partial_program.py 39.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from copy import deepcopy

17
import numpy as np
18

19
import paddle
20
from paddle import _legacy_C_ops
21
from paddle.amp.auto_cast import _in_amp_guard, _in_pure_fp16_guard
22
from paddle.fluid import backward, core, framework, program_guard
23
from paddle.fluid.compiler import BuildStrategy
24 25 26 27 28 29 30
from paddle.fluid.dygraph import layers
from paddle.fluid.dygraph.base import switch_to_static_graph
from paddle.fluid.framework import _apply_pass
from paddle.fluid.layers.utils import _hash_with_id, flatten, pack_sequence_as

from . import logging_utils
from .return_transformer import RETURN_NO_VALUE_MAGIC_NUM
31
from .utils import _out_grad_names, _param_grad_names
32

33 34
__all__ = []

35

36
class NestSequence:
37 38 39 40 41 42 43
    """
    A wrapper class that easily to flatten and restore the nest structure of
    given sequence.
    """

    def __init__(self, raw_input, need_check=False):
        self.__raw_input = raw_input
44
        self.__input_list = self.tolist()
45 46 47 48 49 50 51 52 53 54 55 56 57
        self.__var_ids = self._get_var_ids()
        self._check_non_variable(need_check)

    def tolist(self):
        """
        Flattens the nested sequences into single list.
        """
        return flatten(self.__raw_input)

    def restore(self, value_list):
        """
        Restores the nested sequence from value list.
        """
58
        assert len(self.__input_list) == len(value_list)
59 60 61 62
        return pack_sequence_as(self.__raw_input, value_list)

    def _get_var_ids(self):
        var_ids = []
63
        for idx, var in enumerate(self.__input_list):
64
            if isinstance(
65 66
                var, (framework.Variable, core.VarBase, core.eager.Tensor)
            ):
67 68 69 70 71 72 73 74 75 76
                var_ids.append(idx)

        return var_ids

    def _check_non_variable(self, need_check):
        """
        Raises warning if output of traced function contains non-tensor type values.
        """
        if need_check:
            warning_types = set()
77
            for var in self.__input_list:
78
                if not isinstance(
79 80
                    var, (framework.Variable, core.VarBase, core.eager.Tensor)
                ):
81 82
                    warning_types.add(type(var))
            if warning_types:
83
                logging_utils.warn(
84 85
                    "Output of traced function contains non-tensor type values: {}. "
                    "Currently, We don't support to update them while training and will return "
86 87 88 89
                    "what we first saw. Please try to return them as tensor.".format(
                        list(warning_types)
                    )
                )
90 91 92 93 94 95

    @property
    def var_ids(self):
        return self.__var_ids

    def __getitem__(self, item):
96
        return self.__input_list[item]
97

98

99
class LazyInitialized:
100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
    """
    Descriptor to implement lazy initialization of property.
    """

    def __init__(self, function):
        self.function = function

    def __get__(self, instance, cls):
        val = self.function(instance)
        setattr(instance, self.function.__name__, val)
        return val


def _change_is_test_status(program, is_test):
    # change all `is_test` attributes
    for block in program.blocks:
        for op in block.ops:
            if op.has_attr('is_test'):
                op._set_attr('is_test', is_test)
    return program


122 123 124 125 126
class ProgramInfo:
    """
    A helper class to recoder Program information
    """

127
    def __init__(self):
128 129 130 131 132
        self.op_size = {
            'fp32': -1,
            'amp': -1,
            'fp16': -1,
        }
133 134 135 136 137 138 139 140 141 142 143 144 145 146
        self.programs = {}
        self.mode = "infer"

    def __call__(self, key, prog_creator):
        """
        Recoder infer program and op size.
        """
        assert key in ['fp32', 'amp', 'fp16']
        if key not in self.programs:
            infer_prog = prog_creator(is_infer_mode=True)
            self.programs[key] = infer_prog
            self.op_size[key] = infer_prog.desc.block(0).op_size()

        return self.programs[key], self.op_size[key]
147 148


149
class PartialProgramLayer:
150
    """
H
hjyp 已提交
151
    PartialProgramLayer wraps all the ops from layers decorated by `@to_static`
152 153 154
    and execute them as a static subgraph.

    .. note::
155 156 157
        **1. This is a very low level API. Users should not use this API
             directly. Please use `partial_program_from(concrete_program)`
             to create it.
158 159 160 161
        **2. LoDTensorArray is not currently supported in the output.

    Args:
        main_program(Program): The main program that contains ops need to be executed.
H
hjyp 已提交
162 163
        inputs(list[Variable]): The input list of the decorated function by `@to_static`.
        outputs(list[Variable]): The output list of the decorated function by `@to_static`.
164 165 166
        parameters(list[VarBase]|None): All trainable parameters included in the program. Default None.

