partial_program.py 39.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from copy import deepcopy

17
import numpy as np
18

19
import paddle
20
from paddle import _legacy_C_ops
21
from paddle.amp.auto_cast import _in_amp_guard, _in_pure_fp16_guard
22
from paddle.fluid import backward, core, framework, program_guard
23
from paddle.fluid.compiler import BuildStrategy
24
from paddle.fluid.data_feeder import convert_dtype
25 26
from paddle.fluid.dygraph.base import switch_to_static_graph
from paddle.fluid.framework import _apply_pass
27
from paddle.optimizer.lr import LRScheduler
28 29

from . import logging_utils
30 31 32 33 34 35
from .utils import (
    RETURN_NO_VALUE_MAGIC_NUM,
    _out_grad_names,
    _param_grad_names,
    backend_guard,
)
36

37 38
__all__ = []

39

40
class NestSequence:
41 42 43 44 45 46 47
    """
    A wrapper class that easily to flatten and restore the nest structure of
    given sequence.
    """

    def __init__(self, raw_input, need_check=False):
        self.__raw_input = raw_input
48
        self.__input_list = self.tolist()
49 50 51 52 53 54 55
        self.__var_ids = self._get_var_ids()
        self._check_non_variable(need_check)

    def tolist(self):
        """
        Flattens the nested sequences into single list.
        """
56
        return paddle.utils.flatten(self.__raw_input)
57 58 59 60 61

    def restore(self, value_list):
        """
        Restores the nested sequence from value list.
        """
62
        assert len(self.__input_list) == len(value_list)
63
        return paddle.utils.pack_sequence_as(self.__raw_input, value_list)
64 65 66

    def _get_var_ids(self):
        var_ids = []
67
        for idx, var in enumerate(self.__input_list):
W
wanghuancoder 已提交
68
            if isinstance(var, (framework.Variable, core.eager.Tensor)):
69 70 71 72 73 74 75 76 77 78
                var_ids.append(idx)

        return var_ids

    def _check_non_variable(self, need_check):
        """
        Raises warning if output of traced function contains non-tensor type values.
        """
        if need_check:
            warning_types = set()
79
            for var in self.__input_list:
W
wanghuancoder 已提交
80
                if not isinstance(var, (framework.Variable, core.eager.Tensor)):
81 82
                    warning_types.add(type(var))
            if warning_types:
83
                logging_utils.warn(
84 85
                    "Output of traced function contains non-tensor type values: {}. "
                    "Currently, We don't support to update them while training and will return "
86 87 88 89
                    "what we first saw. Please try to return them as tensor.".format(
                        list(warning_types)
                    )
                )
90 91 92 93 94 95

    @property
    def var_ids(self):
        return self.__var_ids

    def __getitem__(self, item):
96
        return self.__input_list[item]
97

98

99
class LazyInitialized:
100 101 102 103 104 105 106 107 108 109 110 111 112
    """
    Descriptor to implement lazy initialization of property.
    """

    def __init__(self, function):
        self.function = function

    def __get__(self, instance, cls):
        val = self.function(instance)
        setattr(instance, self.function.__name__, val)
        return val


113 114 115 116 117
class ProgramInfo:
    """
    A helper class to recoder Program information
    """

118
    def __init__(self):
119 120 121 122 123
        self.op_size = {
            'fp32': -1,
            'amp': -1,
            'fp16': -1,
        }
124 125 126 127 128 129 130 131 132 133 134 135 136 137
        self.programs = {}
        self.mode = "infer"

    def __call__(self, key, prog_creator):
        """
        Recoder infer program and op size.
        """
        assert key in ['fp32', 'amp', 'fp16']
        if key not in self.programs:
            infer_prog = prog_creator(is_infer_mode=True)
            self.programs[key] = infer_prog
            self.op_size[key] = infer_prog.desc.block(0).op_size()

        return self.programs[key], self.op_size[key]
138 139


X
xiongkun 已提交
140
class PartialProgramLayerHook:
141
    def before_append_backward(self, forward_program):
X
xiongkun 已提交
142 143
        ...

144
    def after_append_backward(self, whole_program, backward_start_idx):
X
xiongkun 已提交
145 146
        ...

147
    def after_infer(self, infer_program):
X
xiongkun 已提交
148 149 150
        ...


151
class PartialProgramLayer:
152
    """
H
hjyp 已提交
153
    PartialProgramLayer wraps all the ops from layers decorated by `@to_static`
154 155 156
    and execute them as a static subgraph.

    .. note::
157 158 159
        **1. This is a very low level API. Users should not use this API
             directly. Please use `partial_program_from(concrete_program)`
             to create it.
160 161 162 163
        **2. LoDTensorArray is not currently supported in the output.

