partial_program.py 39.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from copy import deepcopy

17
import numpy as np
18

19
import paddle
20
from paddle import _legacy_C_ops
21
from paddle.amp.auto_cast import _in_amp_guard, _in_pure_fp16_guard
22
from paddle.fluid import backward, core, framework, program_guard
23
from paddle.fluid.compiler import BuildStrategy
24
from paddle.fluid.data_feeder import convert_dtype
25 26
from paddle.fluid.dygraph.base import switch_to_static_graph
from paddle.fluid.framework import _apply_pass
27
from paddle.optimizer.lr import LRScheduler
28 29

from . import logging_utils
30
from .utils import RETURN_NO_VALUE_MAGIC_NUM, _out_grad_names, _param_grad_names
31

32 33
__all__ = []

34

35
class NestSequence:
36 37 38 39 40 41 42
    """
    A wrapper class that easily to flatten and restore the nest structure of
    given sequence.
    """

    def __init__(self, raw_input, need_check=False):
        self.__raw_input = raw_input
43
        self.__input_list = self.tolist()
44 45 46 47 48 49 50
        self.__var_ids = self._get_var_ids()
        self._check_non_variable(need_check)

    def tolist(self):
        """
        Flattens the nested sequences into single list.
        """
51
        return paddle.utils.flatten(self.__raw_input)
52 53 54 55 56

    def restore(self, value_list):
        """
        Restores the nested sequence from value list.
        """
57
        assert len(self.__input_list) == len(value_list)
58
        return paddle.utils.pack_sequence_as(self.__raw_input, value_list)
59 60 61

    def _get_var_ids(self):
        var_ids = []
62
        for idx, var in enumerate(self.__input_list):
W
wanghuancoder 已提交
63
            if isinstance(var, (framework.Variable, core.eager.Tensor)):
64 65 66 67 68 69 70 71 72 73
                var_ids.append(idx)

        return var_ids

    def _check_non_variable(self, need_check):
        """
        Raises warning if output of traced function contains non-tensor type values.
        """
        if need_check:
            warning_types = set()
74
            for var in self.__input_list:
W
wanghuancoder 已提交
75
                if not isinstance(var, (framework.Variable, core.eager.Tensor)):
76 77
                    warning_types.add(type(var))
            if warning_types:
78
                logging_utils.warn(
79 80
                    "Output of traced function contains non-tensor type values: {}. "
                    "Currently, We don't support to update them while training and will return "
81 82 83 84
                    "what we first saw. Please try to return them as tensor.".format(
                        list(warning_types)
                    )
                )
85 86 87 88 89 90

    @property
    def var_ids(self):
        return self.__var_ids

    def __getitem__(self, item):
91
        return self.__input_list[item]
92

93

94
class LazyInitialized:
95 96 97 98 99 100 101 102 103 104 105 106 107
    """
    Descriptor to implement lazy initialization of property.
    """

    def __init__(self, function):
        self.function = function

    def __get__(self, instance, cls):
        val = self.function(instance)
        setattr(instance, self.function.__name__, val)
        return val


108 109 110 111 112
class ProgramInfo:
    """
    A helper class to recoder Program information
    """

113
    def __init__(self):
114 115 116 117 118
        self.op_size = {
            'fp32': -1,
            'amp': -1,
            'fp16': -1,
        }
119 120 121 122 123 124 125 126 127 128 129 130 131 132
        self.programs = {}
        self.mode = "infer"

    def __call__(self, key, prog_creator):
        """
        Recoder infer program and op size.
        """
        assert key in ['fp32', 'amp', 'fp16']
        if key not in self.programs:
            infer_prog = prog_creator(is_infer_mode=True)
            self.programs[key] = infer_prog
            self.op_size[key] = infer_prog.desc.block(0).op_size()

        return self.programs[key], self.op_size[key]
133 134


X
xiongkun 已提交
135
class PartialProgramLayerHook:
136
    def before_append_backward(self, forward_program):
X
xiongkun 已提交
137 138
        ...

139
    def after_append_backward(self, whole_program, backward_start_idx):
X
xiongkun 已提交
140 141
        ...

142
    def after_infer(self, infer_program):
X
xiongkun 已提交
143 144 145
        ...


146
class PartialProgramLayer:
147
    """
H
hjyp 已提交
148
    PartialProgramLayer wraps all the ops from layers decorated by `@to_static`
149 150 151
    and execute them as a static subgraph.

    .. note::
152 153 154
        **1. This is a very low level API. Users should not use this API
             directly. Please use `partial_program_from(concrete_program)`
             to create it.
155 156 157 158
        **2. LoDTensorArray is not currently supported in the output.

