partial_program.py 39.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from copy import deepcopy

17
import numpy as np
18

19
import paddle
20 21
from paddle import _legacy_C_ops
from paddle.fluid import backward, core, framework, program_guard
22
from paddle.fluid.compiler import BuildStrategy
23 24 25 26 27 28 29
from paddle.fluid.dygraph import layers
from paddle.fluid.dygraph.base import switch_to_static_graph
from paddle.fluid.framework import _apply_pass
from paddle.fluid.layers.utils import _hash_with_id, flatten, pack_sequence_as

from . import logging_utils
from .return_transformer import RETURN_NO_VALUE_MAGIC_NUM
30
from .utils import _out_grad_names, _param_grad_names
31

32 33
__all__ = []

34

35
class NestSequence:
36 37 38 39 40 41 42
    """
    A wrapper class that easily to flatten and restore the nest structure of
    given sequence.
    """

    def __init__(self, raw_input, need_check=False):
        self.__raw_input = raw_input
43
        self.__input_list = self.tolist()
44 45 46 47 48 49 50 51 52 53 54 55 56
        self.__var_ids = self._get_var_ids()
        self._check_non_variable(need_check)

    def tolist(self):
        """
        Flattens the nested sequences into single list.
        """
        return flatten(self.__raw_input)

    def restore(self, value_list):
        """
        Restores the nested sequence from value list.
        """
57
        assert len(self.__input_list) == len(value_list)
58 59 60 61
        return pack_sequence_as(self.__raw_input, value_list)

    def _get_var_ids(self):
        var_ids = []
62
        for idx, var in enumerate(self.__input_list):
63
            if isinstance(
64 65
                var, (framework.Variable, core.VarBase, core.eager.Tensor)
            ):
66 67 68 69 70 71 72 73 74 75
                var_ids.append(idx)

        return var_ids

    def _check_non_variable(self, need_check):
        """
        Raises warning if output of traced function contains non-tensor type values.
        """
        if need_check:
            warning_types = set()
76
            for var in self.__input_list:
77
                if not isinstance(
78 79
                    var, (framework.Variable, core.VarBase, core.eager.Tensor)
                ):
80 81
                    warning_types.add(type(var))
            if warning_types:
82
                logging_utils.warn(
83 84
                    "Output of traced function contains non-tensor type values: {}. "
                    "Currently, We don't support to update them while training and will return "
85 86 87 88
                    "what we first saw. Please try to return them as tensor.".format(
                        list(warning_types)
                    )
                )
89 90 91 92 93 94

    @property
    def var_ids(self):
        return self.__var_ids

    def __getitem__(self, item):
95
        return self.__input_list[item]
96

97

98
class LazyInitialized:
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
    """
    Descriptor to implement lazy initialization of property.
    """

    def __init__(self, function):
        self.function = function

    def __get__(self, instance, cls):
        val = self.function(instance)
        setattr(instance, self.function.__name__, val)
        return val


def _change_is_test_status(program, is_test):
    # change all `is_test` attributes
    for block in program.blocks:
        for op in block.ops:
            if op.has_attr('is_test'):
                op._set_attr('is_test', is_test)
    return program


121 122 123 124 125
class ProgramInfo:
    """
    A helper class to recoder Program information
    """

126
    def __init__(self):
127 128 129 130 131
        self.op_size = {
            'fp32': -1,
            'amp': -1,
            'fp16': -1,
        }
132 133 134 135 136 137 138 139 140 141 142 143 144 145
        self.programs = {}
        self.mode = "infer"

    def __call__(self, key, prog_creator):
        """
        Recoder infer program and op size.
        """
        assert key in ['fp32', 'amp', 'fp16']
        if key not in self.programs:
            infer_prog = prog_creator(is_infer_mode=True)
            self.programs[key] = infer_prog
            self.op_size[key] = infer_prog.desc.block(0).op_size()

        return self.programs[key], self.op_size[key]
146 147


148
class PartialProgramLayer:
149
    """
H
hjyp 已提交
150
    PartialProgramLayer wraps all the ops from layers decorated by `@to_static`
151 152 153
    and execute them as a static subgraph.

    .. note::
154 155 156
        **1. This is a very low level API. Users should not use this API
             directly. Please use `partial_program_from(concrete_program)`
             to create it.
157 158 159 160
        **2. LoDTensorArray is not currently supported in the output.

    Args:
        main_program(Program): The main program that contains ops need to be executed.
H
hjyp 已提交
161 162
        inputs(list[Variable]): The input list of the decorated function by `@to_static`.
        outputs(list[Variable]): The output list of the decorated function by `@to_static`.
163 164 165
        parameters(list[VarBase]|None): All trainable parameters included in the program. Default None.

