partial_program.py 38.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from copy import deepcopy

17
import numpy as np
18

19
import paddle
20
from paddle import _legacy_C_ops
21
from paddle.amp.auto_cast import _in_amp_guard, _in_pure_fp16_guard
22
from paddle.fluid import backward, core, framework, program_guard
23
from paddle.fluid.compiler import BuildStrategy
24 25
from paddle.fluid.dygraph.base import switch_to_static_graph
from paddle.fluid.framework import _apply_pass
26
from paddle.nn.layer import layers
27 28

from . import logging_utils
29
from .utils import RETURN_NO_VALUE_MAGIC_NUM, _out_grad_names, _param_grad_names
30

31 32
__all__ = []

33

34
class NestSequence:
35 36 37 38 39 40 41
    """
    A wrapper class that easily to flatten and restore the nest structure of
    given sequence.
    """

    def __init__(self, raw_input, need_check=False):
        self.__raw_input = raw_input
42
        self.__input_list = self.tolist()
43 44 45 46 47 48 49
        self.__var_ids = self._get_var_ids()
        self._check_non_variable(need_check)

    def tolist(self):
        """
        Flattens the nested sequences into single list.
        """
50
        return paddle.utils.flatten(self.__raw_input)
51 52 53 54 55

    def restore(self, value_list):
        """
        Restores the nested sequence from value list.
        """
56
        assert len(self.__input_list) == len(value_list)
57
        return paddle.utils.pack_sequence_as(self.__raw_input, value_list)
58 59 60

    def _get_var_ids(self):
        var_ids = []
61
        for idx, var in enumerate(self.__input_list):
W
wanghuancoder 已提交
62
            if isinstance(var, (framework.Variable, core.eager.Tensor)):
63 64 65 66 67 68 69 70 71 72
                var_ids.append(idx)

        return var_ids

    def _check_non_variable(self, need_check):
        """
        Raises warning if output of traced function contains non-tensor type values.
        """
        if need_check:
            warning_types = set()
73
            for var in self.__input_list:
W
wanghuancoder 已提交
74
                if not isinstance(var, (framework.Variable, core.eager.Tensor)):
75 76
                    warning_types.add(type(var))
            if warning_types:
77
                logging_utils.warn(
78 79
                    "Output of traced function contains non-tensor type values: {}. "
                    "Currently, We don't support to update them while training and will return "
80 81 82 83
                    "what we first saw. Please try to return them as tensor.".format(
                        list(warning_types)
                    )
                )
84 85 86 87 88 89

    @property
    def var_ids(self):
        return self.__var_ids

    def __getitem__(self, item):
90
        return self.__input_list[item]
91

92

93
class LazyInitialized:
94 95 96 97 98 99 100 101 102 103 104 105 106
    """
    Descriptor to implement lazy initialization of property.
    """

    def __init__(self, function):
        self.function = function

    def __get__(self, instance, cls):
        val = self.function(instance)
        setattr(instance, self.function.__name__, val)
        return val


107 108 109 110 111
class ProgramInfo:
    """
    A helper class to recoder Program information
    """

112
    def __init__(self):
113 114 115 116 117
        self.op_size = {
            'fp32': -1,
            'amp': -1,
            'fp16': -1,
        }
118 119 120 121 122 123 124 125 126 127 128 129 130 131
        self.programs = {}
        self.mode = "infer"

    def __call__(self, key, prog_creator):
        """
        Recoder infer program and op size.
        """
        assert key in ['fp32', 'amp', 'fp16']
        if key not in self.programs:
            infer_prog = prog_creator(is_infer_mode=True)
            self.programs[key] = infer_prog
            self.op_size[key] = infer_prog.desc.block(0).op_size()

        return self.programs[key], self.op_size[key]
132 133


X
xiongkun 已提交
134
class PartialProgramLayerHook:
135
    def before_append_backward(self, forward_program):
X
xiongkun 已提交
136 137
        ...

138
    def after_append_backward(self, whole_program, backward_start_idx):
X
xiongkun 已提交
139 140
        ...

141
    def after_infer(self, infer_program):
X
xiongkun 已提交
142 143 144
        ...


145
class PartialProgramLayer:
146
    """
H
hjyp 已提交
147
    PartialProgramLayer wraps all the ops from layers decorated by `@to_static`
148 149 150
    and execute them as a static subgraph.

    .. note::
151 152 153
        **1. This is a very low level API. Users should not use this API
             directly. Please use `partial_program_from(concrete_program)`
             to create it.
154 155 156 157
        **2. LoDTensorArray is not currently supported in the output.