    Args:
        main_program(Program): The main program that contains ops need to be executed.
H
hjyp 已提交
164 165
        inputs(list[Variable]): The input list of the decorated function by `@to_static`.
        outputs(list[Variable]): The output list of the decorated function by `@to_static`.
W
wanghuancoder 已提交
166
        parameters(list[Tensor]|None): All trainable parameters included in the program. Default None.
167 168

    Returns:
169
        Layer: A Layer object that run all ops internally in static graph mode.
170 171
    """

172 173 174
    def __init__(
        self, main_program, inputs, outputs, parameters=None, **kwargs
    ):
175
        super().__init__()
176 177
        self._inputs = NestSequence(inputs)
        self._outputs = NestSequence(outputs, need_check=True)
178
        self._params = parameters if parameters is not None else []
179

180 181 182
        self._build_strategy = kwargs.get('build_strategy', BuildStrategy())
        assert isinstance(self._build_strategy, BuildStrategy)

183
        self._origin_main_program = self._verify_program(main_program)
184 185 186
        self._cuda_graph_vec = self._create_cuda_graph_vec()
        self._cuda_graph_capture_mode = ""
        self._cuda_graph_pool_id = 0
187
        # Set default mode to train
188
        self.training = True
189
        self._infer_info = ProgramInfo()
190
        self._forward_end_index_map = {}
191

192 193 194 195
        custom_white_list, custom_black_list = None, None
        tracer = framework._dygraph_tracer()
        if tracer:
            custom_white_list, custom_black_list = tracer._get_amp_op_list()
196
        # For AMP training
197
        self._amp_list = paddle.static.amp.fp16_lists.AutoMixedPrecisionLists(
198
            custom_white_list=custom_white_list,
199 200
            custom_black_list=custom_black_list,
        )
201

202 203
        # program_id -> list(scope)
        self._scope_cache = {}
X
xiongkun 已提交
204
        self._hooker = None
205
        self._backend = kwargs.get('backend', None)
206

207 208 209 210 211 212 213 214
    def __call__(self, inputs):
        """
        Execute static graph by Interpreter and Return dynamic Tensors.
        """
        in_vars, out_vars = self._prepare(inputs)
        self._cast_fp16_if_pure_fp16(in_vars)
        attrs = self._prepare_attributes()

215 216
        self._sync_lr_value_with_scheduler()

217 218 219 220 221 222 223 224 225 226 227 228 229 230
        _legacy_C_ops.run_program(
            self._valid_vars(in_vars),
            self._valid_vars(self._params),
            self._valid_vars(out_vars),
            self._create_scope_vec(
                program_id=self.program_id, use_scope_cache=True
            ),
            self._double_grads,
            self._cuda_graph_vec,
            *attrs
        )
        restored_nest_out = self._restore_out(out_vars)
        return self._remove_no_value(restored_nest_out)

231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
    def _sync_lr_value_with_scheduler(self):
        """Update lr_var value with calculated by lr_scheduler."""
        main_program = self._origin_main_program
        if hasattr(main_program, 'lr_scheduler') and hasattr(
            main_program, 'lr_var'
        ):
            lr_scheduler = main_program.lr_scheduler
            lr_var = main_program.lr_var

            assert isinstance(lr_scheduler, LRScheduler), "must be LRScheduler"
            lr_scheduler = self._origin_main_program.lr_scheduler
            lr_value = lr_scheduler()
            data = np.array(lr_value).astype(convert_dtype(lr_var.dtype))
            lr_var.set_value(data)

X
xiongkun 已提交
246 247 248
    def set_hooker(self, hooker):
        self._hooker = hooker

249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
    def _get_scope(self, program_id=None, use_scope_cache=False):
        if use_scope_cache:
            if program_id not in self._scope_cache:
                scope = core.Scope()
                self._scope_cache[program_id] = [scope]
                return scope
            else:
                for scope in self._scope_cache[program_id]:
                    if scope._can_reuesd:
                        return scope
                scope = core.Scope()
                self._scope_cache[program_id].append(scope)
                return scope
        else:
            return core.Scope()

265 266
    @LazyInitialized
    def _double_grads(self):
267 268
        # TODO: check the affects.
        return None
269

270 271 272 273
    # whole
    @switch_to_static_graph
    def _create_program(self, is_infer_mode=False):
        if is_infer_mode:
X
xiongkun 已提交
274 275 276 277
            infer_program = self._origin_main_program.clone(
                for_test=is_infer_mode
            )
            if self._hooker:
278
                infer_program = self._hooker.after_infer(infer_program)
X
xiongkun 已提交
279
            return infer_program
280 281
        else:
            train_program = self._append_backward_desc(
282 283
                self._origin_main_program
            )
284 285 286
            # Note: Only set grad type once after initializing train program. So we put it here.
            self._set_grad_type(self._params, train_program)
            return train_program
287

288 289 290 291
    @switch_to_static_graph
    def _create_amp_program(self, is_infer_mode=False):
        amp_program = self._origin_main_program.clone(for_test=is_infer_mode)
        with program_guard(amp_program):
292 293 294
            paddle.static.amp.fp16_utils.rewrite_program(
                amp_program, self._amp_list
            )
295
        if is_infer_mode:
296 297
            if self._hooker:
                amp_program = self._hooker.after_infer(amp_program)
298 299 300 301 302
            return amp_program
        else:
            train_amp_program = self._append_backward_desc(amp_program)
            self._set_grad_type(self._params, train_amp_program)
            return train_amp_program
303

