partial_program.py 41.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import os
16 17
from copy import deepcopy

18
import numpy as np
19

20
import paddle
21
from paddle import _legacy_C_ops
22
from paddle.amp.auto_cast import _in_amp_guard, _in_pure_fp16_guard
23
from paddle.fluid import backward, core, framework, program_guard
24
from paddle.fluid.compiler import BuildStrategy
25
from paddle.fluid.data_feeder import check_type, convert_dtype
26 27
from paddle.fluid.dygraph.base import switch_to_static_graph
from paddle.fluid.framework import _apply_pass
28
from paddle.fluid.unique_name import guard as UniqueNameGuard
29
from paddle.optimizer.lr import LRScheduler
30 31

from . import logging_utils
32 33 34
from .utils import (
    RETURN_NO_VALUE_MAGIC_NUM,
    backend_guard,
35
    construct_grad_names,
36
    tensor_name_guard,
37
)
38

39 40
__all__ = []

41

42
class NestSequence:
43 44 45 46 47 48 49
    """
    A wrapper class that easily to flatten and restore the nest structure of
    given sequence.
    """

    def __init__(self, raw_input, need_check=False):
        self.__raw_input = raw_input
50
        self.__input_list = self.tolist()
51 52 53 54 55 56 57
        self.__var_ids = self._get_var_ids()
        self._check_non_variable(need_check)

    def tolist(self):
        """
        Flattens the nested sequences into single list.
        """
58
        return paddle.utils.flatten(self.__raw_input)
59 60 61 62 63

    def restore(self, value_list):
        """
        Restores the nested sequence from value list.
        """
64
        assert len(self.__input_list) == len(value_list)
65
        return paddle.utils.pack_sequence_as(self.__raw_input, value_list)
66 67 68

    def _get_var_ids(self):
        var_ids = []
69
        for idx, var in enumerate(self.__input_list):
W
wanghuancoder 已提交
70
            if isinstance(var, (framework.Variable, core.eager.Tensor)):
71 72 73 74 75 76 77 78 79 80
                var_ids.append(idx)

        return var_ids

    def _check_non_variable(self, need_check):
        """
        Raises warning if output of traced function contains non-tensor type values.
        """
        if need_check:
            warning_types = set()
81
            for var in self.__input_list:
W
wanghuancoder 已提交
82
                if not isinstance(var, (framework.Variable, core.eager.Tensor)):
83 84
                    warning_types.add(type(var))
            if warning_types:
85
                logging_utils.warn(
86 87
                    "Output of traced function contains non-tensor type values: {}. "
                    "Currently, We don't support to update them while training and will return "
88 89 90 91
                    "what we first saw. Please try to return them as tensor.".format(
                        list(warning_types)
                    )
                )
92 93 94 95 96 97

    @property
    def var_ids(self):
        return self.__var_ids

    def __getitem__(self, item):
98
        return self.__input_list[item]
99

100

101
class LazyInitialized:
102 103 104 105 106 107 108 109 110 111 112 113 114
    """
    Descriptor to implement lazy initialization of property.
    """

    def __init__(self, function):
        self.function = function

    def __get__(self, instance, cls):
        val = self.function(instance)
        setattr(instance, self.function.__name__, val)
        return val


115 116 117 118 119
class ProgramInfo:
    """
    A helper class to recoder Program information
    """

120
    def __init__(self):
121 122 123 124 125
        self.op_size = {
            'fp32': -1,
            'amp': -1,
            'fp16': -1,
        }
126 127 128 129 130 131 132 133 134 135 136 137 138 139
        self.programs = {}
        self.mode = "infer"

    def __call__(self, key, prog_creator):
        """
        Recoder infer program and op size.
        """
        assert key in ['fp32', 'amp', 'fp16']
        if key not in self.programs:
            infer_prog = prog_creator(is_infer_mode=True)
            self.programs[key] = infer_prog
            self.op_size[key] = infer_prog.desc.block(0).op_size()

        return self.programs[key], self.op_size[key]
140 141


X
xiongkun 已提交
142
class PartialProgramLayerHook:
143
    def before_append_backward(self, forward_program):
X
xiongkun 已提交
144 145
        ...

146
    def after_append_backward(self, whole_program, backward_start_idx):
X
xiongkun 已提交
147 148
        ...

149
    def after_infer(self, infer_program):
X
xiongkun 已提交
150 151 152
        ...


153
class PartialProgramLayer:
154
    """
H
hjyp 已提交
155
    PartialProgramLayer wraps all the ops from layers decorated by `@to_static`
156 157 158
    and execute them as a static subgraph.

    .. note::
159 160 161
        **1. This is a very low level API. Users should not use this API
             directly. Please use `partial_program_from(concrete_program)`
             to create it.
162 163 164 165
        **2. LoDTensorArray is not currently supported in the output.