    Args:
        main_program(Program): The main program that contains ops need to be executed.
H
hjyp 已提交
158 159
        inputs(list[Variable]): The input list of the decorated function by `@to_static`.
        outputs(list[Variable]): The output list of the decorated function by `@to_static`.
W
wanghuancoder 已提交
160
        parameters(list[Tensor]|None): All trainable parameters included in the program. Default None.
161 162

    Returns:
163
        Layer: A Layer object that run all ops internally in static graph mode.
164 165
    """

166 167 168
    def __init__(
        self, main_program, inputs, outputs, parameters=None, **kwargs
    ):
169
        super().__init__()
170 171
        self._inputs = NestSequence(inputs)
        self._outputs = NestSequence(outputs, need_check=True)
172
        self._params = parameters if parameters is not None else []
173

174 175 176
        self._build_strategy = kwargs.get('build_strategy', BuildStrategy())
        assert isinstance(self._build_strategy, BuildStrategy)

177
        self._origin_main_program = self._verify_program(main_program)
178 179 180
        self._cuda_graph_vec = self._create_cuda_graph_vec()
        self._cuda_graph_capture_mode = ""
        self._cuda_graph_pool_id = 0
181
        # Set default mode to train
182
        self.training = True
183
        self._infer_info = ProgramInfo()
184
        self._forward_end_index_map = {}
185

186 187 188 189
        custom_white_list, custom_black_list = None, None
        tracer = framework._dygraph_tracer()
        if tracer:
            custom_white_list, custom_black_list = tracer._get_amp_op_list()
190
        # For AMP training
191
        self._amp_list = paddle.static.amp.fp16_lists.AutoMixedPrecisionLists(
192
            custom_white_list=custom_white_list,
193 194
            custom_black_list=custom_black_list,
        )
195

196 197
        # program_id -> list(scope)
        self._scope_cache = {}
X
xiongkun 已提交
198
        self._hooker = None
199

200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
    def __call__(self, inputs):
        """
        Execute static graph by Interpreter and Return dynamic Tensors.
        """
        in_vars, out_vars = self._prepare(inputs)
        self._cast_fp16_if_pure_fp16(in_vars)
        attrs = self._prepare_attributes()

        _legacy_C_ops.run_program(
            self._valid_vars(in_vars),
            self._valid_vars(self._params),
            self._valid_vars(out_vars),
            self._create_scope_vec(
                program_id=self.program_id, use_scope_cache=True
            ),
            self._double_grads,
            self._cuda_graph_vec,
            *attrs
        )
        restored_nest_out = self._restore_out(out_vars)
        return self._remove_no_value(restored_nest_out)

X
xiongkun 已提交
222 223 224
    def set_hooker(self, hooker):
        self._hooker = hooker

225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
    def _get_scope(self, program_id=None, use_scope_cache=False):
        if use_scope_cache:
            if program_id not in self._scope_cache:
                scope = core.Scope()
                self._scope_cache[program_id] = [scope]
                return scope
            else:
                for scope in self._scope_cache[program_id]:
                    if scope._can_reuesd:
                        return scope
                scope = core.Scope()
                self._scope_cache[program_id].append(scope)
                return scope
        else:
            return core.Scope()

241 242 243 244
    @LazyInitialized
    def _double_grads(self):
        return self._get_double_grads(self._origin_main_program)

245 246 247 248
    # whole
    @switch_to_static_graph
    def _create_program(self, is_infer_mode=False):
        if is_infer_mode:
X
xiongkun 已提交
249 250 251 252
            infer_program = self._origin_main_program.clone(
                for_test=is_infer_mode
            )
            if self._hooker:
253
                infer_program = self._hooker.after_infer(infer_program)
X
xiongkun 已提交
254
            return infer_program
255 256
        else:
            train_program = self._append_backward_desc(
257 258
                self._origin_main_program
            )
259 260 261
            # Note: Only set grad type once after initializing train program. So we put it here.
            self._set_grad_type(self._params, train_program)
            return train_program
262

263 264 265 266
    @switch_to_static_graph
    def _create_amp_program(self, is_infer_mode=False):
        amp_program = self._origin_main_program.clone(for_test=is_infer_mode)
        with program_guard(amp_program):
267 268 269
            paddle.static.amp.fp16_utils.rewrite_program(
                amp_program, self._amp_list
            )
270 271 272 273 274 275
        if is_infer_mode:
            return amp_program
        else:
            train_amp_program = self._append_backward_desc(amp_program)
            self._set_grad_type(self._params, train_amp_program)
            return train_amp_program
276

277 278 279
    @switch_to_static_graph
    def _create_pure_fp16_program(self, is_infer_mode=False):
        pure_fp16_program = self._origin_main_program.clone(
280 281
            for_test=is_infer_mode
        )
282
        with program_guard(pure_fp16_program):
283
            paddle.static.amp.fp16_utils.cast_model_to_fp16(
284 285
                pure_fp16_program, self._amp_list, use_fp16_guard=False
            )
J
Jiabin Yang 已提交
286

287
        if is_infer_mode:
288 289
            if self._hooker:
                pure_fp16_program = self._hooker.after_infer(pure_fp16_program)
290 291 292
            return pure_fp16_program
        else:
            train_pure_fp16_program = self._append_backward_desc(
293 294
                pure_fp16_program
            )
295 296
            self._set_grad_type(self._params, train_pure_fp16_program)
            return train_pure_fp16_program
297