304 305 306
    @switch_to_static_graph
    def _create_pure_fp16_program(self, is_infer_mode=False):
        pure_fp16_program = self._origin_main_program.clone(
307 308
            for_test=is_infer_mode
        )
309
        with program_guard(pure_fp16_program):
310
            paddle.static.amp.fp16_utils.cast_model_to_fp16(
311 312
                pure_fp16_program, self._amp_list, use_fp16_guard=False
            )
J
Jiabin Yang 已提交
313

314
        if is_infer_mode:
315 316
            if self._hooker:
                pure_fp16_program = self._hooker.after_infer(pure_fp16_program)
317 318 319
            return pure_fp16_program
        else:
            train_pure_fp16_program = self._append_backward_desc(
320 321
                pure_fp16_program
            )
322 323
            self._set_grad_type(self._params, train_pure_fp16_program)
            return train_pure_fp16_program
324

325
    @switch_to_static_graph
326
    def _create_forward_backward_train_program(self):
327
        whole_program = self._train_program
X
xiongkun 已提交
328
        forward_end_op_index = self.get_forward_end_op_idx(whole_program)
329
        assert forward_end_op_index >= 0
330

331 332 333
        return self._get_forward_backward_program_form(
            whole_program, forward_end_op_index
        )
334

335 336
    @switch_to_static_graph
    def _create_forward_backward_train_amp_program(self):
337
        whole_program = self._train_amp_program
338
        forward_end_op_index = self.get_forward_end_op_idx(whole_program)
339
        assert forward_end_op_index >= 0
340

341 342 343
        return self._get_forward_backward_program_form(
            whole_program, forward_end_op_index
        )
344 345 346

    @switch_to_static_graph
    def _create_forward_backward_train_pure_fp16_program(self):
347
        whole_program = self._train_pure_fp16_program
348
        forward_end_op_index = self.get_forward_end_op_idx(whole_program)
349
        assert forward_end_op_index >= 0
350

351 352 353
        return self._get_forward_backward_program_form(
            whole_program, forward_end_op_index
        )
354 355

    @LazyInitialized
356 357
    def _train_program(self):
        return self._create_program()
358

359
    @LazyInitialized
360
    def _infer_program(self):
361 362
        program, op_size = self._infer_info('fp32', self._create_program)
        return self._build_infer_program(program, op_size)
363

364 365 366 367 368 369
    @LazyInitialized
    def _train_amp_program(self):
        return self._create_amp_program()

    @LazyInitialized
    def _infer_amp_program(self):
370 371
        program, op_size = self._infer_info('amp', self._create_amp_program)
        return self._build_infer_program(program, op_size)
372 373 374

    @LazyInitialized
    def _train_pure_fp16_program(self):
375
        return self._create_pure_fp16_program()
376

377
    @LazyInitialized
378
    def _infer_pure_fp16_program(self):
379 380
        program, op_size = self._infer_info(
            'fp16', self._create_pure_fp16_program
381
        )
382
        return self._build_infer_program(program, op_size)
383

384
    @LazyInitialized
385 386 387
    def _train_forward_backward_program(self):
        program = self._create_forward_backward_train_program()
        return program
388 389

    @LazyInitialized
390 391 392 393
    def _train_amp_forward_backward_program(self):
        program = self._create_forward_backward_train_amp_program()
        return program

394 395 396 397
    @LazyInitialized
    def _empty_backward_program_for_eval(self):
        return paddle.static.Program()

398 399 400 401 402
    @LazyInitialized
    def _train_pure_fp16_forward_backward_program(self):
        program = self._create_forward_backward_train_pure_fp16_program()
        return program

403 404
    @LazyInitialized
    def _train_program_id(self):
405
        program_id = paddle.utils._hash_with_id(self._train_program, self)
406 407 408
        core._set_cached_executor_build_strategy(
            program_id, self._build_strategy
        )
409
        return program_id
410

411 412
    @LazyInitialized
    def _infer_program_id(self):
413
        return paddle.utils._hash_with_id(self._infer_program, self)
414

415 416
    @LazyInitialized
    def _train_amp_program_id(self):
417
        program_id = paddle.utils._hash_with_id(self._train_amp_program, self)
418 419 420
        core._set_cached_executor_build_strategy(
            program_id, self._build_strategy
        )
421 422
        return program_id

423 424
    @LazyInitialized
    def _infer_amp_program_id(self):
425
        return paddle.utils._hash_with_id(self._infer_amp_program, self)
426

427 428
    @LazyInitialized
    def _train_pure_fp16_program_id(self):
429 430 431
        program_id = paddle.utils._hash_with_id(
            self._train_pure_fp16_program, self
        )
432 433 434
        core._set_cached_executor_build_strategy(
            program_id, self._build_strategy
        )
435 436
        return program_id