    Returns:
166
        Layer: A Layer object that run all ops internally in static graph mode.
167 168
    """

169 170 171
    def __init__(
        self, main_program, inputs, outputs, parameters=None, **kwargs
    ):
172
        super().__init__()
173 174
        self._inputs = NestSequence(inputs)
        self._outputs = NestSequence(outputs, need_check=True)
175
        self._params = parameters if parameters is not None else []
176

177 178 179
        self._build_strategy = kwargs.get('build_strategy', BuildStrategy())
        assert isinstance(self._build_strategy, BuildStrategy)

180
        self._origin_main_program = self._verify_program(main_program)
181 182 183
        self._cuda_graph_vec = self._create_cuda_graph_vec()
        self._cuda_graph_capture_mode = ""
        self._cuda_graph_pool_id = 0
184
        # Set default mode to train
185
        self.training = True
186
        self._infer_info = ProgramInfo()
187

188 189 190 191
        custom_white_list, custom_black_list = None, None
        tracer = framework._dygraph_tracer()
        if tracer:
            custom_white_list, custom_black_list = tracer._get_amp_op_list()
192
        # For AMP training
193
        self._amp_list = paddle.static.amp.fp16_lists.AutoMixedPrecisionLists(
194
            custom_white_list=custom_white_list,
195 196
            custom_black_list=custom_black_list,
        )
197

198 199 200
        # program_id -> list(scope)
        self._scope_cache = {}

201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
    def __call__(self, inputs):
        """
        Execute static graph by Interpreter and Return dynamic Tensors.
        """
        in_vars, out_vars = self._prepare(inputs)
        self._cast_fp16_if_pure_fp16(in_vars)
        attrs = self._prepare_attributes()

        _legacy_C_ops.run_program(
            self._valid_vars(in_vars),
            self._valid_vars(self._params),
            self._valid_vars(out_vars),
            self._create_scope_vec(
                program_id=self.program_id, use_scope_cache=True
            ),
            self._double_grads,
            self._cuda_graph_vec,
            *attrs
        )
        restored_nest_out = self._restore_out(out_vars)
        return self._remove_no_value(restored_nest_out)

223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
    def _get_scope(self, program_id=None, use_scope_cache=False):
        if use_scope_cache:
            if program_id not in self._scope_cache:
                scope = core.Scope()
                self._scope_cache[program_id] = [scope]
                return scope
            else:
                for scope in self._scope_cache[program_id]:
                    if scope._can_reuesd:
                        return scope
                scope = core.Scope()
                self._scope_cache[program_id].append(scope)
                return scope
        else:
            return core.Scope()

239 240 241 242
    @LazyInitialized
    def _double_grads(self):
        return self._get_double_grads(self._origin_main_program)

243 244 245 246 247 248 249
    # whole
    @switch_to_static_graph
    def _create_program(self, is_infer_mode=False):
        if is_infer_mode:
            return self._origin_main_program.clone(for_test=is_infer_mode)
        else:
            train_program = self._append_backward_desc(
250 251
                self._origin_main_program
            )
252 253 254
            # Note: Only set grad type once after initializing train program. So we put it here.
            self._set_grad_type(self._params, train_program)
            return train_program
255

256 257 258 259
    @switch_to_static_graph
    def _create_amp_program(self, is_infer_mode=False):
        amp_program = self._origin_main_program.clone(for_test=is_infer_mode)
        with program_guard(amp_program):
260 261 262
            paddle.static.amp.fp16_utils.rewrite_program(
                amp_program, self._amp_list
            )
263 264 265 266 267 268
        if is_infer_mode:
            return amp_program
        else:
            train_amp_program = self._append_backward_desc(amp_program)
            self._set_grad_type(self._params, train_amp_program)
            return train_amp_program
269

270 271 272
    @switch_to_static_graph
    def _create_pure_fp16_program(self, is_infer_mode=False):
        pure_fp16_program = self._origin_main_program.clone(
273 274
            for_test=is_infer_mode
        )
275
        with program_guard(pure_fp16_program):
276
            paddle.static.amp.fp16_utils.cast_model_to_fp16(
277 278
                pure_fp16_program, self._amp_list, use_fp16_guard=False
            )
J
Jiabin Yang 已提交
279 280 281 282 283

        core.check_and_set_prim_all_enabled()
        from paddle.incubate.autograd.primapi import to_prim

        to_prim(pure_fp16_program.blocks)
284 285 286 287
        if is_infer_mode:
            return pure_fp16_program
        else:
            train_pure_fp16_program = self._append_backward_desc(
288 289
                pure_fp16_program
            )
290 291
            self._set_grad_type(self._params, train_pure_fp16_program)
            return train_pure_fp16_program
292

293
    @switch_to_static_graph
294
    def _create_forward_backward_train_program(self):
295
        whole_program = self._train_program
296
        _, forward_end_op_index = self._infer_info('fp32', self._create_program)
297
        assert forward_end_op_index >= 0
298

299 300 301
        return self._get_forward_backward_program_form(
            whole_program, forward_end_op_index
        )
302