298
    @switch_to_static_graph
299
    def _create_forward_backward_train_program(self):
300
        whole_program = self._train_program
X
xiongkun 已提交
301
        forward_end_op_index = self.get_forward_end_op_idx(whole_program)
302
        assert forward_end_op_index >= 0
303

304 305 306
        return self._get_forward_backward_program_form(
            whole_program, forward_end_op_index
        )
307

308 309
    @switch_to_static_graph
    def _create_forward_backward_train_amp_program(self):
310
        whole_program = self._train_amp_program
311
        forward_end_op_index = self.get_forward_end_op_idx(whole_program)
312
        assert forward_end_op_index >= 0
313

314 315 316
        return self._get_forward_backward_program_form(
            whole_program, forward_end_op_index
        )
317 318 319

    @switch_to_static_graph
    def _create_forward_backward_train_pure_fp16_program(self):
320
        whole_program = self._train_pure_fp16_program
321
        forward_end_op_index = self.get_forward_end_op_idx(whole_program)
322
        assert forward_end_op_index >= 0
323

324 325 326
        return self._get_forward_backward_program_form(
            whole_program, forward_end_op_index
        )
327 328

    @LazyInitialized
329 330
    def _train_program(self):
        return self._create_program()
331

332
    @LazyInitialized
333
    def _infer_program(self):
334 335
        program, op_size = self._infer_info('fp32', self._create_program)
        return self._build_infer_program(program, op_size)
336

337 338 339 340 341 342
    @LazyInitialized
    def _train_amp_program(self):
        return self._create_amp_program()

    @LazyInitialized
    def _infer_amp_program(self):
343 344
        program, op_size = self._infer_info('amp', self._create_amp_program)
        return self._build_infer_program(program, op_size)
345 346 347

    @LazyInitialized
    def _train_pure_fp16_program(self):
348
        return self._create_pure_fp16_program()
349

350
    @LazyInitialized
351
    def _infer_pure_fp16_program(self):
352 353
        program, op_size = self._infer_info(
            'fp16', self._create_pure_fp16_program
354
        )
355
        return self._build_infer_program(program, op_size)
356

357
    @LazyInitialized
358 359 360
    def _train_forward_backward_program(self):
        program = self._create_forward_backward_train_program()
        return program
361 362

    @LazyInitialized
363 364 365 366
    def _train_amp_forward_backward_program(self):
        program = self._create_forward_backward_train_amp_program()
        return program

367 368 369 370
    @LazyInitialized
    def _empty_backward_program_for_eval(self):
        return paddle.static.Program()

371 372 373 374 375
    @LazyInitialized
    def _train_pure_fp16_forward_backward_program(self):
        program = self._create_forward_backward_train_pure_fp16_program()
        return program

376 377
    @LazyInitialized
    def _train_program_id(self):
378
        program_id = paddle.utils._hash_with_id(self._train_program, self)
379 380 381
        core._set_cached_executor_build_strategy(
            program_id, self._build_strategy
        )
382
        return program_id
383

384 385
    @LazyInitialized
    def _infer_program_id(self):
386
        return paddle.utils._hash_with_id(self._infer_program, self)
387

388 389
    @LazyInitialized
    def _train_amp_program_id(self):
390
        program_id = paddle.utils._hash_with_id(self._train_amp_program, self)
391 392 393
        core._set_cached_executor_build_strategy(
            program_id, self._build_strategy
        )
394 395
        return program_id

396 397
    @LazyInitialized
    def _infer_amp_program_id(self):
398
        return paddle.utils._hash_with_id(self._infer_amp_program, self)
399

400 401
    @LazyInitialized
    def _train_pure_fp16_program_id(self):
402 403 404
        program_id = paddle.utils._hash_with_id(
            self._train_pure_fp16_program, self
        )
405 406 407
        core._set_cached_executor_build_strategy(
            program_id, self._build_strategy
        )
408 409
        return program_id

410 411
    @LazyInitialized
    def _infer_pure_fp16_program_id(self):
412
        return paddle.utils._hash_with_id(self._infer_pure_fp16_program, self)
413

414 415
    @LazyInitialized
    def _param_grad_names(self):
416
        return _param_grad_names(self._train_program.desc, self._params)
417

X
xiongkun 已提交
418
    def get_forward_end_op_idx(self, program):
419 420 421
        return self._forward_end_index_map[
            paddle.utils._hash_with_id(program, self)
        ]
X
xiongkun 已提交
422

423 424
    @LazyInitialized
    def _out_grad_names(self):
425 426
        return _out_grad_names(
            self._train_program.desc,
X
xiongkun 已提交
427
            self.get_forward_end_op_idx(self._train_program),
428 429
            len(self._outputs.var_ids),
        )
430