    Returns:
167
        Layer: A Layer object that run all ops internally in static graph mode.
168 169
    """

170 171 172
    def __init__(
        self, main_program, inputs, outputs, parameters=None, **kwargs
    ):
173
        super().__init__()
174 175
        self._inputs = NestSequence(inputs)
        self._outputs = NestSequence(outputs, need_check=True)
176
        self._params = parameters if parameters is not None else []
177

178 179 180
        self._build_strategy = kwargs.get('build_strategy', BuildStrategy())
        assert isinstance(self._build_strategy, BuildStrategy)

181
        self._origin_main_program = self._verify_program(main_program)
182 183 184
        self._cuda_graph_vec = self._create_cuda_graph_vec()
        self._cuda_graph_capture_mode = ""
        self._cuda_graph_pool_id = 0
185
        # Set default mode to train
186
        self.training = True
187
        self._infer_info = ProgramInfo()
188

189 190 191 192
        custom_white_list, custom_black_list = None, None
        tracer = framework._dygraph_tracer()
        if tracer:
            custom_white_list, custom_black_list = tracer._get_amp_op_list()
193
        # For AMP training
194
        self._amp_list = paddle.static.amp.fp16_lists.AutoMixedPrecisionLists(
195
            custom_white_list=custom_white_list,
196 197
            custom_black_list=custom_black_list,
        )
198

199 200 201
        # program_id -> list(scope)
        self._scope_cache = {}

202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
    def __call__(self, inputs):
        """
        Execute static graph by Interpreter and Return dynamic Tensors.
        """
        in_vars, out_vars = self._prepare(inputs)
        self._cast_fp16_if_pure_fp16(in_vars)
        attrs = self._prepare_attributes()

        _legacy_C_ops.run_program(
            self._valid_vars(in_vars),
            self._valid_vars(self._params),
            self._valid_vars(out_vars),
            self._create_scope_vec(
                program_id=self.program_id, use_scope_cache=True
            ),
            self._double_grads,
            self._cuda_graph_vec,
            *attrs
        )
        restored_nest_out = self._restore_out(out_vars)
        return self._remove_no_value(restored_nest_out)

224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
    def _get_scope(self, program_id=None, use_scope_cache=False):
        if use_scope_cache:
            if program_id not in self._scope_cache:
                scope = core.Scope()
                self._scope_cache[program_id] = [scope]
                return scope
            else:
                for scope in self._scope_cache[program_id]:
                    if scope._can_reuesd:
                        return scope
                scope = core.Scope()
                self._scope_cache[program_id].append(scope)
                return scope
        else:
            return core.Scope()

240 241 242 243
    @LazyInitialized
    def _double_grads(self):
        return self._get_double_grads(self._origin_main_program)

244 245 246 247 248 249 250
    # whole
    @switch_to_static_graph
    def _create_program(self, is_infer_mode=False):
        if is_infer_mode:
            return self._origin_main_program.clone(for_test=is_infer_mode)
        else:
            train_program = self._append_backward_desc(
251 252
                self._origin_main_program
            )
253 254 255
            # Note: Only set grad type once after initializing train program. So we put it here.
            self._set_grad_type(self._params, train_program)
            return train_program
256

257 258 259 260
    @switch_to_static_graph
    def _create_amp_program(self, is_infer_mode=False):
        amp_program = self._origin_main_program.clone(for_test=is_infer_mode)
        with program_guard(amp_program):
261 262 263
            paddle.static.amp.fp16_utils.rewrite_program(
                amp_program, self._amp_list
            )
264 265 266 267 268 269
        if is_infer_mode:
            return amp_program
        else:
            train_amp_program = self._append_backward_desc(amp_program)
            self._set_grad_type(self._params, train_amp_program)
            return train_amp_program
270

271 272 273
    @switch_to_static_graph
    def _create_pure_fp16_program(self, is_infer_mode=False):
        pure_fp16_program = self._origin_main_program.clone(
274 275
            for_test=is_infer_mode
        )
276
        with program_guard(pure_fp16_program):
277
            paddle.static.amp.fp16_utils.cast_model_to_fp16(
278 279
                pure_fp16_program, self._amp_list, use_fp16_guard=False
            )
280 281 282 283
        if is_infer_mode:
            return pure_fp16_program
        else:
            train_pure_fp16_program = self._append_backward_desc(
284 285
                pure_fp16_program
            )
286 287
            self._set_grad_type(self._params, train_pure_fp16_program)
            return train_pure_fp16_program
288

289
    @switch_to_static_graph
290
    def _create_forward_backward_train_program(self):
291
        whole_program = self._train_program
292
        _, forward_end_op_index = self._infer_info('fp32', self._create_program)
293
        assert forward_end_op_index >= 0
294

295 296 297
        return self._get_forward_backward_program_form(
            whole_program, forward_end_op_index
        )
298