303 304
    @switch_to_static_graph
    def _create_forward_backward_train_amp_program(self):
305
        whole_program = self._train_amp_program
306 307 308
        _, forward_end_op_index = self._infer_info(
            'amp', self._create_amp_program
        )
309
        assert forward_end_op_index >= 0
310

311 312 313
        return self._get_forward_backward_program_form(
            whole_program, forward_end_op_index
        )
314 315 316

    @switch_to_static_graph
    def _create_forward_backward_train_pure_fp16_program(self):
317
        whole_program = self._train_pure_fp16_program
318 319 320
        _, forward_end_op_index = self._infer_info(
            'fp16', self._create_pure_fp16_program
        )
321
        assert forward_end_op_index >= 0
322

323 324 325
        return self._get_forward_backward_program_form(
            whole_program, forward_end_op_index
        )
326 327

    @LazyInitialized
328 329
    def _train_program(self):
        return self._create_program()
330

331
    @LazyInitialized
332
    def _infer_program(self):
333 334
        program, op_size = self._infer_info('fp32', self._create_program)
        return self._build_infer_program(program, op_size)
335

336 337 338 339 340 341
    @LazyInitialized
    def _train_amp_program(self):
        return self._create_amp_program()

    @LazyInitialized
    def _infer_amp_program(self):
342 343
        program, op_size = self._infer_info('amp', self._create_amp_program)
        return self._build_infer_program(program, op_size)
344 345 346

    @LazyInitialized
    def _train_pure_fp16_program(self):
347
        return self._create_pure_fp16_program()
348

349
    @LazyInitialized
350
    def _infer_pure_fp16_program(self):
351 352
        program, op_size = self._infer_info(
            'fp16', self._create_pure_fp16_program
353
        )
354
        return self._build_infer_program(program, op_size)
355

356
    @LazyInitialized
357 358 359
    def _train_forward_backward_program(self):
        program = self._create_forward_backward_train_program()
        return program
360 361

    @LazyInitialized
362 363 364 365
    def _train_amp_forward_backward_program(self):
        program = self._create_forward_backward_train_amp_program()
        return program

366 367 368 369
    @LazyInitialized
    def _empty_backward_program_for_eval(self):
        return paddle.static.Program()

370 371 372 373 374
    @LazyInitialized
    def _train_pure_fp16_forward_backward_program(self):
        program = self._create_forward_backward_train_pure_fp16_program()
        return program

375 376
    @LazyInitialized
    def _train_program_id(self):
377
        program_id = _hash_with_id(self._train_program, self)
378 379 380
        core._set_cached_executor_build_strategy(
            program_id, self._build_strategy
        )
381
        return program_id
382

383 384 385 386
    @LazyInitialized
    def _infer_program_id(self):
        return _hash_with_id(self._infer_program, self)

387 388 389
    @LazyInitialized
    def _train_amp_program_id(self):
        program_id = _hash_with_id(self._train_amp_program, self)
390 391 392
        core._set_cached_executor_build_strategy(
            program_id, self._build_strategy
        )
393 394
        return program_id

395 396 397 398
    @LazyInitialized
    def _infer_amp_program_id(self):
        return _hash_with_id(self._infer_amp_program, self)

399 400 401
    @LazyInitialized
    def _train_pure_fp16_program_id(self):
        program_id = _hash_with_id(self._train_pure_fp16_program, self)
402 403 404
        core._set_cached_executor_build_strategy(
            program_id, self._build_strategy
        )
405 406
        return program_id

407 408 409 410
    @LazyInitialized
    def _infer_pure_fp16_program_id(self):
        return _hash_with_id(self._infer_pure_fp16_program, self)

411 412
    @LazyInitialized
    def _param_grad_names(self):
413
        return _param_grad_names(self._train_program.desc, self._params)
414 415 416

    @LazyInitialized
    def _out_grad_names(self):
417 418 419 420 421
        return _out_grad_names(
            self._train_program.desc,
            self._create_program(is_infer_mode=True).desc.block(0).op_size(),
            len(self._outputs.var_ids),
        )
422

423
    @property
424 425 426 427 428 429 430 431 432 433 434 435 436 437
    def program(self):
        """
        Return current train or eval program.
        """
        if self.training:
            return self.train_program
        else:
            return self.infer_program

    @property
    def program_id(self):
        """
        Return current train or eval program hash id.
        """
J
Jiabin Yang 已提交
438 439
        from paddle.amp.auto_cast import _in_amp_guard, _in_pure_fp16_guard

440 441 442 443 444 445 446 447 448 449 450 451 452 453 454
        if self.training:
            if _in_amp_guard():
                return self._train_amp_program_id
            elif _in_pure_fp16_guard():
                return self._train_pure_fp16_program_id
            else:
                return self._train_program_id
        else:
            if _in_amp_guard():
                return self._infer_amp_program_id
            elif _in_pure_fp16_guard():
                return self._infer_pure_fp16_program_id
            else:
                return self._infer_program_id

455 456
    @property
    def train_program(self):
J
Jiabin Yang 已提交
457 458
        from paddle.amp.auto_cast import _in_amp_guard, _in_pure_fp16_guard