431
    @property
432 433 434 435 436 437 438 439 440 441 442 443 444 445
    def program(self):
        """
        Return current train or eval program.
        """
        if self.training:
            return self.train_program
        else:
            return self.infer_program

    @property
    def program_id(self):
        """
        Return current train or eval program hash id.
        """
446 447 448 449 450 451 452 453 454 455 456 457 458 459 460
        if self.training:
            if _in_amp_guard():
                return self._train_amp_program_id
            elif _in_pure_fp16_guard():
                return self._train_pure_fp16_program_id
            else:
                return self._train_program_id
        else:
            if _in_amp_guard():
                return self._infer_amp_program_id
            elif _in_pure_fp16_guard():
                return self._infer_pure_fp16_program_id
            else:
                return self._infer_program_id

461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513
    @property
    def train_program(self):
        if _in_amp_guard():
            return self._train_amp_program
        elif _in_pure_fp16_guard():
            return self._train_pure_fp16_program
        else:
            return self._train_program

    @property
    def infer_program(self):
        if _in_amp_guard():
            return self._infer_amp_program
        elif _in_pure_fp16_guard():
            return self._infer_pure_fp16_program
        else:
            return self._infer_program

    @property
    def forward_program(self):
        if self.training:
            if _in_amp_guard():
                progs = self._train_amp_forward_backward_program
            elif _in_pure_fp16_guard():
                progs = self._train_pure_fp16_forward_backward_program
            else:
                progs = self._train_forward_backward_program
            return progs[0]
        else:
            return self.infer_program

    @property
    def backward_program(self):
        if self.training:
            if _in_amp_guard():
                progs = self._train_amp_forward_backward_program
            elif _in_pure_fp16_guard():
                progs = self._train_pure_fp16_forward_backward_program
            else:
                progs = self._train_forward_backward_program
            return progs[1]
        else:
            """
            Can't just return paddle.static.Program(), because self.backward_program is a property,
            whenever we call this method, a tmp Program() object is created and is gc immediatly
            after executed the following line in PartialProgramLayer.__call__.

            >>> self.backward_program.desc.block(0),

            When we access RunProgramAPI, it's possible to get an invalid backward_program address.
            """
            return self._empty_backward_program_for_eval

514 515 516 517 518 519 520 521 522 523 524 525
    def _verify_program(self, main_program):
        """
        Verify that the program parameter is initialized, prune some unused params,
        and remove redundant op callstack.
        """
        # 1. Check all params from main program can be found in self._params
        self._check_params_all_inited(main_program)
        # 2. Prune the parameters not used anywhere in the program.
        self._prune_unused_params(main_program)

        return main_program

526 527 528
    def prepare_gradient_aggregation(
        self, start_idx, main_program, target_program
    ):
529 530 531 532 533 534 535
        """
        Why we need add gradient aggregation operation ?
        In some cases, if non leaf nodes are used as output, gradient overwriting will occur, such as
        def forward(self, in):
            x = 2 * in  # <---- x is a non-leaf node in program.
            y = x + 3
            return x, y
536

537 538 539 540 541 542 543 544 545
        loss = forward(in)[0].sum()
        loss.backward()  # <----- x@grad will be overwrited by elementwise_add_grad Op
        """

        def _need_aggregation(var):
            """
            if exist a op whose inputs is var, then return True
            """
            if not isinstance(var, framework.Variable) or var.type not in [
546 547
                core.VarDesc.VarType.LOD_TENSOR,
                core.VarDesc.VarType.SELECTED_ROWS,
548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563
            ]:
                return False
            if var.dtype not in [paddle.float32, paddle.float64]:
                return False
            for op in main_program.block(0).ops:
                for in_arg in op.input_arg_names:
                    if in_arg == var.name:
                        return True
            return False

        def _insert_aggregation_ops_for_var(target_program, var):
            suffix = "@dy2static"
            var_grad_name = var.grad_name
            new_grad_name = var.name + suffix + "@GRAD"
            finded_ops = list(
                filter(
564 565 566 567 568 569 570 571 572 573
                    lambda x: x[0] >= start_idx
                    and any(
                        [
                            out_arg == var_grad_name
                            for out_arg in x[1].output_arg_names
                        ]
                    ),
                    enumerate(target_program.block(0).ops),
                )
            )
574 575 576 577 578 579

