstance(out, framework.Variable):
                targets.append(program.global_block().var(out.name))

X
xiongkun 已提交
636
        start_idx = len(program.block(0).ops) + len(self._outputs.tolist())
637
        if targets:
638
            start_idx = len(program.block(0).ops) + len(self._outputs.tolist())
639
            with backend_guard(self._backend):
640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666
                check_type(
                    targets,
                    'targets',
                    (framework.Variable, list, tuple),
                    'paddle.static.gradients',
                )
                grad_info_map = backward.calc_gradient_helper(
                    targets=targets, inputs=[]
                )

                x_vars = [
                    program.block(0).var(var.name)
                    for var in self._inputs
                    if isinstance(var, framework.Variable)
                ]
                param_vars = [
                    program.block(0).var(param.name) for param in self._params
                ]
                out_vars = [
                    program.block(0).var(var.name)
                    for var in self._outputs
                    if isinstance(var, framework.Variable)
                ]

                self._grad_var_names = construct_grad_names(
                    grad_info_map, x_vars, param_vars, out_vars
                )
667

X
xiongkun 已提交
668 669
            if self._hooker:
                program, start_idx = self._hooker.after_append_backward(
670
                    program, start_idx
X
xiongkun 已提交
671
                )
672 673 674
            self.prepare_gradient_aggregation(
                start_idx + 1, main_program, program
            )
675

X
xiongkun 已提交
676
        self._forward_end_index_map[
677
            paddle.utils._hash_with_id(program, self)
X
xiongkun 已提交
678
        ] = start_idx - len(self._outputs.tolist())
679 680
        return program

681 682 683
    def _prune_unused_params(self, program):
        """
        Prune the parameters not used anywhere in the program.
H
hjyp 已提交
684
        The `@to_static` may only decorated a sub function which
685 686 687 688 689 690
        contains some unused parameters created in `__init__`.
        So prune these parameters to avoid unnecessary operations in
        `run_program_op`.
        """
        required_params = []
        for param in self._params:
691
            found_param = False
692
            for block in program.blocks:
693
                for op in block.ops:
694 695 696 697
                    if (
                        param.name in op.input_arg_names
                        or param.name in op.output_arg_names
                    ):
698 699 700 701
                        required_params.append(param)
                        found_param = True
                        break
                if found_param:
702 703 704 705
                    break

        self._params = required_params

706 707 708 709 710 711 712 713 714 715 716
    def _cast_fp16_if_pure_fp16(self, in_vars):
        if _in_pure_fp16_guard():
            for i, var in enumerate(in_vars):
                name = var.name
                if (
                    self.program.global_block().has_var(name)
                    and self.program.global_block().var(name).dtype
                    == paddle.float16
                ):
                    in_vars[i] = var.astype('float16')
                    in_vars[i].name = name
717

718
    def _prepare_attributes(self):
719
        attrs = [
720 721 722 723
            'forward_global_block',
            self.forward_program.desc.block(0),
            'backward_global_block',
            self.backward_program.desc.block(0),
724 725 726 727
            'is_test',
            not self.training,
            'program_id',
            self.program_id,
728
        ]
X
xiongkun 已提交
729

730 731 732 733 734 735 736
        if self.training:
            # NOTE: In the case of higher-order gradient, the names of the parameter grads may be like
            # `grad/grad/grad/linear_0.w_0@GRAD` instead of simply `linear_0.w_0@GRAD`, so we get
            # the correct names of the parameter grads from program. And out grads are similar to above.
            attrs.extend(
                (
                    'param_grad_names',
737
                    self._grad_var_names.get('param', []),
738
                    'out_grad_names',
739 740 741
                    self._grad_var_names.get('out', []),
                    'x_grad_names',
                    self._grad_var_names.get('x', []),
742 743
                )
            )
744 745
        if self._cuda_graph_capture_mode:
            attrs.extend(
746 747 748 749 750 751 752
                (
                    'cuda_graph_capture_mode',
                    self._cuda_graph_capture_mode,
                    'cuda_graph_pool_id',
                    self._cuda_graph_pool_id,
                )
            )
753
        return attrs
754