437 438
    @LazyInitialized
    def _infer_pure_fp16_program_id(self):
439
        return paddle.utils._hash_with_id(self._infer_pure_fp16_program, self)
440

441 442
    @LazyInitialized
    def _param_grad_names(self):
443
        return _param_grad_names(self._train_program.desc, self._params)
444

X
xiongkun 已提交
445
    def get_forward_end_op_idx(self, program):
446 447 448
        return self._forward_end_index_map[
            paddle.utils._hash_with_id(program, self)
        ]
X
xiongkun 已提交
449

450 451
    @LazyInitialized
    def _out_grad_names(self):
452 453
        return _out_grad_names(
            self._train_program.desc,
X
xiongkun 已提交
454
            self.get_forward_end_op_idx(self._train_program),
455 456
            len(self._outputs.var_ids),
        )
457

458
    @property
459 460 461 462 463 464 465 466 467 468 469 470 471 472
    def program(self):
        """
        Return current train or eval program.
        """
        if self.training:
            return self.train_program
        else:
            return self.infer_program

    @property
    def program_id(self):
        """
        Return current train or eval program hash id.
        """
473 474 475 476 477 478 479 480 481 482 483 484 485 486 487
        if self.training:
            if _in_amp_guard():
                return self._train_amp_program_id
            elif _in_pure_fp16_guard():
                return self._train_pure_fp16_program_id
            else:
                return self._train_program_id
        else:
            if _in_amp_guard():
                return self._infer_amp_program_id
            elif _in_pure_fp16_guard():
                return self._infer_pure_fp16_program_id
            else:
                return self._infer_program_id

488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540
    @property
    def train_program(self):
        if _in_amp_guard():
            return self._train_amp_program
        elif _in_pure_fp16_guard():
            return self._train_pure_fp16_program
        else:
            return self._train_program

    @property
    def infer_program(self):
        if _in_amp_guard():
            return self._infer_amp_program
        elif _in_pure_fp16_guard():
            return self._infer_pure_fp16_program
        else:
            return self._infer_program

    @property
    def forward_program(self):
        if self.training:
            if _in_amp_guard():
                progs = self._train_amp_forward_backward_program
            elif _in_pure_fp16_guard():
                progs = self._train_pure_fp16_forward_backward_program
            else:
                progs = self._train_forward_backward_program
            return progs[0]
        else:
            return self.infer_program

    @property
    def backward_program(self):
        if self.training:
            if _in_amp_guard():
                progs = self._train_amp_forward_backward_program
            elif _in_pure_fp16_guard():
                progs = self._train_pure_fp16_forward_backward_program
            else:
                progs = self._train_forward_backward_program
            return progs[1]
        else:
            """
            Can't just return paddle.static.Program(), because self.backward_program is a property,
            whenever we call this method, a tmp Program() object is created and is gc immediatly
            after executed the following line in PartialProgramLayer.__call__.

            >>> self.backward_program.desc.block(0),

            When we access RunProgramAPI, it's possible to get an invalid backward_program address.
            """
            return self._empty_backward_program_for_eval

541 542 543 544 545 546 547 548 549 550 551 552
    def _verify_program(self, main_program):
        """
        Verify that the program parameter is initialized, prune some unused params,
        and remove redundant op callstack.
        """
        # 1. Check all params from main program can be found in self._params
        self._check_params_all_inited(main_program)
        # 2. Prune the parameters not used anywhere in the program.
        self._prune_unused_params(main_program)

        return main_program

553 554 555
    def prepare_gradient_aggregation(
        self, start_idx, main_program, target_program
    ):
556 557 558 559 560 561 562
        """
        Why we need add gradient aggregation operation ?
        In some cases, if non leaf nodes are used as output, gradient overwriting will occur, such as
        def forward(self, in):
            x = 2 * in  # <---- x is a non-leaf node in program.
            y = x + 3
            return x, y
563

564 565 566 567 568 569 570 571 572
        loss = forward(in)[0].sum()
        loss.backward()  # <----- x@grad will be overwrited by elementwise_add_grad Op
        """

        def _need_aggregation(var):
            """
            if exist a op whose inputs is var, then return True
            """
            if not isinstance(var, framework.Variable) or var.type not in [
573 574
                core.VarDesc.VarType.LOD_TENSOR,
                core.VarDesc.VarType.SELECTED_ROWS,
575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590
            ]:
                return False
            if var.dtype not in [paddle.float32, paddle.float64]:
                return False
            for op in main_program.block(0).ops:
                for in_arg in op.input_arg_names:
                    if in_arg == var.name:
                        return True
            return False

        def _insert_aggregation_ops_for_var(target_program, var):
            suffix = "@dy2static"
            var_grad_name = var.grad_name
            new_grad_name = var.name + suffix + "@GRAD"
            finded_ops = list(
                filter(
591 592 593 594 595 596 597 598 599 600
                    lambda x: x[0] >= start_idx
                    and any(
                        [
                            out_arg == var_grad_name
                            for out_arg in x[1].output_arg_names
                        ]
                    ),
                    enumerate(target_program.block(0).ops),
                )
            )
601 602 603 604 605 606

