nn.py 124.4 KB
Newer Older
M
minqiyang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import paddle
M
minqiyang 已提交
16 17
from .. import core
from ..layers import utils
18
from ..layers import nn as F
19
from .. import dygraph_utils
M
minqiyang 已提交
20
from . import layers
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
from ..framework import (
    Variable,
    _non_static_mode,
    OpProtoHolder,
    Parameter,
    _dygraph_tracer,
    _varbase_creator,
    default_main_program,
    _global_flags,
    in_dygraph_mode,
    _in_legacy_dygraph,
)
from ..data_feeder import (
    convert_dtype,
    check_variable_and_dtype,
    check_type,
    check_dtype,
)
M
minqiyang 已提交
39
from ..param_attr import ParamAttr
40
from ..initializer import Normal, Constant, NumpyArrayInitializer
H
hong 已提交
41 42
from .. import unique_name
from .layer_object_helper import LayerObjectHelper
43
from ..data_feeder import check_variable_and_dtype, check_type
L
lujun 已提交
44
import numpy as np
45
import numbers
46
import logging
47
import os
48
import paddle.utils.deprecated as deprecated
49
from paddle import _C_ops, _legacy_C_ops
50

51
__all__ = [
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
    'Conv3D',
    'Pool2D',
    'Linear',
    'BatchNorm',
    'Dropout',
    'Embedding',
    'GRUUnit',
    'LayerNorm',
    'NCE',
    'PRelu',
    'BilinearTensorProduct',
    'Conv2DTranspose',
    'Conv3DTranspose',
    'GroupNorm',
    'SpectralNorm',
    'TreeConv',
    'Flatten',
69
]
M
minqiyang 已提交
70 71


L
lujun 已提交
72
class Conv3D(layers.Layer):
73
    r"""
74 75 76 77
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
78
    Output(Output) are multidimensional tensors with a shape of
D
DuYao 已提交
79
    :math:`[N, C, D, H, W]` . Where N is batch size, C is the number of
80 81 82 83 84 85 86 87 88 89 90 91 92 93
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

D
DuYao 已提交
94
    * :math:`X`: Input value, a tensor with NCDHW or NDHWC format.
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
    * :math:`W`: Filter value, a tensor with MCDHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

120
    Parameters:
121
        num_channels(int): The number of channels in the input image.
L
lujun 已提交
122
        num_filters(int): The number of filter. It is as same as the output image channel.
D
DuYao 已提交
123
        filter_size (int|tuple, optional): The filter size. If filter_size is a tuple,
124
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
D
DuYao 已提交
125 126 127
            Otherwise, the filter will be a square, filter_size_depth = filter_size_height
            = filter_size_width = filter_size.
        stride (int|tuple, optional): The stride size. If stride is a tuple, it must
128
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
D
DuYao 已提交
129 130
            stride_D = stride_H = stride_W = stride. The default value is 1.
        padding (int|tuple, optional): The padding size. If padding is a tuple, it must
131
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
D
DuYao 已提交
132 133
            padding_D = padding_H = padding_W = padding. The default value is 0.
        dilation (int|tuple, optional): The dilation size. If dilation is a tuple, it must
134
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
D
DuYao 已提交
135
            dilation_D = dilation_H = dilation_W = dilation. The default value is 1.
C
cnn 已提交
136
        groups (int, optional): The groups number of the Conv3D Layer. According to grouped
137 138 139
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
D
DuYao 已提交
140 141
            connected to the second half of the input channels. The default value is 1.
        param_attr (ParamAttr, optional): The parameter attribute for learnable parameters/weights
142 143 144
            of conv3d. If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
D
DuYao 已提交
145 146
            :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. The default value is None.
        bias_attr (ParamAttr|bool, optional): The parameter attribute for the bias of conv3d.
147 148 149
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
D
DuYao 已提交
150 151 152 153 154
            is not set, the bias is initialized zero. The default value is None.
        use_cudnn (bool, optional): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. The default value is True.
        act (str, optional): Activation type, if it is set to None, activation is not appended.
            The default value is None.
155
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
156

D
DuYao 已提交
157 158 159 160
    Attribute:
        **weight** (Parameter): the learnable weights of filters of this layer.

        **bias** (Parameter): the learnable bias of this layer.
161

162
    Returns:
D
DuYao 已提交
163
        None.
164 165 166 167 168 169 170 171

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

172 173 174 175 176 177
          import paddle.fluid as fluid
          import numpy

          with fluid.dygraph.guard():
              data = numpy.random.random((5, 3, 12, 32, 32)).astype('float32')
              conv3d = fluid.dygraph.nn.Conv3D(
178
                    num_channels=3, num_filters=2, filter_size=3, act="relu")
179 180
              ret = conv3d(fluid.dygraph.base.to_variable(data))

181 182
    """

183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
    def __init__(
        self,
        num_channels,
        num_filters,
        filter_size,
        stride=1,
        padding=0,
        dilation=1,
        groups=None,
        param_attr=None,
        bias_attr=None,
        use_cudnn=True,
        act=None,
        dtype='float32',
    ):
L
lujun 已提交
198
        assert param_attr is not False, "param_attr should not be False here."
199
        super().__init__()
200
        self._num_channels = num_channels
L
lujun 已提交
201 202 203
        self._groups = groups
        self._stride = utils.convert_to_list(stride, 3, 'stride')
        self._padding = utils.convert_to_list(padding, 3, 'padding')
204
        self._dilation = utils.convert_to_list(dilation, 3, 'dilation')
L
lujun 已提交
205 206
        self._act = act
        self._use_cudnn = use_cudnn
207 208 209 210
        self._filter_size = filter_size
        self._num_filters = num_filters
        self._param_attr = param_attr
        self._bias_attr = bias_attr
211
        self._dtype = dtype
212 213

        if self._groups is None:
214
            num_filter_channels = self._num_channels
L
lujun 已提交
215
        else:
216
            if self._num_channels % self._groups != 0:
L
lujun 已提交
217
                raise ValueError("num_channels must be divisible by groups.")
218
            num_filter_channels = self._num_channels // self._groups
L
lujun 已提交
219

220 221
        filter_size = utils.convert_to_list(self._filter_size, 3, 'filter_size')
        filter_shape = [self._num_filters, num_filter_channels] + filter_size
L
lujun 已提交
222 223

        def _get_default_param_initializer():
224 225 226 227 228 229 230
            filter_elem_num = (
                filter_size[0]
                * filter_size[1]
                * filter_size[2]
                * self._num_channels
            )
            std = (2.0 / filter_elem_num) ** 0.5
L
lujun 已提交
231 232
            return Normal(0.0, std, 0)

233
        self.weight = self.create_parameter(
234
            attr=self._param_attr,
L
lujun 已提交
235 236
            shape=filter_shape,
            dtype=self._dtype,
237 238
            default_initializer=_get_default_param_initializer(),
        )
L
lujun 已提交
239

240 241 242 243 244 245
        self.bias = self.create_parameter(
            attr=self._bias_attr,
            shape=[self._num_filters],
            dtype=self._dtype,
            is_bias=True,
        )
L
lujun 已提交
246 247 248

    def forward(self, input):
        pre_bias = self._helper.create_variable_for_type_inference(
249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
            dtype=self._dtype
        )

        self._helper.append_op(
            type='conv3d',
            inputs={
                'Input': input,
                'Filter': self.weight,
            },
            outputs={"Output": pre_bias},
            attrs={
                'strides': self._stride,
                'paddings': self._padding,
                'dilations': self._dilation,
                'groups': self._groups if self._groups else 1,
                'use_cudnn': self._use_cudnn,
                'use_mkldnn': False,
            },
        )
L
lujun 已提交
268

269
        if self.bias is not None:
270
            pre_act = self._helper.create_variable_for_type_inference(
271 272 273 274 275 276 277 278
                dtype=self._dtype
            )
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [pre_bias], 'Y': [self.bias]},
                outputs={'Out': [pre_act]},
                attrs={'axis': 1},
            )
279 280
        else:
            pre_act = pre_bias
L
lujun 已提交
281 282 283 284 285

        return self._helper.append_activation(pre_act, act=self._act)


class Conv3DTranspose(layers.Layer):
286
    r"""
L
lujun 已提交
287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331
    **Convlution3D transpose layer**

    The convolution3D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

D
DuYao 已提交
332 333 334 335 336 337 338 339
           D^\prime_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H^\prime_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1 \\\\
           D_{out} &\in [ D^\prime_{out}, D^\prime_{out} + strides[0] ] \\\\
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[1] ] \\\\

    **Note**:

340 341
          The conv3d_transpose can be seen as the backward of the conv3d. For conv3d,
          when stride > 1, conv3d maps multiple input shape to the same output shape,
D
DuYao 已提交
342 343
          so for conv3d_transpose, when stride > 1, input shape maps multiple output shape.
          If output_size is None, :math:`H_{out} = H^\prime_{out}, :math:`H_{out} = \
344 345 346 347 348
          H^\prime_{out}, W_{out} = W^\prime_{out}`; else, the :math:`D_{out}` of the output
          size must between :math:`D^\prime_{out}` and :math:`D^\prime_{out} + strides[0]`,
          the :math:`H_{out}` of the output size must between :math:`H^\prime_{out}`
          and :math:`H^\prime_{out} + strides[1]`, and the :math:`W_{out}` of the output size must
          between :math:`W^\prime_{out}` and :math:`W^\prime_{out} + strides[2]`,
D
DuYao 已提交
349 350
          conv3d_transpose can compute the kernel size automatically.

L
lujun 已提交
351

352
    Parameters:
353
        num_channels(int): The number of channels in the input image.
L
lujun 已提交
354 355
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
356
        filter_size(int|tuple): The filter size. If filter_size is a tuple,
L
lujun 已提交
357
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
358
            Otherwise, the filter will be a square.
D
DuYao 已提交
359 360 361 362 363 364 365 366 367 368
        padding(int|tuple, optional): The padding size. The padding argument effectively
             adds `dilation * (kernel - 1)` amount of zero-padding on both sides of input. If `padding` is a string,
             either 'VALID' or 'SAME' supported, which is the padding algorithm. If `padding`
             is a tuple or list, it could be in three forms: `[pad_depth, pad_height, pad_width]` or
            `[pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`,
            and when `data_format` is `'NCDHW'`, `padding` can be in the form
            `[[0,0], [0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
            when `data_format` is `'NDHWC'`, `padding` can be in the form
            `[[0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
            The default value is 0.
369 370 371
        stride(int|tuple, optional): The stride size. It means the stride in transposed convolution.
            If stride is a tuple, it must contain three integers, (stride_depth, stride_height,
            stride_width). Otherwise, stride_depth = stride_height = stride_width = stride.
D
DuYao 已提交
372 373
            The default value is 1.
        dilation(int|tuple, optional): The dilation size. If dilation is a tuple, it must
L
lujun 已提交
374
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
D
DuYao 已提交
375
            dilation_D = dilation_H = dilation_W = dilation. The default value is 1.
C
cnn 已提交
376
        groups(int, optional): The groups number of the Conv3D transpose layer. Inspired by
L
lujun 已提交
377 378 379 380
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
D
DuYao 已提交
381 382
            The default value is 1.
        param_attr (ParamAttr, optional): The parameter attribute for learnable parameters/weights
L
lujun 已提交
383 384
            of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
D
DuYao 已提交
385 386
            is not set, the parameter is initialized with Xavier. The default value is None.
        bias_attr (ParamAttr|bool, optional): The parameter attribute for the bias of conv3d_transpose.
L
lujun 已提交
387 388 389
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
D
DuYao 已提交
390 391 392 393 394
            is not set, the bias is initialized zero. The default value is None.
        use_cudnn(bool, optional): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. The default value is True.
        act (str, optional): Activation type, if it is set to None, activation is not appended.
            The default value is None.
395
        name(str, optional): The default value is None. Normally there is no need for user
D
DuYao 已提交
396
            to set this property. For more information, please refer to :ref:`api_guide_Name`.
L
lujun 已提交
397

D
DuYao 已提交
398 399 400 401
    Attribute:
        **weight** (Parameter): the learnable weights of filters of this layer.