755 756 757 758 759 760 761 762 763 764 765 766
    @switch_to_static_graph
    def _build_infer_program(self, infer_program, forward_end_op_index):
        forward_skip_vars = self._parse_skip_gc_vars(infer_program)
        builded_infer_program = add_build_strategy_for(
            infer_program,
            0,
            forward_end_op_index,
            self._build_strategy,
            forward_skip_vars,
        )
        self._apply_inplace_pass(builded_infer_program, None)
        return builded_infer_program
767

768
    @switch_to_static_graph
769 770 771
    def _get_forward_backward_program_form(
        self, whole_program, forward_end_op_index
    ):
772 773
        # NOTE(dev): We apply build_strategy for backward firstly to
        # avoid skipping more gc variables.
774
        backward_start_op_index = forward_end_op_index + len(
775 776
            self._outputs.var_ids
        )
777
        backward_end_op_index = whole_program.desc.block(0).op_size()
778 779
        # For Backward process in CINN, all param@GRAD shoule be skipped for GC, because
        # they will be shared in scope and used by optimizer.
780 781 782
        backward_skip_vars = self._parse_skip_gc_vars(
            whole_program
        ) + self._grad_var_names.get('param', [])
783
        backward_builded_program = add_build_strategy_for(
784 785 786 787
            whole_program,
            backward_start_op_index,
            backward_end_op_index,
            self._build_strategy,
788 789 790 791 792 793 794 795 796 797 798 799
            backward_skip_vars,
        )

        forward_skip_vars = self._parse_skip_gc_vars(
            whole_program, backward_builded_program
        )
        forward_builded_program = add_build_strategy_for(
            whole_program,
            0,
            forward_end_op_index,
            self._build_strategy,
            forward_skip_vars,
800
        )
801

802 803 804
        self._apply_inplace_pass(
            forward_builded_program, backward_builded_program
        )
805 806 807 808 809 810
        return [forward_builded_program, backward_builded_program]

    def _apply_inplace_pass(self, forward_program, backward_program):
        attr_types = {
            "use_cuda": "bool",
            "mem_opt_skip_vars": "list[str]",
811
            "for_partial_block": "bool",
812 813 814 815
        }
        empty_startup_program = paddle.static.Program()
        use_cuda = True if core.is_compiled_with_cuda() else False
        # skip data var
816 817 818 819
        forward_mem_opt_skip_vars = self._parse_skip_gc_vars(
            forward_program, backward_program
        )
        backward_mem_opt_skip_vars = self._parse_skip_gc_vars(forward_program)
820 821 822 823 824 825
        if forward_program:
            attrs = {
                "use_cuda": use_cuda,
                "mem_opt_skip_vars": forward_mem_opt_skip_vars,
                "for_partial_block": True,
            }
826 827 828 829 830 831 832 833
            if not os.getenv("FLAGS_enable_new_ir_in_executor"):
                _apply_pass(
                    forward_program,
                    empty_startup_program,
                    "buffer_shared_inplace_pass",
                    attrs,
                    attr_types,
                )
834 835 836 837 838 839
        if backward_program:
            attrs = {
                "use_cuda": use_cuda,
                "mem_opt_skip_vars": backward_mem_opt_skip_vars,
                "for_partial_block": True,
            }
840 841 842 843 844 845 846 847
            if not os.getenv("FLAGS_enable_new_ir_in_executor"):
                _apply_pass(
                    backward_program,
                    empty_startup_program,
                    "buffer_shared_inplace_pass",
                    attrs,
                    attr_types,
                )
848

