partial_program.py 40.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from copy import deepcopy

17
import numpy as np
18

19
import paddle
20
from paddle import _legacy_C_ops
21
from paddle.amp.auto_cast import _in_amp_guard, _in_pure_fp16_guard
22
from paddle.fluid import backward, core, framework, program_guard
23
from paddle.fluid.compiler import BuildStrategy
24
from paddle.fluid.data_feeder import check_type, convert_dtype
25 26
from paddle.fluid.dygraph.base import switch_to_static_graph
from paddle.fluid.framework import _apply_pass
27
from paddle.optimizer.lr import LRScheduler
28 29

from . import logging_utils
30 31 32
from .utils import (
    RETURN_NO_VALUE_MAGIC_NUM,
    backend_guard,
33
    construct_grad_names,
34
)
35

36 37
__all__ = []

38

39
class NestSequence:
40 41 42 43 44 45 46
    """
    A wrapper class that easily to flatten and restore the nest structure of
    given sequence.
    """

    def __init__(self, raw_input, need_check=False):
        self.__raw_input = raw_input
47
        self.__input_list = self.tolist()
48 49 50 51 52 53 54
        self.__var_ids = self._get_var_ids()
        self._check_non_variable(need_check)

    def tolist(self):
        """
        Flattens the nested sequences into single list.
        """
55
        return paddle.utils.flatten(self.__raw_input)
56 57 58 59 60

    def restore(self, value_list):
        """
        Restores the nested sequence from value list.
        """
61
        assert len(self.__input_list) == len(value_list)
62
        return paddle.utils.pack_sequence_as(self.__raw_input, value_list)
63 64 65

    def _get_var_ids(self):
        var_ids = []
66
        for idx, var in enumerate(self.__input_list):
W
wanghuancoder 已提交
67
            if isinstance(var, (framework.Variable, core.eager.Tensor)):
68 69 70 71 72 73 74 75 76 77
                var_ids.append(idx)

        return var_ids

    def _check_non_variable(self, need_check):
        """
        Raises warning if output of traced function contains non-tensor type values.
        """
        if need_check:
            warning_types = set()
78
            for var in self.__input_list:
W
wanghuancoder 已提交
79
                if not isinstance(var, (framework.Variable, core.eager.Tensor)):
80 81
                    warning_types.add(type(var))
            if warning_types:
82
                logging_utils.warn(
83 84
                    "Output of traced function contains non-tensor type values: {}. "
                    "Currently, We don't support to update them while training and will return "
85 86 87 88
                    "what we first saw. Please try to return them as tensor.".format(
                        list(warning_types)
                    )
                )
89 90 91 92 93 94

    @property
    def var_ids(self):
        return self.__var_ids

    def __getitem__(self, item):
95
        return self.__input_list[item]
96

97

98
class LazyInitialized:
99 100 101 102 103 104 105 106 107 108 109 110 111
    """
    Descriptor to implement lazy initialization of property.
    """

    def __init__(self, function):
        self.function = function

    def __get__(self, instance, cls):
        val = self.function(instance)
        setattr(instance, self.function.__name__, val)
        return val


112 113 114 115 116
class ProgramInfo:
    """
    A helper class to recoder Program information
    """

117
    def __init__(self):
118 119 120 121 122
        self.op_size = {
            'fp32': -1,
            'amp': -1,
            'fp16': -1,
        }
123 124 125 126 127 128 129 130 131 132 133 134 135 136
        self.programs = {}
        self.mode = "infer"

    def __call__(self, key, prog_creator):
        """
        Recoder infer program and op size.
        """
        assert key in ['fp32', 'amp', 'fp16']
        if key not in self.programs:
            infer_prog = prog_creator(is_infer_mode=True)
            self.programs[key] = infer_prog
            self.op_size[key] = infer_prog.desc.block(0).op_size()

        return self.programs[key], self.op_size[key]
137 138


X
xiongkun 已提交
139
class PartialProgramLayerHook:
140
    def before_append_backward(self, forward_program):
X
xiongkun 已提交
141 142
        ...

143
    def after_append_backward(self, whole_program, backward_start_idx):
X
xiongkun 已提交
144 145
        ...

146
    def after_infer(self, infer_program):
X
xiongkun 已提交
147 148 149
        ...


150
class PartialProgramLayer:
151
    """
H
hjyp 已提交
152
    PartialProgramLayer wraps all the ops from layers decorated by `@to_static`
153 154 155
    and execute them as a static subgraph.

    .. note::
156 157 158
        **1. This is a very low level API. Users should not use this API
             directly. Please use `partial_program_from(concrete_program)`
             to create it.
159 160 161 162
        **2. LoDTensorArray is not currently supported in the output.

