partial_program.py 39.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from copy import deepcopy

17
import numpy as np
18

19
import paddle
20
from paddle import _legacy_C_ops
21
from paddle.amp.auto_cast import _in_amp_guard, _in_pure_fp16_guard
22
from paddle.fluid import backward, core, framework, program_guard
23
from paddle.fluid.compiler import BuildStrategy
24
from paddle.fluid.data_feeder import convert_dtype
25 26
from paddle.fluid.dygraph.base import switch_to_static_graph
from paddle.fluid.framework import _apply_pass
27
from paddle.optimizer.lr import LRScheduler
28 29

from . import logging_utils
30
from .utils import RETURN_NO_VALUE_MAGIC_NUM, _out_grad_names, _param_grad_names
31

32 33
__all__ = []

34

35
class NestSequence:
36 37 38 39 40 41 42
    """
    A wrapper class that easily to flatten and restore the nest structure of
    given sequence.
    """

    def __init__(self, raw_input, need_check=False):
        self.__raw_input = raw_input
43
        self.__input_list = self.tolist()
44 45 46 47 48 49 50
        self.__var_ids = self._get_var_ids()
        self._check_non_variable(need_check)

    def tolist(self):
        """
        Flattens the nested sequences into single list.
        """
51
        return paddle.utils.flatten(self.__raw_input)
52 53 54 55 56

    def restore(self, value_list):
        """
        Restores the nested sequence from value list.
        """
57
        assert len(self.__input_list) == len(value_list)
58
        return paddle.utils.pack_sequence_as(self.__raw_input, value_list)
59 60 61

    def _get_var_ids(self):
        var_ids = []
62
        for idx, var in enumerate(self.__input_list):
W
wanghuancoder 已提交
63
            if isinstance(var, (framework.Variable, core.eager.Tensor)):
64 65 66 67 68 69 70 71 72 73
                var_ids.append(idx)

        return var_ids

    def _check_non_variable(self, need_check):
        """
        Raises warning if output of traced function contains non-tensor type values.
        """
        if need_check:
            warning_types = set()
74
            for var in self.__input_list:
W
wanghuancoder 已提交
75
                if not isinstance(var, (framework.Variable, core.eager.Tensor)):
76 77
                    warning_types.add(type(var))
            if warning_types:
78
                logging_utils.warn(
79 80
                    "Output of traced function contains non-tensor type values: {}. "
                    "Currently, We don't support to update them while training and will return "
81 82 83 84
                    "what we first saw. Please try to return them as tensor.".format(
                        list(warning_types)
                    )
                )
85 86 87 88 89 90

    @property
    def var_ids(self):
        return self.__var_ids

    def __getitem__(self, item):
91
        return self.__input_list[item]
92

93

94
class LazyInitialized:
95 96 97 98 99 100 101 102 103 104 105 106 107
    """
    Descriptor to implement lazy initialization of property.
    """

    def __init__(self, function):
        self.function = function

    def __get__(self, instance, cls):
        val = self.function(instance)
        setattr(instance, self.function.__name__, val)
        return val


108 109 110 111 112
class ProgramInfo:
    """
    A helper class to recoder Program information
    """

113
    def __init__(self):
114 115 116 117 118
        self.op_size = {
            'fp32': -1,
            'amp': -1,
            'fp16': -1,
        }
119 120 121 122 123 124 125 126 127 128 129 130 131 132
        self.programs = {}
        self.mode = "infer"

    def __call__(self, key, prog_creator):
        """
        Recoder infer program and op size.
        """
        assert key in ['fp32', 'amp', 'fp16']
        if key not in self.programs:
            infer_prog = prog_creator(is_infer_mode=True)
            self.programs[key] = infer_prog
            self.op_size[key] = infer_prog.desc.block(0).op_size()

        return self.programs[key], self.op_size[key]
133 134


X
xiongkun 已提交
135
class PartialProgramLayerHook:
136
    def before_append_backward(self, forward_program):
X
xiongkun 已提交
137 138
        ...

139
    def after_append_backward(self, whole_program, backward_start_idx):
X
xiongkun 已提交
140 141
        ...

142
    def after_infer(self, infer_program):
X
xiongkun 已提交
143 144 145
        ...


146
class PartialProgramLayer:
147
    """
H
hjyp 已提交
148
    PartialProgramLayer wraps all the ops from layers decorated by `@to_static`
149 150 151
    and execute them as a static subgraph.

    .. note::
152 153 154
        **1. This is a very low level API. Users should not use this API
             directly. Please use `partial_program_from(concrete_program)`
             to create it.
155 156 157 158
        **2. LoDTensorArray is not currently supported in the output.