849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875
    @LazyInitialized
    def _inout_var_names(self):
        """
        Returns Variable Names from self._inputs and self.outputs
        """
        var_names = []
        for var in self._inputs:
            if isinstance(var, paddle.fluid.framework.Variable):
                var_names.append(var.desc.name())
        for var in self._outputs:
            if isinstance(var, paddle.fluid.framework.Variable):
                var_names.append(var.desc.name())
        return var_names

    def _parse_skip_gc_vars(self, program, backward_program=None):
        """
        Parse variables that need to skip GC after execute it.
        If specify backward_program, it will keep the variables used in backward.
        """
        # skip data var, DO NOT ignore this deepcopy
        skip_vars = deepcopy(self._inout_var_names)
        for var_name, var in program.global_block().vars.items():
            if var.is_data:
                skip_vars.append(var_name)

        if backward_program:
            for var_name in core.parse_safe_eager_deletion_skip_vars(
876
                backward_program.desc, True
877 878 879 880
            ):
                skip_vars.append(var_name)
        return skip_vars

881 882 883 884 885
    def _prepare(self, inputs):
        """
        Prepare inputs, outputs, attrs.
        """
        assert isinstance(inputs, (tuple, list))
886
        # Flatten inputs with nested structure into single list.
887
        flatten_inputs = paddle.utils.flatten(inputs)
W
wanghuancoder 已提交
888
        # Convert variable into Tensor and feed in training data.
889
        input_vars = []
890
        expected_place = framework._current_expected_place()
891
        for i, value in enumerate(flatten_inputs):
892
            if isinstance(value, np.ndarray):
J
Jiabin Yang 已提交
893
                var = None
W
wanghuancoder 已提交
894 895 896 897 898 899 900 901
                var = core.eager.Tensor(
                    value=value,
                    name=self._inputs[i].desc.name(),
                    persistable=False,
                    place=expected_place,
                    zero_copy=True,
                )
            elif isinstance(value, core.eager.Tensor):
902 903 904 905
                # NOTE(Aurelius84): If var is on CPUPlace, it will be transformed multi times
                # into CUDAPlace when it's as input of multi Ops. so we move it in advance
                # to avoid this problem.
                if value.stop_gradient and not value.place._equals(
906 907
                    expected_place
                ):
908 909
                    var = value._copy_to(expected_place, False)
                    var.stop_gradient = True
910 911
                else:
                    var = value
912
                var.name = self._inputs[i].desc.name()
913 914 915
            else:
                continue
            input_vars.append(var)
916

W
wanghuancoder 已提交
917
        # mapping from name(string) -> Tensor
918
        out_tensor_map = {}
919

920 921
        def create_out(var_id):
            var = self._outputs[var_id]
922
            assert isinstance(var, framework.Variable)
923
            var_desc = var.desc
924

925 926
            if var_desc.name() in out_tensor_map:
                return out_tensor_map[var_desc.name()]
927

928
            out = core.eager.Tensor(
W
wanghuancoder 已提交
929 930 931 932 933 934
                var_desc.dtype(),
                var_desc.shape(),
                var_desc.name(),
                var_desc.type(),
                False,
            )
935 936 937
            out.stop_gradient = var.stop_gradient
            out_tensor_map[var_desc.name()] = out
            return out
938

W
wanghuancoder 已提交
939
        # Create Tensor to receive output data.
940 941 942
        out_vars = list(map(create_out, self._outputs.var_ids))

        return input_vars, out_vars
943

944
    def _create_scope_vec(self, program_id=None, use_scope_cache=False):
945
        # Hold forward variables
J
Jiabin Yang 已提交
946
        tmp_scope_vec = None
947 948 949
        inner_scope = self._get_scope(
            program_id=program_id, use_scope_cache=use_scope_cache
        )
W
wanghuancoder 已提交
950
        tmp_scope_vec = [inner_scope]
951
        return tmp_scope_vec
952

953
    def _create_cuda_graph_vec(self):
W
wanghuancoder 已提交
954
        var = core.eager.Tensor(
955 956 957 958 959 960
            core.VarDesc.VarType.FP32,
            [],
            "cuda_graph",
            core.VarDesc.VarType.RAW,
            True,
        )
961 962 963
        var.stop_gradient = True
        return var