    Args:
        main_program(Program): The main program that contains ops need to be executed.
H
hjyp 已提交
163 164
        inputs(list[Variable]): The input list of the decorated function by `@to_static`.
        outputs(list[Variable]): The output list of the decorated function by `@to_static`.
W
wanghuancoder 已提交
165
        parameters(list[Tensor]|None): All trainable parameters included in the program. Default None.
166 167

    Returns:
168
        Layer: A Layer object that run all ops internally in static graph mode.
169 170
    """

171 172 173
    def __init__(
        self, main_program, inputs, outputs, parameters=None, **kwargs
    ):
174
        super().__init__()
175 176
        self._inputs = NestSequence(inputs)
        self._outputs = NestSequence(outputs, need_check=True)
177
        self._params = parameters if parameters is not None else []
178

179 180 181
        self._build_strategy = kwargs.get('build_strategy', BuildStrategy())
        assert isinstance(self._build_strategy, BuildStrategy)

182
        self._origin_main_program = self._verify_program(main_program)
183 184 185
        self._cuda_graph_vec = self._create_cuda_graph_vec()
        self._cuda_graph_capture_mode = ""
        self._cuda_graph_pool_id = 0
186
        # Set default mode to train
187
        self.training = True
188
        self._infer_info = ProgramInfo()
189
        self._forward_end_index_map = {}
190

191
        amp_dtype, custom_white_list, custom_black_list = None, None, None
192 193 194
        tracer = framework._dygraph_tracer()
        if tracer:
            custom_white_list, custom_black_list = tracer._get_amp_op_list()
195 196 197 198 199 200 201 202 203 204
            amp_dtype = tracer._amp_dtype
        if amp_dtype is not None and amp_dtype in ['float16', 'bfloat16']:
            # For AMP training
            self._amp_list = (
                paddle.static.amp.fp16_lists.AutoMixedPrecisionLists(
                    custom_white_list=custom_white_list,
                    custom_black_list=custom_black_list,
                    dtype=amp_dtype,
                )
            )
205

206 207
        # program_id -> list(scope)
        self._scope_cache = {}
X
xiongkun 已提交
208
        self._hooker = None
209
        self._backend = kwargs.get('backend', None)
210
        self._grad_var_names = {}
211

212 213 214 215 216 217 218 219
    def __call__(self, inputs):
        """
        Execute static graph by Interpreter and Return dynamic Tensors.
        """
        in_vars, out_vars = self._prepare(inputs)
        self._cast_fp16_if_pure_fp16(in_vars)
        attrs = self._prepare_attributes()

220 221
        self._sync_lr_value_with_scheduler()

222 223 224 225 226 227 228 229 230 231 232 233 234 235
        _legacy_C_ops.run_program(
            self._valid_vars(in_vars),
            self._valid_vars(self._params),
            self._valid_vars(out_vars),
            self._create_scope_vec(
                program_id=self.program_id, use_scope_cache=True
            ),
            self._double_grads,
            self._cuda_graph_vec,
            *attrs
        )
        restored_nest_out = self._restore_out(out_vars)
        return self._remove_no_value(restored_nest_out)

236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
    def _sync_lr_value_with_scheduler(self):
        """Update lr_var value with calculated by lr_scheduler."""
        main_program = self._origin_main_program
        if hasattr(main_program, 'lr_scheduler') and hasattr(
            main_program, 'lr_var'
        ):
            lr_scheduler = main_program.lr_scheduler
            lr_var = main_program.lr_var

            assert isinstance(lr_scheduler, LRScheduler), "must be LRScheduler"
            lr_scheduler = self._origin_main_program.lr_scheduler
            lr_value = lr_scheduler()
            data = np.array(lr_value).astype(convert_dtype(lr_var.dtype))
            lr_var.set_value(data)

X
xiongkun 已提交
251 252 253
    def set_hooker(self, hooker):
        self._hooker = hooker

254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
    def _get_scope(self, program_id=None, use_scope_cache=False):
        if use_scope_cache:
            if program_id not in self._scope_cache:
                scope = core.Scope()
                self._scope_cache[program_id] = [scope]
                return scope
            else:
                for scope in self._scope_cache[program_id]:
                    if scope._can_reuesd:
                        return scope
                scope = core.Scope()
                self._scope_cache[program_id].append(scope)
                return scope
        else:
            return core.Scope()

270 271
    @LazyInitialized
    def _double_grads(self):
272 273
        # TODO: check the affects.
        return None
274

275 276 277 278
    # whole
    @switch_to_static_graph
    def _create_program(self, is_infer_mode=False):
        if is_infer_mode:
X
xiongkun 已提交
279 280 281 282
            infer_program = self._origin_main_program.clone(
                for_test=is_infer_mode
            )
            if self._hooker:
283
                infer_program = self._hooker.after_infer(infer_program)
X
xiongkun 已提交
284
            return infer_program
285 286
        else:
            train_program = self._append_backward_desc(
287 288
                self._origin_main_program
            )
289 290 291
            # Note: Only set grad type once after initializing train program. So we put it here.
            self._set_grad_type(self._params, train_program)
            return train_program
292