        **bias** (Parameter): the learnable bias of this layer.
402

L
lujun 已提交
403
    Returns:
D
DuYao 已提交
404
        None.
L
lujun 已提交
405 406 407 408 409 410 411 412

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
       .. code-block:: python

413 414 415 416 417 418
         import paddle.fluid as fluid
         import numpy

         with fluid.dygraph.guard():
             data = numpy.random.random((5, 3, 12, 32, 32)).astype('float32')
             conv3dTranspose = fluid.dygraph.nn.Conv3DTranspose(
419
                    num_channels=3,
420 421 422 423 424
                    num_filters=12,
                    filter_size=12,
                    use_cudnn=False)
             ret = conv3dTranspose(fluid.dygraph.base.to_variable(data))

L
lujun 已提交
425 426
    """

427 428 429 430 431 432 433 434 435 436 437 438 439 440 441
    def __init__(
        self,
        num_channels,
        num_filters,
        filter_size,
        padding=0,
        stride=1,
        dilation=1,
        groups=None,
        param_attr=None,
        bias_attr=None,
        use_cudnn=True,
        act=None,
        dtype='float32',
    ):
442
        super().__init__()
L
lujun 已提交
443 444
        if not isinstance(use_cudnn, bool):
            raise ValueError("use_cudnn should be True or False")
445 446 447
        assert (
            param_attr is not False
        ), "param_attr should not be False in conv3d_transpose."
L
lujun 已提交
448 449 450 451
        self._padding = utils.convert_to_list(padding, 3, 'padding')
        self._stride = utils.convert_to_list(stride, 3, 'stride')
        self._dilation = utils.convert_to_list(dilation, 3, 'dilation')
        self._param_attr = param_attr
452
        self._num_channels = num_channels
L
lujun 已提交
453 454 455 456 457 458
        self._filter_size = filter_size
        self._groups = 1 if groups is None else groups
        self._num_filters = num_filters
        self._use_cudnn = use_cudnn
        self._bias_attr = bias_attr
        self._act = act
459
        self._dtype = dtype
L
lujun 已提交
460

461
        self._filter_size = utils.convert_to_list(
462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477
            self._filter_size, 3, 'conv3d_transpose.filter_size'
        )

        filter_shape = [
            self._num_channels,
            self._num_filters // self._groups,
        ] + self._filter_size
        self.weight = self.create_parameter(
            dtype=self._dtype, shape=filter_shape, attr=self._param_attr
        )
        self.bias = self.create_parameter(
            attr=self._bias_attr,
            shape=[self._num_filters],
            dtype=self._dtype,
            is_bias=True,
        )
L
lujun 已提交
478 479 480

    def forward(self, input):
        pre_bias = self._helper.create_variable_for_type_inference(
481 482 483 484 485 486 487 488 489 490 491 492 493 494
            dtype=self._dtype
        )
        self._helper.append_op(
            type="conv3d_transpose",
            inputs={'Input': [input], 'Filter': [self.weight]},
            outputs={'Output': pre_bias},
            attrs={
                'strides': self._stride,
                'paddings': self._padding,
                'dilations': self._dilation,
                'groups': self._groups if self._groups else 1,
                'use_cudnn': self._use_cudnn,
            },
        )
L
lujun 已提交
495 496 497

        if self._bias_attr:
            pre_act = self._helper.create_variable_for_type_inference(
498 499 500 501 502 503 504 505
                dtype=self._dtype
            )
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [pre_bias], 'Y': [self.bias]},
                outputs={'Out': [pre_act]},
                attrs={'axis': 1},
            )
L
lujun 已提交
506 507 508 509 510 511 512
        else:
            pre_act = pre_bias

        # Currently, we don't support inplace in imperative mode
        return self._helper.append_activation(pre_act, act=self._act)


X
Xin Pan 已提交
513
class Pool2D(layers.Layer):
514
    r"""
515

516 517 518 519 520
    This interface is used to construct a callable object of the ``Pool2D`` class.
    For more details, refer to code examples.
    The pooling2d operation calculates the output based on the input, pool_type and pool_size, pool_stride,
    pool_padding parameters.Input and output are in NCHW format, where N is batch size, C is the number of feature map,
    H is the height of the feature map, and W is the width of the feature map.
L
lujun 已提交
521 522
    Parameters(ksize, strides, paddings) are two elements. These two elements represent height and width, respectively.
    The input(X) size and output(Out) size may be different.
523

524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567
    Example:

        - Input:

          Input shape: :math:`(N, C, H_{in}, W_{in})`

        - Output:

          Output shape: :math:`(N, C, H_{out}, W_{out})`

        If ``ceil_mode`` = False:

        .. math::

            H_{out} = \\frac{(H_{in} - ksize[0] + 2 * paddings[0])}{strides[0]} + 1 \\\\
            W_{out} = \\frac{(W_{in} - ksize[1] + 2 * paddings[1])}{strides[1]} + 1

        If ``ceil_mode`` = True:

        .. math::

            H_{out} = \\frac{(H_{in} - ksize[0] + 2 * paddings[0] + strides[0] - 1)}{strides[0]} + 1 \\\\
            W_{out} = \\frac{(W_{in} - ksize[1] + 2 * paddings[1] + strides[1] - 1)}{strides[1]} + 1

        If ``exclusive`` = False:

        .. math::

            hstart &= i * strides[0] - paddings[0] \\\\
            hend   &= hstart + ksize[0] \\\\
            wstart &= j * strides[1] - paddings[1] \\\\
            wend   &= wstart + ksize[1] \\\\
            Output(i ,j) &= \\frac{sum(Input[hstart:hend, wstart:wend])}{ksize[0] * ksize[1]}

        If ``exclusive`` = True:

        .. math::

            hstart &= max(0, i * strides[0] - paddings[0])\\\\
            hend &= min(H, hstart + ksize[0]) \\\\
            wstart &= max(0, j * strides[1] - paddings[1]) \\\\
            wend & = min(W, wstart + ksize[1]) \\\\
            Output(i ,j) & = \\frac{sum(Input[hstart:hend, wstart:wend])}{(hend - hstart) * (wend - wstart)}

568
    Parameters:
569
        pool_size (int or list or tuple, optional): The pool kernel size. If pool kernel size is a tuple or list,
570
            it must contain two integers, (pool_size_Height, pool_size_Width).
571
            Otherwise, the pool kernel size will be a square of an int. Default: -1.
572
        pool_type(str, optional) : The pooling type, can be "max" for max-pooling and "avg" for average-pooling.
573 574
            Default: max.
        pool_stride (int or list or tuple, optional): The pool stride size. If pool stride size is a tuple or list,
L
lujun 已提交
575
            it must contain two integers, (pool_stride_Height, pool_stride_Width). Otherwise,
576
            the pool stride size will be a square of an int. Default: 1.
577
        pool_padding (int or list or tuple, optional): The padding size for pooling operation.
578
            If ``pool_padding`` is a tuple,
579
            it must contain two integers, (pool_padding_on_Height, pool_padding_on_Width).
580 581 582 583 584 585 586
            Otherwise, the padding size for pooling operation will be a square of an int. Default: 0.
        global_pooling (bool, optional): Whether to use the global pooling. If global_pooling = true,
            kernel size and paddings will be ignored. Default: False.
        use_cudnn (bool, optional): Only used in cudnn kernel, need install cudnn. Default: True.
        ceil_mode (bool, optional): Whether to use the ceil function to calculate output height and width.
            False is the default. If it is set to False, the floor function will be used. Default: False.
        exclusive (bool, optional): Whether to exclude padding points in average pooling mode. Default: True.
587 588
        data_format (string): The data format of the input and output data. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
589
            ``[batch_size, input_channels, input_height, input_width]``. When it is `"NHWC"`, the data is
590
            stored in the order of: ``[batch_size, input_height, input_width, input_channels]``
591 592

    Returns:
593
        None
594 595

    Raises:
596 597 598 599
        ValueError: If ``pool_type`` is not "max" nor "avg".
        ValueError: If ``global_pooling`` is False and ``pool_size`` is -1.
        ValueError: If ``use_cudnn`` is not a bool value.
        ValueError: If ``data_format`` is not "NCHW" nor "NHWC".
600 601 602 603 604

    Examples:

        .. code-block:: python

L
lujun 已提交
605
          import paddle.fluid as fluid
606 607
          from paddle.fluid.dygraph.base import to_variable
          import numpy as np
L
lujun 已提交
608 609

          with fluid.dygraph.guard():
610
             data = numpy.random.random((3, 32, 32, 5)).astype('float32')
611
             pool2d = fluid.dygraph.Pool2D(pool_size=2,
612 613 614
                            pool_type='max',
                            pool_stride=1,
                            global_pooling=False)
615
             pool2d_res = pool2d(to_variable(data))
616 617 618

    """

619 620 621 622 623 624 625 626 627 628 629 630
    def __init__(
        self,
        pool_size=-1,
        pool_type="max",
        pool_stride=1,
        pool_padding=0,
        global_pooling=False,
        use_cudnn=True,
        ceil_mode=False,
        exclusive=True,
        data_format="NCHW",
    ):
631 632
        data_format = data_format.upper()  # supprt NHWC, nhwc, etc.
        pool_type = pool_type.lower()  # supprt max, Max, etc.
M
minqiyang 已提交
633 634 635
        if pool_type not in ["max", "avg"]:
            raise ValueError(
                "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
636 637
                str(pool_type),
            )
M
minqiyang 已提交
638 639 640 641

        if global_pooling is False and pool_size == -1:
            raise ValueError(
                "When the global_pooling is False, pool_size must be passed "
642 643
                "and be a valid value. Received pool_size: " + str(pool_size)
            )
M
minqiyang 已提交
644 645 646 647

        if not isinstance(use_cudnn, bool):
            raise ValueError("use_cudnn should be True or False")

648
        self._use_mkldnn = _global_flags()["FLAGS_use_mkldnn"]
649

650 651 652
        if data_format not in ["NCHW", "NHWC"]:
            raise ValueError(
                "Attr(data_format) should be 'NCHW' or 'NHWC'. Received "
653 654
                "Attr(data_format): %s." % str(data_format)
            )
655

656
        super().__init__()
M
minqiyang 已提交
657 658 659

        self._pool_type = pool_type
        self._pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
660 661 662
        self._pool_padding = utils.convert_to_list(
            pool_padding, 2, 'pool_padding'
        )
M
minqiyang 已提交
663 664 665 666 667
        self._pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')
        self._global_pooling = global_pooling
        self._use_cudnn = use_cudnn
        self._ceil_mode = ceil_mode
        self._exclusive = exclusive
668
        self._data_format = data_format
M
minqiyang 已提交
669 670 671
        self._l_type = 'pool2d'

    def forward(self, input):
J
Jiabin Yang 已提交
672
        if _non_static_mode():
673
            if not self._use_mkldnn and in_dygraph_mode():
674
                input = input._use_cudnn(self._use_cudnn)
675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710
                return _C_ops.pool2d(
                    input,
                    self._pool_size,
                    self._pool_stride,
                    self._pool_padding,
                    self._ceil_mode,
                    self._exclusive,
                    self._data_format,
                    self._pool_type,
                    self._global_pooling,
                    False,
                    "EXPLICIT",
                )

            attrs = (
                'pooling_type',
                self._pool_type,
                'ksize',
                self._pool_size,
                'global_pooling',
                self._global_pooling,
                'strides',
                self._pool_stride,
                'paddings',
                self._pool_padding,
                'use_cudnn',
                self._use_cudnn,
                'ceil_mode',
                self._ceil_mode,
                'use_mkldnn',
                self._use_mkldnn,
                'exclusive',
                self._exclusive,
                'data_format',
                self._data_format,
            )
711
            return _legacy_C_ops.pool2d(input, *attrs)
712

713
        check_variable_and_dtype(
714 715 716 717 718
            input,
            'input',
            ['int8', 'uint8', 'float16', 'float32', 'float64'],
            'Pool2D',
        )
719

720 721 722 723 724 725 726 727
        attrs = {
            "pooling_type": self._pool_type,
            "ksize": self._pool_size,
            "global_pooling": self._global_pooling,
            "strides": self._pool_stride,
            "paddings": self._pool_padding,
            "use_cudnn": self._use_cudnn,
            "ceil_mode": self._ceil_mode,
728
            "use_mkldnn": self._use_mkldnn,
729
            "exclusive": self._exclusive,
730
            "data_format": self._data_format,
731 732 733
        }
        inputs = {"X": [input]}

M
minqiyang 已提交
734 735
        pool_out = self._helper.create_variable_for_type_inference(self._dtype)

736 737 738 739 740 741
        self._helper.append_op(
            type=self._l_type,
            inputs={"X": input},
            outputs={"Out": pool_out},
            attrs=attrs,
        )
M
minqiyang 已提交
742
        return pool_out
M
minqiyang 已提交
743 744


S
songyouwei 已提交
745 746
class Linear(layers.Layer):
    """
747

S
songyouwei 已提交
748 749 750 751 752 753 754 755
    Fully-connected linear transformation layer:

    .. math::

        Out = Act({XW + b})

    where :math:`X` is the input Tensor, :math:`W` and :math:`b` are weight and bias respectively.