    Args:
        main_program(Program): The main program that contains ops need to be executed.
H
hjyp 已提交
166 167
        inputs(list[Variable]): The input list of the decorated function by `@to_static`.
        outputs(list[Variable]): The output list of the decorated function by `@to_static`.
W
wanghuancoder 已提交
168
        parameters(list[Tensor]|None): All trainable parameters included in the program. Default None.
169 170

    Returns:
171
        Layer: A Layer object that run all ops internally in static graph mode.
172 173
    """

174
    def __init__(
175 176 177 178 179 180 181
        self,
        main_program,
        inputs,
        outputs,
        name_generator,
        parameters=None,
        **kwargs
182
    ):
183
        super().__init__()
184 185
        self._inputs = NestSequence(inputs)
        self._outputs = NestSequence(outputs, need_check=True)
186
        self._params = parameters if parameters is not None else []
187
        self._name_generator = name_generator
188

189 190 191
        self._build_strategy = kwargs.get('build_strategy', BuildStrategy())
        assert isinstance(self._build_strategy, BuildStrategy)

192
        self._origin_main_program = self._verify_program(main_program)
193 194 195
        self._cuda_graph_vec = self._create_cuda_graph_vec()
        self._cuda_graph_capture_mode = ""
        self._cuda_graph_pool_id = 0
196
        # Set default mode to train
197
        self.training = True
198
        self._infer_info = ProgramInfo()
199
        self._forward_end_index_map = {}
200

201
        amp_dtype, custom_white_list, custom_black_list = None, None, None
202 203 204
        tracer = framework._dygraph_tracer()
        if tracer:
            custom_white_list, custom_black_list = tracer._get_amp_op_list()
205 206 207 208 209 210 211 212 213 214
            amp_dtype = tracer._amp_dtype
        if amp_dtype is not None and amp_dtype in ['float16', 'bfloat16']:
            # For AMP training
            self._amp_list = (
                paddle.static.amp.fp16_lists.AutoMixedPrecisionLists(
                    custom_white_list=custom_white_list,
                    custom_black_list=custom_black_list,
                    dtype=amp_dtype,
                )
            )
215

216 217
        # program_id -> list(scope)
        self._scope_cache = {}
X
xiongkun 已提交
218
        self._hooker = None
219
        self._backend = kwargs.get('backend', None)
220
        self._grad_var_names = {}
221

222 223 224 225
    def __call__(self, inputs):
        """
        Execute static graph by Interpreter and Return dynamic Tensors.
        """
226
        with UniqueNameGuard(self._name_generator):
227
            in_vars, out_vars, in_var_names = self._prepare(inputs)
228 229 230 231 232 233
            self._cast_fp16_if_pure_fp16(in_vars)
            attrs = self._prepare_attributes()
            attrs.extend(["x_names", in_var_names])

            self._sync_lr_value_with_scheduler()

234 235 236 237 238 239 240 241 242 243 244 245
            with tensor_name_guard(in_vars, in_var_names):
                _legacy_C_ops.run_program(
                    self._valid_vars(in_vars),
                    self._valid_vars(self._params),
                    self._valid_vars(out_vars),
                    self._create_scope_vec(
                        program_id=self.program_id, use_scope_cache=True
                    ),
                    self._double_grads,
                    self._cuda_graph_vec,
                    *attrs
                )
246 247 248 249

            self._update_stop_gradient(out_vars)
            restored_nest_out = self._restore_out(out_vars)
            return self._remove_no_value(restored_nest_out)
250

251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
    def _sync_lr_value_with_scheduler(self):
        """Update lr_var value with calculated by lr_scheduler."""
        main_program = self._origin_main_program
        if hasattr(main_program, 'lr_scheduler') and hasattr(
            main_program, 'lr_var'
        ):
            lr_scheduler = main_program.lr_scheduler
            lr_var = main_program.lr_var

            assert isinstance(lr_scheduler, LRScheduler), "must be LRScheduler"
            lr_scheduler = self._origin_main_program.lr_scheduler
            lr_value = lr_scheduler()
            data = np.array(lr_value).astype(convert_dtype(lr_var.dtype))
            lr_var.set_value(data)

X
xiongkun 已提交
266 267 268
    def set_hooker(self, hooker):
        self._hooker = hooker

269 270 271 272 273 274 275 276
    def _get_scope(self, program_id=None, use_scope_cache=False):
        if use_scope_cache:
            if program_id not in self._scope_cache:
                scope = core.Scope()
                self._scope_cache[program_id] = [scope]
                return scope
            else:
                for scope in self._scope_cache[program_id]:
C
co63oc 已提交
277
                    if scope._can_reused:
278 279 280 281 282 283 284
                        return scope
                scope = core.Scope()
                self._scope_cache[program_id].append(scope)
                return scope
        else:
            return core.Scope()

285 286
    @LazyInitialized
    def _double_grads(self):
287 288
        # TODO: check the affects.
        return None
289

290 291 292 293
    # whole
    @switch_to_static_graph
    def _create_program(self, is_infer_mode=False):
        if is_infer_mode:
X
xiongkun 已提交
294 295 296 297
            infer_program = self._origin_main_program.clone(
                for_test=is_infer_mode
            )
            if self._hooker:
298
                infer_program = self._hooker.after_infer(infer_program)
X
xiongkun 已提交
299
            return infer_program
300 301
        else:
            train_program = self._append_backward_desc(
302 303
                self._origin_main_program
            )
304 305 306
            # Note: Only set grad type once after initializing train program. So we put it here.
            self._set_grad_type(self._params, train_program)
            return train_program
307