            # len(finded_ops) may equals zero when stop_gradient works.
            # len(finded_ops) may > 1, because we may have fill_constant op.
            if len(finded_ops) == 0:
                return None
            # step1: create a new var named var.name@GRAD
607 608 609 610 611 612
            target_program.block(0).create_var(
                name=new_grad_name,
                type=var.type,
                dtype=var.dtype,
                shape=var.shape,
            )
613 614 615 616 617 618 619 620 621 622
            # step2: rename the var.name@GRAD to var.name@GRAD@dy2static
            for idx, op in finded_ops:
                op._rename_input(var_grad_name, new_grad_name)
                op._rename_output(var_grad_name, new_grad_name)
            # step3: insert sum op to aggregate the gradient.
            #        var.name@GRAD = sum(var.name@dy2static@GRAD, var.name@GRAD)
            target_program.block(0)._insert_op(
                finded_ops[-1][0] + 1,
                type='sum',
                inputs={'X': [var_grad_name, new_grad_name]},
623 624
                outputs={"Out": var_grad_name},
            )
625 626 627
            return None

        to_processed_vars = list(
628 629
            filter(_need_aggregation, self._outputs.tolist())
        )
630 631 632
        for _var in to_processed_vars:
            _insert_aggregation_ops_for_var(target_program, _var)

633
    @switch_to_static_graph
634
    def _append_backward_desc(self, main_program):
635
        program = main_program.clone(for_test=False)
X
xiongkun 已提交
636
        if self._hooker:
637
            program = self._hooker.before_append_backward(program)
638
        targets = []
639
        for out in self._outputs.tolist():
640 641 642
            if isinstance(out, framework.Variable):
                targets.append(program.global_block().var(out.name))

X
xiongkun 已提交
643
        start_idx = len(program.block(0).ops) + len(self._outputs.tolist())
644
        if targets:
645
            start_idx = len(program.block(0).ops) + len(self._outputs.tolist())
646 647
            with backend_guard(self._backend):
                backward.gradients(targets=targets, inputs=[])
648

X
xiongkun 已提交
649 650
            if self._hooker:
                program, start_idx = self._hooker.after_append_backward(
651
                    program, start_idx
X
xiongkun 已提交
652
                )
653 654 655
            self.prepare_gradient_aggregation(
                start_idx + 1, main_program, program
            )
656

X
xiongkun 已提交
657
        self._forward_end_index_map[
658
            paddle.utils._hash_with_id(program, self)
X
xiongkun 已提交
659
        ] = start_idx - len(self._outputs.tolist())
660 661
        return program

662 663 664
    def _prune_unused_params(self, program):
        """
        Prune the parameters not used anywhere in the program.
H
hjyp 已提交
665
        The `@to_static` may only decorated a sub function which
666 667 668 669 670 671
        contains some unused parameters created in `__init__`.
        So prune these parameters to avoid unnecessary operations in
        `run_program_op`.
        """
        required_params = []
        for param in self._params:
672
            found_param = False
673
            for block in program.blocks:
674
                for op in block.ops:
675 676 677 678
                    if (
                        param.name in op.input_arg_names
                        or param.name in op.output_arg_names
                    ):
679 680 681 682
                        required_params.append(param)
                        found_param = True
                        break
                if found_param:
683 684 685 686
                    break

        self._params = required_params

687 688 689 690 691 692 693 694 695 696 697
    def _cast_fp16_if_pure_fp16(self, in_vars):
        if _in_pure_fp16_guard():
            for i, var in enumerate(in_vars):
                name = var.name
                if (
                    self.program.global_block().has_var(name)
                    and self.program.global_block().var(name).dtype
                    == paddle.float16
                ):
                    in_vars[i] = var.astype('float16')
                    in_vars[i].name = name
698

699
    def _prepare_attributes(self):
700
        attrs = [
701 702 703 704
            'forward_global_block',
            self.forward_program.desc.block(0),
            'backward_global_block',
            self.backward_program.desc.block(0),
705 706 707 708
            'is_test',
            not self.training,
            'program_id',
            self.program_id,
709
        ]
X
xiongkun 已提交
710

711 712 713 714 715 716 717 718 719 720 721 722
        if self.training:
            # NOTE: In the case of higher-order gradient, the names of the parameter grads may be like
            # `grad/grad/grad/linear_0.w_0@GRAD` instead of simply `linear_0.w_0@GRAD`, so we get
            # the correct names of the parameter grads from program. And out grads are similar to above.
            attrs.extend(
                (
                    'param_grad_names',
                    self._param_grad_names,
                    'out_grad_names',
                    self._out_grad_names,
                )
            )
723 724
        if self._cuda_graph_capture_mode:
            attrs.extend(
725 726 727 728 729 730 731
                (
                    'cuda_graph_capture_mode',
                    self._cuda_graph_capture_mode,
                    'cuda_graph_pool_id',
                    self._cuda_graph_pool_id,
                )
            )
732
        return attrs
733