756
    Linear layer takes only one ``Tensor`` input.
S
songyouwei 已提交
757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796
    The Linear layer multiplies input tensor with weight matrix and
    produces an output Tensor of shape [N, *, `output_dim`],
    where N is batch size and `*` means any number of additional dimensions.
    If ``bias_attr`` is not None, a bias variable will be created and added to the output.
    Finally, if ``act`` is not None, it will be applied to the output as well.

    Parameters:
        input_dim(int): The number of input units in this layer.
        output_dim(int): The number of output units in this layer.
        param_attr(ParamAttr or list of ParamAttr, optional): The parameter attribute for learnable
            weights(Parameter) of this layer. Default: None.
        bias_attr(ParamAttr or list of ParamAttr, optional): The attribute for the bias
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
        act(str, optional): Activation to be applied to the output of this layer. Default: None.
        dtype(str, optional): Dtype used for weight, it can be "float32" or "float64". Default: "float32".

    Attributes:
        **weight** (Parameter): the learnable weights of this layer.

        **bias** (Parameter or None): the learnable bias of this layer.

    Returns:
        None

    Examples:
        .. code-block:: python

          from paddle.fluid.dygraph.base import to_variable
          import paddle.fluid as fluid
          from paddle.fluid.dygraph import Linear
          import numpy as np

          data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
          with fluid.dygraph.guard():
              linear = Linear(32, 64)
              data = to_variable(data)
              res = linear(data)  # [30, 10, 64]
    """

797 798 799 800 801 802 803 804 805
    def __init__(
        self,
        input_dim,
        output_dim,
        param_attr=None,
        bias_attr=None,
        act=None,
        dtype="float32",
    ):
806
        super().__init__()
S
songyouwei 已提交
807 808
        self._act = act
        self._dtype = dtype
809 810 811 812 813 814 815 816 817
        self.weight = self.create_parameter(
            shape=[input_dim, output_dim],
            attr=param_attr,
            dtype=dtype,
            is_bias=False,
        )
        self.bias = self.create_parameter(
            shape=[output_dim], attr=bias_attr, dtype=dtype, is_bias=True
        )
S
songyouwei 已提交
818

819
        self._use_mkldnn = _global_flags()["FLAGS_use_mkldnn"]
820

S
songyouwei 已提交
821
    def forward(self, input):
J
Jiabin Yang 已提交
822
        if _non_static_mode():
823
            pre_bias = _varbase_creator(dtype=input.dtype)
824 825 826 827 828 829 830 831 832 833 834 835 836
            _legacy_C_ops.matmul(
                input,
                self.weight,
                pre_bias,
                'transpose_X',
                False,
                'transpose_Y',
                False,
                "alpha",
                1,
                "use_mkldnn",
                self._use_mkldnn,
            )
837
            pre_act = dygraph_utils._append_bias_in_dygraph(
838 839 840
                pre_bias,
                self.bias,
                axis=len(input.shape) - 1,
841 842
                use_mkldnn=self._use_mkldnn,
            )
843

844
            return dygraph_utils._append_activation_in_dygraph(
845 846
                pre_act, self._act, use_mkldnn=self._use_mkldnn
            )
847

848 849 850
        check_variable_and_dtype(
            input, 'input', ['float16', 'float32', 'float64'], "Linear"
        )
851

852
        attrs = {
S
songyouwei 已提交
853 854 855
            "transpose_X": False,
            "transpose_Y": False,
            "alpha": 1,
856
            "use_mkldnn": self._use_mkldnn,
857 858
        }
        inputs = {"X": [input], "Y": [self.weight]}
859

S
songyouwei 已提交
860
        tmp = self._helper.create_variable_for_type_inference(self._dtype)
861 862 863
        self._helper.append_op(
            type="matmul", inputs=inputs, outputs={"Out": tmp}, attrs=attrs
        )
864
        if self.bias is not None:
S
songyouwei 已提交
865
            pre_activation = self._helper.create_variable_for_type_inference(
866 867 868 869 870 871 872 873 874 875 876
                dtype=self._dtype
            )
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [tmp], 'Y': [self.bias]},
                outputs={'Out': [pre_activation]},
                attrs={
                    'axis': len(input.shape) - 1,
                    'use_mkldnn': self._use_mkldnn,
                },
            )
S
songyouwei 已提交
877 878 879 880 881
        else:
            pre_activation = tmp
        return self._helper.append_activation(pre_activation, act=self._act)


M
minqiyang 已提交
882
class BatchNorm(layers.Layer):
883
    r"""
884

885 886
    This interface is used to construct a callable object of the ``BatchNorm`` class.
    For more details, refer to code examples.
887
    It implements the function of the Batch Normalization Layer and can be used
888 889
    as a normalizer function for conv2d and fully connected operations.
    The data is normalized by the mean and variance of the channel based on the current batch data.
890 891 892 893
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.

894
    When use_global_stats = False, the :math:`\mu_{\beta}`
895
    and :math:`\sigma_{\beta}^{2}` are the statistics of one mini-batch.
896
    Calculated as follows:
897 898 899

    ..  math::

900 901 902 903
        \mu_{\beta} &\gets \frac{1}{m} \sum_{i=1}^{m} x_i \qquad &
        //\ mini-batch\ mean \\
        \sigma_{\beta}^{2} &\gets \frac{1}{m} \sum_{i=1}^{m}(x_i - \mu_{\beta})^2 \qquad &
        //\ mini-batch\ variance \\
904

905 906
    - :math:`x` : mini-batch data
    - :math:`m` : the size of the mini-batch data
907 908 909

    When use_global_stats = True, the :math:`\\mu_{\\beta}`
    and :math:`\\sigma_{\\beta}^{2}` are not the statistics of one mini-batch.
910 911 912 913 914 915
    They are global or running statistics (moving_mean and moving_variance). It usually got from the
    pre-trained model. Calculated as follows:

    .. math::
        moving\_mean = moving\_mean * momentum + \mu_{\beta} * (1. - momentum) \quad &// global mean \\
        moving\_variance = moving\_variance * momentum + \sigma_{\beta}^{2} * (1. - momentum) \quad &// global variance \\
916

917
    The normalization function formula is as follows:
918

919 920
    ..  math::

921 922 923 924
        \hat{x_i} &\gets \frac{x_i - \mu_\beta} {\sqrt{\
        \sigma_{\beta}^{2} + \epsilon}} \qquad &//\ normalize \\
        y_i &\gets \gamma \hat{x_i} + \beta \qquad &//\ scale\ and\ shift

925

926 927 928
    - :math:`\epsilon` : add a smaller value to the variance to prevent division by zero
    - :math:`\gamma` : trainable proportional parameter
    - :math:`\beta` : trainable deviation parameter
929

930
    Parameters:
931
        num_channels(int): Indicate the number of channels of the input ``Tensor``.
T
tianshuo78520a 已提交
932
        act(str, optional): Activation to be applied to the output of batch normalization. Default: None.
933 934 935
        is_test (bool, optional): A flag indicating whether it is in test phrase or not.
             This flag only has effect on static graph mode. For dygraph mode, please use ``eval()``.
             Default: False.
936 937 938
        momentum(float, optional): The value used for the moving_mean and moving_var computation. Default: 0.9.
        epsilon(float, optional): The small value added to the variance to prevent division by zero. Default: 1e-5.
        param_attr(ParamAttr, optional): The parameter attribute for Parameter `scale`
939 940 941
             of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
942
        bias_attr(ParamAttr, optional): The parameter attribute for the bias of batch_norm.
943 944 945
             If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
946 947 948 949 950 951
        dtype(str, optional): Indicate the data type of the input ``Tensor``,
             which can be float32 or float64. Default: float32.
        data_layout(str, optional): Specify the input data format, the data format can be "NCHW" or "NHWC". Default: NCHW.
        in_place(bool, optional): Make the input and output of batch norm reuse memory. Default: False.
        moving_mean_name(str, optional): The name of moving_mean which store the global Mean. Default: None.
        moving_variance_name(str, optional): The name of the moving_variance which store the global Variance. Default: None.
952 953
        do_model_average_for_mean_and_var(bool, optional): Whether parameter mean and variance should do model
            average when model average is enabled. Default: True.
954
        use_global_stats(bool, optional): Whether to use global mean and
955 956 957
            variance. In inference or test mode, set use_global_stats to true
            or is_test to true, and the behavior is equivalent.
            In train mode, when setting use_global_stats True, the global mean
958 959 960 961
            and variance are also used during train period. Default: False.
        trainable_statistics(bool, optional): Whether to calculate mean and var in eval mode. In eval mode, when
            setting trainable_statistics True, mean and variance will be calculated by current batch statistics.
            Default: False.
962 963

    Returns:
964
        None
965 966 967

    Examples:
        .. code-block:: python
L
lujun 已提交
968 969

          import paddle.fluid as fluid
970 971
          from paddle.fluid.dygraph.base import to_variable
          import numpy as np
L
lujun 已提交
972

973
          x = np.random.random(size=(3, 10, 3, 7)).astype('float32')
L
lujun 已提交
974
          with fluid.dygraph.guard():
975
              x = to_variable(x)
976
              batch_norm = fluid.BatchNorm(10)
977
              hidden1 = batch_norm(x)
978 979
    """

980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997
    def __init__(
        self,
        num_channels,
        act=None,
        is_test=False,
        momentum=0.9,
        epsilon=1e-05,
        param_attr=None,
        bias_attr=None,
        dtype='float32',
        data_layout='NCHW',
        in_place=False,
        moving_mean_name=None,
        moving_variance_name=None,
        do_model_average_for_mean_and_var=True,
        use_global_stats=False,
        trainable_statistics=False,
    ):
998
        super().__init__()
999
        self._param_attr = param_attr
1000
        self._bias_attr = bias_attr
1001
        self._act = act
1002
        self._use_mkldnn = _global_flags()["FLAGS_use_mkldnn"]
M
minqiyang 已提交
1003

1004 1005 1006
        assert (
            bias_attr is not False
        ), "bias_attr should not be False in batch_norm."
M
minqiyang 已提交
1007

1008 1009
        if dtype == "float16":
            self._dtype = "float32"
M
minqiyang 已提交
1010 1011 1012 1013 1014 1015
        else:
            self._dtype = dtype

        param_shape = [num_channels]

        # create parameter
1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045
        self.weight = self.create_parameter(
            attr=self._param_attr,
            shape=param_shape,
            dtype=self._dtype,
            default_initializer=Constant(1.0),
        )
        self.weight.stop_gradient = (
            use_global_stats and self._param_attr.learning_rate == 0.0
        )

        self.bias = self.create_parameter(
            attr=self._bias_attr,
            shape=param_shape,
            dtype=self._dtype,
            is_bias=True,
        )
        self.bias.stop_gradient = (
            use_global_stats and self._param_attr.learning_rate == 0.0
        )

        self._mean = self.create_parameter(
            attr=ParamAttr(
                name=moving_mean_name,
                initializer=Constant(0.0),
                trainable=False,
                do_model_average=do_model_average_for_mean_and_var,
            ),
            shape=param_shape,
            dtype=self._dtype,
        )
1046
        self._mean.stop_gradient = True
M
minqiyang 已提交
1047

1048 1049 1050 1051 1052 1053 1054 1055 1056 1057
        self._variance = self.create_parameter(
            attr=ParamAttr(
                name=moving_variance_name,
                initializer=Constant(1.0),
                trainable=False,
                do_model_average=do_model_average_for_mean_and_var,
            ),
            shape=param_shape,
            dtype=self._dtype,
        )
1058
        self._variance.stop_gradient = True
M
minqiyang 已提交
1059 1060

        self._in_place = in_place
1061
        self._data_layout = data_layout
M
minqiyang 已提交
1062 1063 1064
        self._momentum = momentum
        self._epsilon = epsilon
        self._is_test = is_test
1065
        self._fuse_with_relu = False
M
minqiyang 已提交
1066
        self._use_global_stats = use_global_stats
1067
        self._trainable_statistics = trainable_statistics
M
minqiyang 已提交
1068 1069 1070 1071 1072 1073 1074

    def forward(self, input):
        # create output
        # mean and mean_out share the same memory
        mean_out = self._mean
        # variance and variance out share the same memory
        variance_out = self._variance
1075