    Args:
        main_program(Program): The main program that contains ops need to be executed.
H
hjyp 已提交
159 160
        inputs(list[Variable]): The input list of the decorated function by `@to_static`.
        outputs(list[Variable]): The output list of the decorated function by `@to_static`.
W
wanghuancoder 已提交
161
        parameters(list[Tensor]|None): All trainable parameters included in the program. Default None.
162 163

    Returns:
164
        Layer: A Layer object that run all ops internally in static graph mode.
165 166
    """

167 168 169
    def __init__(
        self, main_program, inputs, outputs, parameters=None, **kwargs
    ):
170
        super().__init__()
171 172
        self._inputs = NestSequence(inputs)
        self._outputs = NestSequence(outputs, need_check=True)
173
        self._params = parameters if parameters is not None else []
174

175 176 177
        self._build_strategy = kwargs.get('build_strategy', BuildStrategy())
        assert isinstance(self._build_strategy, BuildStrategy)

178
        self._origin_main_program = self._verify_program(main_program)
179 180 181
        self._cuda_graph_vec = self._create_cuda_graph_vec()
        self._cuda_graph_capture_mode = ""
        self._cuda_graph_pool_id = 0
182
        # Set default mode to train
183
        self.training = True
184
        self._infer_info = ProgramInfo()
185
        self._forward_end_index_map = {}
186

187 188 189 190
        custom_white_list, custom_black_list = None, None
        tracer = framework._dygraph_tracer()
        if tracer:
            custom_white_list, custom_black_list = tracer._get_amp_op_list()
191
        # For AMP training
192
        self._amp_list = paddle.static.amp.fp16_lists.AutoMixedPrecisionLists(
193
            custom_white_list=custom_white_list,
194 195
            custom_black_list=custom_black_list,
        )
196

197 198
        # program_id -> list(scope)
        self._scope_cache = {}
X
xiongkun 已提交
199
        self._hooker = None
200

201 202 203 204 205 206 207 208
    def __call__(self, inputs):
        """
        Execute static graph by Interpreter and Return dynamic Tensors.
        """
        in_vars, out_vars = self._prepare(inputs)
        self._cast_fp16_if_pure_fp16(in_vars)
        attrs = self._prepare_attributes()

209 210
        self._sync_lr_value_with_scheduler()

211 212 213 214 215 216 217 218 219 220 221 222 223 224
        _legacy_C_ops.run_program(
            self._valid_vars(in_vars),
            self._valid_vars(self._params),
            self._valid_vars(out_vars),
            self._create_scope_vec(
                program_id=self.program_id, use_scope_cache=True
            ),
            self._double_grads,
            self._cuda_graph_vec,
            *attrs
        )
        restored_nest_out = self._restore_out(out_vars)
        return self._remove_no_value(restored_nest_out)

225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
    def _sync_lr_value_with_scheduler(self):
        """Update lr_var value with calculated by lr_scheduler."""
        main_program = self._origin_main_program
        if hasattr(main_program, 'lr_scheduler') and hasattr(
            main_program, 'lr_var'
        ):
            lr_scheduler = main_program.lr_scheduler
            lr_var = main_program.lr_var

            assert isinstance(lr_scheduler, LRScheduler), "must be LRScheduler"
            lr_scheduler = self._origin_main_program.lr_scheduler
            lr_value = lr_scheduler()
            data = np.array(lr_value).astype(convert_dtype(lr_var.dtype))
            lr_var.set_value(data)

X
xiongkun 已提交
240 241 242
    def set_hooker(self, hooker):
        self._hooker = hooker

243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
    def _get_scope(self, program_id=None, use_scope_cache=False):
        if use_scope_cache:
            if program_id not in self._scope_cache:
                scope = core.Scope()
                self._scope_cache[program_id] = [scope]
                return scope
            else:
                for scope in self._scope_cache[program_id]:
                    if scope._can_reuesd:
                        return scope
                scope = core.Scope()
                self._scope_cache[program_id].append(scope)
                return scope
        else:
            return core.Scope()

259 260
    @LazyInitialized
    def _double_grads(self):
261 262
        # TODO: check the affects.
        return None
263

264 265 266 267
    # whole
    @switch_to_static_graph
    def _create_program(self, is_infer_mode=False):
        if is_infer_mode:
X
xiongkun 已提交
268 269 270 271
            infer_program = self._origin_main_program.clone(
                for_test=is_infer_mode
            )
            if self._hooker:
272
                infer_program = self._hooker.after_infer(infer_program)
X
xiongkun 已提交
273
            return infer_program
274 275
        else:
            train_program = self._append_backward_desc(
276 277
                self._origin_main_program
            )
278 279 280
            # Note: Only set grad type once after initializing train program. So we put it here.
            self._set_grad_type(self._params, train_program)
            return train_program
281

282 283 284 285
    @switch_to_static_graph
    def _create_amp_program(self, is_infer_mode=False):
        amp_program = self._origin_main_program.clone(for_test=is_infer_mode)
        with program_guard(amp_program):
286 287 288
            paddle.static.amp.fp16_utils.rewrite_program(
                amp_program, self._amp_list
            )
289
        if is_infer_mode:
290 291
            if self._hooker:
                amp_program = self._hooker.after_infer(amp_program)
292 293 294 295 296
            return amp_program
        else:
            train_amp_program = self._append_backward_desc(amp_program)
            self._set_grad_type(self._params, train_amp_program)
            return train_amp_program
297