293 294 295 296
    @switch_to_static_graph
    def _create_amp_program(self, is_infer_mode=False):
        amp_program = self._origin_main_program.clone(for_test=is_infer_mode)
        with program_guard(amp_program):
297 298
            paddle.static.amp.fp16_utils.cast_model_to_fp16(
                amp_program, self._amp_list, use_fp16_guard=False, level='O1'
299
            )
300
        if is_infer_mode:
301 302
            if self._hooker:
                amp_program = self._hooker.after_infer(amp_program)
303 304 305 306 307
            return amp_program
        else:
            train_amp_program = self._append_backward_desc(amp_program)
            self._set_grad_type(self._params, train_amp_program)
            return train_amp_program
308

309 310 311
    @switch_to_static_graph
    def _create_pure_fp16_program(self, is_infer_mode=False):
        pure_fp16_program = self._origin_main_program.clone(
312 313
            for_test=is_infer_mode
        )
314
        with program_guard(pure_fp16_program):
315
            paddle.static.amp.fp16_utils.cast_model_to_fp16(
316 317
                pure_fp16_program, self._amp_list, use_fp16_guard=False
            )
J
Jiabin Yang 已提交
318

319
        if is_infer_mode:
320 321
            if self._hooker:
                pure_fp16_program = self._hooker.after_infer(pure_fp16_program)
322 323 324
            return pure_fp16_program
        else:
            train_pure_fp16_program = self._append_backward_desc(
325 326
                pure_fp16_program
            )
327 328
            self._set_grad_type(self._params, train_pure_fp16_program)
            return train_pure_fp16_program
329

330
    @switch_to_static_graph
331
    def _create_forward_backward_train_program(self):
332
        whole_program = self._train_program
X
xiongkun 已提交
333
        forward_end_op_index = self.get_forward_end_op_idx(whole_program)
334
        assert forward_end_op_index >= 0
335

336 337 338
        return self._get_forward_backward_program_form(
            whole_program, forward_end_op_index
        )
339

340 341
    @switch_to_static_graph
    def _create_forward_backward_train_amp_program(self):
342
        whole_program = self._train_amp_program
343
        forward_end_op_index = self.get_forward_end_op_idx(whole_program)
344
        assert forward_end_op_index >= 0
345

346 347 348
        return self._get_forward_backward_program_form(
            whole_program, forward_end_op_index
        )
349 350 351

    @switch_to_static_graph
    def _create_forward_backward_train_pure_fp16_program(self):
352
        whole_program = self._train_pure_fp16_program
353
        forward_end_op_index = self.get_forward_end_op_idx(whole_program)
354
        assert forward_end_op_index >= 0
355

356 357 358
        return self._get_forward_backward_program_form(
            whole_program, forward_end_op_index
        )
359 360

    @LazyInitialized
361 362
    def _train_program(self):
        return self._create_program()
363

364
    @LazyInitialized
365
    def _infer_program(self):
366 367
        program, op_size = self._infer_info('fp32', self._create_program)
        return self._build_infer_program(program, op_size)
368

369 370 371 372 373 374
    @LazyInitialized
    def _train_amp_program(self):
        return self._create_amp_program()

    @LazyInitialized
    def _infer_amp_program(self):
375 376
        program, op_size = self._infer_info('amp', self._create_amp_program)
        return self._build_infer_program(program, op_size)
377 378 379

    @LazyInitialized
    def _train_pure_fp16_program(self):
380
        return self._create_pure_fp16_program()
381

382
    @LazyInitialized
383
    def _infer_pure_fp16_program(self):
384 385
        program, op_size = self._infer_info(
            'fp16', self._create_pure_fp16_program
386
        )
387
        return self._build_infer_program(program, op_size)
388

389
    @LazyInitialized
390 391 392
    def _train_forward_backward_program(self):
        program = self._create_forward_backward_train_program()
        return program
393 394

    @LazyInitialized
395 396 397 398
    def _train_amp_forward_backward_program(self):
        program = self._create_forward_backward_train_amp_program()
        return program

399 400 401 402
    @LazyInitialized
    def _empty_backward_program_for_eval(self):
        return paddle.static.Program()

403 404 405 406 407
    @LazyInitialized
    def _train_pure_fp16_forward_backward_program(self):
        program = self._create_forward_backward_train_pure_fp16_program()
        return program

408 409
    @LazyInitialized
    def _train_program_id(self):
410
        program_id = paddle.utils._hash_with_id(self._train_program, self)
411 412 413
        core._set_cached_executor_build_strategy(
            program_id, self._build_strategy
        )
414
        return program_id
415

416 417
    @LazyInitialized
    def _infer_program_id(self):
418
        return paddle.utils._hash_with_id(self._infer_program, self)
419

420 421
    @LazyInitialized
    def _train_amp_program_id(self):
422
        program_id = paddle.utils._hash_with_id(self._train_amp_program, self)
423 424 425
        core._set_cached_executor_build_strategy(
            program_id, self._build_strategy
        )
426 427
        return program_id

428 429
    @LazyInitialized
    def _infer_amp_program_id(self):
430
        return paddle.utils._hash_with_id(self._infer_amp_program, self)
431

432 433
    @LazyInitialized
    def _train_pure_fp16_program_id(self):
434 435 436
        program_id = paddle.utils._hash_with_id(
            self._train_pure_fp16_program, self
        )
437 438 439
        core._set_cached_executor_build_strategy(
            program_id, self._build_strategy
        )
440 441
        return program_id