308 309 310 311
    @switch_to_static_graph
    def _create_amp_program(self, is_infer_mode=False):
        amp_program = self._origin_main_program.clone(for_test=is_infer_mode)
        with program_guard(amp_program):
312 313
            paddle.static.amp.fp16_utils.cast_model_to_fp16(
                amp_program, self._amp_list, use_fp16_guard=False, level='O1'
314
            )
315
        if is_infer_mode:
316 317
            if self._hooker:
                amp_program = self._hooker.after_infer(amp_program)
318 319 320 321 322
            return amp_program
        else:
            train_amp_program = self._append_backward_desc(amp_program)
            self._set_grad_type(self._params, train_amp_program)
            return train_amp_program
323

324 325 326
    @switch_to_static_graph
    def _create_pure_fp16_program(self, is_infer_mode=False):
        pure_fp16_program = self._origin_main_program.clone(
327 328
            for_test=is_infer_mode
        )
329
        with program_guard(pure_fp16_program):
330
            paddle.static.amp.fp16_utils.cast_model_to_fp16(
331 332
                pure_fp16_program, self._amp_list, use_fp16_guard=False
            )
J
Jiabin Yang 已提交
333

334
        if is_infer_mode:
335 336
            if self._hooker:
                pure_fp16_program = self._hooker.after_infer(pure_fp16_program)
337 338 339
            return pure_fp16_program
        else:
            train_pure_fp16_program = self._append_backward_desc(
340 341
                pure_fp16_program
            )
342 343
            self._set_grad_type(self._params, train_pure_fp16_program)
            return train_pure_fp16_program
344

345
    @switch_to_static_graph
346
    def _create_forward_backward_train_program(self):
347
        whole_program = self._train_program
X
xiongkun 已提交
348
        forward_end_op_index = self.get_forward_end_op_idx(whole_program)
349
        assert forward_end_op_index >= 0
350

351 352 353
        return self._get_forward_backward_program_form(
            whole_program, forward_end_op_index
        )
354

355 356
    @switch_to_static_graph
    def _create_forward_backward_train_amp_program(self):
357
        whole_program = self._train_amp_program
358
        forward_end_op_index = self.get_forward_end_op_idx(whole_program)
359
        assert forward_end_op_index >= 0
360

361 362 363
        return self._get_forward_backward_program_form(
            whole_program, forward_end_op_index
        )
364 365 366

    @switch_to_static_graph
    def _create_forward_backward_train_pure_fp16_program(self):
367
        whole_program = self._train_pure_fp16_program
368
        forward_end_op_index = self.get_forward_end_op_idx(whole_program)
369
        assert forward_end_op_index >= 0
370

371 372 373
        return self._get_forward_backward_program_form(
            whole_program, forward_end_op_index
        )
374 375

    @LazyInitialized
376 377
    def _train_program(self):
        return self._create_program()
378

379
    @LazyInitialized
380
    def _infer_program(self):
381 382
        program, op_size = self._infer_info('fp32', self._create_program)
        return self._build_infer_program(program, op_size)
383

384 385 386 387 388 389
    @LazyInitialized
    def _train_amp_program(self):
        return self._create_amp_program()

    @LazyInitialized
    def _infer_amp_program(self):
390 391
        program, op_size = self._infer_info('amp', self._create_amp_program)
        return self._build_infer_program(program, op_size)
392 393 394

    @LazyInitialized
    def _train_pure_fp16_program(self):
395
        return self._create_pure_fp16_program()
396

397
    @LazyInitialized
398
    def _infer_pure_fp16_program(self):
399 400
        program, op_size = self._infer_info(
            'fp16', self._create_pure_fp16_program
401
        )
402
        return self._build_infer_program(program, op_size)
403

404
    @LazyInitialized
405 406 407
    def _train_forward_backward_program(self):
        program = self._create_forward_backward_train_program()
        return program
408 409

    @LazyInitialized
410 411 412 413
    def _train_amp_forward_backward_program(self):
        program = self._create_forward_backward_train_amp_program()
        return program

414 415 416 417
    @LazyInitialized
    def _empty_backward_program_for_eval(self):
        return paddle.static.Program()

418 419 420 421 422
    @LazyInitialized
    def _train_pure_fp16_forward_backward_program(self):
        program = self._create_forward_backward_train_pure_fp16_program()
        return program

423 424
    @LazyInitialized
    def _train_program_id(self):
425
        program_id = paddle.utils._hash_with_id(self._train_program, self)
426 427 428
        core._set_cached_executor_build_strategy(
            program_id, self._build_strategy
        )
429
        return program_id
430

431 432
    @LazyInitialized
    def _infer_program_id(self):
433
        return paddle.utils._hash_with_id(self._infer_program, self)
434

435 436
    @LazyInitialized
    def _train_amp_program_id(self):
437
        program_id = paddle.utils._hash_with_id(self._train_amp_program, self)
438 439 440
        core._set_cached_executor_build_strategy(
            program_id, self._build_strategy
        )
441 442
        return program_id

443 444
    @LazyInitialized
    def _infer_amp_program_id(self):
445
        return paddle.utils._hash_with_id(self._infer_amp_program, self)
446