299 300
    @switch_to_static_graph
    def _create_forward_backward_train_amp_program(self):
301
        whole_program = self._train_amp_program
302 303 304
        _, forward_end_op_index = self._infer_info(
            'amp', self._create_amp_program
        )
305
        assert forward_end_op_index >= 0
306

307 308 309
        return self._get_forward_backward_program_form(
            whole_program, forward_end_op_index
        )
310 311 312

    @switch_to_static_graph
    def _create_forward_backward_train_pure_fp16_program(self):
313
        whole_program = self._train_pure_fp16_program
314 315 316
        _, forward_end_op_index = self._infer_info(
            'fp16', self._create_pure_fp16_program
        )
317
        assert forward_end_op_index >= 0
318

319 320 321
        return self._get_forward_backward_program_form(
            whole_program, forward_end_op_index
        )
322 323

    @LazyInitialized
324 325
    def _train_program(self):
        return self._create_program()
326

327
    @LazyInitialized
328
    def _infer_program(self):
329 330
        program, op_size = self._infer_info('fp32', self._create_program)
        return self._build_infer_program(program, op_size)
331

332 333 334 335 336 337
    @LazyInitialized
    def _train_amp_program(self):
        return self._create_amp_program()

    @LazyInitialized
    def _infer_amp_program(self):
338 339
        program, op_size = self._infer_info('amp', self._create_amp_program)
        return self._build_infer_program(program, op_size)
340 341 342

    @LazyInitialized
    def _train_pure_fp16_program(self):
343
        return self._create_pure_fp16_program()
344

345
    @LazyInitialized
346
    def _infer_pure_fp16_program(self):
347 348
        program, op_size = self._infer_info(
            'fp16', self._create_pure_fp16_program
349
        )
350
        return self._build_infer_program(program, op_size)
351

352
    @LazyInitialized
353 354 355
    def _train_forward_backward_program(self):
        program = self._create_forward_backward_train_program()
        return program
356 357

    @LazyInitialized
358 359 360 361
    def _train_amp_forward_backward_program(self):
        program = self._create_forward_backward_train_amp_program()
        return program

362 363 364 365
    @LazyInitialized
    def _empty_backward_program_for_eval(self):
        return paddle.static.Program()

366 367 368 369 370
    @LazyInitialized
    def _train_pure_fp16_forward_backward_program(self):
        program = self._create_forward_backward_train_pure_fp16_program()
        return program

371 372
    @LazyInitialized
    def _train_program_id(self):
373
        program_id = _hash_with_id(self._train_program, self)
374 375 376
        core._set_cached_executor_build_strategy(
            program_id, self._build_strategy
        )
377
        return program_id
378

379 380 381 382
    @LazyInitialized
    def _infer_program_id(self):
        return _hash_with_id(self._infer_program, self)

383 384 385
    @LazyInitialized
    def _train_amp_program_id(self):
        program_id = _hash_with_id(self._train_amp_program, self)
386 387 388
        core._set_cached_executor_build_strategy(
            program_id, self._build_strategy
        )
389 390
        return program_id

391 392 393 394
    @LazyInitialized
    def _infer_amp_program_id(self):
        return _hash_with_id(self._infer_amp_program, self)

395 396 397
    @LazyInitialized
    def _train_pure_fp16_program_id(self):
        program_id = _hash_with_id(self._train_pure_fp16_program, self)
398 399 400
        core._set_cached_executor_build_strategy(
            program_id, self._build_strategy
        )
401 402
        return program_id

403 404 405 406
    @LazyInitialized
    def _infer_pure_fp16_program_id(self):
        return _hash_with_id(self._infer_pure_fp16_program, self)

407 408
    @LazyInitialized
    def _param_grad_names(self):
409
        return _param_grad_names(self._train_program.desc, self._params)
410 411 412

    @LazyInitialized
    def _out_grad_names(self):
413 414 415 416 417
        return _out_grad_names(
            self._train_program.desc,
            self._create_program(is_infer_mode=True).desc.block(0).op_size(),
            len(self._outputs.var_ids),
        )
418

419
    @property
420 421 422 423 424 425 426 427 428 429 430 431 432 433
    def program(self):
        """
        Return current train or eval program.
        """
        if self.training:
            return self.train_program
        else:
            return self.infer_program

    @property
    def program_id(self):
        """
        Return current train or eval program hash id.
        """
434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
        if self.training:
            if _in_amp_guard():
                return self._train_amp_program_id
            elif _in_pure_fp16_guard():
                return self._train_pure_fp16_program_id
            else:
                return self._train_program_id
        else:
            if _in_amp_guard():
                return self._infer_amp_program_id
            elif _in_pure_fp16_guard():
                return self._infer_pure_fp16_program_id
            else:
                return self._infer_program_id