442 443
    @LazyInitialized
    def _infer_pure_fp16_program_id(self):
444
        return paddle.utils._hash_with_id(self._infer_pure_fp16_program, self)
445

X
xiongkun 已提交
446
    def get_forward_end_op_idx(self, program):
447 448 449
        return self._forward_end_index_map[
            paddle.utils._hash_with_id(program, self)
        ]
X
xiongkun 已提交
450

451
    @property
452 453 454 455 456 457 458 459 460 461 462 463 464 465
    def program(self):
        """
        Return current train or eval program.
        """
        if self.training:
            return self.train_program
        else:
            return self.infer_program

    @property
    def program_id(self):
        """
        Return current train or eval program hash id.
        """
466 467 468 469 470 471 472 473 474 475 476 477 478 479 480
        if self.training:
            if _in_amp_guard():
                return self._train_amp_program_id
            elif _in_pure_fp16_guard():
                return self._train_pure_fp16_program_id
            else:
                return self._train_program_id
        else:
            if _in_amp_guard():
                return self._infer_amp_program_id
            elif _in_pure_fp16_guard():
                return self._infer_pure_fp16_program_id
            else:
                return self._infer_program_id

481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533
    @property
    def train_program(self):
        if _in_amp_guard():
            return self._train_amp_program
        elif _in_pure_fp16_guard():
            return self._train_pure_fp16_program
        else:
            return self._train_program

    @property
    def infer_program(self):
        if _in_amp_guard():
            return self._infer_amp_program
        elif _in_pure_fp16_guard():
            return self._infer_pure_fp16_program
        else:
            return self._infer_program

    @property
    def forward_program(self):
        if self.training:
            if _in_amp_guard():
                progs = self._train_amp_forward_backward_program
            elif _in_pure_fp16_guard():
                progs = self._train_pure_fp16_forward_backward_program
            else:
                progs = self._train_forward_backward_program
            return progs[0]
        else:
            return self.infer_program

    @property
    def backward_program(self):
        if self.training:
            if _in_amp_guard():
                progs = self._train_amp_forward_backward_program
            elif _in_pure_fp16_guard():
                progs = self._train_pure_fp16_forward_backward_program
            else:
                progs = self._train_forward_backward_program
            return progs[1]
        else:
            """
            Can't just return paddle.static.Program(), because self.backward_program is a property,
            whenever we call this method, a tmp Program() object is created and is gc immediatly
            after executed the following line in PartialProgramLayer.__call__.

            >>> self.backward_program.desc.block(0),

            When we access RunProgramAPI, it's possible to get an invalid backward_program address.
            """
            return self._empty_backward_program_for_eval

534 535 536 537 538 539 540 541 542 543 544 545
    def _verify_program(self, main_program):
        """
        Verify that the program parameter is initialized, prune some unused params,
        and remove redundant op callstack.
        """
        # 1. Check all params from main program can be found in self._params
        self._check_params_all_inited(main_program)
        # 2. Prune the parameters not used anywhere in the program.
        self._prune_unused_params(main_program)

        return main_program

546 547 548
    def prepare_gradient_aggregation(
        self, start_idx, main_program, target_program
    ):
549 550 551 552 553 554 555
        """
        Why we need add gradient aggregation operation ?
        In some cases, if non leaf nodes are used as output, gradient overwriting will occur, such as
        def forward(self, in):
            x = 2 * in  # <---- x is a non-leaf node in program.
            y = x + 3
            return x, y
556

557 558 559 560 561 562 563 564 565
        loss = forward(in)[0].sum()
        loss.backward()  # <----- x@grad will be overwrited by elementwise_add_grad Op
        """

        def _need_aggregation(var):
            """
            if exist a op whose inputs is var, then return True
            """
            if not isinstance(var, framework.Variable) or var.type not in [
566 567
                core.VarDesc.VarType.LOD_TENSOR,
                core.VarDesc.VarType.SELECTED_ROWS,
568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583
            ]:
                return False
            if var.dtype not in [paddle.float32, paddle.float64]:
                return False
            for op in main_program.block(0).ops:
                for in_arg in op.input_arg_names:
                    if in_arg == var.name:
                        return True
            return False

        def _insert_aggregation_ops_for_var(target_program, var):
            suffix = "@dy2static"
            var_grad_name = var.grad_name
            new_grad_name = var.name + suffix + "@GRAD"
            finded_ops = list(
                filter(
584 585 586 587 588 589 590 591 592 593
                    lambda x: x[0] >= start_idx
                    and any(
                        [
                            out_arg == var_grad_name
                            for out_arg in x[1].output_arg_names
                        ]
                    ),
                    enumerate(target_program.block(0).ops),
                )
            )
594 595 596 597 598 599