447 448
    @LazyInitialized
    def _train_pure_fp16_program_id(self):
449 450 451
        program_id = paddle.utils._hash_with_id(
            self._train_pure_fp16_program, self
        )
452 453 454
        core._set_cached_executor_build_strategy(
            program_id, self._build_strategy
        )
455 456
        return program_id

457 458
    @LazyInitialized
    def _infer_pure_fp16_program_id(self):
459
        return paddle.utils._hash_with_id(self._infer_pure_fp16_program, self)
460

X
xiongkun 已提交
461
    def get_forward_end_op_idx(self, program):
462 463 464
        return self._forward_end_index_map[
            paddle.utils._hash_with_id(program, self)
        ]
X
xiongkun 已提交
465

466
    @property
467 468 469 470 471 472 473 474 475 476 477 478 479 480
    def program(self):
        """
        Return current train or eval program.
        """
        if self.training:
            return self.train_program
        else:
            return self.infer_program

    @property
    def program_id(self):
        """
        Return current train or eval program hash id.
        """
481 482 483 484 485 486 487 488 489 490 491 492 493 494 495
        if self.training:
            if _in_amp_guard():
                return self._train_amp_program_id
            elif _in_pure_fp16_guard():
                return self._train_pure_fp16_program_id
            else:
                return self._train_program_id
        else:
            if _in_amp_guard():
                return self._infer_amp_program_id
            elif _in_pure_fp16_guard():
                return self._infer_pure_fp16_program_id
            else:
                return self._infer_program_id

496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548
    @property
    def train_program(self):
        if _in_amp_guard():
            return self._train_amp_program
        elif _in_pure_fp16_guard():
            return self._train_pure_fp16_program
        else:
            return self._train_program

    @property
    def infer_program(self):
        if _in_amp_guard():
            return self._infer_amp_program
        elif _in_pure_fp16_guard():
            return self._infer_pure_fp16_program
        else:
            return self._infer_program

    @property
    def forward_program(self):
        if self.training:
            if _in_amp_guard():
                progs = self._train_amp_forward_backward_program
            elif _in_pure_fp16_guard():
                progs = self._train_pure_fp16_forward_backward_program
            else:
                progs = self._train_forward_backward_program
            return progs[0]
        else:
            return self.infer_program

    @property
    def backward_program(self):
        if self.training:
            if _in_amp_guard():
                progs = self._train_amp_forward_backward_program
            elif _in_pure_fp16_guard():
                progs = self._train_pure_fp16_forward_backward_program
            else:
                progs = self._train_forward_backward_program
            return progs[1]
        else:
            """
            Can't just return paddle.static.Program(), because self.backward_program is a property,
            whenever we call this method, a tmp Program() object is created and is gc immediatly
            after executed the following line in PartialProgramLayer.__call__.

            >>> self.backward_program.desc.block(0),

            When we access RunProgramAPI, it's possible to get an invalid backward_program address.
            """
            return self._empty_backward_program_for_eval

549 550 551 552 553 554 555 556 557 558 559 560
    def _verify_program(self, main_program):
        """
        Verify that the program parameter is initialized, prune some unused params,
        and remove redundant op callstack.
        """
        # 1. Check all params from main program can be found in self._params
        self._check_params_all_inited(main_program)
        # 2. Prune the parameters not used anywhere in the program.
        self._prune_unused_params(main_program)

        return main_program

561 562 563
    def prepare_gradient_aggregation(
        self, start_idx, main_program, target_program
    ):
564 565 566 567 568 569 570
        """
        Why we need add gradient aggregation operation ?
        In some cases, if non leaf nodes are used as output, gradient overwriting will occur, such as
        def forward(self, in):
            x = 2 * in  # <---- x is a non-leaf node in program.
            y = x + 3
            return x, y
571

572 573 574 575 576 577 578 579 580
        loss = forward(in)[0].sum()
        loss.backward()  # <----- x@grad will be overwrited by elementwise_add_grad Op
        """

        def _need_aggregation(var):
            """
            if exist a op whose inputs is var, then return True
            """
            if not isinstance(var, framework.Variable) or var.type not in [
581 582
                core.VarDesc.VarType.LOD_TENSOR,
                core.VarDesc.VarType.SELECTED_ROWS,
583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598
            ]:
                return False
            if var.dtype not in [paddle.float32, paddle.float64]:
                return False
            for op in main_program.block(0).ops:
                for in_arg in op.input_arg_names:
                    if in_arg == var.name:
                        return True
            return False

        def _insert_aggregation_ops_for_var(target_program, var):
            suffix = "@dy2static"
            var_grad_name = var.grad_name
            new_grad_name = var.name + suffix + "@GRAD"
            finded_ops = list(
                filter(
599 600
                    lambda x: x[0] >= start_idx
                    and any(
601 602
                        out_arg == var_grad_name
                        for out_arg in x[1].output_arg_names
603 604 605 606
                    ),
                    enumerate(target_program.block(0).ops),
                )
            )
607 608 609 610 611 612