298 299 300
    @switch_to_static_graph
    def _create_pure_fp16_program(self, is_infer_mode=False):
        pure_fp16_program = self._origin_main_program.clone(
301 302
            for_test=is_infer_mode
        )
303
        with program_guard(pure_fp16_program):
304
            paddle.static.amp.fp16_utils.cast_model_to_fp16(
305 306
                pure_fp16_program, self._amp_list, use_fp16_guard=False
            )
J
Jiabin Yang 已提交
307

308
        if is_infer_mode:
309 310
            if self._hooker:
                pure_fp16_program = self._hooker.after_infer(pure_fp16_program)
311 312 313
            return pure_fp16_program
        else:
            train_pure_fp16_program = self._append_backward_desc(
314 315
                pure_fp16_program
            )
316 317
            self._set_grad_type(self._params, train_pure_fp16_program)
            return train_pure_fp16_program
318

319
    @switch_to_static_graph
320
    def _create_forward_backward_train_program(self):
321
        whole_program = self._train_program
X
xiongkun 已提交
322
        forward_end_op_index = self.get_forward_end_op_idx(whole_program)
323
        assert forward_end_op_index >= 0
324

325 326 327
        return self._get_forward_backward_program_form(
            whole_program, forward_end_op_index
        )
328

329 330
    @switch_to_static_graph
    def _create_forward_backward_train_amp_program(self):
331
        whole_program = self._train_amp_program
332
        forward_end_op_index = self.get_forward_end_op_idx(whole_program)
333
        assert forward_end_op_index >= 0
334

335 336 337
        return self._get_forward_backward_program_form(
            whole_program, forward_end_op_index
        )
338 339 340

    @switch_to_static_graph
    def _create_forward_backward_train_pure_fp16_program(self):
341
        whole_program = self._train_pure_fp16_program
342
        forward_end_op_index = self.get_forward_end_op_idx(whole_program)
343
        assert forward_end_op_index >= 0
344

345 346 347
        return self._get_forward_backward_program_form(
            whole_program, forward_end_op_index
        )
348 349

    @LazyInitialized
350 351
    def _train_program(self):
        return self._create_program()
352

353
    @LazyInitialized
354
    def _infer_program(self):
355 356
        program, op_size = self._infer_info('fp32', self._create_program)
        return self._build_infer_program(program, op_size)
357

358 359 360 361 362 363
    @LazyInitialized
    def _train_amp_program(self):
        return self._create_amp_program()

    @LazyInitialized
    def _infer_amp_program(self):
364 365
        program, op_size = self._infer_info('amp', self._create_amp_program)
        return self._build_infer_program(program, op_size)
366 367 368

    @LazyInitialized
    def _train_pure_fp16_program(self):
369
        return self._create_pure_fp16_program()
370

371
    @LazyInitialized
372
    def _infer_pure_fp16_program(self):
373 374
        program, op_size = self._infer_info(
            'fp16', self._create_pure_fp16_program
375
        )
376
        return self._build_infer_program(program, op_size)
377

378
    @LazyInitialized
379 380 381
    def _train_forward_backward_program(self):
        program = self._create_forward_backward_train_program()
        return program
382 383

    @LazyInitialized
384 385 386 387
    def _train_amp_forward_backward_program(self):
        program = self._create_forward_backward_train_amp_program()
        return program

388 389 390 391
    @LazyInitialized
    def _empty_backward_program_for_eval(self):
        return paddle.static.Program()

392 393 394 395 396
    @LazyInitialized
    def _train_pure_fp16_forward_backward_program(self):
        program = self._create_forward_backward_train_pure_fp16_program()
        return program

397 398
    @LazyInitialized
    def _train_program_id(self):
399
        program_id = paddle.utils._hash_with_id(self._train_program, self)
400 401 402
        core._set_cached_executor_build_strategy(
            program_id, self._build_strategy
        )
403
        return program_id
404

405 406
    @LazyInitialized
    def _infer_program_id(self):
407
        return paddle.utils._hash_with_id(self._infer_program, self)
408

409 410
    @LazyInitialized
    def _train_amp_program_id(self):
411
        program_id = paddle.utils._hash_with_id(self._train_amp_program, self)
412 413 414
        core._set_cached_executor_build_strategy(
            program_id, self._build_strategy
        )
415 416
        return program_id

417 418
    @LazyInitialized
    def _infer_amp_program_id(self):
419
        return paddle.utils._hash_with_id(self._infer_amp_program, self)
420

421 422
    @LazyInitialized
    def _train_pure_fp16_program_id(self):
423 424 425
        program_id = paddle.utils._hash_with_id(
            self._train_pure_fp16_program, self
        )
426 427 428
        core._set_cached_executor_build_strategy(
            program_id, self._build_strategy
        )
429 430
        return program_id