            # len(finded_ops) may equals zero when stop_gradient works.
            # len(finded_ops) may > 1, because we may have fill_constant op.
            if len(finded_ops) == 0:
                return None
            # step1: create a new var named var.name@GRAD
580 581 582 583 584 585
            target_program.block(0).create_var(
                name=new_grad_name,
                type=var.type,
                dtype=var.dtype,
                shape=var.shape,
            )
586 587 588 589 590 591 592 593 594 595
            # step2: rename the var.name@GRAD to var.name@GRAD@dy2static
            for idx, op in finded_ops:
                op._rename_input(var_grad_name, new_grad_name)
                op._rename_output(var_grad_name, new_grad_name)
            # step3: insert sum op to aggregate the gradient.
            #        var.name@GRAD = sum(var.name@dy2static@GRAD, var.name@GRAD)
            target_program.block(0)._insert_op(
                finded_ops[-1][0] + 1,
                type='sum',
                inputs={'X': [var_grad_name, new_grad_name]},
596 597
                outputs={"Out": var_grad_name},
            )
598 599 600
            return None

        to_processed_vars = list(
601 602
            filter(_need_aggregation, self._outputs.tolist())
        )
603 604 605
        for _var in to_processed_vars:
            _insert_aggregation_ops_for_var(target_program, _var)

606
    @switch_to_static_graph
607
    def _append_backward_desc(self, main_program):
608
        program = main_program.clone(for_test=False)
X
xiongkun 已提交
609
        if self._hooker:
610
            program = self._hooker.before_append_backward(program)
611
        targets = []
612
        for out in self._outputs.tolist():
613 614 615
            if isinstance(out, framework.Variable):
                targets.append(program.global_block().var(out.name))

X
xiongkun 已提交
616
        start_idx = len(program.block(0).ops) + len(self._outputs.tolist())
617
        if targets:
618 619
            # TODO(CZ): later when use cinn, set_prim_all_enabled and check_and_set_prim_all_enabled will be set at else branch.
            core.check_and_set_prim_all_enabled()
620
            start_idx = len(program.block(0).ops) + len(self._outputs.tolist())
621
            backward.gradients(targets=targets, inputs=[])
622

X
xiongkun 已提交
623 624
            if self._hooker:
                program, start_idx = self._hooker.after_append_backward(
625
                    program, start_idx
X
xiongkun 已提交
626
                )
627 628 629
            self.prepare_gradient_aggregation(
                start_idx + 1, main_program, program
            )
630

X
xiongkun 已提交
631
        self._forward_end_index_map[
632
            paddle.utils._hash_with_id(program, self)
X
xiongkun 已提交
633
        ] = start_idx - len(self._outputs.tolist())
634 635
        return program

636 637 638
    def _prune_unused_params(self, program):
        """
        Prune the parameters not used anywhere in the program.
H
hjyp 已提交
639
        The `@to_static` may only decorated a sub function which
640 641 642 643 644 645
        contains some unused parameters created in `__init__`.
        So prune these parameters to avoid unnecessary operations in
        `run_program_op`.
        """
        required_params = []
        for param in self._params:
646
            found_param = False
647
            for block in program.blocks:
648
                for op in block.ops:
649 650 651 652
                    if (
                        param.name in op.input_arg_names
                        or param.name in op.output_arg_names
                    ):
653 654 655 656
                        required_params.append(param)
                        found_param = True
                        break
                if found_param:
657 658 659 660
                    break

        self._params = required_params

661 662 663 664 665 666
    def _get_double_grads(self, program):
        double_grads = []
        for block in program.blocks:
            for name in block.vars:
                if "@GRAD" in name:
                    var_desc = block.vars[name].desc
J
Jiabin Yang 已提交
667
                    var_base = None
W
wanghuancoder 已提交
668 669 670 671 672 673 674
                    var_base = core.eager.Tensor(
                        var_desc.dtype(),
                        var_desc.shape(),
                        var_desc.name(),
                        var_desc.type(),
                        False,
                    )
675
                    double_grads.append(var_base)
676
        return self._valid_vars(double_grads)
677

678 679 680 681 682 683 684 685 686 687 688
    def _cast_fp16_if_pure_fp16(self, in_vars):
        if _in_pure_fp16_guard():
            for i, var in enumerate(in_vars):
                name = var.name
                if (
                    self.program.global_block().has_var(name)
                    and self.program.global_block().var(name).dtype
                    == paddle.float16
                ):
                    in_vars[i] = var.astype('float16')
                    in_vars[i].name = name
689

690
    def _prepare_attributes(self):
691
        attrs = [
692 693 694 695
            'forward_global_block',
            self.forward_program.desc.block(0),
            'backward_global_block',
            self.backward_program.desc.block(0),
696 697 698 699
            'is_test',
            not self.training,
            'program_id',
            self.program_id,
700
        ]
X
xiongkun 已提交
701

702 703 704 705 706 707 708 709 710 711 712 713
        if self.training:
            # NOTE: In the case of higher-order gradient, the names of the parameter grads may be like
            # `grad/grad/grad/linear_0.w_0@GRAD` instead of simply `linear_0.w_0@GRAD`, so we get
            # the correct names of the parameter grads from program. And out grads are similar to above.
            attrs.extend(
                (
                    'param_grad_names',
                    self._param_grad_names,
                    'out_grad_names',
                    self._out_grad_names,
                )
            )
714 715
        if self._cuda_graph_capture_mode:
            attrs.extend(
716 717 718 719 720 721 722
                (
                    'cuda_graph_capture_mode',
                    self._cuda_graph_capture_mode,
                    'cuda_graph_pool_id',
                    self._cuda_graph_pool_id,
                )
            )
723
        return attrs
724