449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501
    @property
    def train_program(self):
        if _in_amp_guard():
            return self._train_amp_program
        elif _in_pure_fp16_guard():
            return self._train_pure_fp16_program
        else:
            return self._train_program

    @property
    def infer_program(self):
        if _in_amp_guard():
            return self._infer_amp_program
        elif _in_pure_fp16_guard():
            return self._infer_pure_fp16_program
        else:
            return self._infer_program

    @property
    def forward_program(self):
        if self.training:
            if _in_amp_guard():
                progs = self._train_amp_forward_backward_program
            elif _in_pure_fp16_guard():
                progs = self._train_pure_fp16_forward_backward_program
            else:
                progs = self._train_forward_backward_program
            return progs[0]
        else:
            return self.infer_program

    @property
    def backward_program(self):
        if self.training:
            if _in_amp_guard():
                progs = self._train_amp_forward_backward_program
            elif _in_pure_fp16_guard():
                progs = self._train_pure_fp16_forward_backward_program
            else:
                progs = self._train_forward_backward_program
            return progs[1]
        else:
            """
            Can't just return paddle.static.Program(), because self.backward_program is a property,
            whenever we call this method, a tmp Program() object is created and is gc immediatly
            after executed the following line in PartialProgramLayer.__call__.

            >>> self.backward_program.desc.block(0),

            When we access RunProgramAPI, it's possible to get an invalid backward_program address.
            """
            return self._empty_backward_program_for_eval

502 503 504 505 506 507 508 509 510 511 512 513
    def _verify_program(self, main_program):
        """
        Verify that the program parameter is initialized, prune some unused params,
        and remove redundant op callstack.
        """
        # 1. Check all params from main program can be found in self._params
        self._check_params_all_inited(main_program)
        # 2. Prune the parameters not used anywhere in the program.
        self._prune_unused_params(main_program)

        return main_program

514 515 516
    def prepare_gradient_aggregation(
        self, start_idx, main_program, target_program
    ):
517 518 519 520 521 522 523
        """
        Why we need add gradient aggregation operation ?
        In some cases, if non leaf nodes are used as output, gradient overwriting will occur, such as
        def forward(self, in):
            x = 2 * in  # <---- x is a non-leaf node in program.
            y = x + 3
            return x, y
524

525 526 527 528 529 530 531 532 533
        loss = forward(in)[0].sum()
        loss.backward()  # <----- x@grad will be overwrited by elementwise_add_grad Op
        """

        def _need_aggregation(var):
            """
            if exist a op whose inputs is var, then return True
            """
            if not isinstance(var, framework.Variable) or var.type not in [
534 535
                core.VarDesc.VarType.LOD_TENSOR,
                core.VarDesc.VarType.SELECTED_ROWS,
536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551
            ]:
                return False
            if var.dtype not in [paddle.float32, paddle.float64]:
                return False
            for op in main_program.block(0).ops:
                for in_arg in op.input_arg_names:
                    if in_arg == var.name:
                        return True
            return False

        def _insert_aggregation_ops_for_var(target_program, var):
            suffix = "@dy2static"
            var_grad_name = var.grad_name
            new_grad_name = var.name + suffix + "@GRAD"
            finded_ops = list(
                filter(
552 553 554 555 556 557 558 559 560 561
                    lambda x: x[0] >= start_idx
                    and any(
                        [
                            out_arg == var_grad_name
                            for out_arg in x[1].output_arg_names
                        ]
                    ),
                    enumerate(target_program.block(0).ops),
                )
            )
562 563 564 565 566 567

            # len(finded_ops) may equals zero when stop_gradient works.
            # len(finded_ops) may > 1, because we may have fill_constant op.
            if len(finded_ops) == 0:
                return None
            # step1: create a new var named var.name@GRAD
568 569 570 571 572 573
            target_program.block(0).create_var(
                name=new_grad_name,
                type=var.type,
                dtype=var.dtype,
                shape=var.shape,
            )
574 575 576 577 578 579 580 581 582 583
            # step2: rename the var.name@GRAD to var.name@GRAD@dy2static
            for idx, op in finded_ops:
                op._rename_input(var_grad_name, new_grad_name)
                op._rename_output(var_grad_name, new_grad_name)
            # step3: insert sum op to aggregate the gradient.
            #        var.name@GRAD = sum(var.name@dy2static@GRAD, var.name@GRAD)
            target_program.block(0)._insert_op(
                finded_ops[-1][0] + 1,
                type='sum',
                inputs={'X': [var_grad_name, new_grad_name]},
584 585
                outputs={"Out": var_grad_name},
            )
586 587 588
            return None

        to_processed_vars = list(
589 590
            filter(_need_aggregation, self._outputs.tolist())
        )
591 592 593
        for _var in to_processed_vars:
            _insert_aggregation_ops_for_var(target_program, _var)