J
Jiabin Yang 已提交
1076
        if _non_static_mode():
H
hong 已提交
1077
            if in_dygraph_mode():
1078
                batch_norm_out, t1, t2, t3, t4, _ = _C_ops.batch_norm(
1079 1080 1081
                    input,
                    self._mean,
                    self._variance,
1082 1083 1084
                    self.weight,
                    self.bias,
                    not self.training,
1085 1086 1087 1088 1089 1090
                    self._momentum,
                    self._epsilon,
                    self._data_layout,
                    self._use_global_stats,
                    self._trainable_statistics,
                )
1091
                return dygraph_utils._append_activation_in_dygraph(
1092 1093
                    batch_norm_out, act=self._act, use_mkldnn=self._use_mkldnn
                )
1094 1095

            elif _in_legacy_dygraph():
1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113
                attrs = (
                    "momentum",
                    self._momentum,
                    "epsilon",
                    self._epsilon,
                    "is_test",
                    not self.training,
                    "data_layout",
                    self._data_layout,
                    "use_mkldnn",
                    self._use_mkldnn,
                    "fuse_with_relu",
                    self._fuse_with_relu,
                    "use_global_stats",
                    self._use_global_stats,
                    'trainable_statistics',
                    self._trainable_statistics,
                )
1114
                batch_norm_out, _, _, _, _, _ = _legacy_C_ops.batch_norm(
1115 1116 1117 1118 1119 1120 1121 1122 1123 1124
                    input,
                    self.weight,
                    self.bias,
                    self._mean,
                    self._variance,
                    None,
                    mean_out,
                    variance_out,
                    *attrs
                )
1125

1126
            return dygraph_utils._append_activation_in_dygraph(
1127 1128
                batch_norm_out, act=self._act, use_mkldnn=self._use_mkldnn
            )
1129

1130 1131 1132
        check_variable_and_dtype(
            input, 'input', ['float16', 'float32', 'float64'], 'BatchNorm'
        )
1133

1134 1135 1136 1137 1138 1139 1140
        attrs = {
            "momentum": self._momentum,
            "epsilon": self._epsilon,
            "is_test": self._is_test,
            "data_layout": self._data_layout,
            "use_mkldnn": False,
            "fuse_with_relu": self._fuse_with_relu,
1141 1142
            "use_global_stats": self._use_global_stats,
            "trainable_statistics": self._trainable_statistics,
1143
        }
M
minqiyang 已提交
1144

1145 1146 1147 1148 1149
        inputs = {
            "X": [input],
            "Scale": [self.weight],
            "Bias": [self.bias],
            "Mean": [self._mean],
1150
            "Variance": [self._variance],
1151 1152
        }

1153
        saved_mean = self._helper.create_variable_for_type_inference(
1154 1155
            dtype=self._dtype, stop_gradient=True
        )
1156
        saved_variance = self._helper.create_variable_for_type_inference(
1157 1158
            dtype=self._dtype, stop_gradient=True
        )
1159
        reserve_space = self._helper.create_variable_for_type_inference(
1160 1161
            dtype=self._helper.input_dtype(input), stop_gradient=True
        )
1162

1163 1164 1165 1166 1167
        batch_norm_out = (
            input
            if self._in_place
            else self._helper.create_variable_for_type_inference(self._dtype)
        )
1168 1169 1170 1171 1172 1173

        outputs = {
            "Y": [batch_norm_out],
            "MeanOut": [mean_out],
            "VarianceOut": [variance_out],
            "SavedMean": [saved_mean],
1174
            "SavedVariance": [saved_variance],
1175
        }
1176
        if reserve_space is not None:
1177
            outputs["ReserveSpace"] = [reserve_space]
1178

1179 1180 1181
        self._helper.append_op(
            type="batch_norm", inputs=inputs, outputs=outputs, attrs=attrs
        )
M
minqiyang 已提交
1182

L
lujun 已提交
1183
        # Currently, we don't support inplace in dygraph mode
1184
        return self._helper.append_activation(batch_norm_out, self._act)
1185 1186


1187 1188
class Dropout(layers.Layer):
    """
1189 1190
    This interface is used to construct a callable object of the ``Dropout`` class.
    For more details, refer to code examples.
1191

1192 1193 1194 1195 1196
    Drop or keep each element of input independently. Dropout is a regularization
    technique for reducing overfitting by preventing neuron co-adaption during
    training. The dropout operator randomly sets (according to the given dropout
    probability) the outputs of some units to zero, while others are remain
    unchanged.
1197

1198
    Dropout layer can be removed for efficiency concern.
1199

1200 1201 1202 1203 1204 1205 1206
    Parameters:
        p (float, optional): Probability of setting units to zero. Default: 0.5
        seed (int, optional): A Python integer used to create random seeds. If this
                    parameter is set to None, a random seed is used.
                    NOTE: If an integer seed is given, always the same output
                    units will be dropped. DO NOT use a fixed seed in training. Default: None.
        dropout_implementation(string, optional): ['downgrade_in_infer'(default)|'upscale_in_train']
1207

1208
                                        1. downgrade_in_infer(default), downgrade the outcome at inference
1209

1210 1211
                                           - train: out = input * mask
                                           - inference: out = input * (1.0 - p)
1212

1213 1214 1215
                                           (mask is a tensor same shape with input, value is 0 or 1
                                           ratio of 0 is dropout_prob)
                                        2. upscale_in_train, upscale the outcome at training time
1216

1217 1218
                                           - train: out = input * mask / ( 1.0 - p )
                                           - inference: out = input
1219

1220 1221 1222 1223 1224
                                           (mask is a tensor same shape with input, value is 0 or 1
                                           ratio of 0 is p)
        is_test (bool, optional): A flag indicating whether it is in test phrase or not.
                    This flag only has effect on static graph mode. For dygraph mode, please use ``eval()``.
                    Default: False.
1225

1226 1227
    Returns:
        None
1228

1229
    Examples:
1230

1231
        .. code-block:: python
1232

1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253
            import paddle.fluid as fluid
            from paddle.fluid.dygraph.base import to_variable
            import numpy as np

            x = np.random.random(size=(3, 10, 3, 7)).astype('float32')
            with fluid.dygraph.guard():
                x = to_variable(x)
                m = fluid.dygraph.Dropout(p=0.5)
                droped_train = m(x)
                # switch to eval mode
                m.eval()
                droped_eval = m(x)
    """

    def __init__(
        self,
        p=0.5,
        seed=None,
        dropout_implementation="downgrade_in_infer",
        is_test=False,
    ):
1254
        super().__init__()
1255 1256 1257 1258
        assert isinstance(p, (float, int)), "p argument should be a number"
        assert 0 <= p <= 1, "p argument should between 0 and 1"
        self._dropout_prob = p
        assert seed is None or isinstance(
1259 1260
            seed, int
        ), "seed argument should be None or a integer"
1261 1262
        self._seed = seed
        assert dropout_implementation in (
1263 1264
            'downgrade_in_infer',
            'upscale_in_train',
1265 1266 1267 1268 1269
        ), "dropout_implementation argument should be 'downgrade_in_infer' or 'upscale_in_train'"
        self._dropout_implementation = dropout_implementation
        self._is_test = is_test

    def forward(self, input):
1270 1271 1272
        # fast return for p == 0
        if self._dropout_prob == 0:
            return input
1273 1274 1275 1276 1277
        prog = default_main_program()
        if (self._seed is None or self._seed == 0) and prog.random_seed != 0:
            self._seed = prog.random_seed
        attrs = {
            'dropout_prob': self._dropout_prob,
1278 1279 1280
            'is_test': not self.training
            if _non_static_mode()
            else self._is_test,
1281 1282 1283 1284 1285
            'fix_seed': self._seed is not None,
            'seed': self._seed if self._seed is not None else 0,
            'dropout_implementation': self._dropout_implementation,
        }

J
Jiabin Yang 已提交
1286
        if _non_static_mode():
1287
            attrs = sum(attrs.items(), ())
1288
            out, mask = _legacy_C_ops.dropout(input, *attrs)
1289 1290 1291 1292
            return out

        out = self._helper.create_variable_for_type_inference(dtype=input.dtype)
        mask = self._helper.create_variable_for_type_inference(
1293 1294 1295 1296 1297 1298 1299 1300 1301
            dtype=core.VarDesc.VarType.UINT8, stop_gradient=True
        )

        self._helper.append_op(
            type='dropout',
            inputs={'X': [input]},
            outputs={'Out': [out], 'Mask': [mask]},
            attrs=attrs,
        )
1302 1303 1304
        return out


1305
class Embedding(layers.Layer):
1306
    r"""
1307
    :alias_main: paddle.nn.Embedding
1308 1309
        :alias: paddle.nn.Embedding,paddle.nn.layer.Embedding,paddle.nn.layer.common.Embedding
        :old_api: paddle.fluid.dygraph.Embedding
1310

1311 1312
    **Embedding Layer**

Z
zhongpu 已提交
1313 1314 1315 1316 1317 1318
    This interface is used to construct a callable object of the ``Embedding`` class.
    For specific usage, refer to code examples. It implements the function of the Embedding Layer.
    This layer is used to lookup embeddings vector of ids provided by :attr:`input` .
    It automatically constructs a 2D embedding matrix based on the
    input :attr:`size` (vocab_size, emb_size) and :attr:`dtype` .

1319 1320
    The shape of output Tensor is generated by appending an emb_size dimension to the
    last dimension of the input Tensor shape.
Z
zhongpu 已提交
1321

1322
    **Note:** The id in :attr:`input` must satisfy :math:`0 =< id < size[0]` ,
Z
zhongpu 已提交
1323 1324 1325 1326 1327 1328 1329
    otherwise the program will throw an exception and exit.

    .. code-block:: text

        Case 1:

        input is a Tensor. padding_idx = -1
1330 1331
            input.data = [[1, 3], [2, 4], [4, 127]
            input.shape = [3, 2]
Z
zhongpu 已提交
1332 1333 1334 1335 1336 1337 1338 1339
        Given size = [128, 16]
        output is a Tensor:
            out.shape = [3, 2, 16]
            out.data = [[[0.129435295, 0.244512452, ..., 0.436322452],
                        [0.345421456, 0.524563927, ..., 0.144534654]],

                        [[0.345249859, 0.124939536, ..., 0.194353745],
                        [0.945345345, 0.435394634, ..., 0.435345365]],
1340

Z
zhongpu 已提交
1341 1342 1343 1344
                        [[0.945345345, 0.435394634, ..., 0.435345365],
                        [0.0,         0.0,         ..., 0.0        ]]]  # padding data
        The input padding_idx is less than 0, it is automatically converted to padding_idx = -1 + 128 = 127
        It will pad all-zero data when ids is 127.
1345

1346
    Parameters:
L
lujun 已提交
1347 1348
        size(tuple|list): The shape of the look up table parameter. It should have two elements which indicate the size
            of the dictionary of embeddings and the size of each embedding vector respectively.
Z
zhongpu 已提交
1349
        is_sparse(bool): The flag indicating whether to use sparse update. This parameter only
1350
            affects the performance of the backwards gradient update. It is recommended to set
Z
zhongpu 已提交
1351
            True because sparse update is faster. But some optimizer does not support sparse update,
1352
            such as :ref:`api_fluid_optimizer_AdadeltaOptimizer` , :ref:`api_fluid_optimizer_AdamaxOptimizer` ,
Z
zhongpu 已提交
1353 1354 1355 1356 1357
            :ref:`api_fluid_optimizer_DecayedAdagradOptimizer` , :ref:`api_fluid_optimizer_FtrlOptimizer` ,
            :ref:`api_fluid_optimizer_LambOptimizer` and :ref:`api_fluid_optimizer_LarsMomentumOptimizer` .
            In these case, is_sparse must be False. Default: False.
        is_distributed(bool): Whether to store the embedding matrix in a distributed manner. Only used
            in multi-machine distributed CPU training. Default: False.
1358
        padding_idx(int|long|None): padding_idx needs to be in the interval [-vocab_size, vocab_size).
Z
zhongpu 已提交
1359 1360 1361 1362 1363 1364
            If :math:`padding\_idx < 0`, the :math:`padding\_idx` will automatically be converted
            to :math:`vocab\_size + padding\_idx` . It will output all-zero padding data whenever lookup
            encounters :math:`padding\_idx` in id. And the padding data will not be updated while training.
            If set None, it makes no effect to output. Default: None.
        param_attr(ParamAttr): To specify the weight parameter property. Default: None, which means the
            default weight parameter property is used. See usage for details in :ref:`api_fluid_ParamAttr` . In addition,
1365
            user-defined or pre-trained word vectors can be loaded with the :attr:`param_attr` parameter.
Z
zhongpu 已提交
1366
            The local word vector needs to be transformed into numpy format, and the shape of local word
T
tianshuo78520a 已提交
1367
            vector should be consistent with :attr:`size` . Then :ref:`api_fluid_initializer_NumpyArrayInitializer`
Z
zhongpu 已提交
1368 1369 1370
            is used to load custom or pre-trained word vectors. See code example 2 for details.
        dtype(np.dtype|core.VarDesc.VarType|str): It refers to the data type of output Tensor.
            It must be "float32" or "float64". Default: "float32".
1371