459 460 461 462 463 464 465 466 467
        if _in_amp_guard():
            return self._train_amp_program
        elif _in_pure_fp16_guard():
            return self._train_pure_fp16_program
        else:
            return self._train_program

    @property
    def infer_program(self):
J
Jiabin Yang 已提交
468 469
        from paddle.amp.auto_cast import _in_amp_guard, _in_pure_fp16_guard

470 471 472 473 474 475 476 477 478
        if _in_amp_guard():
            return self._infer_amp_program
        elif _in_pure_fp16_guard():
            return self._infer_pure_fp16_program
        else:
            return self._infer_program

    @property
    def forward_program(self):
J
Jiabin Yang 已提交
479 480
        from paddle.amp.auto_cast import _in_amp_guard, _in_pure_fp16_guard

481 482 483 484 485 486 487 488 489 490 491 492 493
        if self.training:
            if _in_amp_guard():
                progs = self._train_amp_forward_backward_program
            elif _in_pure_fp16_guard():
                progs = self._train_pure_fp16_forward_backward_program
            else:
                progs = self._train_forward_backward_program
            return progs[0]
        else:
            return self.infer_program

    @property
    def backward_program(self):
J
Jiabin Yang 已提交
494 495
        from paddle.amp.auto_cast import _in_amp_guard, _in_pure_fp16_guard

496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515
        if self.training:
            if _in_amp_guard():
                progs = self._train_amp_forward_backward_program
            elif _in_pure_fp16_guard():
                progs = self._train_pure_fp16_forward_backward_program
            else:
                progs = self._train_forward_backward_program
            return progs[1]
        else:
            """
            Can't just return paddle.static.Program(), because self.backward_program is a property,
            whenever we call this method, a tmp Program() object is created and is gc immediatly
            after executed the following line in PartialProgramLayer.__call__.

            >>> self.backward_program.desc.block(0),

            When we access RunProgramAPI, it's possible to get an invalid backward_program address.
            """
            return self._empty_backward_program_for_eval

516 517 518 519 520 521 522 523 524 525 526 527
    def _verify_program(self, main_program):
        """
        Verify that the program parameter is initialized, prune some unused params,
        and remove redundant op callstack.
        """
        # 1. Check all params from main program can be found in self._params
        self._check_params_all_inited(main_program)
        # 2. Prune the parameters not used anywhere in the program.
        self._prune_unused_params(main_program)

        return main_program

528 529 530
    def prepare_gradient_aggregation(
        self, start_idx, main_program, target_program
    ):
531 532 533 534 535 536 537
        """
        Why we need add gradient aggregation operation ?
        In some cases, if non leaf nodes are used as output, gradient overwriting will occur, such as
        def forward(self, in):
            x = 2 * in  # <---- x is a non-leaf node in program.
            y = x + 3
            return x, y
538

539 540 541 542 543 544 545 546 547
        loss = forward(in)[0].sum()
        loss.backward()  # <----- x@grad will be overwrited by elementwise_add_grad Op
        """

        def _need_aggregation(var):
            """
            if exist a op whose inputs is var, then return True
            """
            if not isinstance(var, framework.Variable) or var.type not in [
548 549
                core.VarDesc.VarType.LOD_TENSOR,
                core.VarDesc.VarType.SELECTED_ROWS,
550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565
            ]:
                return False
            if var.dtype not in [paddle.float32, paddle.float64]:
                return False
            for op in main_program.block(0).ops:
                for in_arg in op.input_arg_names:
                    if in_arg == var.name:
                        return True
            return False

        def _insert_aggregation_ops_for_var(target_program, var):
            suffix = "@dy2static"
            var_grad_name = var.grad_name
            new_grad_name = var.name + suffix + "@GRAD"
            finded_ops = list(
                filter(
566 567 568 569 570 571 572 573 574 575
                    lambda x: x[0] >= start_idx
                    and any(
                        [
                            out_arg == var_grad_name
                            for out_arg in x[1].output_arg_names
                        ]
                    ),
                    enumerate(target_program.block(0).ops),
                )
            )
576 577 578 579 580 581

            # len(finded_ops) may equals zero when stop_gradient works.
            # len(finded_ops) may > 1, because we may have fill_constant op.
            if len(finded_ops) == 0:
                return None
            # step1: create a new var named var.name@GRAD
582 583 584 585 586 587
            target_program.block(0).create_var(
                name=new_grad_name,
                type=var.type,
                dtype=var.dtype,
                shape=var.shape,
            )
588 589 590 591 592 593 594 595 596 597
            # step2: rename the var.name@GRAD to var.name@GRAD@dy2static
            for idx, op in finded_ops:
                op._rename_input(var_grad_name, new_grad_name)
                op._rename_output(var_grad_name, new_grad_name)
            # step3: insert sum op to aggregate the gradient.
            #        var.name@GRAD = sum(var.name@dy2static@GRAD, var.name@GRAD)
            target_program.block(0)._insert_op(
                finded_ops[-1][0] + 1,
                type='sum',
                inputs={'X': [var_grad_name, new_grad_name]},
598 599
                outputs={"Out": var_grad_name},
            )
600 601 602
            return None

        to_processed_vars = list(
603 604
            filter(_need_aggregation, self._outputs.tolist())
        )
605 606 607
        for _var in to_processed_vars:
            _insert_aggregation_ops_for_var(target_program, _var)