594
    @switch_to_static_graph
595
    def _append_backward_desc(self, main_program):
596 597
        # make sure all status of is_test are False in train mode.
        program = _change_is_test_status(main_program.clone(), is_test=False)
598
        targets = []
599
        for out in self._outputs.tolist():
600 601 602
            if isinstance(out, framework.Variable):
                targets.append(program.global_block().var(out.name))

603
        if targets:
604 605
            # TODO(CZ): later when use cinn, set_prim_all_enabled and check_and_set_prim_all_enabled will be set at else branch.
            core.check_and_set_prim_all_enabled()
606
            backward.gradients(targets=targets, inputs=[])
607

608
        start_idx = len(main_program.block(0).ops) + len(self._outputs.tolist())
609 610

        self.prepare_gradient_aggregation(start_idx, main_program, program)
611

612 613
        return program

614 615 616
    def _prune_unused_params(self, program):
        """
        Prune the parameters not used anywhere in the program.
H
hjyp 已提交
617
        The `@to_static` may only decorated a sub function which
618 619 620 621 622 623
        contains some unused parameters created in `__init__`.
        So prune these parameters to avoid unnecessary operations in
        `run_program_op`.
        """
        required_params = []
        for param in self._params:
624
            found_param = False
625
            for block in program.blocks:
626
                for op in block.ops:
627 628 629 630
                    if (
                        param.name in op.input_arg_names
                        or param.name in op.output_arg_names
                    ):
631 632 633 634
                        required_params.append(param)
                        found_param = True
                        break
                if found_param:
635 636 637 638
                    break

        self._params = required_params

639 640 641 642 643 644
    def _get_double_grads(self, program):
        double_grads = []
        for block in program.blocks:
            for name in block.vars:
                if "@GRAD" in name:
                    var_desc = block.vars[name].desc
J
Jiabin Yang 已提交
645
                    var_base = None
646
                    if not framework.global_var._in_eager_mode_:
647 648 649 650 651 652 653
                        var_base = core.VarBase(
                            var_desc.dtype(),
                            var_desc.shape(),
                            var_desc.name(),
                            var_desc.type(),
                            False,
                        )
J
Jiabin Yang 已提交
654
                    else:
655 656 657 658 659 660 661
                        var_base = core.eager.Tensor(
                            var_desc.dtype(),
                            var_desc.shape(),
                            var_desc.name(),
                            var_desc.type(),
                            False,
                        )
662
                    double_grads.append(var_base)
663
        return self._valid_vars(double_grads)
664

665 666 667 668 669 670 671 672 673 674 675
    def _cast_fp16_if_pure_fp16(self, in_vars):
        if _in_pure_fp16_guard():
            for i, var in enumerate(in_vars):
                name = var.name
                if (
                    self.program.global_block().has_var(name)
                    and self.program.global_block().var(name).dtype
                    == paddle.float16
                ):
                    in_vars[i] = var.astype('float16')
                    in_vars[i].name = name
676

677
    def _prepare_attributes(self):
678
        attrs = [
679 680 681 682
            'forward_global_block',
            self.forward_program.desc.block(0),
            'backward_global_block',
            self.backward_program.desc.block(0),
683 684 685 686
            'is_test',
            not self.training,
            'program_id',
            self.program_id,
687
        ]
688 689 690 691 692 693 694 695 696 697 698 699
        if self.training:
            # NOTE: In the case of higher-order gradient, the names of the parameter grads may be like
            # `grad/grad/grad/linear_0.w_0@GRAD` instead of simply `linear_0.w_0@GRAD`, so we get
            # the correct names of the parameter grads from program. And out grads are similar to above.
            attrs.extend(
                (
                    'param_grad_names',
                    self._param_grad_names,
                    'out_grad_names',
                    self._out_grad_names,
                )
            )
700 701
        if self._cuda_graph_capture_mode:
            attrs.extend(
702 703 704 705 706 707 708
                (
                    'cuda_graph_capture_mode',
                    self._cuda_graph_capture_mode,
                    'cuda_graph_pool_id',
                    self._cuda_graph_pool_id,
                )
            )
709
        return attrs
710

711 712 713 714 715 716 717 718 719 720 721 722
    @switch_to_static_graph
    def _build_infer_program(self, infer_program, forward_end_op_index):
        forward_skip_vars = self._parse_skip_gc_vars(infer_program)
        builded_infer_program = add_build_strategy_for(
            infer_program,
            0,
            forward_end_op_index,
            self._build_strategy,
            forward_skip_vars,
        )
        self._apply_inplace_pass(builded_infer_program, None)
        return builded_infer_program
723