Z
zhongpu 已提交
1372 1373
    Attribute:
        **weight** (Parameter): the learnable weights of this layer.
1374

1375
    Returns:
Z
zhongpu 已提交
1376
        Variable: Embedding Tensor or LoDTensor mapped by input. The data type is the same as :attr:`dtype` .
1377 1378

    Examples:
1379

1380 1381
        .. code-block:: python

L
lujun 已提交
1382 1383 1384 1385
          import paddle.fluid as fluid
          import paddle.fluid.dygraph.base as base
          import numpy as np

Z
zhongpu 已提交
1386
          # example 1
1387 1388
          inp_word = np.array([[2, 3, 5], [4, 2, 1]]).astype('int64')
          inp_word.shape  # [2, 3]
1389 1390
          dict_size = 20
          with fluid.dygraph.guard():
L
lujun 已提交
1391
              emb = fluid.dygraph.Embedding(
1392 1393 1394
                  size=[dict_size, 32],
                  param_attr='emb.w',
                  is_sparse=False)
L
lujun 已提交
1395
              static_rlt3 = emb(base.to_variable(inp_word))
1396
              static_rlt3.shape  # [2, 3, 32]
Z
zhongpu 已提交
1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409

          # example 2: load custom or pre-trained word vectors
          weight_data = np.random.random(size=(128, 100))  # word vectors with numpy format
          w_param_attrs = fluid.ParamAttr(
              name="emb_weight",
              learning_rate=0.5,
              initializer=fluid.initializer.NumpyArrayInitializer(weight_data),
              trainable=True)
          with fluid.dygraph.guard():
              emb = fluid.dygraph.Embedding(
                  size=[128, 100],
                  param_attr= w_param_attrs,
                  is_sparse=False)
1410
              static_rlt3 = emb(base.to_variable(inp_word))
1411 1412
    """

1413 1414 1415 1416 1417 1418 1419 1420 1421
    def __init__(
        self,
        size,
        is_sparse=False,
        is_distributed=False,
        padding_idx=None,
        param_attr=None,
        dtype='float32',
    ):
1422
        super().__init__()
1423 1424 1425
        self._size = size
        self._is_sparse = is_sparse
        self._is_distributed = is_distributed
1426 1427 1428 1429 1430 1431 1432
        self._padding_idx = (
            -1
            if padding_idx is None
            else padding_idx
            if padding_idx >= 0
            else (size[0] + padding_idx)
        )
1433 1434 1435

        self._param_attr = param_attr
        self._dtype = dtype
J
JiabinYang 已提交
1436
        self._remote_prefetch = self._is_sparse and (not self._is_distributed)
1437 1438 1439
        if self._remote_prefetch:
            assert self._is_sparse is True and self._is_distributed is False

1440 1441 1442 1443 1444 1445
        self.weight = self.create_parameter(
            attr=self._param_attr,
            shape=self._size,
            dtype=self._dtype,
            is_bias=False,
        )
1446 1447

    def forward(self, input):
J
Jiabin Yang 已提交
1448
        if _non_static_mode():
1449
            return _legacy_C_ops.lookup_table_v2(
1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460
                self.weight,
                input,
                'is_sparse',
                self._is_sparse,
                'is_distributed',
                self._is_distributed,
                'remote_prefetch',
                self._remote_prefetch,
                'padding_idx',
                self._padding_idx,
            )
1461

1462 1463 1464 1465 1466 1467
        check_variable_and_dtype(
            input,
            'input',
            ['uint8', 'int8', 'int16', 'int32', 'int64'],
            'Embedding',
        )
1468 1469 1470 1471
        attrs = {
            'is_sparse': self._is_sparse,
            'is_distributed': self._is_distributed,
            'remote_prefetch': self._remote_prefetch,
1472
            'padding_idx': self._padding_idx,
1473
        }
1474

1475
        out = self._helper.create_variable_for_type_inference(self._dtype)
1476 1477 1478 1479 1480 1481
        self._helper.append_op(
            type='lookup_table_v2',
            inputs={'Ids': input, 'W': self.weight},
            outputs={'Out': out},
            attrs=attrs,
        )
1482 1483

        return out
M
minqiyang 已提交
1484 1485


1486
class LayerNorm(layers.Layer):
1487
    r"""
1488
    :alias_main: paddle.nn.LayerNorm
1489 1490
        :alias: paddle.nn.LayerNorm,paddle.nn.layer.LayerNorm,paddle.nn.layer.norm.LayerNorm
        :old_api: paddle.fluid.dygraph.LayerNorm
1491

1492 1493 1494
    This interface is used to construct a callable object of the ``LayerNorm`` class.
    For more details, refer to code examples.
    It implements the function of the Layer Normalization Layer and can be applied to mini-batch input data.
1495
    Refer to `Layer Normalization <https://arxiv.org/pdf/1607.06450v1.pdf>`_
1496

1497
    The formula is as follows:
1498

1499
    ..  math::
1500

1501
        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} x_i
1502

1503
        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}{(x_i - \\mu)^2} + \\epsilon}
1504

1505
        y & = f(\\frac{g}{\\sigma}(x - \\mu) + b)
1506

1507 1508 1509 1510 1511
    - :math:`x`: the vector representation of the summed inputs to the neurons in that layer.
    - :math:`H`: the number of hidden units in a layers
    - :math:`\\epsilon`: the small value added to the variance to prevent division by zero.
    - :math:`g`: the trainable scale parameter.
    - :math:`b`: the trainable bias parameter.
1512

1513
    Parameters:
1514 1515 1516 1517
        normalized_shape(int or list or tuple): Input shape from an expected input of
            size :math:`[*, normalized_shape[0], normalized_shape[1], ..., normalized_shape[-1]]`.
            If it is a single integer, this module will normalize over the last dimension
            which is expected to be of that specific size.
1518
        scale(bool, optional): Whether to learn the adaptive gain :math:`g` after
L
lujun 已提交
1519
            normalization. Default: True.
1520
        shift(bool, optional): Whether to learn the adaptive bias :math:`b` after
L
lujun 已提交
1521
            normalization. Default: True.
1522
        epsilon(float, optional): The small value added to the variance to prevent
L
lujun 已提交
1523
            division by zero. Default: 1e-05.
1524
        param_attr(ParamAttr, optional): The parameter attribute for the learnable
1525 1526 1527
            gain :math:`g`. If :attr:`scale` is False, :attr:`param_attr` is
            omitted. If :attr:`scale` is True and :attr:`param_attr` is None,
            a default :code:`ParamAttr` would be added as scale. The
L
lujun 已提交
1528
            :attr:`param_attr` is initialized as 1 if it is added. Default: None.
1529
        bias_attr(ParamAttr, optional): The parameter attribute for the learnable
1530 1531 1532
            bias :math:`b`. If :attr:`shift` is False, :attr:`bias_attr` is
            omitted. If :attr:`shift` is True and :attr:`param_attr` is None,
            a default :code:`ParamAttr` would be added as bias. The
L
lujun 已提交
1533
            :attr:`bias_attr` is initialized as 0 if it is added. Default: None.
T
tianshuo78520a 已提交
1534
        act(str, optional): Activation to be applied to the output of layer normalization.
L
lujun 已提交
1535
                  Default: None.
1536 1537
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".

1538
    Returns:
1539
        None
1540

1541
    Examples:
1542

1543 1544 1545
        .. code-block:: python

          import paddle.fluid as fluid
1546
          from paddle.fluid.dygraph.base import to_variable
1547 1548
          import numpy

1549
          x = numpy.random.random((3, 32, 32)).astype('float32')
1550
          with fluid.dygraph.guard():
1551
              x = to_variable(x)
1552
              layerNorm = fluid.LayerNorm([32, 32])
1553
              ret = layerNorm(x)
1554

1555
    """
1556

1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567
    def __init__(
        self,
        normalized_shape,
        scale=True,
        shift=True,
        epsilon=1e-05,
        param_attr=None,
        bias_attr=None,
        act=None,
        dtype='float32',
    ):
1568
        super().__init__()
1569 1570
        if isinstance(normalized_shape, numbers.Integral):
            normalized_shape = [normalized_shape]
H
hong 已提交
1571

1572
        self._normalized_shape = list(normalized_shape)
1573 1574 1575 1576 1577 1578
        self._scale = scale
        self._shift = shift
        self._epsilon = epsilon
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._act = act
1579 1580
        self._dtype = dtype
        param_shape = [np.prod(self._normalized_shape)]
1581
        if self._scale:
1582
            self.weight = self.create_parameter(
1583 1584 1585
                attr=self._param_attr,
                shape=param_shape,
                dtype=self._dtype,
1586 1587
                default_initializer=Constant(1.0),
            )
1588 1589
        else:
            if self._param_attr:
T
tianshuo78520a 已提交
1590
                logging.warn("param_attr are only available with scale is True")
1591
            self.weight = None
1592

1593 1594
        if self._shift:
            assert self._bias_attr is not False
1595 1596 1597 1598 1599 1600
            self.bias = self.create_parameter(
                attr=self._bias_attr,
                shape=param_shape,
                dtype=self._dtype,
                is_bias=True,
            )
1601 1602
        else:
            if self._bias_attr:
T
tianshuo78520a 已提交
1603
                logging.warn("bias_attr are only available with shift is True")
1604
            self.bias = None
1605 1606

    def forward(self, input):
1607 1608 1609 1610
        input_shape = list(input.shape)
        input_ndim = len(input_shape)
        normalized_ndim = len(self._normalized_shape)
        self._begin_norm_axis = input_ndim - normalized_ndim
1611 1612 1613 1614
        if (
            input_ndim < normalized_ndim
            or input_shape[self._begin_norm_axis :] != self._normalized_shape
        ):
1615
            str_normalized_shape = str(self._normalized_shape)
1616 1617 1618 1619 1620 1621 1622 1623
            raise ValueError(
                'Given normalized_shape is '
                + str_normalized_shape
                + ', expected input with shape [*, '
                + str_normalized_shape[1:]
                + ', but got input shape '
                + str(input_shape)
            )
1624

J
Jiabin Yang 已提交
1625
        if _non_static_mode():
H
hong 已提交
1626
            if in_dygraph_mode():
1627 1628 1629 1630 1631 1632 1633
                pre_act, _, _, = _C_ops.layer_norm(
                    input,
                    self.weight,
                    self.bias,
                    self._epsilon,
                    self._begin_norm_axis,
                )
H
hong 已提交
1634
                return dygraph_utils._append_activation_in_dygraph(
1635 1636
                    pre_act, act=self._act
                )
H
hong 已提交
1637
            else:
1638
                pre_act, _, _ = _legacy_C_ops.layer_norm(
1639 1640 1641 1642 1643 1644 1645 1646
                    input,
                    self.weight,
                    self.bias,
                    'epsilon',
                    self._epsilon,
                    'begin_norm_axis',
                    self._begin_norm_axis,
                )
H
hong 已提交
1647
                return dygraph_utils._append_activation_in_dygraph(
1648 1649
                    pre_act, act=self._act
                )
1650

1651 1652 1653
        check_variable_and_dtype(
            input, 'input', ['float32', 'float64'], 'LayerNorm'
        )
1654

1655
        inputs = dict()
1656
        inputs['X'] = [input]
1657
        if self._scale:
1658
            inputs['Scale'] = [self.weight]
1659
        if self._shift:
1660 1661 1662
            inputs['Bias'] = [self.bias]
        attrs = {
            "epsilon": self._epsilon,
1663
            "begin_norm_axis": self._begin_norm_axis,
1664 1665
        }