            # len(finded_ops) may equals zero when stop_gradient works.
            # len(finded_ops) may > 1, because we may have fill_constant op.
            if len(finded_ops) == 0:
                return None
            # step1: create a new var named var.name@GRAD
600 601 602 603 604 605
            target_program.block(0).create_var(
                name=new_grad_name,
                type=var.type,
                dtype=var.dtype,
                shape=var.shape,
            )
606 607 608 609 610 611 612 613 614 615
            # step2: rename the var.name@GRAD to var.name@GRAD@dy2static
            for idx, op in finded_ops:
                op._rename_input(var_grad_name, new_grad_name)
                op._rename_output(var_grad_name, new_grad_name)
            # step3: insert sum op to aggregate the gradient.
            #        var.name@GRAD = sum(var.name@dy2static@GRAD, var.name@GRAD)
            target_program.block(0)._insert_op(
                finded_ops[-1][0] + 1,
                type='sum',
                inputs={'X': [var_grad_name, new_grad_name]},
616 617
                outputs={"Out": var_grad_name},
            )
618 619 620
            return None

        to_processed_vars = list(
621 622
            filter(_need_aggregation, self._outputs.tolist())
        )
623 624 625
        for _var in to_processed_vars:
            _insert_aggregation_ops_for_var(target_program, _var)

626
    @switch_to_static_graph
627
    def _append_backward_desc(self, main_program):
628
        program = main_program.clone(for_test=False)
X
xiongkun 已提交
629
        if self._hooker:
630
            program = self._hooker.before_append_backward(program)
631
        targets = []
632
        for out in self._outputs.tolist():
633 634 635
            if isinstance(out, framework.Variable):
                targets.append(program.global_block().var(out.name))

X
xiongkun 已提交
636
        start_idx = len(program.block(0).ops) + len(self._outputs.tolist())
637
        if targets:
638
            start_idx = len(program.block(0).ops) + len(self._outputs.tolist())
639
            with backend_guard(self._backend):
640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666
                check_type(
                    targets,
                    'targets',
                    (framework.Variable, list, tuple),
                    'paddle.static.gradients',
                )
                grad_info_map = backward.calc_gradient_helper(
                    targets=targets, inputs=[]
                )

                x_vars = [
                    program.block(0).var(var.name)
                    for var in self._inputs
                    if isinstance(var, framework.Variable)
                ]
                param_vars = [
                    program.block(0).var(param.name) for param in self._params
                ]
                out_vars = [
                    program.block(0).var(var.name)
                    for var in self._outputs
                    if isinstance(var, framework.Variable)
                ]

                self._grad_var_names = construct_grad_names(
                    grad_info_map, x_vars, param_vars, out_vars
                )
667

X
xiongkun 已提交
668 669
            if self._hooker:
                program, start_idx = self._hooker.after_append_backward(
670
                    program, start_idx
X
xiongkun 已提交
671
                )
672 673 674
            self.prepare_gradient_aggregation(
                start_idx + 1, main_program, program
            )
675

X
xiongkun 已提交
676
        self._forward_end_index_map[
677
            paddle.utils._hash_with_id(program, self)
X
xiongkun 已提交
678
        ] = start_idx - len(self._outputs.tolist())
679 680
        return program

681 682 683
    def _prune_unused_params(self, program):
        """
        Prune the parameters not used anywhere in the program.
H
hjyp 已提交
684
        The `@to_static` may only decorated a sub function which
685 686 687 688 689 690
        contains some unused parameters created in `__init__`.
        So prune these parameters to avoid unnecessary operations in
        `run_program_op`.
        """
        required_params = []
        for param in self._params:
691
            found_param = False
692
            for block in program.blocks:
693
                for op in block.ops:
694 695 696 697
                    if (
                        param.name in op.input_arg_names
                        or param.name in op.output_arg_names
                    ):
698 699 700 701
                        required_params.append(param)
                        found_param = True
                        break
                if found_param:
702 703 704 705
                    break

        self._params = required_params

706 707 708 709 710 711 712 713 714 715 716
    def _cast_fp16_if_pure_fp16(self, in_vars):
        if _in_pure_fp16_guard():
            for i, var in enumerate(in_vars):
                name = var.name
                if (
                    self.program.global_block().has_var(name)
                    and self.program.global_block().var(name).dtype
                    == paddle.float16
                ):
                    in_vars[i] = var.astype('float16')
                    in_vars[i].name = name
717

718
    def _prepare_attributes(self):
719
        attrs = [
720 721 722 723
            'forward_global_block',
            self.forward_program.desc.block(0),
            'backward_global_block',
            self.backward_program.desc.block(0),
724 725 726 727
            'is_test',
            not self.training,
            'program_id',
            self.program_id,
728
        ]
X
xiongkun 已提交
729

730 731 732 733 734 735 736
        if self.training:
            # NOTE: In the case of higher-order gradient, the names of the parameter grads may be like
            # `grad/grad/grad/linear_0.w_0@GRAD` instead of simply `linear_0.w_0@GRAD`, so we get
            # the correct names of the parameter grads from program. And out grads are similar to above.
            attrs.extend(
                (
                    'param_grad_names',
737
                    self._grad_var_names.get('param', []),
738
                    'out_grad_names',
739 740 741
                    self._grad_var_names.get('out', []),
                    'x_grad_names',
                    self._grad_var_names.get('x', []),
742 743
                )
            )
744 745
        if self._cuda_graph_capture_mode:
            attrs.extend(
746 747 748 749 750 751 752
                (
                    'cuda_graph_capture_mode',
                    self._cuda_graph_capture_mode,
                    'cuda_graph_pool_id',
                    self._cuda_graph_pool_id,
                )
            )
753
        return attrs
754