X
xiongkun 已提交
964 965 966 967 968 969 970 971 972 973 974
    def _update_stop_gradient(self, out_vars):
        # Update stop_gradient for all outputs
        def set_stop_gradient(var_id, eager_tensor):
            var = self._outputs[var_id]
            assert isinstance(var, framework.Variable)
            eager_tensor.stop_gradient = var.stop_gradient
            return None

        for idx, var in zip(self._outputs.var_ids, out_vars):
            set_stop_gradient(idx, var)

975 976
    def _restore_out(self, out_vars):
        """
W
wanghuancoder 已提交
977
        Restores same nested outputs by only replacing the Variable with Tensor.
978 979 980 981 982 983
        """

        flatten_outputs = self._outputs.tolist()
        for i, idx in enumerate(self._outputs.var_ids):
            flatten_outputs[idx] = out_vars[i]
        outs = self._outputs.restore(flatten_outputs)
984
        if outs is not None and len(outs) == 1:
985 986 987 988
            outs = outs[0]

        return outs

989 990 991 992
    @switch_to_static_graph
    def _clone_for_test(self, main_program):
        return main_program.clone(for_test=True)

993
    def _is_no_value(self, var):
W
wanghuancoder 已提交
994
        if isinstance(var, core.eager.Tensor) and var.shape == [1]:
995 996
            # NOTE: .numpy() will insert MemcpySync operation, it hits performance.
            if var.numpy()[0] == RETURN_NO_VALUE_MAGIC_NUM:
997 998 999 1000 1001 1002 1003
                return True
        return False

    def _remove_no_value(self, out_vars):
        """
        Removes invalid value for various-length return statement
        """
W
wanghuancoder 已提交
1004
        if isinstance(out_vars, core.eager.Tensor):
1005 1006 1007 1008 1009
            if self._is_no_value(out_vars):
                return None
            return out_vars
        elif isinstance(out_vars, (tuple, list)):
            if isinstance(out_vars, tuple):
1010 1011 1012
                res = tuple(
                    var for var in out_vars if not self._is_no_value(var)
                )
1013 1014 1015 1016
            else:
                # isinstance(out_vars, list)
                res = [var for var in out_vars if not self._is_no_value(var)]

1017
            has_removed = len(out_vars) > len(res)
1018 1019 1020 1021 1022 1023 1024 1025 1026 1027
            # len(out_vars) > len(res) means we have removed var. This is
            # preventing out_vars is empty or just one element at the beginning
            if len(res) == 0 and has_removed:
                return None
            elif len(res) == 1 and has_removed:
                return res[0]
            return res

        return out_vars

1028
    def _set_grad_type(self, params, train_program):
1029 1030
        # NOTE: if user set sparse gradient mode, the param's gradient
        # will be SelectedRows, not LoDTensor. But tracer will just
W
wanghuancoder 已提交
1031
        # set param grad Tensor by forward Tensor(LoDTensor)
1032 1033 1034 1035 1036
        # If we don't change grad_var type here, RunProgramOp need
        # transform SelectedRows to LoDTensor forcibly, it may not
        # be user wanted result.
        for param in params:
            grad_name = param.name + core.grad_var_suffix()
1037
            grad_var = train_program.desc.block(0).find_var(grad_name.encode())
1038 1039 1040 1041 1042
            # NOTE: cannot find var desc maybe no problem, such as in batch_norm
            if grad_var is None:
                continue
            param._set_grad_type(grad_var.type())