1666 1667
        # create output
        mean_out = self._helper.create_variable_for_type_inference(
1668 1669
            dtype=self._dtype, stop_gradient=True
        )
1670
        variance_out = self._helper.create_variable_for_type_inference(
1671 1672
            dtype=self._dtype, stop_gradient=True
        )
1673
        layer_norm_out = self._helper.create_variable_for_type_inference(
1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689
            self._dtype
        )

        self._helper.append_op(
            type="layer_norm",
            inputs=inputs,
            outputs={
                "Y": layer_norm_out,
                "Mean": mean_out,
                "Variance": variance_out,
            },
            attrs={
                "epsilon": self._epsilon,
                "begin_norm_axis": self._begin_norm_axis,
            },
        )
1690

1691
        return self._helper.append_activation(layer_norm_out, act=self._act)
1692 1693


M
minqiyang 已提交
1694 1695 1696
class GRUUnit(layers.Layer):
    """
    **GRU unit layer**
1697

D
DuYao 已提交
1698 1699
    It creates a callable object from GRUUnit class.
    If origin_mode is True, then the equation of a gru step is from paper
1700
    `Learning Phrase Representations using RNN Encoder-Decoder for Statistical
D
DuYao 已提交
1701
    Machine Translation <https://arxiv.org/pdf/1406.1078.pdf>`_
M
minqiyang 已提交
1702 1703 1704 1705 1706 1707 1708 1709 1710 1711

        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)

            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)

            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)

            h_t & = dot(u_t, h_{t-1}) + dot((1-u_t), m_t)

D
DuYao 已提交
1712
    If origin_mode is False, then the equation of a gru step is from paper
M
minqiyang 已提交
1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737
    `Empirical Evaluation of Gated Recurrent Neural Networks on Sequence
    Modeling <https://arxiv.org/pdf/1412.3555.pdf>`_

        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)

            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)

            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)

            h_t & = dot((1-u_t), h_{t-1}) + dot(u_t, m_t)


    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.

1738
    Parameters:
L
lujun 已提交
1739
        size (int): The input dimension value.
D
DuYao 已提交
1740
        param_attr(ParamAttr, optional): The parameter attribute for the learnable
1741 1742
            hidden-hidden weight matrix.

D
DuYao 已提交
1743
            **Note**:
1744

D
DuYao 已提交
1745
                1. The shape of the weight matrix is :math:`[T, 3*D]`, where D is the hidden size.
1746 1747
                2. All elements in the weight matrix can be divided into two parts. The first
                   part are weights of the update gate and reset gate with shape :math:`[D, 2*D]`,
D
DuYao 已提交
1748
                   and the second part are weights for candidate hidden state with shape :math:`[D, D]`.
M
minqiyang 已提交
1749 1750 1751 1752


            If it is set to None or one attribute of ParamAttr, gru_unit will
            create ParamAttr as param_attr. If the Initializer of the param_attr
1753
            is not set, the parameter is initialized with Xavier. The default
D
DuYao 已提交
1754 1755 1756
            value is None.
        bias_attr (ParamAttr|bool, optional): The parameter attribute for the bias
            of GRU.Note that the bias with :math:`[1, 3*D]` concatenates
M
minqiyang 已提交
1757 1758 1759 1760 1761
            the bias in the update gate, reset gate and candidate calculations.
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, gru_unit will create ParamAttr as
            bias_attr. If the Initializer of the bias_attr is not set, the bias
D
DuYao 已提交
1762
            is initialized zero. The default value is None.
L
lujun 已提交
1763
        activation (str): The activation type for cell (actNode).
D
DuYao 已提交
1764
                             The default value is 'tanh'.
L
lujun 已提交
1765
        gate_activation (str): The activation type for gates (actGate).
D
DuYao 已提交
1766 1767 1768
                                  The default value is 'sigmoid'.
        dtype(str): The dtype of the layers. The data type can be set as
            'float32', 'float64'. The default value is 'float32'.
M
minqiyang 已提交
1769

D
DuYao 已提交
1770 1771 1772 1773
    Attribute:
        **weight** (Parameter): the learnable weights of this layer.

        **bias** (Parameter): the learnable bias of this layer.
1774

M
minqiyang 已提交
1775
    Returns:
D
DuYao 已提交
1776 1777
        tuple: The hidden value, reset-hidden value and gate values. The hidden value
        is a 2-D tensor with shape  :math:`[T, D]` . The reset-hidden value is a
1778
        2-D tensor with shape  :math:`[T, D]` . The gate value is a 2-D tensor with
D
DuYao 已提交
1779
        shape  :math:`[T, 3*D]`.
L
lujun 已提交
1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792

    Examples:

        .. code-block:: python

          import paddle.fluid as fluid
          import paddle.fluid.dygraph.base as base
          import numpy

          lod = [[2, 4, 3]]
          D = 5
          T = sum(lod[0])

D
DuYao 已提交
1793
          input = numpy.random.rand(T, 3 * D).astype('float32')
L
lujun 已提交
1794 1795 1796
          hidden_input = numpy.random.rand(T, D).astype('float32')
          with fluid.dygraph.guard():
              x = numpy.random.random((3, 32, 32)).astype('float32')
1797
              gru = fluid.dygraph.GRUUnit(size=D * 3)
L
lujun 已提交
1798 1799 1800
              dy_ret = gru(
                base.to_variable(input), base.to_variable(hidden_input))

M
minqiyang 已提交
1801 1802
    """

1803 1804 1805 1806 1807 1808 1809 1810 1811 1812
    def __init__(
        self,
        size,
        param_attr=None,
        bias_attr=None,
        activation='tanh',
        gate_activation='sigmoid',
        origin_mode=False,
        dtype='float32',
    ):
1813
        super().__init__()
1814
        self._bias_attr = bias_attr
M
minqiyang 已提交
1815 1816 1817 1818
        activation_dict = dict(
            identity=0,
            sigmoid=1,
            tanh=2,
1819 1820
            relu=3,
        )
H
Hongyu Liu 已提交
1821 1822
        self.activation = activation_dict[activation]
        self.gate_activation = activation_dict[gate_activation]
M
minqiyang 已提交
1823

M
minqiyang 已提交
1824
        self._dtype = dtype
M
minqiyang 已提交
1825 1826
        size = size // 3
        # create weight
1827 1828 1829
        self.weight = self.create_parameter(
            attr=param_attr, shape=[size, 3 * size], dtype=dtype
        )
M
minqiyang 已提交
1830 1831

        # create bias
M
minqiyang 已提交
1832
        bias_size = [1, 3 * size]
1833
        self._bias_size = bias_size
1834 1835 1836
        self.bias = self.create_parameter(
            attr=bias_attr, shape=bias_size, dtype=dtype, is_bias=True
        )
M
minqiyang 已提交
1837

M
minqiyang 已提交
1838
    def forward(self, input, hidden):
J
Jiabin Yang 已提交
1839
        if _non_static_mode():
1840
            gate, reset_hidden_pre, updated_hidden = _legacy_C_ops.gru_unit(
1841 1842 1843 1844 1845 1846 1847 1848 1849
                input,
                hidden,
                self.weight,
                self.bias,
                'activation',
                self.activation,
                'gate_activation',
                self.gate_activation,
            )
1850 1851
            return updated_hidden, reset_hidden_pre, gate

1852 1853 1854 1855 1856 1857
        check_variable_and_dtype(
            input, 'input', ['float32', 'float64'], 'GRUUnit'
        )
        check_variable_and_dtype(
            hidden, 'hidden', ['float32', 'float64'], 'GRUUnit'
        )
1858 1859 1860
        inputs = {
            'Input': [input],
            'HiddenPrev': [hidden],
1861
            'Weight': [self.weight],
1862
        }
1863
        if self.bias is not None:
1864
            inputs['Bias'] = [self.bias]
M
minqiyang 已提交
1865 1866
        gate = self._helper.create_variable_for_type_inference(self._dtype)
        reset_hidden_pre = self._helper.create_variable_for_type_inference(
1867 1868
            self._dtype
        )
M
minqiyang 已提交
1869
        updated_hidden = self._helper.create_variable_for_type_inference(
1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884
            self._dtype
        )
        self._helper.append_op(
            type='gru_unit',
            inputs=inputs,
            outputs={
                'Gate': gate,
                'ResetHiddenPrev': reset_hidden_pre,
                'Hidden': updated_hidden,
            },
            attrs={
                'activation': self.activation,
                'gate_activation': self.gate_activation,
            },
        )
M
minqiyang 已提交
1885 1886

        return updated_hidden, reset_hidden_pre, gate
1887 1888 1889 1890


class NCE(layers.Layer):
    """
1891 1892 1893 1894 1895
    This interface is used to construct a callable object of the ``NCE`` class.
    For more details, refer to code examples.
    It implements the function of the ``NCE`` loss function.
    By default this function uses a uniform distribution for sampling, and it
    compute and return the noise-contrastive estimation training loss. See
1896
    `Noise-contrastive estimation: A new estimation principle for unnormalized statistical models <http://www.jmlr.org/proceedings/papers/v9/gutmann10a/gutmann10a.pdf>`_ .
1897

1898
    Parameters:
1899 1900
        num_total_classes (int): Total number of classes in all samples.
        dim (int): Dimension of input (possibly embedding dim).
1901
        param_attr (ParamAttr, optional): The parameter attribute for learnable weights(Parameter)
1902 1903 1904
             of nce. If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
1905
        bias_attr (ParamAttr or bool, optional): The attribute for the bias of nce.
1906 1907 1908 1909
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
1910
        num_neg_samples (int, optional): The number of negative classes. The default value is 10.
T
tianshuo78520a 已提交
1911
        sampler (str, optional): The sampler used to sample class from negative classes.
1912 1913
                       It can be 'uniform', 'log_uniform' or 'custom_dist'.
                       default: 'uniform'.
1914
        custom_dist (float[], optional): A float[] with size=num_total_classes.
1915
                       It is used when sampler is set to 'custom_dist'.
1916
                       custom_dist[i] is the probability of i-th class to be sampled.
L
lujun 已提交
1917
                       Default: None.
1918 1919
        seed (int, optional): The seed used in sampler. Default: 0.
        is_sparse(bool, optional): The flag indicating whether to use sparse update. If is_sparse is True, the weight@GRAD and bias@GRAD will be changed to SelectedRows. Default: False.
1920
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
1921

1922 1923
    Attribute:
        **weight** (Parameter): the learnable weights of this layer.
1924

1925
        **bias** (Parameter or None): the learnable bias of this layer.
1926

1927
    Returns:
1928
        None
1929 1930 1931 1932

    Examples:
        .. code-block:: python

1933 1934 1935
            import numpy as np
            import paddle.fluid as fluid

1936
            window_size = 5
1937 1938
            dict_size = 20
            label_word = int(window_size // 2) + 1
1939
            inp_word = np.array([[1], [2], [3], [4], [5]]).astype('int64')
1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960
            nid_freq_arr = np.random.dirichlet(np.ones(20) * 1000).astype('float32')

            with fluid.dygraph.guard():
                words = []
                for i in range(window_size):
                    words.append(fluid.dygraph.base.to_variable(inp_word[i]))

                emb = fluid.Embedding(
                    size=[dict_size, 32],
                    param_attr='emb.w',
                    is_sparse=False)

                embs3 = []
                for i in range(window_size):
                    if i == label_word:
                        continue

                    emb_rlt = emb(words[i])
                    embs3.append(emb_rlt)

                embs3 = fluid.layers.concat(input=embs3, axis=1)
1961
                nce = fluid.NCE(
1962
                             num_total_classes=dict_size,
1963
                             dim=embs3.shape[1],
1964 1965 1966 1967 1968 1969 1970
                             num_neg_samples=2,
                             sampler="custom_dist",
                             custom_dist=nid_freq_arr.tolist(),
                             seed=1,
                             param_attr='nce.w',
                             bias_attr='nce.b')

1971 1972
                wl = fluid.layers.unsqueeze(words[label_word], axes=[0])
                nce_loss3 = nce(embs3, wl)
1973 1974 1975

    """