755 756 757 758 759 760 761 762 763 764 765 766
    @switch_to_static_graph
    def _build_infer_program(self, infer_program, forward_end_op_index):
        forward_skip_vars = self._parse_skip_gc_vars(infer_program)
        builded_infer_program = add_build_strategy_for(
            infer_program,
            0,
            forward_end_op_index,
            self._build_strategy,
            forward_skip_vars,
        )
        self._apply_inplace_pass(builded_infer_program, None)
        return builded_infer_program
767

768
    @switch_to_static_graph
769 770 771
    def _get_forward_backward_program_form(
        self, whole_program, forward_end_op_index
    ):
772 773
        # NOTE(dev): We apply build_strategy for backward firstly to
        # avoid skipping more gc variables.
774
        backward_start_op_index = forward_end_op_index + len(
775 776
            self._outputs.var_ids
        )
777
        backward_end_op_index = whole_program.desc.block(0).op_size()
778 779
        # For Backward process in CINN, all param@GRAD shoule be skipped for GC, because
        # they will be shared in scope and used by optimizer.
780 781 782
        backward_skip_vars = self._parse_skip_gc_vars(
            whole_program
        ) + self._grad_var_names.get('param', [])
783
        backward_builded_program = add_build_strategy_for(
784 785 786 787
            whole_program,
            backward_start_op_index,
            backward_end_op_index,
            self._build_strategy,
788 789 790 791 792 793 794 795 796 797 798 799
            backward_skip_vars,
        )

        forward_skip_vars = self._parse_skip_gc_vars(
            whole_program, backward_builded_program
        )
        forward_builded_program = add_build_strategy_for(
            whole_program,
            0,
            forward_end_op_index,
            self._build_strategy,
            forward_skip_vars,
800
        )
801

802 803 804
        self._apply_inplace_pass(
            forward_builded_program, backward_builded_program
        )
805 806 807 808 809 810
        return [forward_builded_program, backward_builded_program]

    def _apply_inplace_pass(self, forward_program, backward_program):
        attr_types = {
            "use_cuda": "bool",
            "mem_opt_skip_vars": "list[str]",
811
            "for_partial_block": "bool",
812 813 814 815
        }
        empty_startup_program = paddle.static.Program()
        use_cuda = True if core.is_compiled_with_cuda() else False
        # skip data var
816 817 818 819
        forward_mem_opt_skip_vars = self._parse_skip_gc_vars(
            forward_program, backward_program
        )
        backward_mem_opt_skip_vars = self._parse_skip_gc_vars(forward_program)
820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845
        if forward_program:
            attrs = {
                "use_cuda": use_cuda,
                "mem_opt_skip_vars": forward_mem_opt_skip_vars,
                "for_partial_block": True,
            }
            _apply_pass(
                forward_program,
                empty_startup_program,
                "buffer_shared_inplace_pass",
                attrs,
                attr_types,
            )
        if backward_program:
            attrs = {
                "use_cuda": use_cuda,
                "mem_opt_skip_vars": backward_mem_opt_skip_vars,
                "for_partial_block": True,
            }
            _apply_pass(
                backward_program,
                empty_startup_program,
                "buffer_shared_inplace_pass",
                attrs,
                attr_types,
            )
846

847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873
    @LazyInitialized
    def _inout_var_names(self):
        """
        Returns Variable Names from self._inputs and self.outputs
        """
        var_names = []
        for var in self._inputs:
            if isinstance(var, paddle.fluid.framework.Variable):
                var_names.append(var.desc.name())
        for var in self._outputs:
            if isinstance(var, paddle.fluid.framework.Variable):
                var_names.append(var.desc.name())
        return var_names

    def _parse_skip_gc_vars(self, program, backward_program=None):
        """
        Parse variables that need to skip GC after execute it.
        If specify backward_program, it will keep the variables used in backward.
        """
        # skip data var, DO NOT ignore this deepcopy
        skip_vars = deepcopy(self._inout_var_names)
        for var_name, var in program.global_block().vars.items():
            if var.is_data:
                skip_vars.append(var_name)

        if backward_program:
            for var_name in core.parse_safe_eager_deletion_skip_vars(
874
                backward_program.desc, True
875 876 877 878
            ):
                skip_vars.append(var_name)
        return skip_vars