431 432
    @LazyInitialized
    def _infer_pure_fp16_program_id(self):
433
        return paddle.utils._hash_with_id(self._infer_pure_fp16_program, self)
434

435 436
    @LazyInitialized
    def _param_grad_names(self):
437
        return _param_grad_names(self._train_program.desc, self._params)
438

X
xiongkun 已提交
439
    def get_forward_end_op_idx(self, program):
440 441 442
        return self._forward_end_index_map[
            paddle.utils._hash_with_id(program, self)
        ]
X
xiongkun 已提交
443

444 445
    @LazyInitialized
    def _out_grad_names(self):
446 447
        return _out_grad_names(
            self._train_program.desc,
X
xiongkun 已提交
448
            self.get_forward_end_op_idx(self._train_program),
449 450
            len(self._outputs.var_ids),
        )
451

452
    @property
453 454 455 456 457 458 459 460 461 462 463 464 465 466
    def program(self):
        """
        Return current train or eval program.
        """
        if self.training:
            return self.train_program
        else:
            return self.infer_program

    @property
    def program_id(self):
        """
        Return current train or eval program hash id.
        """
467 468 469 470 471 472 473 474 475 476 477 478 479 480 481
        if self.training:
            if _in_amp_guard():
                return self._train_amp_program_id
            elif _in_pure_fp16_guard():
                return self._train_pure_fp16_program_id
            else:
                return self._train_program_id
        else:
            if _in_amp_guard():
                return self._infer_amp_program_id
            elif _in_pure_fp16_guard():
                return self._infer_pure_fp16_program_id
            else:
                return self._infer_program_id

482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534
    @property
    def train_program(self):
        if _in_amp_guard():
            return self._train_amp_program
        elif _in_pure_fp16_guard():
            return self._train_pure_fp16_program
        else:
            return self._train_program

    @property
    def infer_program(self):
        if _in_amp_guard():
            return self._infer_amp_program
        elif _in_pure_fp16_guard():
            return self._infer_pure_fp16_program
        else:
            return self._infer_program

    @property
    def forward_program(self):
        if self.training:
            if _in_amp_guard():
                progs = self._train_amp_forward_backward_program
            elif _in_pure_fp16_guard():
                progs = self._train_pure_fp16_forward_backward_program
            else:
                progs = self._train_forward_backward_program
            return progs[0]
        else:
            return self.infer_program

    @property
    def backward_program(self):
        if self.training:
            if _in_amp_guard():
                progs = self._train_amp_forward_backward_program
            elif _in_pure_fp16_guard():
                progs = self._train_pure_fp16_forward_backward_program
            else:
                progs = self._train_forward_backward_program
            return progs[1]
        else:
            """
            Can't just return paddle.static.Program(), because self.backward_program is a property,
            whenever we call this method, a tmp Program() object is created and is gc immediatly
            after executed the following line in PartialProgramLayer.__call__.

            >>> self.backward_program.desc.block(0),

            When we access RunProgramAPI, it's possible to get an invalid backward_program address.
            """
            return self._empty_backward_program_for_eval

535 536 537 538 539 540 541 542 543 544 545 546
    def _verify_program(self, main_program):
        """
        Verify that the program parameter is initialized, prune some unused params,
        and remove redundant op callstack.
        """
        # 1. Check all params from main program can be found in self._params
        self._check_params_all_inited(main_program)
        # 2. Prune the parameters not used anywhere in the program.
        self._prune_unused_params(main_program)

        return main_program

547 548 549
    def prepare_gradient_aggregation(
        self, start_idx, main_program, target_program
    ):
550 551 552 553 554 555 556
        """
        Why we need add gradient aggregation operation ?
        In some cases, if non leaf nodes are used as output, gradient overwriting will occur, such as
        def forward(self, in):
            x = 2 * in  # <---- x is a non-leaf node in program.
            y = x + 3
            return x, y
557

558 559 560 561 562 563 564 565 566
        loss = forward(in)[0].sum()
        loss.backward()  # <----- x@grad will be overwrited by elementwise_add_grad Op
        """

        def _need_aggregation(var):
            """
            if exist a op whose inputs is var, then return True
            """
            if not isinstance(var, framework.Variable) or var.type not in [
567 568
                core.VarDesc.VarType.LOD_TENSOR,
                core.VarDesc.VarType.SELECTED_ROWS,
569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584
            ]:
                return False
            if var.dtype not in [paddle.float32, paddle.float64]:
                return False
            for op in main_program.block(0).ops:
                for in_arg in op.input_arg_names:
                    if in_arg == var.name:
                        return True
            return False

        def _insert_aggregation_ops_for_var(target_program, var):
            suffix = "@dy2static"
            var_grad_name = var.grad_name
            new_grad_name = var.name + suffix + "@GRAD"
            finded_ops = list(
                filter(
585 586 587 588 589 590 591 592 593 594
                    lambda x: x[0] >= start_idx
                    and any(
                        [
                            out_arg == var_grad_name
                            for out_arg in x[1].output_arg_names
                        ]
                    ),
                    enumerate(target_program.block(0).ops),
                )
            )
595 596 597 598 599 600