724
    @switch_to_static_graph
725 726 727
    def _get_forward_backward_program_form(
        self, whole_program, forward_end_op_index
    ):
728 729
        # NOTE(dev): We apply build_strategy for backward firstly to
        # avoid skipping more gc variables.
730
        backward_start_op_index = forward_end_op_index + len(
731 732
            self._outputs.var_ids
        )
733
        backward_end_op_index = whole_program.desc.block(0).op_size()
734 735 736 737 738
        # For Backward process in CINN, all param@GRAD shoule be skipped for GC, because
        # they will be shared in scope and used by optimizer.
        backward_skip_vars = (
            self._parse_skip_gc_vars(whole_program) + self._param_grad_names
        )
739
        backward_builded_program = add_build_strategy_for(
740 741 742 743
            whole_program,
            backward_start_op_index,
            backward_end_op_index,
            self._build_strategy,
744 745 746 747 748 749 750 751 752 753 754 755
            backward_skip_vars,
        )

        forward_skip_vars = self._parse_skip_gc_vars(
            whole_program, backward_builded_program
        )
        forward_builded_program = add_build_strategy_for(
            whole_program,
            0,
            forward_end_op_index,
            self._build_strategy,
            forward_skip_vars,
756
        )
757

758 759 760
        self._apply_inplace_pass(
            forward_builded_program, backward_builded_program
        )
761 762 763 764 765 766
        return [forward_builded_program, backward_builded_program]

    def _apply_inplace_pass(self, forward_program, backward_program):
        attr_types = {
            "use_cuda": "bool",
            "mem_opt_skip_vars": "list[str]",
767
            "for_partial_block": "bool",
768 769 770 771
        }
        empty_startup_program = paddle.static.Program()
        use_cuda = True if core.is_compiled_with_cuda() else False
        # skip data var
772 773 774 775
        forward_mem_opt_skip_vars = self._parse_skip_gc_vars(
            forward_program, backward_program
        )
        backward_mem_opt_skip_vars = self._parse_skip_gc_vars(forward_program)
776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801
        if forward_program:
            attrs = {
                "use_cuda": use_cuda,
                "mem_opt_skip_vars": forward_mem_opt_skip_vars,
                "for_partial_block": True,
            }
            _apply_pass(
                forward_program,
                empty_startup_program,
                "buffer_shared_inplace_pass",
                attrs,
                attr_types,
            )
        if backward_program:
            attrs = {
                "use_cuda": use_cuda,
                "mem_opt_skip_vars": backward_mem_opt_skip_vars,
                "for_partial_block": True,
            }
            _apply_pass(
                backward_program,
                empty_startup_program,
                "buffer_shared_inplace_pass",
                attrs,
                attr_types,
            )
802

803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829
    @LazyInitialized
    def _inout_var_names(self):
        """
        Returns Variable Names from self._inputs and self.outputs
        """
        var_names = []
        for var in self._inputs:
            if isinstance(var, paddle.fluid.framework.Variable):
                var_names.append(var.desc.name())
        for var in self._outputs:
            if isinstance(var, paddle.fluid.framework.Variable):
                var_names.append(var.desc.name())
        return var_names

    def _parse_skip_gc_vars(self, program, backward_program=None):
        """
        Parse variables that need to skip GC after execute it.
        If specify backward_program, it will keep the variables used in backward.
        """
        # skip data var, DO NOT ignore this deepcopy
        skip_vars = deepcopy(self._inout_var_names)
        for var_name, var in program.global_block().vars.items():
            if var.is_data:
                skip_vars.append(var_name)

        if backward_program:
            for var_name in core.parse_safe_eager_deletion_skip_vars(
830
                backward_program.desc, True
831 832 833 834
            ):
                skip_vars.append(var_name)
        return skip_vars

835 836 837 838 839
    def _prepare(self, inputs):
        """
        Prepare inputs, outputs, attrs.
        """
        assert isinstance(inputs, (tuple, list))
840 841
        # Flatten inputs with nested structure into single list.
        flatten_inputs = flatten(inputs)
842 843
        # Convert variable into VarBase and feed in training data.
        input_vars = []
844
        expected_place = framework._current_expected_place()
845
        for i, value in enumerate(flatten_inputs):
846
            if isinstance(value, np.ndarray):
J
Jiabin Yang 已提交
847
                var = None
848
                if not framework.global_var._in_eager_mode_:
849 850 851 852 853 854 855
                    var = core.VarBase(
                        value=value,
                        name=self._inputs[i].desc.name(),
                        persistable=False,
                        place=expected_place,
                        zero_copy=True,
                    )
J
Jiabin Yang 已提交
856
                else:
857 858 859 860 861 862 863
                    var = core.eager.Tensor(
                        value=value,
                        name=self._inputs[i].desc.name(),
                        persistable=False,
                        place=expected_place,
                        zero_copy=True,
                    )
J
Jiabin Yang 已提交
864
            elif isinstance(value, (core.VarBase, core.eager.Tensor)):
865 866 867 868
                # NOTE(Aurelius84): If var is on CPUPlace, it will be transformed multi times
                # into CUDAPlace when it's as input of multi Ops. so we move it in advance
                # to avoid this problem.
                if value.stop_gradient and not value.place._equals(
869 870
                    expected_place
                ):
871 872
                    var = value._copy_to(expected_place, False)
                    var.stop_gradient = True
873 874
                else:
                    var = value
875
                var.name = self._inputs[i].desc.name()
876 877 878
            else:
                continue
            input_vars.append(var)
879