            # len(finded_ops) may equals zero when stop_gradient works.
            # len(finded_ops) may > 1, because we may have fill_constant op.
            if len(finded_ops) == 0:
                return None
            # step1: create a new var named var.name@GRAD
613 614 615 616 617 618
            target_program.block(0).create_var(
                name=new_grad_name,
                type=var.type,
                dtype=var.dtype,
                shape=var.shape,
            )
619 620 621 622 623 624 625 626 627 628
            # step2: rename the var.name@GRAD to var.name@GRAD@dy2static
            for idx, op in finded_ops:
                op._rename_input(var_grad_name, new_grad_name)
                op._rename_output(var_grad_name, new_grad_name)
            # step3: insert sum op to aggregate the gradient.
            #        var.name@GRAD = sum(var.name@dy2static@GRAD, var.name@GRAD)
            target_program.block(0)._insert_op(
                finded_ops[-1][0] + 1,
                type='sum',
                inputs={'X': [var_grad_name, new_grad_name]},
629 630
                outputs={"Out": var_grad_name},
            )
631 632 633
            return None

        to_processed_vars = list(
634 635
            filter(_need_aggregation, self._outputs.tolist())
        )
636 637 638
        for _var in to_processed_vars:
            _insert_aggregation_ops_for_var(target_program, _var)

639
    @switch_to_static_graph
640
    def _append_backward_desc(self, main_program):
641
        program = main_program.clone(for_test=False)
X
xiongkun 已提交
642
        if self._hooker:
643
            program = self._hooker.before_append_backward(program)
644
        targets = []
645
        for out in self._outputs.tolist():
646 647 648
            if isinstance(out, framework.Variable):
                targets.append(program.global_block().var(out.name))

X
xiongkun 已提交
649
        start_idx = len(program.block(0).ops) + len(self._outputs.tolist())
650
        if targets:
651
            start_idx = len(program.block(0).ops) + len(self._outputs.tolist())
652
            with backend_guard(self._backend):
653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679
                check_type(
                    targets,
                    'targets',
                    (framework.Variable, list, tuple),
                    'paddle.static.gradients',
                )
                grad_info_map = backward.calc_gradient_helper(
                    targets=targets, inputs=[]
                )

                x_vars = [
                    program.block(0).var(var.name)
                    for var in self._inputs
                    if isinstance(var, framework.Variable)
                ]
                param_vars = [
                    program.block(0).var(param.name) for param in self._params
                ]
                out_vars = [
                    program.block(0).var(var.name)
                    for var in self._outputs
                    if isinstance(var, framework.Variable)
                ]

                self._grad_var_names = construct_grad_names(
                    grad_info_map, x_vars, param_vars, out_vars
                )
680

X
xiongkun 已提交
681 682
            if self._hooker:
                program, start_idx = self._hooker.after_append_backward(
683
                    program, start_idx
X
xiongkun 已提交
684
                )
685 686 687
            self.prepare_gradient_aggregation(
                start_idx + 1, main_program, program
            )
688

X
xiongkun 已提交
689
        self._forward_end_index_map[
690
            paddle.utils._hash_with_id(program, self)
X
xiongkun 已提交
691
        ] = start_idx - len(self._outputs.tolist())
692 693
        return program

694 695 696
    def _prune_unused_params(self, program):
        """
        Prune the parameters not used anywhere in the program.
H
hjyp 已提交
697
        The `@to_static` may only decorated a sub function which
698 699 700 701 702 703
        contains some unused parameters created in `__init__`.
        So prune these parameters to avoid unnecessary operations in
        `run_program_op`.
        """
        required_params = []
        for param in self._params:
704
            found_param = False
705
            for block in program.blocks:
706
                for op in block.ops:
707 708 709 710
                    if (
                        param.name in op.input_arg_names
                        or param.name in op.output_arg_names
                    ):
711 712 713 714
                        required_params.append(param)
                        found_param = True
                        break
                if found_param:
715 716 717 718
                    break

        self._params = required_params

719 720 721 722 723 724 725 726 727 728 729
    def _cast_fp16_if_pure_fp16(self, in_vars):
        if _in_pure_fp16_guard():
            for i, var in enumerate(in_vars):
                name = var.name
                if (
                    self.program.global_block().has_var(name)
                    and self.program.global_block().var(name).dtype
                    == paddle.float16
                ):
                    in_vars[i] = var.astype('float16')
                    in_vars[i].name = name
730

731
    def _prepare_attributes(self):
732
        attrs = [
733 734 735 736
            'forward_global_block',
            self.forward_program.desc.block(0),
            'backward_global_block',
            self.backward_program.desc.block(0),
737 738 739 740
            'is_test',
            not self.training,
            'program_id',
            self.program_id,
741
        ]
X
xiongkun 已提交
742

743 744 745 746 747 748 749
        if self.training:
            # NOTE: In the case of higher-order gradient, the names of the parameter grads may be like
            # `grad/grad/grad/linear_0.w_0@GRAD` instead of simply `linear_0.w_0@GRAD`, so we get
            # the correct names of the parameter grads from program. And out grads are similar to above.
            attrs.extend(
                (
                    'param_grad_names',
750
                    self._grad_var_names.get('param', []),
751
                    'out_grad_names',
752 753 754
                    self._grad_var_names.get('out', []),
                    'x_grad_names',
                    self._grad_var_names.get('x', []),
755 756
                )
            )
757 758
        if self._cuda_graph_capture_mode:
            attrs.extend(
759 760 761 762 763 764 765
                (
                    'cuda_graph_capture_mode',
                    self._cuda_graph_capture_mode,
                    'cuda_graph_pool_id',
                    self._cuda_graph_pool_id,
                )
            )
766
        return attrs
767