            # len(finded_ops) may equals zero when stop_gradient works.
            # len(finded_ops) may > 1, because we may have fill_constant op.
            if len(finded_ops) == 0:
                return None
            # step1: create a new var named var.name@GRAD
601 602 603 604 605 606
            target_program.block(0).create_var(
                name=new_grad_name,
                type=var.type,
                dtype=var.dtype,
                shape=var.shape,
            )
607 608 609 610 611 612 613 614 615 616
            # step2: rename the var.name@GRAD to var.name@GRAD@dy2static
            for idx, op in finded_ops:
                op._rename_input(var_grad_name, new_grad_name)
                op._rename_output(var_grad_name, new_grad_name)
            # step3: insert sum op to aggregate the gradient.
            #        var.name@GRAD = sum(var.name@dy2static@GRAD, var.name@GRAD)
            target_program.block(0)._insert_op(
                finded_ops[-1][0] + 1,
                type='sum',
                inputs={'X': [var_grad_name, new_grad_name]},
617 618
                outputs={"Out": var_grad_name},
            )
619 620 621
            return None

        to_processed_vars = list(
622 623
            filter(_need_aggregation, self._outputs.tolist())
        )
624 625 626
        for _var in to_processed_vars:
            _insert_aggregation_ops_for_var(target_program, _var)

627
    @switch_to_static_graph
628
    def _append_backward_desc(self, main_program):
629
        program = main_program.clone(for_test=False)
X
xiongkun 已提交
630
        if self._hooker:
631
            program = self._hooker.before_append_backward(program)
632
        targets = []
633
        for out in self._outputs.tolist():
634 635 636
            if isinstance(out, framework.Variable):
                targets.append(program.global_block().var(out.name))

X
xiongkun 已提交
637
        start_idx = len(program.block(0).ops) + len(self._outputs.tolist())
638
        if targets:
639 640
            # TODO(CZ): later when use cinn, set_prim_all_enabled and check_and_set_prim_all_enabled will be set at else branch.
            core.check_and_set_prim_all_enabled()
641
            start_idx = len(program.block(0).ops) + len(self._outputs.tolist())
642
            backward.gradients(targets=targets, inputs=[])
643

X
xiongkun 已提交
644 645
            if self._hooker:
                program, start_idx = self._hooker.after_append_backward(
646
                    program, start_idx
X
xiongkun 已提交
647
                )
648 649 650
            self.prepare_gradient_aggregation(
                start_idx + 1, main_program, program
            )
651

X
xiongkun 已提交
652
        self._forward_end_index_map[
653
            paddle.utils._hash_with_id(program, self)
X
xiongkun 已提交
654
        ] = start_idx - len(self._outputs.tolist())
655 656
        return program

657 658 659
    def _prune_unused_params(self, program):
        """
        Prune the parameters not used anywhere in the program.
H
hjyp 已提交
660
        The `@to_static` may only decorated a sub function which
661 662 663 664 665 666
        contains some unused parameters created in `__init__`.
        So prune these parameters to avoid unnecessary operations in
        `run_program_op`.
        """
        required_params = []
        for param in self._params:
667
            found_param = False
668
            for block in program.blocks:
669
                for op in block.ops:
670 671 672 673
                    if (
                        param.name in op.input_arg_names
                        or param.name in op.output_arg_names
                    ):
674 675 676 677
                        required_params.append(param)
                        found_param = True
                        break
                if found_param:
678 679 680 681
                    break

        self._params = required_params

682 683 684 685 686 687 688 689 690 691 692
    def _cast_fp16_if_pure_fp16(self, in_vars):
        if _in_pure_fp16_guard():
            for i, var in enumerate(in_vars):
                name = var.name
                if (
                    self.program.global_block().has_var(name)
                    and self.program.global_block().var(name).dtype
                    == paddle.float16
                ):
                    in_vars[i] = var.astype('float16')
                    in_vars[i].name = name
693

694
    def _prepare_attributes(self):
695
        attrs = [
696 697 698 699
            'forward_global_block',
            self.forward_program.desc.block(0),
            'backward_global_block',
            self.backward_program.desc.block(0),
700 701 702 703
            'is_test',
            not self.training,
            'program_id',
            self.program_id,
704
        ]
X
xiongkun 已提交
705

706 707 708 709 710 711 712 713 714 715 716 717
        if self.training:
            # NOTE: In the case of higher-order gradient, the names of the parameter grads may be like
            # `grad/grad/grad/linear_0.w_0@GRAD` instead of simply `linear_0.w_0@GRAD`, so we get
            # the correct names of the parameter grads from program. And out grads are similar to above.
            attrs.extend(
                (
                    'param_grad_names',
                    self._param_grad_names,
                    'out_grad_names',
                    self._out_grad_names,
                )
            )
718 719
        if self._cuda_graph_capture_mode:
            attrs.extend(
720 721 722 723 724 725 726
                (
                    'cuda_graph_capture_mode',
                    self._cuda_graph_capture_mode,
                    'cuda_graph_pool_id',
                    self._cuda_graph_pool_id,
                )
            )
727
        return attrs
728