    Args:
        main_program(Program): The main program that contains ops need to be executed.
H
hjyp 已提交
159 160
        inputs(list[Variable]): The input list of the decorated function by `@to_static`.
        outputs(list[Variable]): The output list of the decorated function by `@to_static`.
W
wanghuancoder 已提交
161
        parameters(list[Tensor]|None): All trainable parameters included in the program. Default None.
162 163

    Returns:
164
        Layer: A Layer object that run all ops internally in static graph mode.
165 166
    """

167 168 169
    def __init__(
        self, main_program, inputs, outputs, parameters=None, **kwargs
    ):
170
        super().__init__()
171 172
        self._inputs = NestSequence(inputs)
        self._outputs = NestSequence(outputs, need_check=True)
173
        self._params = parameters if parameters is not None else []
174

175 176 177
        self._build_strategy = kwargs.get('build_strategy', BuildStrategy())
        assert isinstance(self._build_strategy, BuildStrategy)

178
        self._origin_main_program = self._verify_program(main_program)
179 180 181
        self._cuda_graph_vec = self._create_cuda_graph_vec()
        self._cuda_graph_capture_mode = ""
        self._cuda_graph_pool_id = 0
182
        # Set default mode to train
183
        self.training = True
184
        self._infer_info = ProgramInfo()
185
        self._forward_end_index_map = {}
186

187 188 189 190
        custom_white_list, custom_black_list = None, None
        tracer = framework._dygraph_tracer()
        if tracer:
            custom_white_list, custom_black_list = tracer._get_amp_op_list()
191
        # For AMP training
192
        self._amp_list = paddle.static.amp.fp16_lists.AutoMixedPrecisionLists(
193
            custom_white_list=custom_white_list,
194 195
            custom_black_list=custom_black_list,
        )
196

197 198
        # program_id -> list(scope)
        self._scope_cache = {}
X
xiongkun 已提交
199
        self._hooker = None
200

201 202 203 204 205 206 207 208
    def __call__(self, inputs):
        """
        Execute static graph by Interpreter and Return dynamic Tensors.
        """
        in_vars, out_vars = self._prepare(inputs)
        self._cast_fp16_if_pure_fp16(in_vars)
        attrs = self._prepare_attributes()

209 210
        self._sync_lr_value_with_scheduler()

211 212 213 214 215 216 217 218 219 220 221 222 223 224
        _legacy_C_ops.run_program(
            self._valid_vars(in_vars),
            self._valid_vars(self._params),
            self._valid_vars(out_vars),
            self._create_scope_vec(
                program_id=self.program_id, use_scope_cache=True
            ),
            self._double_grads,
            self._cuda_graph_vec,
            *attrs
        )
        restored_nest_out = self._restore_out(out_vars)
        return self._remove_no_value(restored_nest_out)

225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
    def _sync_lr_value_with_scheduler(self):
        """Update lr_var value with calculated by lr_scheduler."""
        main_program = self._origin_main_program
        if hasattr(main_program, 'lr_scheduler') and hasattr(
            main_program, 'lr_var'
        ):
            lr_scheduler = main_program.lr_scheduler
            lr_var = main_program.lr_var

            assert isinstance(lr_scheduler, LRScheduler), "must be LRScheduler"
            lr_scheduler = self._origin_main_program.lr_scheduler
            lr_value = lr_scheduler()
            data = np.array(lr_value).astype(convert_dtype(lr_var.dtype))
            lr_var.set_value(data)

X
xiongkun 已提交
240 241 242
    def set_hooker(self, hooker):
        self._hooker = hooker

243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
    def _get_scope(self, program_id=None, use_scope_cache=False):
        if use_scope_cache:
            if program_id not in self._scope_cache:
                scope = core.Scope()
                self._scope_cache[program_id] = [scope]
                return scope
            else:
                for scope in self._scope_cache[program_id]:
                    if scope._can_reuesd:
                        return scope
                scope = core.Scope()
                self._scope_cache[program_id].append(scope)
                return scope
        else:
            return core.Scope()

259 260
    @LazyInitialized
    def _double_grads(self):
261 262
        # TODO: check the affects.
        return None
263

264 265 266 267
    # whole
    @switch_to_static_graph
    def _create_program(self, is_infer_mode=False):
        if is_infer_mode:
X
xiongkun 已提交
268 269 270 271
            infer_program = self._origin_main_program.clone(
                for_test=is_infer_mode
            )
            if self._hooker:
272
                infer_program = self._hooker.after_infer(infer_program)
X
xiongkun 已提交
273
            return infer_program
274 275
        else:
            train_program = self._append_backward_desc(
276 277
                self._origin_main_program
            )
278 279 280
            # Note: Only set grad type once after initializing train program. So we put it here.
            self._set_grad_type(self._params, train_program)
            return train_program
281

282 283 284 285
    @switch_to_static_graph
    def _create_amp_program(self, is_infer_mode=False):
        amp_program = self._origin_main_program.clone(for_test=is_infer_mode)
        with program_guard(amp_program):
286 287 288
            paddle.static.amp.fp16_utils.rewrite_program(
                amp_program, self._amp_list
            )
289 290 291 292 293 294
        if is_infer_mode:
            return amp_program
        else:
            train_amp_program = self._append_backward_desc(amp_program)
            self._set_grad_type(self._params, train_amp_program)
            return train_amp_program
295