608
    @switch_to_static_graph
609
    def _append_backward_desc(self, main_program):
610 611
        # make sure all status of is_test are False in train mode.
        program = _change_is_test_status(main_program.clone(), is_test=False)
612
        targets = []
613
        for out in self._outputs.tolist():
614 615 616
            if isinstance(out, framework.Variable):
                targets.append(program.global_block().var(out.name))

617
        if targets:
618 619
            # TODO(CZ): later when use cinn, set_prim_all_enabled and check_and_set_prim_all_enabled will be set at else branch.
            core.check_and_set_prim_all_enabled()
620
            backward.gradients(targets=targets, inputs=[])
621

622
        start_idx = len(main_program.block(0).ops) + len(self._outputs.tolist())
623 624

        self.prepare_gradient_aggregation(start_idx, main_program, program)
625

626 627
        return program

628 629 630
    def _prune_unused_params(self, program):
        """
        Prune the parameters not used anywhere in the program.
H
hjyp 已提交
631
        The `@to_static` may only decorated a sub function which
632 633 634 635 636 637
        contains some unused parameters created in `__init__`.
        So prune these parameters to avoid unnecessary operations in
        `run_program_op`.
        """
        required_params = []
        for param in self._params:
638
            found_param = False
639
            for block in program.blocks:
640
                for op in block.ops:
641 642 643 644
                    if (
                        param.name in op.input_arg_names
                        or param.name in op.output_arg_names
                    ):
645 646 647 648
                        required_params.append(param)
                        found_param = True
                        break
                if found_param:
649 650 651 652
                    break

        self._params = required_params

653 654 655 656 657 658
    def _get_double_grads(self, program):
        double_grads = []
        for block in program.blocks:
            for name in block.vars:
                if "@GRAD" in name:
                    var_desc = block.vars[name].desc
J
Jiabin Yang 已提交
659
                    var_base = None
660
                    if not framework.global_var._in_eager_mode_:
661 662 663 664 665 666 667
                        var_base = core.VarBase(
                            var_desc.dtype(),
                            var_desc.shape(),
                            var_desc.name(),
                            var_desc.type(),
                            False,
                        )
J
Jiabin Yang 已提交
668
                    else:
669 670 671 672 673 674 675
                        var_base = core.eager.Tensor(
                            var_desc.dtype(),
                            var_desc.shape(),
                            var_desc.name(),
                            var_desc.type(),
                            False,
                        )
676
                    double_grads.append(var_base)
677
        return self._valid_vars(double_grads)
678

679
    def _cast_fp16_if_pure_fp16(self, in_vars):
J
Jiabin Yang 已提交
680 681
        from paddle.amp.auto_cast import _in_pure_fp16_guard

682 683 684 685 686 687 688 689 690 691
        if _in_pure_fp16_guard():
            for i, var in enumerate(in_vars):
                name = var.name
                if (
                    self.program.global_block().has_var(name)
                    and self.program.global_block().var(name).dtype
                    == paddle.float16
                ):
                    in_vars[i] = var.astype('float16')
                    in_vars[i].name = name
692

693
    def _prepare_attributes(self):
694
        attrs = [
695 696 697 698
            'forward_global_block',
            self.forward_program.desc.block(0),
            'backward_global_block',
            self.backward_program.desc.block(0),
699 700 701 702
            'is_test',
            not self.training,
            'program_id',
            self.program_id,
703
        ]
704 705 706 707 708 709 710 711 712 713 714 715
        if self.training:
            # NOTE: In the case of higher-order gradient, the names of the parameter grads may be like
            # `grad/grad/grad/linear_0.w_0@GRAD` instead of simply `linear_0.w_0@GRAD`, so we get
            # the correct names of the parameter grads from program. And out grads are similar to above.
            attrs.extend(
                (
                    'param_grad_names',
                    self._param_grad_names,
                    'out_grad_names',
                    self._out_grad_names,
                )
            )
716 717
        if self._cuda_graph_capture_mode:
            attrs.extend(
718 719 720 721 722 723 724
                (
                    'cuda_graph_capture_mode',
                    self._cuda_graph_capture_mode,
                    'cuda_graph_pool_id',
                    self._cuda_graph_pool_id,
                )
            )
725
        return attrs
726