1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989
    def __init__(
        self,
        num_total_classes,
        dim,
        sample_weight=None,
        param_attr=None,
        bias_attr=None,
        num_neg_samples=None,
        sampler="uniform",
        custom_dist=None,
        seed=0,
        is_sparse=False,
        dtype='float32',
    ):
1990
        super().__init__()
1991 1992 1993
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._num_total_classes = num_total_classes
1994
        self._dtype = dtype
1995
        self._inputs = dict()
1996 1997 1998
        self._inputs['SampleWeight'] = (
            sample_weight if sample_weight is not None else []
        )
1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053
        if sampler == "uniform":
            sampler = 0
        elif sampler == "log_uniform":
            sampler = 1
        elif sampler == "custom_dist":
            assert custom_dist is not None
            # assert isinstance(custom_dist, Variable)

            custom_dist_len = len(custom_dist)
            alias_probs_ = [0] * custom_dist_len
            alias_ = [0] * custom_dist_len
            bigs = []
            littles = []
            for i in range(custom_dist_len):
                normal_prob = custom_dist[i] * custom_dist_len
                if normal_prob - 1.0 > 0:
                    bigs.append((i, normal_prob))
                elif 1.0 - normal_prob > 0:
                    littles.append((i, normal_prob))
                else:
                    alias_probs_[i] = normal_prob
                    alias_[i] = -1

            while len(bigs) and len(littles):
                big = bigs.pop(0)
                little = littles.pop(0)

                big_idx = big[0]
                big_prob = big[1]

                alias_probs_[little[0]] = little[1]
                alias_[little[0]] = big_idx
                big_left = big[1] + little[1] - 1
                if big_left - 1.0 > 0:
                    bigs.append((big_idx, big_left))
                elif 1.0 - big_left > 0:
                    littles.append((big_idx, big_left))
                else:
                    alias_probs_[big_idx] = big_left
                    alias_[big_idx] = -1

            if len(bigs):
                big = bigs.pop(0)
                alias_probs_[big[0]] = 1.0
                alias_[big[0]] = -1
            if len(littles):
                little = littles.pop(0)
                alias_probs_[little[0]] = 1.0
                alias_[little[0]] = -1

            def _init_by_numpy_array(numpy_array):
                ret = self.create_parameter(
                    attr=ParamAttr(),
                    shape=numpy_array.shape,
                    dtype=numpy_array.dtype,
2054 2055
                    default_initializer=NumpyArrayInitializer(numpy_array),
                )
2056 2057 2058 2059
                ret.stop_gradient = True
                return ret

            self._inputs['CustomDistProbs'] = _init_by_numpy_array(
2060 2061
                np.array(custom_dist).astype('float32')
            )
2062
            self._inputs['CustomDistAlias'] = _init_by_numpy_array(
2063 2064
                np.array(alias_).astype('int32')
            )
2065
            self._inputs['CustomDistAliasProbs'] = _init_by_numpy_array(
2066 2067
                np.array(alias_probs_).astype('float32')
            )
2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086
            sampler = 2
        else:
            raise Exception("Unsupported sampler type.")

        if num_neg_samples is None:
            num_neg_samples = 10
        else:
            num_neg_samples = int(num_neg_samples)
        self._num_neg_samples = num_neg_samples
        remote_prefetch = is_sparse
        print(
            "With sparse mode, if your models has only small parameter prefetch may cause speed down"
        )
        self._attrs = {
            'num_total_classes': int(num_total_classes),
            'num_neg_samples': num_neg_samples,
            'seed': seed,
            'sampler': sampler,
            'is_sparse': is_sparse,
2087
            'remote_prefetch': remote_prefetch,
2088 2089
        }

2090
        self.weight = self.create_parameter(
2091 2092 2093
            attr=self._param_attr,
            shape=[self._num_total_classes, dim],
            is_bias=False,
2094 2095
            dtype=self._dtype,
        )
2096
        if self._bias_attr:
2097
            self.bias = self.create_parameter(
2098 2099 2100
                attr=self._bias_attr,
                shape=[self._num_total_classes, 1],
                is_bias=True,
2101 2102
                dtype=self._dtype,
            )
2103 2104
            self._inputs['Bias'] = self.bias
        self._inputs['Weight'] = self.weight
2105

2106
    def forward(self, input, label, sample_weight=None):
J
Jiabin Yang 已提交
2107
        if _non_static_mode():
2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132
            attrs = (
                'num_total_classes',
                self._attrs['num_total_classes'],
                'num_neg_samples',
                self._attrs['num_neg_samples'],
                'seed',
                self._attrs['seed'],
                'sampler',
                self._attrs['sampler'],
                'is_sparse',
                self._attrs['is_sparse'],
                'remote_prefetch',
                self._attrs['remote_prefetch'],
            )
            cost, _, _ = _legacy_C_ops.nce(
                input,
                label,
                self.weight,
                self.bias,
                self._inputs['SampleWeight'],
                self._inputs['CustomDistProbs'],
                self._inputs['CustomDistAlias'],
                self._inputs['CustomDistAliasProbs'],
                *attrs
            )
W
Weilong Wu 已提交
2133 2134
            return cost / (self._num_neg_samples + 1)

2135 2136
        check_variable_and_dtype(input, "input", ['float32', 'float64'], "NCE")
        check_variable_and_dtype(label, "label", ['int64'], "NCE")
2137 2138 2139
        check_type(
            sample_weight, 'sample_weight', (Variable, type(None)), 'NCE'
        )
2140 2141 2142 2143 2144
        assert isinstance(input, Variable)
        assert isinstance(label, Variable)

        self._inputs['Input'] = input
        self._inputs['Label'] = label
2145 2146 2147
        self._inputs['SampleWeight'] = (
            sample_weight if sample_weight is not None else []
        )
2148 2149

        cost = self._helper.create_variable_for_type_inference(
2150 2151
            dtype=input.dtype
        )
2152
        sample_logits = self._helper.create_variable_for_type_inference(
2153 2154
            dtype=input.dtype
        )
2155
        sample_labels = self._helper.create_variable_for_type_inference(
2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168
            dtype=label.dtype
        )

        self._helper.append_op(
            type='nce',
            inputs=self._inputs,
            outputs={
                'Cost': cost,
                'SampleLogits': sample_logits,
                'SampleLabels': sample_labels,
            },
            attrs=self._attrs,
        )
2169 2170 2171 2172
        return cost / (self._num_neg_samples + 1)


class PRelu(layers.Layer):
2173
    r"""
2174 2175 2176 2177
    This interface is used to construct a callable object of the ``PRelu`` class.
    For more details, refer to code examples.
    It implements three activation methods of the ``PRelu`` activation function.

2178 2179 2180 2181 2182
    Equation:

    .. math::
        y = \max(0, x) + \\alpha * \min(0, x)

2183
    Parameters:
L
lujun 已提交
2184
        mode (str): The mode for weight sharing. It supports all, channel
2185 2186 2187
          and element. all: all elements share same weight
          channel:elements in a channel share same weight
          element:each element has a weight
S
songyouwei 已提交
2188 2189 2190
        channel (int, optional): The number of channels.
          This argument is required when mode is "channel".
          Default: None.
2191
        input_shape (list or tuple, optional): The shape of input.
S
songyouwei 已提交
2192 2193
          This argument is required when mode is "element".
          Default: None.
2194 2195
        param_attr(ParamAttr, optional): The parameter attribute for the learnable
          weight (alpha). Default: None.
2196
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
2197

2198 2199
    Attribute:
        **weight** (Parameter): the learnable weights of this layer.
2200

2201
    Returns:
2202
        None
2203 2204 2205 2206 2207

    Examples:

        .. code-block:: python

L
lujun 已提交
2208
          import paddle.fluid as fluid
2209
          from paddle.fluid.dygraph.base import to_variable
L
lujun 已提交
2210 2211 2212 2213
          import numpy as np

          inp_np = np.ones([5, 200, 100, 100]).astype('float32')
          with fluid.dygraph.guard():
2214
              inp_np = to_variable(inp_np)
S
songyouwei 已提交
2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225
              prelu0 = fluid.PRelu(
                 mode='all',
                 param_attr=fluid.ParamAttr(initializer=fluid.initializer.Constant(1.0)))
              dy_rlt0 = prelu0(inp_np)
              prelu1 = fluid.PRelu(
                 mode='channel',
                 channel=200,
                 param_attr=fluid.ParamAttr(initializer=fluid.initializer.Constant(1.0)))
              dy_rlt1 = prelu1(inp_np)
              prelu2 = fluid.PRelu(
                 mode='element',
2226
                 input_shape=inp_np.shape,
L
lujun 已提交
2227
                 param_attr=fluid.ParamAttr(initializer=fluid.initializer.Constant(1.0)))
S
songyouwei 已提交
2228
              dy_rlt2 = prelu2(inp_np)
L
lujun 已提交
2229

2230 2231
    """

2232 2233 2234 2235 2236 2237 2238 2239
    def __init__(
        self,
        mode,
        channel=None,
        input_shape=None,
        param_attr=None,
        dtype='float32',
    ):
2240
        # need specify name_scope since snake-cased 'PRelu' is 'p_relu'
2241
        super().__init__(name_scope='prelu')
2242 2243
        self._mode = mode
        self._param_attr = param_attr
2244
        self._dtype = dtype
S
songyouwei 已提交
2245 2246 2247 2248
        if mode == 'all':
            self._alpha_shape = [1]
        elif mode == 'channel':
            assert isinstance(
2249 2250 2251
                channel, int
            ), "channel argument is required when mode is 'channel'."
            # NOTE(zhiqiu): The _alpha_shape should be [1, channel] + [1] * len(input_shape[2:]), not [1, channel, 1, 1].
2252
            # However, the suffix 1 in the list is useless, since the tensor is viewed as one demension array during kernel calculation.
2253
            # And, input_shape is not required when mode is 'channel', so it is simplified.
2254
            # NOTE(zhiqiu): Revert shape to [1, channel, 1, 1] for compatibility with saved model of old version.
2255
            self._alpha_shape = [1, channel, 1, 1]
S
songyouwei 已提交
2256
        elif mode == 'element':
2257
            assert isinstance(
2258 2259
                input_shape, (list, tuple)
            ), "input_shape argument is required when mode is 'element'."
S
songyouwei 已提交
2260 2261 2262
            self._alpha_shape = [1] + list(input_shape)[1:]
        else:
            raise ValueError('mode should be one of all, channel, element.')
2263 2264 2265 2266 2267 2268 2269
        self.weight = self.create_parameter(
            attr=self._param_attr,
            shape=self._alpha_shape,
            dtype='float32',
            is_bias=False,
            default_initializer=Constant(1.0),
        )
2270 2271

    def forward(self, input):
2272 2273 2274
        if in_dygraph_mode():
            return _C_ops.prelu(input, self.weight, "NCHW", self._mode)

2275
        check_variable_and_dtype(input, 'input', ['float32'], 'PRelu')
2276
        out = self._helper.create_variable_for_type_inference(self._dtype)
2277 2278 2279 2280 2281 2282
        self._helper.append_op(
            type="prelu",
            inputs={"X": input, 'Alpha': self.weight},
            attrs={"mode": self._mode},
            outputs={"Out": out},
        )
2283 2284 2285 2286
        return out


class BilinearTensorProduct(layers.Layer):
2287
    r"""
2288

2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301
    **Add Bilinear Tensor Product Layer**

    This layer performs bilinear tensor product on two inputs.
    For example:

    .. math::
      out_{i} = x * W_{i} * {y^\mathrm{T}}, i=0,1,...,size-1

    In this formula:
     - :math:`x`: the first input contains M elements, shape is [batch_size, M].
     - :math:`y`: the second input contains N elements, shape is [batch_size, N].
     - :math:`W_{i}`: the i-th learned weight, shape is [M, N]
     - :math:`out_{i}`: the i-th element of out, shape is [batch_size, size].
D
DuYao 已提交
2302
     - :math:`y^\mathrm{T}`: the transpose of :math:`y`.
2303

2304
    Parameters:
2305 2306 2307 2308 2309
       input1_dim (int): The dimension of each first input.
       input2_dim (int): The dimension of each second input.
       output_dim (int): The dimension of output of this layer.
       name (str, optional): The default value is None. Normally there is no need for user
           to set this property. For more information, please refer to :ref:`api_guide_Name`. Default: None.
D
DuYao 已提交
2310
       act (str, optional): Activation to be applied to the output of this layer. The default value is None.
2311
       param_attr (ParamAttr, optional): The parameter attribute for the learnable w, parameters/weights of
D
DuYao 已提交
2312 2313
           this layer. The default value is None.
       bias_attr (ParamAttr, optional): The parameter attribute for the bias
2314
           of this layer. If it is set to False, no bias will be added to the output units.
D
DuYao 已提交
2315
           If it is set to None, the bias is initialized zero. The default value is None.
2316
       dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
2317

D
DuYao 已提交
2318 2319 2320 2321
    Attribute:
        **weight** (Parameter): the learnable weights of this layer.