768 769 770 771 772 773 774 775 776 777 778 779
    @switch_to_static_graph
    def _build_infer_program(self, infer_program, forward_end_op_index):
        forward_skip_vars = self._parse_skip_gc_vars(infer_program)
        builded_infer_program = add_build_strategy_for(
            infer_program,
            0,
            forward_end_op_index,
            self._build_strategy,
            forward_skip_vars,
        )
        self._apply_inplace_pass(builded_infer_program, None)
        return builded_infer_program
780

781
    @switch_to_static_graph
782 783 784
    def _get_forward_backward_program_form(
        self, whole_program, forward_end_op_index
    ):
785 786
        # NOTE(dev): We apply build_strategy for backward firstly to
        # avoid skipping more gc variables.
787
        backward_start_op_index = forward_end_op_index + len(
788 789
            self._outputs.var_ids
        )
790
        backward_end_op_index = whole_program.desc.block(0).op_size()
791 792
        # For Backward process in CINN, all param@GRAD shoule be skipped for GC, because
        # they will be shared in scope and used by optimizer.
793 794 795
        backward_skip_vars = self._parse_skip_gc_vars(
            whole_program
        ) + self._grad_var_names.get('param', [])
796
        backward_builded_program = add_build_strategy_for(
797 798 799 800
            whole_program,
            backward_start_op_index,
            backward_end_op_index,
            self._build_strategy,
801 802 803 804 805 806 807 808 809 810 811 812
            backward_skip_vars,
        )

        forward_skip_vars = self._parse_skip_gc_vars(
            whole_program, backward_builded_program
        )
        forward_builded_program = add_build_strategy_for(
            whole_program,
            0,
            forward_end_op_index,
            self._build_strategy,
            forward_skip_vars,
813
        )
814

815 816 817
        self._apply_inplace_pass(
            forward_builded_program, backward_builded_program
        )
818 819 820 821 822 823
        return [forward_builded_program, backward_builded_program]

    def _apply_inplace_pass(self, forward_program, backward_program):
        attr_types = {
            "use_cuda": "bool",
            "mem_opt_skip_vars": "list[str]",
824
            "for_partial_block": "bool",
825 826 827 828
        }
        empty_startup_program = paddle.static.Program()
        use_cuda = True if core.is_compiled_with_cuda() else False
        # skip data var
829 830 831 832
        forward_mem_opt_skip_vars = self._parse_skip_gc_vars(
            forward_program, backward_program
        )
        backward_mem_opt_skip_vars = self._parse_skip_gc_vars(forward_program)
833 834 835 836 837 838
        if forward_program:
            attrs = {
                "use_cuda": use_cuda,
                "mem_opt_skip_vars": forward_mem_opt_skip_vars,
                "for_partial_block": True,
            }
839 840 841 842 843 844 845 846
            if not os.getenv("FLAGS_enable_new_ir_in_executor"):
                _apply_pass(
                    forward_program,
                    empty_startup_program,
                    "buffer_shared_inplace_pass",
                    attrs,
                    attr_types,
                )
847 848 849 850 851 852
        if backward_program:
            attrs = {
                "use_cuda": use_cuda,
                "mem_opt_skip_vars": backward_mem_opt_skip_vars,
                "for_partial_block": True,
            }
853 854 855 856 857 858 859 860
            if not os.getenv("FLAGS_enable_new_ir_in_executor"):
                _apply_pass(
                    backward_program,
                    empty_startup_program,
                    "buffer_shared_inplace_pass",
                    attrs,
                    attr_types,
                )
861

862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888
    @LazyInitialized
    def _inout_var_names(self):
        """
        Returns Variable Names from self._inputs and self.outputs
        """
        var_names = []
        for var in self._inputs:
            if isinstance(var, paddle.fluid.framework.Variable):
                var_names.append(var.desc.name())
        for var in self._outputs:
            if isinstance(var, paddle.fluid.framework.Variable):
                var_names.append(var.desc.name())
        return var_names

    def _parse_skip_gc_vars(self, program, backward_program=None):
        """
        Parse variables that need to skip GC after execute it.
        If specify backward_program, it will keep the variables used in backward.
        """
        # skip data var, DO NOT ignore this deepcopy
        skip_vars = deepcopy(self._inout_var_names)
        for var_name, var in program.global_block().vars.items():
            if var.is_data:
                skip_vars.append(var_name)

        if backward_program:
            for var_name in core.parse_safe_eager_deletion_skip_vars(
889
                backward_program.desc, True
890 891 892 893
            ):
                skip_vars.append(var_name)
        return skip_vars