729 730 731 732 733 734 735 736 737 738 739 740
    @switch_to_static_graph
    def _build_infer_program(self, infer_program, forward_end_op_index):
        forward_skip_vars = self._parse_skip_gc_vars(infer_program)
        builded_infer_program = add_build_strategy_for(
            infer_program,
            0,
            forward_end_op_index,
            self._build_strategy,
            forward_skip_vars,
        )
        self._apply_inplace_pass(builded_infer_program, None)
        return builded_infer_program
741

742
    @switch_to_static_graph
743 744 745
    def _get_forward_backward_program_form(
        self, whole_program, forward_end_op_index
    ):
746 747
        # NOTE(dev): We apply build_strategy for backward firstly to
        # avoid skipping more gc variables.
748
        backward_start_op_index = forward_end_op_index + len(
749 750
            self._outputs.var_ids
        )
751
        backward_end_op_index = whole_program.desc.block(0).op_size()
752 753 754 755 756
        # For Backward process in CINN, all param@GRAD shoule be skipped for GC, because
        # they will be shared in scope and used by optimizer.
        backward_skip_vars = (
            self._parse_skip_gc_vars(whole_program) + self._param_grad_names
        )
757
        backward_builded_program = add_build_strategy_for(
758 759 760 761
            whole_program,
            backward_start_op_index,
            backward_end_op_index,
            self._build_strategy,
762 763 764 765 766 767 768 769 770 771 772 773
            backward_skip_vars,
        )

        forward_skip_vars = self._parse_skip_gc_vars(
            whole_program, backward_builded_program
        )
        forward_builded_program = add_build_strategy_for(
            whole_program,
            0,
            forward_end_op_index,
            self._build_strategy,
            forward_skip_vars,
774
        )
775

776 777 778
        self._apply_inplace_pass(
            forward_builded_program, backward_builded_program
        )
779 780 781 782 783 784
        return [forward_builded_program, backward_builded_program]

    def _apply_inplace_pass(self, forward_program, backward_program):
        attr_types = {
            "use_cuda": "bool",
            "mem_opt_skip_vars": "list[str]",
785
            "for_partial_block": "bool",
786 787 788 789
        }
        empty_startup_program = paddle.static.Program()
        use_cuda = True if core.is_compiled_with_cuda() else False
        # skip data var
790 791 792 793
        forward_mem_opt_skip_vars = self._parse_skip_gc_vars(
            forward_program, backward_program
        )
        backward_mem_opt_skip_vars = self._parse_skip_gc_vars(forward_program)
794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819
        if forward_program:
            attrs = {
                "use_cuda": use_cuda,
                "mem_opt_skip_vars": forward_mem_opt_skip_vars,
                "for_partial_block": True,
            }
            _apply_pass(
                forward_program,
                empty_startup_program,
                "buffer_shared_inplace_pass",
                attrs,
                attr_types,
            )
        if backward_program:
            attrs = {
                "use_cuda": use_cuda,
                "mem_opt_skip_vars": backward_mem_opt_skip_vars,
                "for_partial_block": True,
            }
            _apply_pass(
                backward_program,
                empty_startup_program,
                "buffer_shared_inplace_pass",
                attrs,
                attr_types,
            )
820

821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847
    @LazyInitialized
    def _inout_var_names(self):
        """
        Returns Variable Names from self._inputs and self.outputs
        """
        var_names = []
        for var in self._inputs:
            if isinstance(var, paddle.fluid.framework.Variable):
                var_names.append(var.desc.name())
        for var in self._outputs:
            if isinstance(var, paddle.fluid.framework.Variable):
                var_names.append(var.desc.name())
        return var_names

    def _parse_skip_gc_vars(self, program, backward_program=None):
        """
        Parse variables that need to skip GC after execute it.
        If specify backward_program, it will keep the variables used in backward.
        """
        # skip data var, DO NOT ignore this deepcopy
        skip_vars = deepcopy(self._inout_var_names)
        for var_name, var in program.global_block().vars.items():
            if var.is_data:
                skip_vars.append(var_name)

        if backward_program:
            for var_name in core.parse_safe_eager_deletion_skip_vars(
848
                backward_program.desc, True
849 850 851 852
            ):
                skip_vars.append(var_name)
        return skip_vars