296 297 298
    @switch_to_static_graph
    def _create_pure_fp16_program(self, is_infer_mode=False):
        pure_fp16_program = self._origin_main_program.clone(
299 300
            for_test=is_infer_mode
        )
301
        with program_guard(pure_fp16_program):
302
            paddle.static.amp.fp16_utils.cast_model_to_fp16(
303 304
                pure_fp16_program, self._amp_list, use_fp16_guard=False
            )
J
Jiabin Yang 已提交
305

306
        if is_infer_mode:
307 308
            if self._hooker:
                pure_fp16_program = self._hooker.after_infer(pure_fp16_program)
309 310 311
            return pure_fp16_program
        else:
            train_pure_fp16_program = self._append_backward_desc(
312 313
                pure_fp16_program
            )
314 315
            self._set_grad_type(self._params, train_pure_fp16_program)
            return train_pure_fp16_program
316

317
    @switch_to_static_graph
318
    def _create_forward_backward_train_program(self):
319
        whole_program = self._train_program
X
xiongkun 已提交
320
        forward_end_op_index = self.get_forward_end_op_idx(whole_program)
321
        assert forward_end_op_index >= 0
322

323 324 325
        return self._get_forward_backward_program_form(
            whole_program, forward_end_op_index
        )
326

327 328
    @switch_to_static_graph
    def _create_forward_backward_train_amp_program(self):
329
        whole_program = self._train_amp_program
330
        forward_end_op_index = self.get_forward_end_op_idx(whole_program)
331
        assert forward_end_op_index >= 0
332

333 334 335
        return self._get_forward_backward_program_form(
            whole_program, forward_end_op_index
        )
336 337 338

    @switch_to_static_graph
    def _create_forward_backward_train_pure_fp16_program(self):
339
        whole_program = self._train_pure_fp16_program
340
        forward_end_op_index = self.get_forward_end_op_idx(whole_program)
341
        assert forward_end_op_index >= 0
342

343 344 345
        return self._get_forward_backward_program_form(
            whole_program, forward_end_op_index
        )
346 347

    @LazyInitialized
348 349
    def _train_program(self):
        return self._create_program()
350

351
    @LazyInitialized
352
    def _infer_program(self):
353 354
        program, op_size = self._infer_info('fp32', self._create_program)
        return self._build_infer_program(program, op_size)
355

356 357 358 359 360 361
    @LazyInitialized
    def _train_amp_program(self):
        return self._create_amp_program()

    @LazyInitialized
    def _infer_amp_program(self):
362 363
        program, op_size = self._infer_info('amp', self._create_amp_program)
        return self._build_infer_program(program, op_size)
364 365 366

    @LazyInitialized
    def _train_pure_fp16_program(self):
367
        return self._create_pure_fp16_program()
368

369
    @LazyInitialized
370
    def _infer_pure_fp16_program(self):
371 372
        program, op_size = self._infer_info(
            'fp16', self._create_pure_fp16_program
373
        )
374
        return self._build_infer_program(program, op_size)
375

376
    @LazyInitialized
377 378 379
    def _train_forward_backward_program(self):
        program = self._create_forward_backward_train_program()
        return program
380 381

    @LazyInitialized
382 383 384 385
    def _train_amp_forward_backward_program(self):
        program = self._create_forward_backward_train_amp_program()
        return program

386 387 388 389
    @LazyInitialized
    def _empty_backward_program_for_eval(self):
        return paddle.static.Program()

390 391 392 393 394
    @LazyInitialized
    def _train_pure_fp16_forward_backward_program(self):
        program = self._create_forward_backward_train_pure_fp16_program()
        return program

395 396
    @LazyInitialized
    def _train_program_id(self):
397
        program_id = paddle.utils._hash_with_id(self._train_program, self)
398 399 400
        core._set_cached_executor_build_strategy(
            program_id, self._build_strategy
        )
401
        return program_id
402

403 404
    @LazyInitialized
    def _infer_program_id(self):
405
        return paddle.utils._hash_with_id(self._infer_program, self)
406

407 408
    @LazyInitialized
    def _train_amp_program_id(self):
409
        program_id = paddle.utils._hash_with_id(self._train_amp_program, self)
410 411 412
        core._set_cached_executor_build_strategy(
            program_id, self._build_strategy
        )
413 414
        return program_id

415 416
    @LazyInitialized
    def _infer_amp_program_id(self):
417
        return paddle.utils._hash_with_id(self._infer_amp_program, self)
418

419 420
    @LazyInitialized
    def _train_pure_fp16_program_id(self):
421 422 423
        program_id = paddle.utils._hash_with_id(
            self._train_pure_fp16_program, self
        )
424 425 426
        core._set_cached_executor_build_strategy(
            program_id, self._build_strategy
        )
427 428
        return program_id

429 430
    @LazyInitialized
    def _infer_pure_fp16_program_id(self):
431
        return paddle.utils._hash_with_id(self._infer_pure_fp16_program, self)
432