894 895 896 897 898
    def _prepare(self, inputs):
        """
        Prepare inputs, outputs, attrs.
        """
        assert isinstance(inputs, (tuple, list))
899
        # Flatten inputs with nested structure into single list.
900
        flatten_inputs = paddle.utils.flatten(inputs)
W
wanghuancoder 已提交
901
        # Convert variable into Tensor and feed in training data.
902
        input_vars = []
903
        input_var_names = []
904
        expected_place = framework._current_expected_place()
905
        for i, value in enumerate(flatten_inputs):
906
            if isinstance(value, np.ndarray):
J
Jiabin Yang 已提交
907
                var = None
W
wanghuancoder 已提交
908 909 910 911 912 913 914 915
                var = core.eager.Tensor(
                    value=value,
                    name=self._inputs[i].desc.name(),
                    persistable=False,
                    place=expected_place,
                    zero_copy=True,
                )
            elif isinstance(value, core.eager.Tensor):
916 917 918 919
                # NOTE(Aurelius84): If var is on CPUPlace, it will be transformed multi times
                # into CUDAPlace when it's as input of multi Ops. so we move it in advance
                # to avoid this problem.
                if value.stop_gradient and not value.place._equals(
920 921
                    expected_place
                ):
922 923
                    var = value._copy_to(expected_place, False)
                    var.stop_gradient = True
924 925
                else:
                    var = value
926 927
            else:
                continue
928
            input_var_names.append(self._inputs[i].desc.name())
929
            input_vars.append(var)
930

W
wanghuancoder 已提交
931
        # mapping from name(string) -> Tensor
932
        out_tensor_map = {}
933

934 935
        def create_out(var_id):
            var = self._outputs[var_id]
936
            assert isinstance(var, framework.Variable)
937
            var_desc = var.desc
938

939 940
            if var_desc.name() in out_tensor_map:
                return out_tensor_map[var_desc.name()]
941

942
            out = core.eager.Tensor(
W
wanghuancoder 已提交
943 944 945 946 947 948
                var_desc.dtype(),
                var_desc.shape(),
                var_desc.name(),
                var_desc.type(),
                False,
            )
949 950 951
            out.stop_gradient = var.stop_gradient
            out_tensor_map[var_desc.name()] = out
            return out
952

W
wanghuancoder 已提交
953
        # Create Tensor to receive output data.
954 955
        out_vars = list(map(create_out, self._outputs.var_ids))

956
        return input_vars, out_vars, input_var_names
957

958
    def _create_scope_vec(self, program_id=None, use_scope_cache=False):
959
        # Hold forward variables
J
Jiabin Yang 已提交
960
        tmp_scope_vec = None
961 962 963
        inner_scope = self._get_scope(
            program_id=program_id, use_scope_cache=use_scope_cache
        )
W
wanghuancoder 已提交
964
        tmp_scope_vec = [inner_scope]
965
        return tmp_scope_vec
966

967
    def _create_cuda_graph_vec(self):
W
wanghuancoder 已提交
968
        var = core.eager.Tensor(
969 970 971 972 973 974
            core.VarDesc.VarType.FP32,
            [],
            "cuda_graph",
            core.VarDesc.VarType.RAW,
            True,
        )
975 976 977
        var.stop_gradient = True
        return var

X
xiongkun 已提交
978 979 980 981 982 983 984 985 986 987 988
    def _update_stop_gradient(self, out_vars):
        # Update stop_gradient for all outputs
        def set_stop_gradient(var_id, eager_tensor):
            var = self._outputs[var_id]
            assert isinstance(var, framework.Variable)
            eager_tensor.stop_gradient = var.stop_gradient
            return None

        for idx, var in zip(self._outputs.var_ids, out_vars):
            set_stop_gradient(idx, var)

989 990
    def _restore_out(self, out_vars):
        """
W
wanghuancoder 已提交
991
        Restores same nested outputs by only replacing the Variable with Tensor.
992 993 994 995 996 997
        """

        flatten_outputs = self._outputs.tolist()
        for i, idx in enumerate(self._outputs.var_ids):
            flatten_outputs[idx] = out_vars[i]
        outs = self._outputs.restore(flatten_outputs)
998
        if outs is not None and len(outs) == 1:
999 1000 1001 1002
            outs = outs[0]

        return outs

1003 1004 1005 1006
    @switch_to_static_graph
    def _clone_for_test(self, main_program):
        return main_program.clone(for_test=True)

1007
    def _is_no_value(self, var):
W
wanghuancoder 已提交
1008
        if isinstance(var, core.eager.Tensor) and var.shape == [1]:
1009 1010
            # NOTE: .numpy() will insert MemcpySync operation, it hits performance.
            if var.numpy()[0] == RETURN_NO_VALUE_MAGIC_NUM:
1011 1012 1013 1014 1015 1016 1017
                return True
        return False

    def _remove_no_value(self, out_vars):
        """
        Removes invalid value for various-length return statement
        """
W
wanghuancoder 已提交
1018
        if isinstance(out_vars, core.eager.Tensor):
1019 1020 1021 1022 1023
            if self._is_no_value(out_vars):
                return None
            return out_vars
        elif isinstance(out_vars, (tuple, list)):
            if isinstance(out_vars, tuple):
1024 1025 1026
                res = tuple(
                    var for var in out_vars if not self._is_no_value(var)
                )
1027 1028 1029 1030
            else:
                # isinstance(out_vars, list)
                res = [var for var in out_vars if not self._is_no_value(var)]