853 854 855 856 857
    def _prepare(self, inputs):
        """
        Prepare inputs, outputs, attrs.
        """
        assert isinstance(inputs, (tuple, list))
858
        # Flatten inputs with nested structure into single list.
859
        flatten_inputs = paddle.utils.flatten(inputs)
W
wanghuancoder 已提交
860
        # Convert variable into Tensor and feed in training data.
861
        input_vars = []
862
        expected_place = framework._current_expected_place()
863
        for i, value in enumerate(flatten_inputs):
864
            if isinstance(value, np.ndarray):
J
Jiabin Yang 已提交
865
                var = None
W
wanghuancoder 已提交
866 867 868 869 870 871 872 873
                var = core.eager.Tensor(
                    value=value,
                    name=self._inputs[i].desc.name(),
                    persistable=False,
                    place=expected_place,
                    zero_copy=True,
                )
            elif isinstance(value, core.eager.Tensor):
874 875 876 877
                # NOTE(Aurelius84): If var is on CPUPlace, it will be transformed multi times
                # into CUDAPlace when it's as input of multi Ops. so we move it in advance
                # to avoid this problem.
                if value.stop_gradient and not value.place._equals(
878 879
                    expected_place
                ):
880 881
                    var = value._copy_to(expected_place, False)
                    var.stop_gradient = True
882 883
                else:
                    var = value
884
                var.name = self._inputs[i].desc.name()
885 886 887
            else:
                continue
            input_vars.append(var)
888

W
wanghuancoder 已提交
889
        # mapping from name(string) -> Tensor
890 891
        out_varbase_map = {}

892 893
        def create_out(var_id):
            var = self._outputs[var_id]
894
            assert isinstance(var, framework.Variable)
895
            var_desc = var.desc
J
Jiabin Yang 已提交
896
            varbase = None
897 898 899 900

            if var_desc.name() in out_varbase_map:
                return out_varbase_map[var_desc.name()]

W
wanghuancoder 已提交
901 902 903 904 905 906 907
            var_base = core.eager.Tensor(
                var_desc.dtype(),
                var_desc.shape(),
                var_desc.name(),
                var_desc.type(),
                False,
            )
908
            var_base.stop_gradient = var.stop_gradient
909
            out_varbase_map[var_desc.name()] = var_base
910 911
            return var_base

W
wanghuancoder 已提交
912
        # Create Tensor to receive output data.
913 914 915
        out_vars = list(map(create_out, self._outputs.var_ids))

        return input_vars, out_vars
916

917
    def _create_scope_vec(self, program_id=None, use_scope_cache=False):
918
        # Hold forward variables
J
Jiabin Yang 已提交
919
        tmp_scope_vec = None
920 921 922
        inner_scope = self._get_scope(
            program_id=program_id, use_scope_cache=use_scope_cache
        )
W
wanghuancoder 已提交
923
        tmp_scope_vec = [inner_scope]
924
        return tmp_scope_vec
925

926
    def _create_cuda_graph_vec(self):
W
wanghuancoder 已提交
927
        var = core.eager.Tensor(
928 929 930 931 932 933
            core.VarDesc.VarType.FP32,
            [],
            "cuda_graph",
            core.VarDesc.VarType.RAW,
            True,
        )
934 935 936
        var.stop_gradient = True
        return var

937 938
    def _restore_out(self, out_vars):
        """
W
wanghuancoder 已提交
939
        Restores same nested outputs by only replacing the Variable with Tensor.
940 941 942 943 944 945
        """

        flatten_outputs = self._outputs.tolist()
        for i, idx in enumerate(self._outputs.var_ids):
            flatten_outputs[idx] = out_vars[i]
        outs = self._outputs.restore(flatten_outputs)
946
        if outs is not None and len(outs) == 1:
947 948 949 950
            outs = outs[0]

        return outs

951 952 953 954
    @switch_to_static_graph
    def _clone_for_test(self, main_program):
        return main_program.clone(for_test=True)

955
    def _is_no_value(self, var):
W
wanghuancoder 已提交
956
        if isinstance(var, core.eager.Tensor) and var.shape == [1]:
957 958
            # NOTE: .numpy() will insert MemcpySync operation, it hits performance.
            if var.numpy()[0] == RETURN_NO_VALUE_MAGIC_NUM:
959 960 961 962 963 964 965
                return True
        return False

    def _remove_no_value(self, out_vars):
        """
        Removes invalid value for various-length return statement
        """
W
wanghuancoder 已提交
966
        if isinstance(out_vars, core.eager.Tensor):
967 968 969 970 971
            if self._is_no_value(out_vars):
                return None
            return out_vars
        elif isinstance(out_vars, (tuple, list)):
            if isinstance(out_vars, tuple):
972 973 974
                res = tuple(
                    var for var in out_vars if not self._is_no_value(var)
                )
975 976 977 978
            else:
                # isinstance(out_vars, list)
                res = [var for var in out_vars if not self._is_no_value(var)]