734 735 736 737 738 739 740 741 742 743 744 745
    @switch_to_static_graph
    def _build_infer_program(self, infer_program, forward_end_op_index):
        forward_skip_vars = self._parse_skip_gc_vars(infer_program)
        builded_infer_program = add_build_strategy_for(
            infer_program,
            0,
            forward_end_op_index,
            self._build_strategy,
            forward_skip_vars,
        )
        self._apply_inplace_pass(builded_infer_program, None)
        return builded_infer_program
746

747
    @switch_to_static_graph
748 749 750
    def _get_forward_backward_program_form(
        self, whole_program, forward_end_op_index
    ):
751 752
        # NOTE(dev): We apply build_strategy for backward firstly to
        # avoid skipping more gc variables.
753
        backward_start_op_index = forward_end_op_index + len(
754 755
            self._outputs.var_ids
        )
756
        backward_end_op_index = whole_program.desc.block(0).op_size()
757 758 759 760 761
        # For Backward process in CINN, all param@GRAD shoule be skipped for GC, because
        # they will be shared in scope and used by optimizer.
        backward_skip_vars = (
            self._parse_skip_gc_vars(whole_program) + self._param_grad_names
        )
762
        backward_builded_program = add_build_strategy_for(
763 764 765 766
            whole_program,
            backward_start_op_index,
            backward_end_op_index,
            self._build_strategy,
767 768 769 770 771 772 773 774 775 776 777 778
            backward_skip_vars,
        )

        forward_skip_vars = self._parse_skip_gc_vars(
            whole_program, backward_builded_program
        )
        forward_builded_program = add_build_strategy_for(
            whole_program,
            0,
            forward_end_op_index,
            self._build_strategy,
            forward_skip_vars,
779
        )
780

781 782 783
        self._apply_inplace_pass(
            forward_builded_program, backward_builded_program
        )
784 785 786 787 788 789
        return [forward_builded_program, backward_builded_program]

    def _apply_inplace_pass(self, forward_program, backward_program):
        attr_types = {
            "use_cuda": "bool",
            "mem_opt_skip_vars": "list[str]",
790
            "for_partial_block": "bool",
791 792 793 794
        }
        empty_startup_program = paddle.static.Program()
        use_cuda = True if core.is_compiled_with_cuda() else False
        # skip data var
795 796 797 798
        forward_mem_opt_skip_vars = self._parse_skip_gc_vars(
            forward_program, backward_program
        )
        backward_mem_opt_skip_vars = self._parse_skip_gc_vars(forward_program)
799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824
        if forward_program:
            attrs = {
                "use_cuda": use_cuda,
                "mem_opt_skip_vars": forward_mem_opt_skip_vars,
                "for_partial_block": True,
            }
            _apply_pass(
                forward_program,
                empty_startup_program,
                "buffer_shared_inplace_pass",
                attrs,
                attr_types,
            )
        if backward_program:
            attrs = {
                "use_cuda": use_cuda,
                "mem_opt_skip_vars": backward_mem_opt_skip_vars,
                "for_partial_block": True,
            }
            _apply_pass(
                backward_program,
                empty_startup_program,
                "buffer_shared_inplace_pass",
                attrs,
                attr_types,
            )
825

826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852
    @LazyInitialized
    def _inout_var_names(self):
        """
        Returns Variable Names from self._inputs and self.outputs
        """
        var_names = []
        for var in self._inputs:
            if isinstance(var, paddle.fluid.framework.Variable):
                var_names.append(var.desc.name())
        for var in self._outputs:
            if isinstance(var, paddle.fluid.framework.Variable):
                var_names.append(var.desc.name())
        return var_names

    def _parse_skip_gc_vars(self, program, backward_program=None):
        """
        Parse variables that need to skip GC after execute it.
        If specify backward_program, it will keep the variables used in backward.
        """
        # skip data var, DO NOT ignore this deepcopy
        skip_vars = deepcopy(self._inout_var_names)
        for var_name, var in program.global_block().vars.items():
            if var.is_data:
                skip_vars.append(var_name)

        if backward_program:
            for var_name in core.parse_safe_eager_deletion_skip_vars(
853
                backward_program.desc, True
854 855 856 857
            ):
                skip_vars.append(var_name)
        return skip_vars