433 434
    @LazyInitialized
    def _param_grad_names(self):
435
        return _param_grad_names(self._train_program.desc, self._params)
436

X
xiongkun 已提交
437
    def get_forward_end_op_idx(self, program):
438 439 440
        return self._forward_end_index_map[
            paddle.utils._hash_with_id(program, self)
        ]
X
xiongkun 已提交
441

442 443
    @LazyInitialized
    def _out_grad_names(self):
444 445
        return _out_grad_names(
            self._train_program.desc,
X
xiongkun 已提交
446
            self.get_forward_end_op_idx(self._train_program),
447 448
            len(self._outputs.var_ids),
        )
449

450
    @property
451 452 453 454 455 456 457 458 459 460 461 462 463 464
    def program(self):
        """
        Return current train or eval program.
        """
        if self.training:
            return self.train_program
        else:
            return self.infer_program

    @property
    def program_id(self):
        """
        Return current train or eval program hash id.
        """
465 466 467 468 469 470 471 472 473 474 475 476 477 478 479
        if self.training:
            if _in_amp_guard():
                return self._train_amp_program_id
            elif _in_pure_fp16_guard():
                return self._train_pure_fp16_program_id
            else:
                return self._train_program_id
        else:
            if _in_amp_guard():
                return self._infer_amp_program_id
            elif _in_pure_fp16_guard():
                return self._infer_pure_fp16_program_id
            else:
                return self._infer_program_id

480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532
    @property
    def train_program(self):
        if _in_amp_guard():
            return self._train_amp_program
        elif _in_pure_fp16_guard():
            return self._train_pure_fp16_program
        else:
            return self._train_program

    @property
    def infer_program(self):
        if _in_amp_guard():
            return self._infer_amp_program
        elif _in_pure_fp16_guard():
            return self._infer_pure_fp16_program
        else:
            return self._infer_program

    @property
    def forward_program(self):
        if self.training:
            if _in_amp_guard():
                progs = self._train_amp_forward_backward_program
            elif _in_pure_fp16_guard():
                progs = self._train_pure_fp16_forward_backward_program
            else:
                progs = self._train_forward_backward_program
            return progs[0]
        else:
            return self.infer_program

    @property
    def backward_program(self):
        if self.training:
            if _in_amp_guard():
                progs = self._train_amp_forward_backward_program
            elif _in_pure_fp16_guard():
                progs = self._train_pure_fp16_forward_backward_program
            else:
                progs = self._train_forward_backward_program
            return progs[1]
        else:
            """
            Can't just return paddle.static.Program(), because self.backward_program is a property,
            whenever we call this method, a tmp Program() object is created and is gc immediatly
            after executed the following line in PartialProgramLayer.__call__.

            >>> self.backward_program.desc.block(0),

            When we access RunProgramAPI, it's possible to get an invalid backward_program address.
            """
            return self._empty_backward_program_for_eval

533 534 535 536 537 538 539 540 541 542 543 544
    def _verify_program(self, main_program):
        """
        Verify that the program parameter is initialized, prune some unused params,
        and remove redundant op callstack.
        """
        # 1. Check all params from main program can be found in self._params
        self._check_params_all_inited(main_program)
        # 2. Prune the parameters not used anywhere in the program.
        self._prune_unused_params(main_program)

        return main_program

545 546 547
    def prepare_gradient_aggregation(
        self, start_idx, main_program, target_program
    ):
548 549 550 551 552 553 554
        """
        Why we need add gradient aggregation operation ?
        In some cases, if non leaf nodes are used as output, gradient overwriting will occur, such as
        def forward(self, in):
            x = 2 * in  # <---- x is a non-leaf node in program.
            y = x + 3
            return x, y
555

556 557 558 559 560 561 562 563 564
        loss = forward(in)[0].sum()
        loss.backward()  # <----- x@grad will be overwrited by elementwise_add_grad Op
        """

        def _need_aggregation(var):
            """
            if exist a op whose inputs is var, then return True
            """
            if not isinstance(var, framework.Variable) or var.type not in [
565 566
                core.VarDesc.VarType.LOD_TENSOR,
                core.VarDesc.VarType.SELECTED_ROWS,
567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582
            ]:
                return False
            if var.dtype not in [paddle.float32, paddle.float64]:
                return False
            for op in main_program.block(0).ops:
                for in_arg in op.input_arg_names:
                    if in_arg == var.name:
                        return True
            return False

        def _insert_aggregation_ops_for_var(target_program, var):
            suffix = "@dy2static"
            var_grad_name = var.grad_name
            new_grad_name = var.name + suffix + "@GRAD"
            finded_ops = list(
                filter(
583 584 585 586 587 588 589 590 591 592
                    lambda x: x[0] >= start_idx
                    and any(
                        [
                            out_arg == var_grad_name
                            for out_arg in x[1].output_arg_names
                        ]
                    ),
                    enumerate(target_program.block(0).ops),
                )
            )
593 594 595 596 597 598