725 726 727 728 729 730 731 732 733 734 735 736
    @switch_to_static_graph
    def _build_infer_program(self, infer_program, forward_end_op_index):
        forward_skip_vars = self._parse_skip_gc_vars(infer_program)
        builded_infer_program = add_build_strategy_for(
            infer_program,
            0,
            forward_end_op_index,
            self._build_strategy,
            forward_skip_vars,
        )
        self._apply_inplace_pass(builded_infer_program, None)
        return builded_infer_program
737

738
    @switch_to_static_graph
739 740 741
    def _get_forward_backward_program_form(
        self, whole_program, forward_end_op_index
    ):
742 743
        # NOTE(dev): We apply build_strategy for backward firstly to
        # avoid skipping more gc variables.
744
        backward_start_op_index = forward_end_op_index + len(
745 746
            self._outputs.var_ids
        )
747
        backward_end_op_index = whole_program.desc.block(0).op_size()
748 749 750 751 752
        # For Backward process in CINN, all param@GRAD shoule be skipped for GC, because
        # they will be shared in scope and used by optimizer.
        backward_skip_vars = (
            self._parse_skip_gc_vars(whole_program) + self._param_grad_names
        )
753
        backward_builded_program = add_build_strategy_for(
754 755 756 757
            whole_program,
            backward_start_op_index,
            backward_end_op_index,
            self._build_strategy,
758 759 760 761 762 763 764 765 766 767 768 769
            backward_skip_vars,
        )

        forward_skip_vars = self._parse_skip_gc_vars(
            whole_program, backward_builded_program
        )
        forward_builded_program = add_build_strategy_for(
            whole_program,
            0,
            forward_end_op_index,
            self._build_strategy,
            forward_skip_vars,
770
        )
771

772 773 774
        self._apply_inplace_pass(
            forward_builded_program, backward_builded_program
        )
775 776 777 778 779 780
        return [forward_builded_program, backward_builded_program]

    def _apply_inplace_pass(self, forward_program, backward_program):
        attr_types = {
            "use_cuda": "bool",
            "mem_opt_skip_vars": "list[str]",
781
            "for_partial_block": "bool",
782 783 784 785
        }
        empty_startup_program = paddle.static.Program()
        use_cuda = True if core.is_compiled_with_cuda() else False
        # skip data var
786 787 788 789
        forward_mem_opt_skip_vars = self._parse_skip_gc_vars(
            forward_program, backward_program
        )
        backward_mem_opt_skip_vars = self._parse_skip_gc_vars(forward_program)
790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815
        if forward_program:
            attrs = {
                "use_cuda": use_cuda,
                "mem_opt_skip_vars": forward_mem_opt_skip_vars,
                "for_partial_block": True,
            }
            _apply_pass(
                forward_program,
                empty_startup_program,
                "buffer_shared_inplace_pass",
                attrs,
                attr_types,
            )
        if backward_program:
            attrs = {
                "use_cuda": use_cuda,
                "mem_opt_skip_vars": backward_mem_opt_skip_vars,
                "for_partial_block": True,
            }
            _apply_pass(
                backward_program,
                empty_startup_program,
                "buffer_shared_inplace_pass",
                attrs,
                attr_types,
            )
816

817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843
    @LazyInitialized
    def _inout_var_names(self):
        """
        Returns Variable Names from self._inputs and self.outputs
        """
        var_names = []
        for var in self._inputs:
            if isinstance(var, paddle.fluid.framework.Variable):
                var_names.append(var.desc.name())
        for var in self._outputs:
            if isinstance(var, paddle.fluid.framework.Variable):
                var_names.append(var.desc.name())
        return var_names

    def _parse_skip_gc_vars(self, program, backward_program=None):
        """
        Parse variables that need to skip GC after execute it.
        If specify backward_program, it will keep the variables used in backward.
        """
        # skip data var, DO NOT ignore this deepcopy
        skip_vars = deepcopy(self._inout_var_names)
        for var_name, var in program.global_block().vars.items():
            if var.is_data:
                skip_vars.append(var_name)

        if backward_program:
            for var_name in core.parse_safe_eager_deletion_skip_vars(
844
                backward_program.desc, True
845 846 847 848
            ):
                skip_vars.append(var_name)
        return skip_vars