727 728 729 730 731 732 733 734 735 736 737 738
    @switch_to_static_graph
    def _build_infer_program(self, infer_program, forward_end_op_index):
        forward_skip_vars = self._parse_skip_gc_vars(infer_program)
        builded_infer_program = add_build_strategy_for(
            infer_program,
            0,
            forward_end_op_index,
            self._build_strategy,
            forward_skip_vars,
        )
        self._apply_inplace_pass(builded_infer_program, None)
        return builded_infer_program
739

740
    @switch_to_static_graph
741 742 743
    def _get_forward_backward_program_form(
        self, whole_program, forward_end_op_index
    ):
744 745
        # NOTE(dev): We apply build_strategy for backward firstly to
        # avoid skipping more gc variables.
746
        backward_start_op_index = forward_end_op_index + len(
747 748
            self._outputs.var_ids
        )
749
        backward_end_op_index = whole_program.desc.block(0).op_size()
750 751 752 753 754
        # For Backward process in CINN, all param@GRAD shoule be skipped for GC, because
        # they will be shared in scope and used by optimizer.
        backward_skip_vars = (
            self._parse_skip_gc_vars(whole_program) + self._param_grad_names
        )
755
        backward_builded_program = add_build_strategy_for(
756 757 758 759
            whole_program,
            backward_start_op_index,
            backward_end_op_index,
            self._build_strategy,
760 761 762 763 764 765 766 767 768 769 770 771
            backward_skip_vars,
        )

        forward_skip_vars = self._parse_skip_gc_vars(
            whole_program, backward_builded_program
        )
        forward_builded_program = add_build_strategy_for(
            whole_program,
            0,
            forward_end_op_index,
            self._build_strategy,
            forward_skip_vars,
772
        )
773

774 775 776
        self._apply_inplace_pass(
            forward_builded_program, backward_builded_program
        )
777 778 779 780 781 782
        return [forward_builded_program, backward_builded_program]

    def _apply_inplace_pass(self, forward_program, backward_program):
        attr_types = {
            "use_cuda": "bool",
            "mem_opt_skip_vars": "list[str]",
783
            "for_partial_block": "bool",
784 785 786 787
        }
        empty_startup_program = paddle.static.Program()
        use_cuda = True if core.is_compiled_with_cuda() else False
        # skip data var
788 789 790 791
        forward_mem_opt_skip_vars = self._parse_skip_gc_vars(
            forward_program, backward_program
        )
        backward_mem_opt_skip_vars = self._parse_skip_gc_vars(forward_program)
792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817
        if forward_program:
            attrs = {
                "use_cuda": use_cuda,
                "mem_opt_skip_vars": forward_mem_opt_skip_vars,
                "for_partial_block": True,
            }
            _apply_pass(
                forward_program,
                empty_startup_program,
                "buffer_shared_inplace_pass",
                attrs,
                attr_types,
            )
        if backward_program:
            attrs = {
                "use_cuda": use_cuda,
                "mem_opt_skip_vars": backward_mem_opt_skip_vars,
                "for_partial_block": True,
            }
            _apply_pass(
                backward_program,
                empty_startup_program,
                "buffer_shared_inplace_pass",
                attrs,
                attr_types,
            )
818

819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845
    @LazyInitialized
    def _inout_var_names(self):
        """
        Returns Variable Names from self._inputs and self.outputs
        """
        var_names = []
        for var in self._inputs:
            if isinstance(var, paddle.fluid.framework.Variable):
                var_names.append(var.desc.name())
        for var in self._outputs:
            if isinstance(var, paddle.fluid.framework.Variable):
                var_names.append(var.desc.name())
        return var_names

    def _parse_skip_gc_vars(self, program, backward_program=None):
        """
        Parse variables that need to skip GC after execute it.
        If specify backward_program, it will keep the variables used in backward.
        """
        # skip data var, DO NOT ignore this deepcopy
        skip_vars = deepcopy(self._inout_var_names)
        for var_name, var in program.global_block().vars.items():
            if var.is_data:
                skip_vars.append(var_name)

        if backward_program:
            for var_name in core.parse_safe_eager_deletion_skip_vars(
846
                backward_program.desc, True
847 848 849 850
            ):
                skip_vars.append(var_name)
        return skip_vars

851 852 853 854 855
    def _prepare(self, inputs):
        """
        Prepare inputs, outputs, attrs.
        """
        assert isinstance(inputs, (tuple, list))
856 857
        # Flatten inputs with nested structure into single list.
        flatten_inputs = flatten(inputs)
858 859
        # Convert variable into VarBase and feed in training data.
        input_vars = []
860
        expected_place = framework._current_expected_place()
861
        for i, value in enumerate(flatten_inputs):
862
            if isinstance(value, np.ndarray):
J
Jiabin Yang 已提交
863
                var = None
864
                if not framework.global_var._in_eager_mode_:
865 866 867 868 869 870 871
                    var = core.VarBase(
                        value=value,
                        name=self._inputs[i].desc.name(),
                        persistable=False,
                        place=expected_place,
                        zero_copy=True,
                    )
J
Jiabin Yang 已提交
872
                else:
873 874 875 876 877 878 879
                    var = core.eager.Tensor(
                        value=value,
                        name=self._inputs[i].desc.name(),
                        persistable=False,
                        place=expected_place,
                        zero_copy=True,
                    )
J
Jiabin Yang 已提交
880
            elif isinstance(value, (core.VarBase, core.eager.Tensor)):
881 882 883 884
                # NOTE(Aurelius84): If var is on CPUPlace, it will be transformed multi times
                # into CUDAPlace when it's as input of multi Ops. so we move it in advance
                # to avoid this problem.
                if value.stop_gradient and not value.place._equals(
885 886
                    expected_place
                ):
887 888
                    var = value._copy_to(expected_place, False)
                    var.stop_gradient = True
889 890
                else:
                    var = value
891
                var.name = self._inputs[i].desc.name()
892 893 894
            else:
                continue
            input_vars.append(var)
895