            # len(finded_ops) may equals zero when stop_gradient works.
            # len(finded_ops) may > 1, because we may have fill_constant op.
            if len(finded_ops) == 0:
                return None
            # step1: create a new var named var.name@GRAD
599 600 601 602 603 604
            target_program.block(0).create_var(
                name=new_grad_name,
                type=var.type,
                dtype=var.dtype,
                shape=var.shape,
            )
605 606 607 608 609 610 611 612 613 614
            # step2: rename the var.name@GRAD to var.name@GRAD@dy2static
            for idx, op in finded_ops:
                op._rename_input(var_grad_name, new_grad_name)
                op._rename_output(var_grad_name, new_grad_name)
            # step3: insert sum op to aggregate the gradient.
            #        var.name@GRAD = sum(var.name@dy2static@GRAD, var.name@GRAD)
            target_program.block(0)._insert_op(
                finded_ops[-1][0] + 1,
                type='sum',
                inputs={'X': [var_grad_name, new_grad_name]},
615 616
                outputs={"Out": var_grad_name},
            )
617 618 619
            return None

        to_processed_vars = list(
620 621
            filter(_need_aggregation, self._outputs.tolist())
        )
622 623 624
        for _var in to_processed_vars:
            _insert_aggregation_ops_for_var(target_program, _var)

625
    @switch_to_static_graph
626
    def _append_backward_desc(self, main_program):
627
        program = main_program.clone(for_test=False)
X
xiongkun 已提交
628
        if self._hooker:
629
            program = self._hooker.before_append_backward(program)
630
        targets = []
631
        for out in self._outputs.tolist():
632 633 634
            if isinstance(out, framework.Variable):
                targets.append(program.global_block().var(out.name))

X
xiongkun 已提交
635
        start_idx = len(program.block(0).ops) + len(self._outputs.tolist())
636
        if targets:
637 638
            # TODO(CZ): later when use cinn, set_prim_all_enabled and check_and_set_prim_all_enabled will be set at else branch.
            core.check_and_set_prim_all_enabled()
639
            start_idx = len(program.block(0).ops) + len(self._outputs.tolist())
640
            backward.gradients(targets=targets, inputs=[])
641

X
xiongkun 已提交
642 643
            if self._hooker:
                program, start_idx = self._hooker.after_append_backward(
644
                    program, start_idx
X
xiongkun 已提交
645
                )
646 647 648
            self.prepare_gradient_aggregation(
                start_idx + 1, main_program, program
            )
649

X
xiongkun 已提交
650
        self._forward_end_index_map[
651
            paddle.utils._hash_with_id(program, self)
X
xiongkun 已提交
652
        ] = start_idx - len(self._outputs.tolist())
653 654
        return program

655 656 657
    def _prune_unused_params(self, program):
        """
        Prune the parameters not used anywhere in the program.
H
hjyp 已提交
658
        The `@to_static` may only decorated a sub function which
659 660 661 662 663 664
        contains some unused parameters created in `__init__`.
        So prune these parameters to avoid unnecessary operations in
        `run_program_op`.
        """
        required_params = []
        for param in self._params:
665
            found_param = False
666
            for block in program.blocks:
667
                for op in block.ops:
668 669 670 671
                    if (
                        param.name in op.input_arg_names
                        or param.name in op.output_arg_names
                    ):
672 673 674 675
                        required_params.append(param)
                        found_param = True
                        break
                if found_param:
676 677 678 679
                    break

        self._params = required_params

680 681 682 683 684 685 686 687 688 689 690
    def _cast_fp16_if_pure_fp16(self, in_vars):
        if _in_pure_fp16_guard():
            for i, var in enumerate(in_vars):
                name = var.name
                if (
                    self.program.global_block().has_var(name)
                    and self.program.global_block().var(name).dtype
                    == paddle.float16
                ):
                    in_vars[i] = var.astype('float16')
                    in_vars[i].name = name
691

692
    def _prepare_attributes(self):
693
        attrs = [
694 695 696 697
            'forward_global_block',
            self.forward_program.desc.block(0),
            'backward_global_block',
            self.backward_program.desc.block(0),
698 699 700 701
            'is_test',
            not self.training,
            'program_id',
            self.program_id,
702
        ]
X
xiongkun 已提交
703

704 705 706 707 708 709 710 711 712 713 714 715
        if self.training:
            # NOTE: In the case of higher-order gradient, the names of the parameter grads may be like
            # `grad/grad/grad/linear_0.w_0@GRAD` instead of simply `linear_0.w_0@GRAD`, so we get
            # the correct names of the parameter grads from program. And out grads are similar to above.
            attrs.extend(
                (
                    'param_grad_names',
                    self._param_grad_names,
                    'out_grad_names',
                    self._out_grad_names,
                )
            )
716 717
        if self._cuda_graph_capture_mode:
            attrs.extend(
718 719 720 721 722 723 724
                (
                    'cuda_graph_capture_mode',
                    self._cuda_graph_capture_mode,
                    'cuda_graph_pool_id',
                    self._cuda_graph_pool_id,
                )
            )
725
        return attrs
726