880 881 882
        # mapping from name(string) -> VarBase
        out_varbase_map = {}

883 884
        def create_out(var_id):
            var = self._outputs[var_id]
885
            assert isinstance(var, framework.Variable)
886
            var_desc = var.desc
J
Jiabin Yang 已提交
887
            varbase = None
888 889 890 891

            if var_desc.name() in out_varbase_map:
                return out_varbase_map[var_desc.name()]

892
            if not framework.global_var._in_eager_mode_:
893 894 895 896 897 898 899
                var_base = core.VarBase(
                    var_desc.dtype(),
                    var_desc.shape(),
                    var_desc.name(),
                    var_desc.type(),
                    False,
                )
J
Jiabin Yang 已提交
900
            else:
901 902 903 904 905 906 907
                var_base = core.eager.Tensor(
                    var_desc.dtype(),
                    var_desc.shape(),
                    var_desc.name(),
                    var_desc.type(),
                    False,
                )
908
            var_base.stop_gradient = var.stop_gradient
909
            out_varbase_map[var_desc.name()] = var_base
910 911 912 913 914 915
            return var_base

        # Create VarBase to receive output data.
        out_vars = list(map(create_out, self._outputs.var_ids))

        return input_vars, out_vars
916

917
    def _create_scope_vec(self, program_id=None, use_scope_cache=False):
918
        # Hold forward variables
J
Jiabin Yang 已提交
919
        tmp_scope_vec = None
920 921 922
        inner_scope = self._get_scope(
            program_id=program_id, use_scope_cache=use_scope_cache
        )
923
        if not framework.global_var._in_eager_mode_:
924 925 926 927 928 929 930
            tmp_scope_vec = core.VarBase(
                core.VarDesc.VarType.FP32,
                [],
                "program_out_scope",
                core.VarDesc.VarType.STEP_SCOPES,
                True,
            )
J
Jiabin Yang 已提交
931
            tmp_scope_vec.value().set_scope(inner_scope)
932 933
        else:
            tmp_scope_vec = [inner_scope]
934
        return tmp_scope_vec
935

936
    def _create_cuda_graph_vec(self):
937 938 939 940 941 942 943
        var = core.VarBase(
            core.VarDesc.VarType.FP32,
            [],
            "cuda_graph",
            core.VarDesc.VarType.RAW,
            True,
        )
944 945 946
        var.stop_gradient = True
        return var

947 948 949 950 951 952 953 954 955
    def _restore_out(self, out_vars):
        """
        Restores same nested outputs by only replacing the Variable with VarBase.
        """

        flatten_outputs = self._outputs.tolist()
        for i, idx in enumerate(self._outputs.var_ids):
            flatten_outputs[idx] = out_vars[i]
        outs = self._outputs.restore(flatten_outputs)
956
        if outs is not None and len(outs) == 1:
957 958 959 960
            outs = outs[0]

        return outs

961 962 963 964
    @switch_to_static_graph
    def _clone_for_test(self, main_program):
        return main_program.clone(for_test=True)

965
    def _is_no_value(self, var):
966 967 968
        if isinstance(var, (core.VarBase, core.eager.Tensor)) and var.shape == [
            1
        ]:
969 970
            # NOTE: .numpy() will insert MemcpySync operation, it hits performance.
            if var.numpy()[0] == RETURN_NO_VALUE_MAGIC_NUM:
971 972 973 974 975 976 977
                return True
        return False

    def _remove_no_value(self, out_vars):
        """
        Removes invalid value for various-length return statement
        """
J
Jiabin Yang 已提交
978
        if isinstance(out_vars, (core.VarBase, core.eager.Tensor)):
979 980 981 982 983
            if self._is_no_value(out_vars):
                return None
            return out_vars
        elif isinstance(out_vars, (tuple, list)):
            if isinstance(out_vars, tuple):
984 985 986
                res = tuple(
                    var for var in out_vars if not self._is_no_value(var)
                )
987 988 989 990
            else:
                # isinstance(out_vars, list)
                res = [var for var in out_vars if not self._is_no_value(var)]