849 850 851 852 853
    def _prepare(self, inputs):
        """
        Prepare inputs, outputs, attrs.
        """
        assert isinstance(inputs, (tuple, list))
854
        # Flatten inputs with nested structure into single list.
855
        flatten_inputs = paddle.utils.flatten(inputs)
W
wanghuancoder 已提交
856
        # Convert variable into Tensor and feed in training data.
857
        input_vars = []
858
        expected_place = framework._current_expected_place()
859
        for i, value in enumerate(flatten_inputs):
860
            if isinstance(value, np.ndarray):
J
Jiabin Yang 已提交
861
                var = None
W
wanghuancoder 已提交
862 863 864 865 866 867 868 869
                var = core.eager.Tensor(
                    value=value,
                    name=self._inputs[i].desc.name(),
                    persistable=False,
                    place=expected_place,
                    zero_copy=True,
                )
            elif isinstance(value, core.eager.Tensor):
870 871 872 873
                # NOTE(Aurelius84): If var is on CPUPlace, it will be transformed multi times
                # into CUDAPlace when it's as input of multi Ops. so we move it in advance
                # to avoid this problem.
                if value.stop_gradient and not value.place._equals(
874 875
                    expected_place
                ):
876 877
                    var = value._copy_to(expected_place, False)
                    var.stop_gradient = True
878 879
                else:
                    var = value
880
                var.name = self._inputs[i].desc.name()
881 882 883
            else:
                continue
            input_vars.append(var)
884

W
wanghuancoder 已提交
885
        # mapping from name(string) -> Tensor
886 887
        out_varbase_map = {}

888 889
        def create_out(var_id):
            var = self._outputs[var_id]
890
            assert isinstance(var, framework.Variable)
891
            var_desc = var.desc
J
Jiabin Yang 已提交
892
            varbase = None
893 894 895 896

            if var_desc.name() in out_varbase_map:
                return out_varbase_map[var_desc.name()]

W
wanghuancoder 已提交
897 898 899 900 901 902 903
            var_base = core.eager.Tensor(
                var_desc.dtype(),
                var_desc.shape(),
                var_desc.name(),
                var_desc.type(),
                False,
            )
904
            var_base.stop_gradient = var.stop_gradient
905
            out_varbase_map[var_desc.name()] = var_base
906 907
            return var_base

W
wanghuancoder 已提交
908
        # Create Tensor to receive output data.
909 910 911
        out_vars = list(map(create_out, self._outputs.var_ids))

        return input_vars, out_vars
912

913
    def _create_scope_vec(self, program_id=None, use_scope_cache=False):
914
        # Hold forward variables
J
Jiabin Yang 已提交
915
        tmp_scope_vec = None
916 917 918
        inner_scope = self._get_scope(
            program_id=program_id, use_scope_cache=use_scope_cache
        )
W
wanghuancoder 已提交
919
        tmp_scope_vec = [inner_scope]
920
        return tmp_scope_vec
921

922
    def _create_cuda_graph_vec(self):
W
wanghuancoder 已提交
923
        var = core.eager.Tensor(
924 925 926 927 928 929
            core.VarDesc.VarType.FP32,
            [],
            "cuda_graph",
            core.VarDesc.VarType.RAW,
            True,
        )
930 931 932
        var.stop_gradient = True
        return var

933 934
    def _restore_out(self, out_vars):
        """
W
wanghuancoder 已提交
935
        Restores same nested outputs by only replacing the Variable with Tensor.
936 937 938 939 940 941
        """

        flatten_outputs = self._outputs.tolist()
        for i, idx in enumerate(self._outputs.var_ids):
            flatten_outputs[idx] = out_vars[i]
        outs = self._outputs.restore(flatten_outputs)
942
        if outs is not None and len(outs) == 1:
943 944 945 946
            outs = outs[0]

        return outs

947 948 949 950
    @switch_to_static_graph
    def _clone_for_test(self, main_program):
        return main_program.clone(for_test=True)

951
    def _is_no_value(self, var):
W
wanghuancoder 已提交
952
        if isinstance(var, core.eager.Tensor) and var.shape == [1]:
953 954
            # NOTE: .numpy() will insert MemcpySync operation, it hits performance.
            if var.numpy()[0] == RETURN_NO_VALUE_MAGIC_NUM:
955 956 957 958 959 960 961
                return True
        return False

    def _remove_no_value(self, out_vars):
        """
        Removes invalid value for various-length return statement
        """
W
wanghuancoder 已提交
962
        if isinstance(out_vars, core.eager.Tensor):
963 964 965 966 967
            if self._is_no_value(out_vars):
                return None
            return out_vars
        elif isinstance(out_vars, (tuple, list)):
            if isinstance(out_vars, tuple):
968 969 970
                res = tuple(
                    var for var in out_vars if not self._is_no_value(var)
                )
971 972 973 974
            else:
                # isinstance(out_vars, list)
                res = [var for var in out_vars if not self._is_no_value(var)]