727 728 729 730 731 732 733 734 735 736 737 738
    @switch_to_static_graph
    def _build_infer_program(self, infer_program, forward_end_op_index):
        forward_skip_vars = self._parse_skip_gc_vars(infer_program)
        builded_infer_program = add_build_strategy_for(
            infer_program,
            0,
            forward_end_op_index,
            self._build_strategy,
            forward_skip_vars,
        )
        self._apply_inplace_pass(builded_infer_program, None)
        return builded_infer_program
739

740
    @switch_to_static_graph
741 742 743
    def _get_forward_backward_program_form(
        self, whole_program, forward_end_op_index
    ):
744 745
        # NOTE(dev): We apply build_strategy for backward firstly to
        # avoid skipping more gc variables.
746
        backward_start_op_index = forward_end_op_index + len(
747 748
            self._outputs.var_ids
        )
749
        backward_end_op_index = whole_program.desc.block(0).op_size()
750 751 752 753 754
        # For Backward process in CINN, all param@GRAD shoule be skipped for GC, because
        # they will be shared in scope and used by optimizer.
        backward_skip_vars = (
            self._parse_skip_gc_vars(whole_program) + self._param_grad_names
        )
755
        backward_builded_program = add_build_strategy_for(
756 757 758 759
            whole_program,
            backward_start_op_index,
            backward_end_op_index,
            self._build_strategy,
760 761 762 763 764 765 766 767 768 769 770 771
            backward_skip_vars,
        )

        forward_skip_vars = self._parse_skip_gc_vars(
            whole_program, backward_builded_program
        )
        forward_builded_program = add_build_strategy_for(
            whole_program,
            0,
            forward_end_op_index,
            self._build_strategy,
            forward_skip_vars,
772
        )
773

774 775 776
        self._apply_inplace_pass(
            forward_builded_program, backward_builded_program
        )
777 778 779 780 781 782
        return [forward_builded_program, backward_builded_program]

    def _apply_inplace_pass(self, forward_program, backward_program):
        attr_types = {
            "use_cuda": "bool",
            "mem_opt_skip_vars": "list[str]",
783
            "for_partial_block": "bool",
784 785 786 787
        }
        empty_startup_program = paddle.static.Program()
        use_cuda = True if core.is_compiled_with_cuda() else False
        # skip data var
788 789 790 791
        forward_mem_opt_skip_vars = self._parse_skip_gc_vars(
            forward_program, backward_program
        )
        backward_mem_opt_skip_vars = self._parse_skip_gc_vars(forward_program)
792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817
        if forward_program:
            attrs = {
                "use_cuda": use_cuda,
                "mem_opt_skip_vars": forward_mem_opt_skip_vars,
                "for_partial_block": True,
            }
            _apply_pass(
                forward_program,
                empty_startup_program,
                "buffer_shared_inplace_pass",
                attrs,
                attr_types,
            )
        if backward_program:
            attrs = {
                "use_cuda": use_cuda,
                "mem_opt_skip_vars": backward_mem_opt_skip_vars,
                "for_partial_block": True,
            }
            _apply_pass(
                backward_program,
                empty_startup_program,
                "buffer_shared_inplace_pass",
                attrs,
                attr_types,
            )
818

819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845
    @LazyInitialized
    def _inout_var_names(self):
        """
        Returns Variable Names from self._inputs and self.outputs
        """
        var_names = []
        for var in self._inputs:
            if isinstance(var, paddle.fluid.framework.Variable):
                var_names.append(var.desc.name())
        for var in self._outputs:
            if isinstance(var, paddle.fluid.framework.Variable):
                var_names.append(var.desc.name())
        return var_names

    def _parse_skip_gc_vars(self, program, backward_program=None):
        """
        Parse variables that need to skip GC after execute it.
        If specify backward_program, it will keep the variables used in backward.
        """
        # skip data var, DO NOT ignore this deepcopy
        skip_vars = deepcopy(self._inout_var_names)
        for var_name, var in program.global_block().vars.items():
            if var.is_data:
                skip_vars.append(var_name)

        if backward_program:
            for var_name in core.parse_safe_eager_deletion_skip_vars(
846
                backward_program.desc, True
847 848 849 850
            ):
                skip_vars.append(var_name)
        return skip_vars