1031
            has_removed = len(out_vars) > len(res)
1032 1033 1034 1035 1036 1037 1038 1039 1040 1041
            # len(out_vars) > len(res) means we have removed var. This is
            # preventing out_vars is empty or just one element at the beginning
            if len(res) == 0 and has_removed:
                return None
            elif len(res) == 1 and has_removed:
                return res[0]
            return res

        return out_vars

1042
    def _set_grad_type(self, params, train_program):
1043 1044
        # NOTE: if user set sparse gradient mode, the param's gradient
        # will be SelectedRows, not LoDTensor. But tracer will just
W
wanghuancoder 已提交
1045
        # set param grad Tensor by forward Tensor(LoDTensor)
1046 1047 1048 1049 1050
        # If we don't change grad_var type here, RunProgramOp need
        # transform SelectedRows to LoDTensor forcibly, it may not
        # be user wanted result.
        for param in params:
            grad_name = param.name + core.grad_var_suffix()
1051
            grad_var = train_program.desc.block(0).find_var(grad_name.encode())
1052 1053 1054 1055 1056
            # NOTE: cannot find var desc maybe no problem, such as in batch_norm
            if grad_var is None:
                continue
            param._set_grad_type(grad_var.type())

1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069
    def _remove_op_call_stack(self, main_program):
        """
        Remove op's python call stack with redundant low-level error messages related to
        transforamtions to avoid confusing users.
        """
        assert isinstance(main_program, framework.Program)
        for block in main_program.blocks:
            for op in block.ops:
                if op.has_attr("op_callstack"):
                    op._remove_attr("op_callstack")

        return main_program

1070 1071 1072
    def _check_params_all_inited(self, main_program):
        """
        Check all params from main program are already initialized, see details as follows:
W
wanghuancoder 已提交
1073
            1. all parameters in self._params should be type `framework.EagerParamBase` which are created in dygraph.
1074
            2. all parameters from transformed program can be found in self._params.
W
wanghuancoder 已提交
1075
               Because they share same data with EagerParamBase of original dygraph.
1076 1077 1078 1079
        """
        if not isinstance(self._params, (list, tuple)):
            raise TypeError(
                "Type of self._params in PartialProgramLayer should be list or tuple, but received %s."
1080 1081
                % type(self._params)
            )
1082

1083 1084 1085
        param_and_buffer_names_set = set()
        for i, var in enumerate(self._params):
            # self._params constains parameters and buffers with persistable=True.
W
wanghuancoder 已提交
1086
            if not isinstance(var, core.eager.Tensor):
1087
                raise TypeError(
1088 1089 1090 1091
                    'Type of self._params[{}] in PartialProgramLayer should be Parameter or Variable, but received {}.'.format(
                        i, type(var)
                    )
                )
1092
            param_and_buffer_names_set.add(var.name)
1093 1094

        for block in main_program.blocks:
1095
            for name, var in block.vars.items():
1096
                if isinstance(var, framework.Parameter):
1097
                    if name not in param_and_buffer_names_set:
1098
                        raise ValueError(
1099 1100 1101 1102 1103 1104
                            "\n\tWe don't support to define layer with parameters in the function decorated by `@to_static`."
                            "\n\tBut we found parameter(%s) was created in the decorated function."
                            "\n"
                            "\n\tRevise suggestion: "
                            "\n\t\t1. Please ensure all your sublayers are inheritted from nn.Layer."
                            "\n\t\t2. Please use nn.ParameterList and nn.LayerList as container instead of using a native Python container such as List"
1105 1106
                            % name
                        )
1107

1108
    def _valid_vars(self, vars):
1109
        return vars if vars else None
1110

1111

1112
def partial_program_from(concrete_program, from_method=False):
1113
    inputs = concrete_program.inputs
1114 1115 1116

    # NOTE(SigureMo): Remove the first arg `self` from method args.
    if inputs and from_method:
1117 1118
        inputs = inputs[1:]

1119 1120 1121 1122
    return PartialProgramLayer(
        concrete_program.main_program,
        inputs,
        concrete_program.outputs,
1123
        concrete_program.name_generator,
1124 1125 1126
        concrete_program.parameters,
        **concrete_program.kwargs
    )
1127 1128 1129


@switch_to_static_graph
1130
def add_build_strategy_for(
1131
    program, start_op_index, end_op_index, build_strategy=None, skip_vars=None
1132 1133
):
    if start_op_index < end_op_index:
1134 1135
        compiled_program = paddle.static.CompiledProgram(
            core.Graph(program.desc, start_op_index, end_op_index),
1136 1137
            build_strategy=build_strategy,
        )
1138 1139 1140
        if skip_vars:
            # TODO(Aurelius84): Need to unify name with C++, such as kSkipVarNames.
            compiled_program._graph.set("skip_gc_vars", set(skip_vars))
1141 1142 1143
        compiled_program._compile(
            core.Scope(), framework._current_expected_place()
        )
1144 1145
        ir_graph = framework.IrGraph(compiled_program._graph)
        builded_program = ir_graph.to_program()
1146 1147 1148 1149
        if hasattr(compiled_program._program, 'lr_scheduler'):
            builded_program.lr_scheduler = (
                compiled_program._program.lr_scheduler
            )
1150
    else:
X
xiongkun 已提交
1151
        # can't just create a new program, we need copy the vardesc.
1152
        builded_program = paddle.static.Program()
X
xiongkun 已提交
1153 1154
        for var in program.block(0).vars.values():
            builded_program.block(0)._clone_variable(var, False)
1155
    return builded_program