991
            has_removed = len(out_vars) > len(res)
992 993 994 995 996 997 998 999 1000 1001
            # len(out_vars) > len(res) means we have removed var. This is
            # preventing out_vars is empty or just one element at the beginning
            if len(res) == 0 and has_removed:
                return None
            elif len(res) == 1 and has_removed:
                return res[0]
            return res

        return out_vars

1002
    def _set_grad_type(self, params, train_program):
1003 1004 1005 1006 1007 1008 1009 1010
        # NOTE: if user set sparse gradient mode, the param's gradient
        # will be SelectedRows, not LoDTensor. But tracer will just
        # set param grad VarBase by forward VarBase(LoDTensor)
        # If we don't change grad_var type here, RunProgramOp need
        # transform SelectedRows to LoDTensor forcibly, it may not
        # be user wanted result.
        for param in params:
            grad_name = param.name + core.grad_var_suffix()
1011
            grad_var = train_program.desc.block(0).find_var(grad_name.encode())
1012 1013 1014 1015 1016
            # NOTE: cannot find var desc maybe no problem, such as in batch_norm
            if grad_var is None:
                continue
            param._set_grad_type(grad_var.type())

1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029
    def _remove_op_call_stack(self, main_program):
        """
        Remove op's python call stack with redundant low-level error messages related to
        transforamtions to avoid confusing users.
        """
        assert isinstance(main_program, framework.Program)
        for block in main_program.blocks:
            for op in block.ops:
                if op.has_attr("op_callstack"):
                    op._remove_attr("op_callstack")

        return main_program

1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
    def _check_params_all_inited(self, main_program):
        """
        Check all params from main program are already initialized, see details as follows:
            1. all parameters in self._params should be type `framework.ParamBase` which are created in dygraph.
            2. all parameters from transformed program can be found in self._params.
               Because they share same data with ParamBase of original dygraph.
        """
        if not isinstance(self._params, (list, tuple)):
            raise TypeError(
                "Type of self._params in PartialProgramLayer should be list or tuple, but received %s."
1040 1041
                % type(self._params)
            )
1042

1043 1044 1045
        param_and_buffer_names_set = set()
        for i, var in enumerate(self._params):
            # self._params constains parameters and buffers with persistable=True.
J
Jiabin Yang 已提交
1046
            if not isinstance(var, (core.VarBase, core.eager.Tensor)):
1047
                raise TypeError(
1048 1049 1050 1051
                    'Type of self._params[{}] in PartialProgramLayer should be Parameter or Variable, but received {}.'.format(
                        i, type(var)
                    )
                )
1052
            param_and_buffer_names_set.add(var.name)
1053 1054

        for block in main_program.blocks:
1055
            for name, var in block.vars.items():
1056
                if isinstance(var, framework.Parameter):
1057
                    if name not in param_and_buffer_names_set:
1058
                        raise ValueError(
1059 1060 1061 1062 1063 1064
                            "\n\tWe don't support to define layer with parameters in the function decorated by `@to_static`."
                            "\n\tBut we found parameter(%s) was created in the decorated function."
                            "\n"
                            "\n\tRevise suggestion: "
                            "\n\t\t1. Please ensure all your sublayers are inheritted from nn.Layer."
                            "\n\t\t2. Please use nn.ParameterList and nn.LayerList as container instead of using a native Python container such as List"
1065 1066
                            % name
                        )
1067

1068
    def _valid_vars(self, vars):
1069
        return vars if vars else None
1070

1071 1072 1073 1074 1075 1076

def partial_program_from(concrete_program):
    inputs = concrete_program.inputs
    if inputs and isinstance(inputs[0], layers.Layer):
        inputs = inputs[1:]

1077 1078 1079 1080 1081 1082 1083
    return PartialProgramLayer(
        concrete_program.main_program,
        inputs,
        concrete_program.outputs,
        concrete_program.parameters,
        **concrete_program.kwargs
    )
1084 1085 1086


@switch_to_static_graph
1087
def add_build_strategy_for(
1088
    program, start_op_index, end_op_index, build_strategy=None, skip_vars=None
1089 1090
):
    if start_op_index < end_op_index:
1091 1092
        compiled_program = paddle.static.CompiledProgram(
            core.Graph(program.desc, start_op_index, end_op_index),
1093 1094
            build_strategy=build_strategy,
        )
1095 1096 1097
        if skip_vars:
            # TODO(Aurelius84): Need to unify name with C++, such as kSkipVarNames.
            compiled_program._graph.set("skip_gc_vars", set(skip_vars))
1098 1099 1100
        compiled_program._compile(
            core.Scope(), framework._current_expected_place()
        )
1101 1102 1103 1104 1105 1106 1107
        ir_graph = framework.IrGraph(compiled_program._graph)
        builded_program = ir_graph.to_program()
        if hasattr(compiled_program._program, 'lr_sheduler'):
            builded_program.lr_sheduler = compiled_program._program.lr_sheduler
    else:
        builded_program = program
    return builded_program