851 852 853 854 855
    def _prepare(self, inputs):
        """
        Prepare inputs, outputs, attrs.
        """
        assert isinstance(inputs, (tuple, list))
856
        # Flatten inputs with nested structure into single list.
857
        flatten_inputs = paddle.utils.flatten(inputs)
W
wanghuancoder 已提交
858
        # Convert variable into Tensor and feed in training data.
859
        input_vars = []
860
        expected_place = framework._current_expected_place()
861
        for i, value in enumerate(flatten_inputs):
862
            if isinstance(value, np.ndarray):
J
Jiabin Yang 已提交
863
                var = None
W
wanghuancoder 已提交
864 865 866 867 868 869 870 871
                var = core.eager.Tensor(
                    value=value,
                    name=self._inputs[i].desc.name(),
                    persistable=False,
                    place=expected_place,
                    zero_copy=True,
                )
            elif isinstance(value, core.eager.Tensor):
872 873 874 875
                # NOTE(Aurelius84): If var is on CPUPlace, it will be transformed multi times
                # into CUDAPlace when it's as input of multi Ops. so we move it in advance
                # to avoid this problem.
                if value.stop_gradient and not value.place._equals(
876 877
                    expected_place
                ):
878 879
                    var = value._copy_to(expected_place, False)
                    var.stop_gradient = True
880 881
                else:
                    var = value
882
                var.name = self._inputs[i].desc.name()
883 884 885
            else:
                continue
            input_vars.append(var)
886

W
wanghuancoder 已提交
887
        # mapping from name(string) -> Tensor
888 889
        out_varbase_map = {}

890 891
        def create_out(var_id):
            var = self._outputs[var_id]
892
            assert isinstance(var, framework.Variable)
893
            var_desc = var.desc
J
Jiabin Yang 已提交
894
            varbase = None
895 896 897 898

            if var_desc.name() in out_varbase_map:
                return out_varbase_map[var_desc.name()]

W
wanghuancoder 已提交
899 900 901 902 903 904 905
            var_base = core.eager.Tensor(
                var_desc.dtype(),
                var_desc.shape(),
                var_desc.name(),
                var_desc.type(),
                False,
            )
906
            var_base.stop_gradient = var.stop_gradient
907
            out_varbase_map[var_desc.name()] = var_base
908 909
            return var_base

W
wanghuancoder 已提交
910
        # Create Tensor to receive output data.
911 912 913
        out_vars = list(map(create_out, self._outputs.var_ids))

        return input_vars, out_vars
914

915
    def _create_scope_vec(self, program_id=None, use_scope_cache=False):
916
        # Hold forward variables
J
Jiabin Yang 已提交
917
        tmp_scope_vec = None
918 919 920
        inner_scope = self._get_scope(
            program_id=program_id, use_scope_cache=use_scope_cache
        )
W
wanghuancoder 已提交
921
        tmp_scope_vec = [inner_scope]
922
        return tmp_scope_vec
923

924
    def _create_cuda_graph_vec(self):
W
wanghuancoder 已提交
925
        var = core.eager.Tensor(
926 927 928 929 930 931
            core.VarDesc.VarType.FP32,
            [],
            "cuda_graph",
            core.VarDesc.VarType.RAW,
            True,
        )
932 933 934
        var.stop_gradient = True
        return var

935 936
    def _restore_out(self, out_vars):
        """
W
wanghuancoder 已提交
937
        Restores same nested outputs by only replacing the Variable with Tensor.
938 939 940 941 942 943
        """

        flatten_outputs = self._outputs.tolist()
        for i, idx in enumerate(self._outputs.var_ids):
            flatten_outputs[idx] = out_vars[i]
        outs = self._outputs.restore(flatten_outputs)
944
        if outs is not None and len(outs) == 1:
945 946 947 948
            outs = outs[0]

        return outs

949 950 951 952
    @switch_to_static_graph
    def _clone_for_test(self, main_program):
        return main_program.clone(for_test=True)

953
    def _is_no_value(self, var):
W
wanghuancoder 已提交
954
        if isinstance(var, core.eager.Tensor) and var.shape == [1]:
955 956
            # NOTE: .numpy() will insert MemcpySync operation, it hits performance.
            if var.numpy()[0] == RETURN_NO_VALUE_MAGIC_NUM:
957 958 959 960 961 962 963
                return True
        return False

    def _remove_no_value(self, out_vars):
        """
        Removes invalid value for various-length return statement
        """
W
wanghuancoder 已提交
964
        if isinstance(out_vars, core.eager.Tensor):
965 966 967 968 969
            if self._is_no_value(out_vars):
                return None
            return out_vars
        elif isinstance(out_vars, (tuple, list)):
            if isinstance(out_vars, tuple):
970 971 972
                res = tuple(
                    var for var in out_vars if not self._is_no_value(var)
                )
973 974 975 976
            else:
                # isinstance(out_vars, list)
                res = [var for var in out_vars if not self._is_no_value(var)]