858 859 860 861 862
    def _prepare(self, inputs):
        """
        Prepare inputs, outputs, attrs.
        """
        assert isinstance(inputs, (tuple, list))
863
        # Flatten inputs with nested structure into single list.
864
        flatten_inputs = paddle.utils.flatten(inputs)
W
wanghuancoder 已提交
865
        # Convert variable into Tensor and feed in training data.
866
        input_vars = []
867
        expected_place = framework._current_expected_place()
868
        for i, value in enumerate(flatten_inputs):
869
            if isinstance(value, np.ndarray):
J
Jiabin Yang 已提交
870
                var = None
W
wanghuancoder 已提交
871 872 873 874 875 876 877 878
                var = core.eager.Tensor(
                    value=value,
                    name=self._inputs[i].desc.name(),
                    persistable=False,
                    place=expected_place,
                    zero_copy=True,
                )
            elif isinstance(value, core.eager.Tensor):
879 880 881 882
                # NOTE(Aurelius84): If var is on CPUPlace, it will be transformed multi times
                # into CUDAPlace when it's as input of multi Ops. so we move it in advance
                # to avoid this problem.
                if value.stop_gradient and not value.place._equals(
883 884
                    expected_place
                ):
885 886
                    var = value._copy_to(expected_place, False)
                    var.stop_gradient = True
887 888
                else:
                    var = value
889
                var.name = self._inputs[i].desc.name()
890 891 892
            else:
                continue
            input_vars.append(var)
893

W
wanghuancoder 已提交
894
        # mapping from name(string) -> Tensor
895 896
        out_varbase_map = {}

897 898
        def create_out(var_id):
            var = self._outputs[var_id]
899
            assert isinstance(var, framework.Variable)
900
            var_desc = var.desc
J
Jiabin Yang 已提交
901
            varbase = None
902 903 904 905

            if var_desc.name() in out_varbase_map:
                return out_varbase_map[var_desc.name()]

W
wanghuancoder 已提交
906 907 908 909 910 911 912
            var_base = core.eager.Tensor(
                var_desc.dtype(),
                var_desc.shape(),
                var_desc.name(),
                var_desc.type(),
                False,
            )
913
            var_base.stop_gradient = var.stop_gradient
914
            out_varbase_map[var_desc.name()] = var_base
915 916
            return var_base

W
wanghuancoder 已提交
917
        # Create Tensor to receive output data.
918 919 920
        out_vars = list(map(create_out, self._outputs.var_ids))

        return input_vars, out_vars
921

922
    def _create_scope_vec(self, program_id=None, use_scope_cache=False):
923
        # Hold forward variables
J
Jiabin Yang 已提交
924
        tmp_scope_vec = None
925 926 927
        inner_scope = self._get_scope(
            program_id=program_id, use_scope_cache=use_scope_cache
        )
W
wanghuancoder 已提交
928
        tmp_scope_vec = [inner_scope]
929
        return tmp_scope_vec
930

931
    def _create_cuda_graph_vec(self):
W
wanghuancoder 已提交
932
        var = core.eager.Tensor(
933 934 935 936 937 938
            core.VarDesc.VarType.FP32,
            [],
            "cuda_graph",
            core.VarDesc.VarType.RAW,
            True,
        )
939 940 941
        var.stop_gradient = True
        return var

942 943
    def _restore_out(self, out_vars):
        """
W
wanghuancoder 已提交
944
        Restores same nested outputs by only replacing the Variable with Tensor.
945 946 947 948 949 950
        """

        flatten_outputs = self._outputs.tolist()
        for i, idx in enumerate(self._outputs.var_ids):
            flatten_outputs[idx] = out_vars[i]
        outs = self._outputs.restore(flatten_outputs)
951
        if outs is not None and len(outs) == 1:
952 953 954 955
            outs = outs[0]

        return outs

956 957 958 959
    @switch_to_static_graph
    def _clone_for_test(self, main_program):
        return main_program.clone(for_test=True)

960
    def _is_no_value(self, var):
W
wanghuancoder 已提交
961
        if isinstance(var, core.eager.Tensor) and var.shape == [1]:
962 963
            # NOTE: .numpy() will insert MemcpySync operation, it hits performance.
            if var.numpy()[0] == RETURN_NO_VALUE_MAGIC_NUM:
964 965 966 967 968 969 970
                return True
        return False

    def _remove_no_value(self, out_vars):
        """
        Removes invalid value for various-length return statement
        """
W
wanghuancoder 已提交
971
        if isinstance(out_vars, core.eager.Tensor):
972 973 974 975 976
            if self._is_no_value(out_vars):
                return None
            return out_vars
        elif isinstance(out_vars, (tuple, list)):
            if isinstance(out_vars, tuple):
977 978 979
                res = tuple(
                    var for var in out_vars if not self._is_no_value(var)
                )
980 981 982 983
            else:
                # isinstance(out_vars, list)
                res = [var for var in out_vars if not self._is_no_value(var)]