896 897 898
        # mapping from name(string) -> VarBase
        out_varbase_map = {}

899 900
        def create_out(var_id):
            var = self._outputs[var_id]
901
            assert isinstance(var, framework.Variable)
902
            var_desc = var.desc
J
Jiabin Yang 已提交
903
            varbase = None
904 905 906 907

            if var_desc.name() in out_varbase_map:
                return out_varbase_map[var_desc.name()]

908
            if not framework.global_var._in_eager_mode_:
909 910 911 912 913 914 915
                var_base = core.VarBase(
                    var_desc.dtype(),
                    var_desc.shape(),
                    var_desc.name(),
                    var_desc.type(),
                    False,
                )
J
Jiabin Yang 已提交
916
            else:
917 918 919 920 921 922 923
                var_base = core.eager.Tensor(
                    var_desc.dtype(),
                    var_desc.shape(),
                    var_desc.name(),
                    var_desc.type(),
                    False,
                )
924
            var_base.stop_gradient = var.stop_gradient
925
            out_varbase_map[var_desc.name()] = var_base
926 927 928 929 930 931
            return var_base

        # Create VarBase to receive output data.
        out_vars = list(map(create_out, self._outputs.var_ids))

        return input_vars, out_vars
932

933
    def _create_scope_vec(self, program_id=None, use_scope_cache=False):
934
        # Hold forward variables
J
Jiabin Yang 已提交
935
        tmp_scope_vec = None
936 937 938
        inner_scope = self._get_scope(
            program_id=program_id, use_scope_cache=use_scope_cache
        )
939
        if not framework.global_var._in_eager_mode_:
940 941 942 943 944 945 946
            tmp_scope_vec = core.VarBase(
                core.VarDesc.VarType.FP32,
                [],
                "program_out_scope",
                core.VarDesc.VarType.STEP_SCOPES,
                True,
            )
J
Jiabin Yang 已提交
947
            tmp_scope_vec.value().set_scope(inner_scope)
948 949
        else:
            tmp_scope_vec = [inner_scope]
950
        return tmp_scope_vec
951

952
    def _create_cuda_graph_vec(self):
953 954 955 956 957 958 959
        var = core.VarBase(
            core.VarDesc.VarType.FP32,
            [],
            "cuda_graph",
            core.VarDesc.VarType.RAW,
            True,
        )
960 961 962
        var.stop_gradient = True
        return var

963 964 965 966 967 968 969 970 971
    def _restore_out(self, out_vars):
        """
        Restores same nested outputs by only replacing the Variable with VarBase.
        """

        flatten_outputs = self._outputs.tolist()
        for i, idx in enumerate(self._outputs.var_ids):
            flatten_outputs[idx] = out_vars[i]
        outs = self._outputs.restore(flatten_outputs)
972
        if outs is not None and len(outs) == 1:
973 974 975 976
            outs = outs[0]

        return outs

977 978 979 980
    @switch_to_static_graph
    def _clone_for_test(self, main_program):
        return main_program.clone(for_test=True)

981
    def _is_no_value(self, var):
982 983 984
        if isinstance(var, (core.VarBase, core.eager.Tensor)) and var.shape == [
            1
        ]:
985 986
            # NOTE: .numpy() will insert MemcpySync operation, it hits performance.
            if var.numpy()[0] == RETURN_NO_VALUE_MAGIC_NUM:
987 988 989 990 991 992 993
                return True
        return False

    def _remove_no_value(self, out_vars):
        """
        Removes invalid value for various-length return statement
        """
J
Jiabin Yang 已提交
994
        if isinstance(out_vars, (core.VarBase, core.eager.Tensor)):
995 996 997 998 999
            if self._is_no_value(out_vars):
                return None
            return out_vars
        elif isinstance(out_vars, (tuple, list)):
            if isinstance(out_vars, tuple):
1000 1001 1002
                res = tuple(
                    var for var in out_vars if not self._is_no_value(var)
                )
1003 1004 1005 1006
            else:
                # isinstance(out_vars, list)
                res = [var for var in out_vars if not self._is_no_value(var)]