1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
    def _remove_op_call_stack(self, main_program):
        """
        Remove op's python call stack with redundant low-level error messages related to
        transforamtions to avoid confusing users.
        """
        assert isinstance(main_program, framework.Program)
        for block in main_program.blocks:
            for op in block.ops:
                if op.has_attr("op_callstack"):
                    op._remove_attr("op_callstack")

        return main_program

1056 1057 1058
    def _check_params_all_inited(self, main_program):
        """
        Check all params from main program are already initialized, see details as follows:
W
wanghuancoder 已提交
1059
            1. all parameters in self._params should be type `framework.EagerParamBase` which are created in dygraph.
1060
            2. all parameters from transformed program can be found in self._params.
W
wanghuancoder 已提交
1061
               Because they share same data with EagerParamBase of original dygraph.
1062 1063 1064 1065
        """
        if not isinstance(self._params, (list, tuple)):
            raise TypeError(
                "Type of self._params in PartialProgramLayer should be list or tuple, but received %s."
1066 1067
                % type(self._params)
            )
1068

1069 1070 1071
        param_and_buffer_names_set = set()
        for i, var in enumerate(self._params):
            # self._params constains parameters and buffers with persistable=True.
W
wanghuancoder 已提交
1072
            if not isinstance(var, core.eager.Tensor):
1073
                raise TypeError(
1074 1075 1076 1077
                    'Type of self._params[{}] in PartialProgramLayer should be Parameter or Variable, but received {}.'.format(
                        i, type(var)
                    )
                )
1078
            param_and_buffer_names_set.add(var.name)
1079 1080

        for block in main_program.blocks:
1081
            for name, var in block.vars.items():
1082
                if isinstance(var, framework.Parameter):
1083
                    if name not in param_and_buffer_names_set:
1084
                        raise ValueError(
1085 1086 1087 1088 1089 1090
                            "\n\tWe don't support to define layer with parameters in the function decorated by `@to_static`."
                            "\n\tBut we found parameter(%s) was created in the decorated function."
                            "\n"
                            "\n\tRevise suggestion: "
                            "\n\t\t1. Please ensure all your sublayers are inheritted from nn.Layer."
                            "\n\t\t2. Please use nn.ParameterList and nn.LayerList as container instead of using a native Python container such as List"
1091 1092
                            % name
                        )
1093

1094
    def _valid_vars(self, vars):
1095
        return vars if vars else None
1096

1097

1098
def partial_program_from(concrete_program, from_method=False):
1099
    inputs = concrete_program.inputs
1100 1101 1102

    # NOTE(SigureMo): Remove the first arg `self` from method args.
    if inputs and from_method:
1103 1104
        inputs = inputs[1:]

1105 1106 1107 1108 1109 1110 1111
    return PartialProgramLayer(
        concrete_program.main_program,
        inputs,
        concrete_program.outputs,
        concrete_program.parameters,
        **concrete_program.kwargs
    )
1112 1113 1114


@switch_to_static_graph
1115
def add_build_strategy_for(
1116
    program, start_op_index, end_op_index, build_strategy=None, skip_vars=None
1117 1118
):
    if start_op_index < end_op_index:
1119 1120
        compiled_program = paddle.static.CompiledProgram(
            core.Graph(program.desc, start_op_index, end_op_index),
1121 1122
            build_strategy=build_strategy,
        )
1123 1124 1125
        if skip_vars:
            # TODO(Aurelius84): Need to unify name with C++, such as kSkipVarNames.
            compiled_program._graph.set("skip_gc_vars", set(skip_vars))
1126 1127 1128
        compiled_program._compile(
            core.Scope(), framework._current_expected_place()
        )
1129 1130
        ir_graph = framework.IrGraph(compiled_program._graph)
        builded_program = ir_graph.to_program()
1131 1132 1133 1134
        if hasattr(compiled_program._program, 'lr_scheduler'):
            builded_program.lr_scheduler = (
                compiled_program._program.lr_scheduler
            )
1135
    else:
X
xiongkun 已提交
1136
        # can't just create a new program, we need copy the vardesc.
1137
        builded_program = paddle.static.Program()
X
xiongkun 已提交
1138 1139
        for var in program.block(0).vars.values():
            builded_program.block(0)._clone_variable(var, False)
1140
    return builded_program