879 880 881 882 883
    def _prepare(self, inputs):
        """
        Prepare inputs, outputs, attrs.
        """
        assert isinstance(inputs, (tuple, list))
884
        # Flatten inputs with nested structure into single list.
885
        flatten_inputs = paddle.utils.flatten(inputs)
W
wanghuancoder 已提交
886
        # Convert variable into Tensor and feed in training data.
887
        input_vars = []
888
        expected_place = framework._current_expected_place()
889
        for i, value in enumerate(flatten_inputs):
890
            if isinstance(value, np.ndarray):
J
Jiabin Yang 已提交
891
                var = None
W
wanghuancoder 已提交
892 893 894 895 896 897 898 899
                var = core.eager.Tensor(
                    value=value,
                    name=self._inputs[i].desc.name(),
                    persistable=False,
                    place=expected_place,
                    zero_copy=True,
                )
            elif isinstance(value, core.eager.Tensor):
900 901 902 903
                # NOTE(Aurelius84): If var is on CPUPlace, it will be transformed multi times
                # into CUDAPlace when it's as input of multi Ops. so we move it in advance
                # to avoid this problem.
                if value.stop_gradient and not value.place._equals(
904 905
                    expected_place
                ):
906 907
                    var = value._copy_to(expected_place, False)
                    var.stop_gradient = True
908 909
                else:
                    var = value
910
                var.name = self._inputs[i].desc.name()
911 912 913
            else:
                continue
            input_vars.append(var)
914

W
wanghuancoder 已提交
915
        # mapping from name(string) -> Tensor
916 917
        out_varbase_map = {}

918 919
        def create_out(var_id):
            var = self._outputs[var_id]
920
            assert isinstance(var, framework.Variable)
921
            var_desc = var.desc
J
Jiabin Yang 已提交
922
            varbase = None
923 924 925 926

            if var_desc.name() in out_varbase_map:
                return out_varbase_map[var_desc.name()]

W
wanghuancoder 已提交
927 928 929 930 931 932 933
            var_base = core.eager.Tensor(
                var_desc.dtype(),
                var_desc.shape(),
                var_desc.name(),
                var_desc.type(),
                False,
            )
934
            var_base.stop_gradient = var.stop_gradient
935
            out_varbase_map[var_desc.name()] = var_base
936 937
            return var_base

W
wanghuancoder 已提交
938
        # Create Tensor to receive output data.
939 940 941
        out_vars = list(map(create_out, self._outputs.var_ids))

        return input_vars, out_vars
942

943
    def _create_scope_vec(self, program_id=None, use_scope_cache=False):
944
        # Hold forward variables
J
Jiabin Yang 已提交
945
        tmp_scope_vec = None
946 947 948
        inner_scope = self._get_scope(
            program_id=program_id, use_scope_cache=use_scope_cache
        )
W
wanghuancoder 已提交
949
        tmp_scope_vec = [inner_scope]
950
        return tmp_scope_vec
951

952
    def _create_cuda_graph_vec(self):
W
wanghuancoder 已提交
953
        var = core.eager.Tensor(
954 955 956 957 958 959
            core.VarDesc.VarType.FP32,
            [],
            "cuda_graph",
            core.VarDesc.VarType.RAW,
            True,
        )
960 961 962
        var.stop_gradient = True
        return var

963 964
    def _restore_out(self, out_vars):
        """
W
wanghuancoder 已提交
965
        Restores same nested outputs by only replacing the Variable with Tensor.
966 967 968 969 970 971
        """

        flatten_outputs = self._outputs.tolist()
        for i, idx in enumerate(self._outputs.var_ids):
            flatten_outputs[idx] = out_vars[i]
        outs = self._outputs.restore(flatten_outputs)
972
        if outs is not None and len(outs) == 1:
973 974 975 976
            outs = outs[0]

        return outs

977 978 979 980
    @switch_to_static_graph
    def _clone_for_test(self, main_program):
        return main_program.clone(for_test=True)

981
    def _is_no_value(self, var):
W
wanghuancoder 已提交
982
        if isinstance(var, core.eager.Tensor) and var.shape == [1]:
983 984
            # NOTE: .numpy() will insert MemcpySync operation, it hits performance.
            if var.numpy()[0] == RETURN_NO_VALUE_MAGIC_NUM:
985 986 987 988 989 990 991
                return True
        return False

    def _remove_no_value(self, out_vars):
        """
        Removes invalid value for various-length return statement
        """
W
wanghuancoder 已提交
992
        if isinstance(out_vars, core.eager.Tensor):
993 994 995 996 997
            if self._is_no_value(out_vars):
                return None
            return out_vars
        elif isinstance(out_vars, (tuple, list)):
            if isinstance(out_vars, tuple):
998 999 1000
                res = tuple(
                    var for var in out_vars if not self._is_no_value(var)
                )
1001 1002 1003 1004
            else:
                # isinstance(out_vars, list)
                res = [var for var in out_vars if not self._is_no_value(var)]