1007
            has_removed = len(out_vars) > len(res)
1008 1009 1010 1011 1012 1013 1014 1015 1016 1017
            # len(out_vars) > len(res) means we have removed var. This is
            # preventing out_vars is empty or just one element at the beginning
            if len(res) == 0 and has_removed:
                return None
            elif len(res) == 1 and has_removed:
                return res[0]
            return res

        return out_vars

1018
    def _set_grad_type(self, params, train_program):
1019 1020 1021 1022 1023 1024 1025 1026
        # NOTE: if user set sparse gradient mode, the param's gradient
        # will be SelectedRows, not LoDTensor. But tracer will just
        # set param grad VarBase by forward VarBase(LoDTensor)
        # If we don't change grad_var type here, RunProgramOp need
        # transform SelectedRows to LoDTensor forcibly, it may not
        # be user wanted result.
        for param in params:
            grad_name = param.name + core.grad_var_suffix()
1027
            grad_var = train_program.desc.block(0).find_var(grad_name.encode())
1028 1029 1030 1031 1032
            # NOTE: cannot find var desc maybe no problem, such as in batch_norm
            if grad_var is None:
                continue
            param._set_grad_type(grad_var.type())

1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045
    def _remove_op_call_stack(self, main_program):
        """
        Remove op's python call stack with redundant low-level error messages related to
        transforamtions to avoid confusing users.
        """
        assert isinstance(main_program, framework.Program)
        for block in main_program.blocks:
            for op in block.ops:
                if op.has_attr("op_callstack"):
                    op._remove_attr("op_callstack")

        return main_program

1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
    def _check_params_all_inited(self, main_program):
        """
        Check all params from main program are already initialized, see details as follows:
            1. all parameters in self._params should be type `framework.ParamBase` which are created in dygraph.
            2. all parameters from transformed program can be found in self._params.
               Because they share same data with ParamBase of original dygraph.
        """
        if not isinstance(self._params, (list, tuple)):
            raise TypeError(
                "Type of self._params in PartialProgramLayer should be list or tuple, but received %s."
1056 1057
                % type(self._params)
            )
1058

1059 1060 1061
        param_and_buffer_names_set = set()
        for i, var in enumerate(self._params):
            # self._params constains parameters and buffers with persistable=True.
J
Jiabin Yang 已提交
1062
            if not isinstance(var, (core.VarBase, core.eager.Tensor)):
1063
                raise TypeError(
1064 1065 1066 1067
                    'Type of self._params[{}] in PartialProgramLayer should be Parameter or Variable, but received {}.'.format(
                        i, type(var)
                    )
                )
1068
            param_and_buffer_names_set.add(var.name)
1069 1070

        for block in main_program.blocks:
1071
            for name, var in block.vars.items():
1072
                if isinstance(var, framework.Parameter):
1073
                    if name not in param_and_buffer_names_set:
1074
                        raise ValueError(
1075 1076 1077 1078 1079 1080
                            "\n\tWe don't support to define layer with parameters in the function decorated by `@to_static`."
                            "\n\tBut we found parameter(%s) was created in the decorated function."
                            "\n"
                            "\n\tRevise suggestion: "
                            "\n\t\t1. Please ensure all your sublayers are inheritted from nn.Layer."
                            "\n\t\t2. Please use nn.ParameterList and nn.LayerList as container instead of using a native Python container such as List"
1081 1082
                            % name
                        )
1083

1084
    def _valid_vars(self, vars):
1085
        return vars if vars else None
1086

1087 1088 1089 1090 1091 1092

def partial_program_from(concrete_program):
    inputs = concrete_program.inputs
    if inputs and isinstance(inputs[0], layers.Layer):
        inputs = inputs[1:]

1093 1094 1095 1096 1097 1098 1099
    return PartialProgramLayer(
        concrete_program.main_program,
        inputs,
        concrete_program.outputs,
        concrete_program.parameters,
        **concrete_program.kwargs
    )
1100 1101 1102


@switch_to_static_graph
1103
def add_build_strategy_for(
1104
    program, start_op_index, end_op_index, build_strategy=None, skip_vars=None
1105 1106
):
    if start_op_index < end_op_index:
1107 1108
        compiled_program = paddle.static.CompiledProgram(
            core.Graph(program.desc, start_op_index, end_op_index),
1109 1110
            build_strategy=build_strategy,
        )
1111 1112 1113
        if skip_vars:
            # TODO(Aurelius84): Need to unify name with C++, such as kSkipVarNames.
            compiled_program._graph.set("skip_gc_vars", set(skip_vars))
1114 1115 1116
        compiled_program._compile(
            core.Scope(), framework._current_expected_place()
        )
1117 1118 1119 1120 1121 1122 1123
        ir_graph = framework.IrGraph(compiled_program._graph)
        builded_program = ir_graph.to_program()
        if hasattr(compiled_program._program, 'lr_sheduler'):
            builded_program.lr_sheduler = compiled_program._program.lr_sheduler
    else:
        builded_program = program
    return builded_program