979
            has_removed = len(out_vars) > len(res)
980 981 982 983 984 985 986 987 988 989
            # len(out_vars) > len(res) means we have removed var. This is
            # preventing out_vars is empty or just one element at the beginning
            if len(res) == 0 and has_removed:
                return None
            elif len(res) == 1 and has_removed:
                return res[0]
            return res

        return out_vars

990
    def _set_grad_type(self, params, train_program):
991 992
        # NOTE: if user set sparse gradient mode, the param's gradient
        # will be SelectedRows, not LoDTensor. But tracer will just
W
wanghuancoder 已提交
993
        # set param grad Tensor by forward Tensor(LoDTensor)
994 995 996 997 998
        # If we don't change grad_var type here, RunProgramOp need
        # transform SelectedRows to LoDTensor forcibly, it may not
        # be user wanted result.
        for param in params:
            grad_name = param.name + core.grad_var_suffix()
999
            grad_var = train_program.desc.block(0).find_var(grad_name.encode())
1000 1001 1002 1003 1004
            # NOTE: cannot find var desc maybe no problem, such as in batch_norm
            if grad_var is None:
                continue
            param._set_grad_type(grad_var.type())

1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017
    def _remove_op_call_stack(self, main_program):
        """
        Remove op's python call stack with redundant low-level error messages related to
        transforamtions to avoid confusing users.
        """
        assert isinstance(main_program, framework.Program)
        for block in main_program.blocks:
            for op in block.ops:
                if op.has_attr("op_callstack"):
                    op._remove_attr("op_callstack")

        return main_program

1018 1019 1020
    def _check_params_all_inited(self, main_program):
        """
        Check all params from main program are already initialized, see details as follows:
W
wanghuancoder 已提交
1021
            1. all parameters in self._params should be type `framework.EagerParamBase` which are created in dygraph.
1022
            2. all parameters from transformed program can be found in self._params.
W
wanghuancoder 已提交
1023
               Because they share same data with EagerParamBase of original dygraph.
1024 1025 1026 1027
        """
        if not isinstance(self._params, (list, tuple)):
            raise TypeError(
                "Type of self._params in PartialProgramLayer should be list or tuple, but received %s."
1028 1029
                % type(self._params)
            )
1030

1031 1032 1033
        param_and_buffer_names_set = set()
        for i, var in enumerate(self._params):
            # self._params constains parameters and buffers with persistable=True.
W
wanghuancoder 已提交
1034
            if not isinstance(var, core.eager.Tensor):
1035
                raise TypeError(
1036 1037 1038 1039
                    'Type of self._params[{}] in PartialProgramLayer should be Parameter or Variable, but received {}.'.format(
                        i, type(var)
                    )
                )
1040
            param_and_buffer_names_set.add(var.name)
1041 1042

        for block in main_program.blocks:
1043
            for name, var in block.vars.items():
1044
                if isinstance(var, framework.Parameter):
1045
                    if name not in param_and_buffer_names_set:
1046
                        raise ValueError(
1047 1048 1049 1050 1051 1052
                            "\n\tWe don't support to define layer with parameters in the function decorated by `@to_static`."
                            "\n\tBut we found parameter(%s) was created in the decorated function."
                            "\n"
                            "\n\tRevise suggestion: "
                            "\n\t\t1. Please ensure all your sublayers are inheritted from nn.Layer."
                            "\n\t\t2. Please use nn.ParameterList and nn.LayerList as container instead of using a native Python container such as List"
1053 1054
                            % name
                        )
1055

1056
    def _valid_vars(self, vars):
1057
        return vars if vars else None
1058

1059

1060
def partial_program_from(concrete_program, from_method=False):
1061
    inputs = concrete_program.inputs
1062 1063 1064

    # NOTE(SigureMo): Remove the first arg `self` from method args.
    if inputs and from_method:
1065 1066
        inputs = inputs[1:]

1067 1068 1069 1070 1071 1072 1073
    return PartialProgramLayer(
        concrete_program.main_program,
        inputs,
        concrete_program.outputs,
        concrete_program.parameters,
        **concrete_program.kwargs
    )
1074 1075 1076


@switch_to_static_graph
1077
def add_build_strategy_for(
1078
    program, start_op_index, end_op_index, build_strategy=None, skip_vars=None
1079 1080
):
    if start_op_index < end_op_index:
1081 1082
        compiled_program = paddle.static.CompiledProgram(
            core.Graph(program.desc, start_op_index, end_op_index),
1083 1084
            build_strategy=build_strategy,
        )
1085 1086 1087
        if skip_vars:
            # TODO(Aurelius84): Need to unify name with C++, such as kSkipVarNames.
            compiled_program._graph.set("skip_gc_vars", set(skip_vars))
1088 1089 1090
        compiled_program._compile(
            core.Scope(), framework._current_expected_place()
        )
1091 1092
        ir_graph = framework.IrGraph(compiled_program._graph)
        builded_program = ir_graph.to_program()
1093 1094 1095 1096
        if hasattr(compiled_program._program, 'lr_scheduler'):
            builded_program.lr_scheduler = (
                compiled_program._program.lr_scheduler
            )
1097
    else:
X
xiongkun 已提交
1098
        # can't just create a new program, we need copy the vardesc.
1099
        builded_program = paddle.static.Program()
X
xiongkun 已提交
1100 1101
        for var in program.block(0).vars.values():
            builded_program.block(0)._clone_variable(var, False)
1102
    return builded_program