975
            has_removed = len(out_vars) > len(res)
976 977 978 979 980 981 982 983 984 985
            # len(out_vars) > len(res) means we have removed var. This is
            # preventing out_vars is empty or just one element at the beginning
            if len(res) == 0 and has_removed:
                return None
            elif len(res) == 1 and has_removed:
                return res[0]
            return res

        return out_vars

986
    def _set_grad_type(self, params, train_program):
987 988
        # NOTE: if user set sparse gradient mode, the param's gradient
        # will be SelectedRows, not LoDTensor. But tracer will just
W
wanghuancoder 已提交
989
        # set param grad Tensor by forward Tensor(LoDTensor)
990 991 992 993 994
        # If we don't change grad_var type here, RunProgramOp need
        # transform SelectedRows to LoDTensor forcibly, it may not
        # be user wanted result.
        for param in params:
            grad_name = param.name + core.grad_var_suffix()
995
            grad_var = train_program.desc.block(0).find_var(grad_name.encode())
996 997 998 999 1000
            # NOTE: cannot find var desc maybe no problem, such as in batch_norm
            if grad_var is None:
                continue
            param._set_grad_type(grad_var.type())

1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013
    def _remove_op_call_stack(self, main_program):
        """
        Remove op's python call stack with redundant low-level error messages related to
        transforamtions to avoid confusing users.
        """
        assert isinstance(main_program, framework.Program)
        for block in main_program.blocks:
            for op in block.ops:
                if op.has_attr("op_callstack"):
                    op._remove_attr("op_callstack")

        return main_program

1014 1015 1016
    def _check_params_all_inited(self, main_program):
        """
        Check all params from main program are already initialized, see details as follows:
W
wanghuancoder 已提交
1017
            1. all parameters in self._params should be type `framework.EagerParamBase` which are created in dygraph.
1018
            2. all parameters from transformed program can be found in self._params.
W
wanghuancoder 已提交
1019
               Because they share same data with EagerParamBase of original dygraph.
1020 1021 1022 1023
        """
        if not isinstance(self._params, (list, tuple)):
            raise TypeError(
                "Type of self._params in PartialProgramLayer should be list or tuple, but received %s."
1024 1025
                % type(self._params)
            )
1026

1027 1028 1029
        param_and_buffer_names_set = set()
        for i, var in enumerate(self._params):
            # self._params constains parameters and buffers with persistable=True.
W
wanghuancoder 已提交
1030
            if not isinstance(var, core.eager.Tensor):
1031
                raise TypeError(
1032 1033 1034 1035
                    'Type of self._params[{}] in PartialProgramLayer should be Parameter or Variable, but received {}.'.format(
                        i, type(var)
                    )
                )
1036
            param_and_buffer_names_set.add(var.name)
1037 1038

        for block in main_program.blocks:
1039
            for name, var in block.vars.items():
1040
                if isinstance(var, framework.Parameter):
1041
                    if name not in param_and_buffer_names_set:
1042
                        raise ValueError(
1043 1044 1045 1046 1047 1048
                            "\n\tWe don't support to define layer with parameters in the function decorated by `@to_static`."
                            "\n\tBut we found parameter(%s) was created in the decorated function."
                            "\n"
                            "\n\tRevise suggestion: "
                            "\n\t\t1. Please ensure all your sublayers are inheritted from nn.Layer."
                            "\n\t\t2. Please use nn.ParameterList and nn.LayerList as container instead of using a native Python container such as List"
1049 1050
                            % name
                        )
1051

1052
    def _valid_vars(self, vars):
1053
        return vars if vars else None
1054

1055 1056 1057 1058 1059 1060

def partial_program_from(concrete_program):
    inputs = concrete_program.inputs
    if inputs and isinstance(inputs[0], layers.Layer):
        inputs = inputs[1:]

1061 1062 1063 1064 1065 1066 1067
    return PartialProgramLayer(
        concrete_program.main_program,
        inputs,
        concrete_program.outputs,
        concrete_program.parameters,
        **concrete_program.kwargs
    )
1068 1069 1070


@switch_to_static_graph
1071
def add_build_strategy_for(
1072
    program, start_op_index, end_op_index, build_strategy=None, skip_vars=None
1073 1074
):
    if start_op_index < end_op_index:
1075 1076
        compiled_program = paddle.static.CompiledProgram(
            core.Graph(program.desc, start_op_index, end_op_index),
1077 1078
            build_strategy=build_strategy,
        )
1079 1080 1081
        if skip_vars:
            # TODO(Aurelius84): Need to unify name with C++, such as kSkipVarNames.
            compiled_program._graph.set("skip_gc_vars", set(skip_vars))
1082 1083 1084
        compiled_program._compile(
            core.Scope(), framework._current_expected_place()
        )
1085 1086
        ir_graph = framework.IrGraph(compiled_program._graph)
        builded_program = ir_graph.to_program()
1087 1088 1089 1090
        if hasattr(compiled_program._program, 'lr_scheduler'):
            builded_program.lr_scheduler = (
                compiled_program._program.lr_scheduler
            )
1091
    else:
X
xiongkun 已提交
1092
        # can't just create a new program, we need copy the vardesc.
1093
        builded_program = paddle.static.Program()
X
xiongkun 已提交
1094 1095
        for var in program.block(0).vars.values():
            builded_program.block(0)._clone_variable(var, False)
1096
    return builded_program