984
            has_removed = len(out_vars) > len(res)
985 986 987 988 989 990 991 992 993 994
            # len(out_vars) > len(res) means we have removed var. This is
            # preventing out_vars is empty or just one element at the beginning
            if len(res) == 0 and has_removed:
                return None
            elif len(res) == 1 and has_removed:
                return res[0]
            return res

        return out_vars

995
    def _set_grad_type(self, params, train_program):
996 997
        # NOTE: if user set sparse gradient mode, the param's gradient
        # will be SelectedRows, not LoDTensor. But tracer will just
W
wanghuancoder 已提交
998
        # set param grad Tensor by forward Tensor(LoDTensor)
999 1000 1001 1002 1003
        # If we don't change grad_var type here, RunProgramOp need
        # transform SelectedRows to LoDTensor forcibly, it may not
        # be user wanted result.
        for param in params:
            grad_name = param.name + core.grad_var_suffix()
1004
            grad_var = train_program.desc.block(0).find_var(grad_name.encode())
1005 1006 1007 1008 1009
            # NOTE: cannot find var desc maybe no problem, such as in batch_norm
            if grad_var is None:
                continue
            param._set_grad_type(grad_var.type())

1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022
    def _remove_op_call_stack(self, main_program):
        """
        Remove op's python call stack with redundant low-level error messages related to
        transforamtions to avoid confusing users.
        """
        assert isinstance(main_program, framework.Program)
        for block in main_program.blocks:
            for op in block.ops:
                if op.has_attr("op_callstack"):
                    op._remove_attr("op_callstack")

        return main_program

1023 1024 1025
    def _check_params_all_inited(self, main_program):
        """
        Check all params from main program are already initialized, see details as follows:
W
wanghuancoder 已提交
1026
            1. all parameters in self._params should be type `framework.EagerParamBase` which are created in dygraph.
1027
            2. all parameters from transformed program can be found in self._params.
W
wanghuancoder 已提交
1028
               Because they share same data with EagerParamBase of original dygraph.
1029 1030 1031 1032
        """
        if not isinstance(self._params, (list, tuple)):
            raise TypeError(
                "Type of self._params in PartialProgramLayer should be list or tuple, but received %s."
1033 1034
                % type(self._params)
            )
1035

1036 1037 1038
        param_and_buffer_names_set = set()
        for i, var in enumerate(self._params):
            # self._params constains parameters and buffers with persistable=True.
W
wanghuancoder 已提交
1039
            if not isinstance(var, core.eager.Tensor):
1040
                raise TypeError(
1041 1042 1043 1044
                    'Type of self._params[{}] in PartialProgramLayer should be Parameter or Variable, but received {}.'.format(
                        i, type(var)
                    )
                )
1045
            param_and_buffer_names_set.add(var.name)
1046 1047

        for block in main_program.blocks:
1048
            for name, var in block.vars.items():
1049
                if isinstance(var, framework.Parameter):
1050
                    if name not in param_and_buffer_names_set:
1051
                        raise ValueError(
1052 1053 1054 1055 1056 1057
                            "\n\tWe don't support to define layer with parameters in the function decorated by `@to_static`."
                            "\n\tBut we found parameter(%s) was created in the decorated function."
                            "\n"
                            "\n\tRevise suggestion: "
                            "\n\t\t1. Please ensure all your sublayers are inheritted from nn.Layer."
                            "\n\t\t2. Please use nn.ParameterList and nn.LayerList as container instead of using a native Python container such as List"
1058 1059
                            % name
                        )
1060

1061
    def _valid_vars(self, vars):
1062
        return vars if vars else None
1063

1064

1065
def partial_program_from(concrete_program, from_method=False):
1066
    inputs = concrete_program.inputs
1067 1068 1069

    # NOTE(SigureMo): Remove the first arg `self` from method args.
    if inputs and from_method:
1070 1071
        inputs = inputs[1:]

1072 1073 1074 1075 1076 1077 1078
    return PartialProgramLayer(
        concrete_program.main_program,
        inputs,
        concrete_program.outputs,
        concrete_program.parameters,
        **concrete_program.kwargs
    )
1079 1080 1081


@switch_to_static_graph
1082
def add_build_strategy_for(
1083
    program, start_op_index, end_op_index, build_strategy=None, skip_vars=None
1084 1085
):
    if start_op_index < end_op_index:
1086 1087
        compiled_program = paddle.static.CompiledProgram(
            core.Graph(program.desc, start_op_index, end_op_index),
1088 1089
            build_strategy=build_strategy,
        )
1090 1091 1092
        if skip_vars:
            # TODO(Aurelius84): Need to unify name with C++, such as kSkipVarNames.
            compiled_program._graph.set("skip_gc_vars", set(skip_vars))
1093 1094 1095
        compiled_program._compile(
            core.Scope(), framework._current_expected_place()
        )
1096 1097
        ir_graph = framework.IrGraph(compiled_program._graph)
        builded_program = ir_graph.to_program()
1098 1099 1100 1101
        if hasattr(compiled_program._program, 'lr_scheduler'):
            builded_program.lr_scheduler = (
                compiled_program._program.lr_scheduler
            )
1102
    else:
X
xiongkun 已提交
1103
        # can't just create a new program, we need copy the vardesc.
1104
        builded_program = paddle.static.Program()
X
xiongkun 已提交
1105 1106
        for var in program.block(0).vars.values():
            builded_program.block(0)._clone_variable(var, False)
1107
    return builded_program