1005
            has_removed = len(out_vars) > len(res)
1006 1007 1008 1009 1010 1011 1012 1013 1014 1015
            # len(out_vars) > len(res) means we have removed var. This is
            # preventing out_vars is empty or just one element at the beginning
            if len(res) == 0 and has_removed:
                return None
            elif len(res) == 1 and has_removed:
                return res[0]
            return res

        return out_vars

1016
    def _set_grad_type(self, params, train_program):
1017 1018
        # NOTE: if user set sparse gradient mode, the param's gradient
        # will be SelectedRows, not LoDTensor. But tracer will just
W
wanghuancoder 已提交
1019
        # set param grad Tensor by forward Tensor(LoDTensor)
1020 1021 1022 1023 1024
        # If we don't change grad_var type here, RunProgramOp need
        # transform SelectedRows to LoDTensor forcibly, it may not
        # be user wanted result.
        for param in params:
            grad_name = param.name + core.grad_var_suffix()
1025
            grad_var = train_program.desc.block(0).find_var(grad_name.encode())
1026 1027 1028 1029 1030
            # NOTE: cannot find var desc maybe no problem, such as in batch_norm
            if grad_var is None:
                continue
            param._set_grad_type(grad_var.type())

1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043
    def _remove_op_call_stack(self, main_program):
        """
        Remove op's python call stack with redundant low-level error messages related to
        transforamtions to avoid confusing users.
        """
        assert isinstance(main_program, framework.Program)
        for block in main_program.blocks:
            for op in block.ops:
                if op.has_attr("op_callstack"):
                    op._remove_attr("op_callstack")

        return main_program

1044 1045 1046
    def _check_params_all_inited(self, main_program):
        """
        Check all params from main program are already initialized, see details as follows:
W
wanghuancoder 已提交
1047
            1. all parameters in self._params should be type `framework.EagerParamBase` which are created in dygraph.
1048
            2. all parameters from transformed program can be found in self._params.
W
wanghuancoder 已提交
1049
               Because they share same data with EagerParamBase of original dygraph.
1050 1051 1052 1053
        """
        if not isinstance(self._params, (list, tuple)):
            raise TypeError(
                "Type of self._params in PartialProgramLayer should be list or tuple, but received %s."
1054 1055
                % type(self._params)
            )
1056

1057 1058 1059
        param_and_buffer_names_set = set()
        for i, var in enumerate(self._params):
            # self._params constains parameters and buffers with persistable=True.
W
wanghuancoder 已提交
1060
            if not isinstance(var, core.eager.Tensor):
1061
                raise TypeError(
1062 1063 1064 1065
                    'Type of self._params[{}] in PartialProgramLayer should be Parameter or Variable, but received {}.'.format(
                        i, type(var)
                    )
                )
1066
            param_and_buffer_names_set.add(var.name)
1067 1068

        for block in main_program.blocks:
1069
            for name, var in block.vars.items():
1070
                if isinstance(var, framework.Parameter):
1071
                    if name not in param_and_buffer_names_set:
1072
                        raise ValueError(
1073 1074 1075 1076 1077 1078
                            "\n\tWe don't support to define layer with parameters in the function decorated by `@to_static`."
                            "\n\tBut we found parameter(%s) was created in the decorated function."
                            "\n"
                            "\n\tRevise suggestion: "
                            "\n\t\t1. Please ensure all your sublayers are inheritted from nn.Layer."
                            "\n\t\t2. Please use nn.ParameterList and nn.LayerList as container instead of using a native Python container such as List"
1079 1080
                            % name
                        )
1081

1082
    def _valid_vars(self, vars):
1083
        return vars if vars else None
1084

1085

1086
def partial_program_from(concrete_program, from_method=False):
1087
    inputs = concrete_program.inputs
1088 1089 1090

    # NOTE(SigureMo): Remove the first arg `self` from method args.
    if inputs and from_method:
1091 1092
        inputs = inputs[1:]

1093 1094 1095 1096 1097 1098 1099
    return PartialProgramLayer(
        concrete_program.main_program,
        inputs,
        concrete_program.outputs,
        concrete_program.parameters,
        **concrete_program.kwargs
    )
1100 1101 1102


@switch_to_static_graph
1103
def add_build_strategy_for(
1104
    program, start_op_index, end_op_index, build_strategy=None, skip_vars=None
1105 1106
):
    if start_op_index < end_op_index:
1107 1108
        compiled_program = paddle.static.CompiledProgram(
            core.Graph(program.desc, start_op_index, end_op_index),
1109 1110
            build_strategy=build_strategy,
        )
1111 1112 1113
        if skip_vars:
            # TODO(Aurelius84): Need to unify name with C++, such as kSkipVarNames.
            compiled_program._graph.set("skip_gc_vars", set(skip_vars))
1114 1115 1116
        compiled_program._compile(
            core.Scope(), framework._current_expected_place()
        )
1117 1118
        ir_graph = framework.IrGraph(compiled_program._graph)
        builded_program = ir_graph.to_program()
1119 1120 1121 1122
        if hasattr(compiled_program._program, 'lr_scheduler'):
            builded_program.lr_scheduler = (
                compiled_program._program.lr_scheduler
            )
1123
    else:
X
xiongkun 已提交
1124
        # can't just create a new program, we need copy the vardesc.
1125
        builded_program = paddle.static.Program()
X
xiongkun 已提交
1126 1127
        for var in program.block(0).vars.values():
            builded_program.block(0)._clone_variable(var, False)
1128
    return builded_program