977
            has_removed = len(out_vars) > len(res)
978 979 980 981 982 983 984 985 986 987
            # len(out_vars) > len(res) means we have removed var. This is
            # preventing out_vars is empty or just one element at the beginning
            if len(res) == 0 and has_removed:
                return None
            elif len(res) == 1 and has_removed:
                return res[0]
            return res

        return out_vars

988
    def _set_grad_type(self, params, train_program):
989 990
        # NOTE: if user set sparse gradient mode, the param's gradient
        # will be SelectedRows, not LoDTensor. But tracer will just
W
wanghuancoder 已提交
991
        # set param grad Tensor by forward Tensor(LoDTensor)
992 993 994 995 996
        # If we don't change grad_var type here, RunProgramOp need
        # transform SelectedRows to LoDTensor forcibly, it may not
        # be user wanted result.
        for param in params:
            grad_name = param.name + core.grad_var_suffix()
997
            grad_var = train_program.desc.block(0).find_var(grad_name.encode())
998 999 1000 1001 1002
            # NOTE: cannot find var desc maybe no problem, such as in batch_norm
            if grad_var is None:
                continue
            param._set_grad_type(grad_var.type())

1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015
    def _remove_op_call_stack(self, main_program):
        """
        Remove op's python call stack with redundant low-level error messages related to
        transforamtions to avoid confusing users.
        """
        assert isinstance(main_program, framework.Program)
        for block in main_program.blocks:
            for op in block.ops:
                if op.has_attr("op_callstack"):
                    op._remove_attr("op_callstack")

        return main_program

1016 1017 1018
    def _check_params_all_inited(self, main_program):
        """
        Check all params from main program are already initialized, see details as follows:
W
wanghuancoder 已提交
1019
            1. all parameters in self._params should be type `framework.EagerParamBase` which are created in dygraph.
1020
            2. all parameters from transformed program can be found in self._params.
W
wanghuancoder 已提交
1021
               Because they share same data with EagerParamBase of original dygraph.
1022 1023 1024 1025
        """
        if not isinstance(self._params, (list, tuple)):
            raise TypeError(
                "Type of self._params in PartialProgramLayer should be list or tuple, but received %s."
1026 1027
                % type(self._params)
            )
1028

1029 1030 1031
        param_and_buffer_names_set = set()
        for i, var in enumerate(self._params):
            # self._params constains parameters and buffers with persistable=True.
W
wanghuancoder 已提交
1032
            if not isinstance(var, core.eager.Tensor):
1033
                raise TypeError(
1034 1035 1036 1037
                    'Type of self._params[{}] in PartialProgramLayer should be Parameter or Variable, but received {}.'.format(
                        i, type(var)
                    )
                )
1038
            param_and_buffer_names_set.add(var.name)
1039 1040

        for block in main_program.blocks:
1041
            for name, var in block.vars.items():
1042
                if isinstance(var, framework.Parameter):
1043
                    if name not in param_and_buffer_names_set:
1044
                        raise ValueError(
1045 1046 1047 1048 1049 1050
                            "\n\tWe don't support to define layer with parameters in the function decorated by `@to_static`."
                            "\n\tBut we found parameter(%s) was created in the decorated function."
                            "\n"
                            "\n\tRevise suggestion: "
                            "\n\t\t1. Please ensure all your sublayers are inheritted from nn.Layer."
                            "\n\t\t2. Please use nn.ParameterList and nn.LayerList as container instead of using a native Python container such as List"
1051 1052
                            % name
                        )
1053

1054
    def _valid_vars(self, vars):
1055
        return vars if vars else None
1056

1057

1058
def partial_program_from(concrete_program, from_method=False):
1059
    inputs = concrete_program.inputs
1060 1061 1062

    # NOTE(SigureMo): Remove the first arg `self` from method args.
    if inputs and from_method:
1063 1064
        inputs = inputs[1:]

1065 1066 1067 1068 1069 1070 1071
    return PartialProgramLayer(
        concrete_program.main_program,
        inputs,
        concrete_program.outputs,
        concrete_program.parameters,
        **concrete_program.kwargs
    )
1072 1073 1074


@switch_to_static_graph
1075
def add_build_strategy_for(
1076
    program, start_op_index, end_op_index, build_strategy=None, skip_vars=None
1077 1078
):
    if start_op_index < end_op_index:
1079 1080
        compiled_program = paddle.static.CompiledProgram(
            core.Graph(program.desc, start_op_index, end_op_index),
1081 1082
            build_strategy=build_strategy,
        )
1083 1084 1085
        if skip_vars:
            # TODO(Aurelius84): Need to unify name with C++, such as kSkipVarNames.
            compiled_program._graph.set("skip_gc_vars", set(skip_vars))
1086 1087 1088
        compiled_program._compile(
            core.Scope(), framework._current_expected_place()
        )
1089 1090
        ir_graph = framework.IrGraph(compiled_program._graph)
        builded_program = ir_graph.to_program()
1091 1092 1093 1094
        if hasattr(compiled_program._program, 'lr_scheduler'):
            builded_program.lr_scheduler = (
                compiled_program._program.lr_scheduler
            )
1095
    else:
X
xiongkun 已提交
1096
        # can't just create a new program, we need copy the vardesc.
1097
        builded_program = paddle.static.Program()
X
xiongkun 已提交
1098 1099
        for var in program.block(0).vars.values():
            builded_program.block(0)._clone_variable(var, False)
1100
    return builded_program