        **bias** (Parameter): the learnable bias of this layer.
2322

2323
    Returns:
W
wanghuancoder 已提交
2324
       Tensor: A 2-D Tensor of shape [batch_size, size].
2325 2326 2327 2328

    Examples:
       .. code-block:: python

W
wanghuancoder 已提交
2329 2330 2331 2332 2333 2334 2335 2336 2337
        import paddle
        import numpy

        layer1 = numpy.random.random((5, 5)).astype('float32')
        layer2 = numpy.random.random((5, 4)).astype('float32')
        bilinearTensorProduct = paddle.nn.BilinearTensorProduct(
            input1_dim=5, input2_dim=4, output_dim=1000)
        ret = bilinearTensorProduct(paddle.to_tensor(layer1),
                                    paddle.to_tensor(layer2))
2338

2339 2340
    """

2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351
    def __init__(
        self,
        input1_dim,
        input2_dim,
        output_dim,
        name=None,
        act=None,
        param_attr=None,
        bias_attr=None,
        dtype='float32',
    ):
2352
        super().__init__()
2353 2354 2355 2356
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._act = act
        self._name = name
2357 2358 2359
        self._input1_dim = input1_dim
        self._input2_dim = input2_dim
        self._output_dim = output_dim
2360
        self._inputs = dict()
2361
        self._dtype = dtype
2362

2363
        param_shape = [self._output_dim, self._input1_dim, self._input2_dim]
2364 2365 2366 2367 2368 2369
        self.weight = self.create_parameter(
            attr=self._param_attr,
            shape=param_shape,
            dtype=self._dtype,
            is_bias=False,
        )
2370
        bias_size = [1, self._output_dim]
2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382
        self.bias = self.create_parameter(
            attr=self._bias_attr,
            shape=bias_size,
            dtype=self._dtype,
            is_bias=True,
        )

    @deprecated(
        since="2.0.0",
        update_to="paddle.nn.Bilinear",
        reason="New name and new args in Bilinear, easier to use.",
    )
2383
    def forward(self, x, y):
2384 2385 2386 2387 2388 2389
        check_variable_and_dtype(
            x, 'x', ['float32', 'float64'], 'BilinearTensorProduct'
        )
        check_variable_and_dtype(
            y, 'y', ['float32', 'float64'], 'BilinearTensorProduct'
        )
2390
        self._inputs = {"X": x, "Y": y, "Weight": self.weight}
2391
        if self.bias is not None:
2392
            self._inputs["Bias"] = self.bias
2393
        if self._name is not None:
2394 2395 2396 2397 2398
            out = self._helper.create_variable(
                name=".".join([self.full_name(), self._name]),
                dtype=self._dtype,
                persistable=False,
            )
2399
        else:
2400 2401 2402 2403 2404 2405 2406 2407
            out = self._helper.create_variable(
                dtype=self._dtype, persistable=False
            )
        self._helper.append_op(
            type="bilinear_tensor_product",
            inputs=self._inputs,
            outputs={"Out": out},
        )
2408 2409

        # add activation
2410
        return self._helper.append_activation(out, act=self._act)
2411 2412 2413


class Conv2DTranspose(layers.Layer):
2414
    r"""
2415 2416
    This interface is used to construct a callable object of the ``Conv2DTranspose`` class.
    For more details, refer to code examples.
2417
    The convolution2D transpose layer calculates the output based on the input,
2418 2419 2420
    filter, and dilations, strides, paddings. Input and output
    are in NCHW format. Where N is batch size, C is the number of feature map,
    H is the height of the feature map, and W is the width of the feature map.
2421 2422
    Filter's shape is [MCHW] , where M is the number of input feature map,
    C is the number of output feature map, H is the height of the filter,
2423 2424
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input feature map divided by the groups.
2425 2426 2427
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
2428 2429
    The details of convolution transpose layer, please refer to the following explanation and references
    `conv2dtranspose <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_ .
2430 2431 2432 2433 2434 2435 2436 2437 2438

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    Where:

2439 2440
    * :math:`X`: Input value, a ``Tensor`` with NCHW format.
    * :math:`W`: Filter value, a ``Tensor`` with shape [MCHW] .
2441
    * :math:`\\ast`: Convolution operation.
2442
    * :math:`b`: Bias value, a 2-D ``Tensor`` with shape [M, 1].
2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`

        Where

        .. math::

           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\\\
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[0] ) \\\\
           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[1] )

2467
    Parameters:
2468
        num_channels(int): The number of channels in the input image.
2469
        num_filters(int): The number of the filter. It is as same as the output
2470
            feature map.
2471 2472 2473
        filter_size(int or tuple): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
2474
        output_size(int or tuple, optional): The output image size. If output size is a
2475 2476 2477
            tuple, it must contain two integers, (image_H, image_W). None if use
            filter_size, padding, and stride to calculate output_size.
            if output_size and filter_size are specified at the same time, They
L
lujun 已提交
2478
            should follow the formula above. Default: None.
2479
        padding(int or tuple, optional): The padding size. If padding is a tuple, it must
2480
            contain two integers, (padding_H, padding_W). Otherwise, the
2481 2482
            padding_H = padding_W = padding. Default: 0.
        stride(int or tuple, optional): The stride size. If stride is a tuple, it must
2483
            contain two integers, (stride_H, stride_W). Otherwise, the
2484 2485
            stride_H = stride_W = stride. Default: 1.
        dilation(int or tuple, optional): The dilation size. If dilation is a tuple, it must
2486
            contain two integers, (dilation_H, dilation_W). Otherwise, the
2487
            dilation_H = dilation_W = dilation. Default: 1.
C
cnn 已提交
2488
        groups(int, optional): The groups number of the Conv2D transpose layer. Inspired by
2489 2490 2491 2492
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
2493 2494
            Default: 1.
        param_attr (ParamAttr, optional): The parameter attribute for learnable weights(Parameter)
2495 2496 2497
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
2498
        bias_attr (ParamAttr or bool, optional): The attribute for the bias of conv2d_transpose.
2499 2500 2501 2502
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
2503
        use_cudnn(bool, optional): Use cudnn kernel or not, it is valid only when the cudnn
2504
            library is installed. Default: True.
2505
        act (str, optional): Activation type, if it is set to None, activation is not appended.
2506
            Default: None.
2507
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
2508

2509 2510
    Attribute:
        **weight** (Parameter): the learnable weights of filters of this layer.
2511

2512
        **bias** (Parameter or None): the learnable bias of this layer.
2513

2514 2515
    Returns:
        None
2516 2517 2518 2519

    Examples:
       .. code-block:: python

2520
          import paddle.fluid as fluid
2521
          import numpy as np
2522 2523

          with fluid.dygraph.guard():
2524
              data = np.random.random((3, 32, 32, 5)).astype('float32')
2525
              conv2DTranspose = fluid.dygraph.nn.Conv2DTranspose(
2526
                    num_channels=32, num_filters=2, filter_size=3)
2527 2528
              ret = conv2DTranspose(fluid.dygraph.base.to_variable(data))

2529 2530
    """

2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546
    def __init__(
        self,
        num_channels,
        num_filters,
        filter_size,
        output_size=None,
        padding=0,
        stride=1,
        dilation=1,
        groups=None,
        param_attr=None,
        bias_attr=None,
        use_cudnn=True,
        act=None,
        dtype='float32',
    ):
2547
        super().__init__()
2548 2549 2550
        assert (
            param_attr is not False
        ), "param_attr should not be False in conv2d_transpose."
2551 2552
        self._param_attr = param_attr
        self._bias_attr = bias_attr
2553
        self._act = act
2554
        self._groups = groups
2555
        self._num_channels = num_channels
2556 2557 2558 2559 2560 2561 2562
        self._num_filters = num_filters
        self._use_cudnn = use_cudnn
        self._padding = padding
        self._stride = stride
        self._dilation = dilation
        self._filter_size = filter_size
        self._output_size = output_size
2563
        self._dtype = dtype
2564

2565 2566 2567 2568 2569
        if (
            self._num_channels == self._groups
            and self._num_filters == self._num_channels
            and not self._use_cudnn
        ):
2570
            self._op_type = 'depthwise_conv2d_transpose'
2571 2572
        else:
            self._op_type = 'conv2d_transpose'
2573 2574 2575 2576 2577

        self._padding = utils.convert_to_list(self._padding, 2, 'padding')
        self._stride = utils.convert_to_list(self._stride, 2, 'stride')
        self._dilation = utils.convert_to_list(self._dilation, 2, 'dilation')

2578
        self._filter_size = utils.convert_to_list(
2579 2580
            self._filter_size, 2, 'conv2d_transpose.filter_size'
        )
2581 2582 2583

        if self._output_size is None:
            self._output_size = []
2584 2585 2586
        elif isinstance(self._output_size, list):
            if utils._contain_var(self._output_size):
                self._output_size = utils._convert_to_tensor_list(
2587 2588
                    self._output_size
                )
2589 2590
            else:
                self._output_size = utils.convert_to_list(
2591 2592
                    self._output_size, 2, 'output_size'
                )
2593
        elif isinstance(self._output_size, int):
2594 2595 2596
            self._output_size = utils.convert_to_list(
                self._output_size, 2, 'output_size'
            )
2597
        elif isinstance(self._output_size, Variable):
2598 2599 2600 2601 2602 2603
            check_dtype(
                self._output_size.dtype,
                'output_size',
                ['int32', 'int64'],
                'Conv2DTranspose',
            )
2604
            if len(self._output_size.shape) == 1 and (
2605 2606 2607
                self._output_size.shape[0] == 1
                or self._output_size.shape[0] == 2
            ):
2608 2609 2610 2611
                if self._output_size.shape[0] == 1:
                    self._output_size = [self._output_size, self._output_size]
            else:
                raise ValueError(
2612 2613
                    "output_size must contain one or two integers."
                )
2614
        else:
2615
            raise ValueError("output_size should be list or int or Tensor")
2616 2617
        self._padding = utils.convert_to_list(self._padding, 2, 'padding')
        self._groups = 1 if self._groups is None else self._groups
2618 2619 2620 2621
        filter_shape = [
            self._num_channels,
            self._num_filters // self._groups,
        ] + self._filter_size
2622

2623 2624 2625
        self.weight = self.create_parameter(
            dtype=self._dtype, shape=filter_shape, attr=self._param_attr
        )
2626

2627 2628 2629 2630 2631 2632
        self.bias = self.create_parameter(
            attr=self._bias_attr,
            shape=[self._num_filters],
            dtype=self._dtype,
            is_bias=True,
        )
2633

2634
    def forward(self, input):
J
Jiabin Yang 已提交
2635
        if _non_static_mode():
2636
            op = getattr(_legacy_C_ops, self._op_type)
2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652
            out = op(
                input,
                self.weight,
                'output_size',
                self._output_size,
                'strides',
                self._stride,
                'paddings',
                self._padding,
                'dilations',
                self._dilation,
                'groups',
                self._groups,
                'use_cudnn',
                self._use_cudnn,
            )
2653
            pre_bias = out
2654
            pre_act = dygraph_utils._append_bias_in_dygraph(
2655 2656 2657 2658 2659
                pre_bias, self.bias, 1
            )
            return dygraph_utils._append_activation_in_dygraph(
                pre_act, act=self._act
            )
2660

2661 2662 2663
        check_variable_and_dtype(
            input, 'input', ['float16', 'float32', 'float64'], "Conv2DTranspose"
        )
2664

2665 2666 2667 2668 2669 2670 2671
        inputs = {'Input': [input], 'Filter': [self.weight]}
        attrs = {
            'output_size': self._output_size,
            'strides': self._stride,
            'paddings': self._padding,
            'dilations': self._dilation,
            'groups': self._groups,
2672
            'use_cudnn': self._use_cudnn,
2673 2674
        }

2675
        pre_bias = self._helper.create_variable_for_type_inference(
2676 2677 2678 2679 2680 2681 2682 2683
            dtype=input.dtype
        )
        self._helper.append_op(
            type=self._op_type,
            inputs=inputs,
            outputs={'Output': pre_bias},
            attrs=attrs,
        )
2684

2685
        if self.bias is not None:
2686
            pre_act = self._helper.create_variable_for_type_inference(
2687 2688 2689 2690 2691 2692 2693 2694
                dtype=self._dtype
            )
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [pre_bias], 'Y': [self.bias]},
                outputs={'Out': [pre_act]},
                attrs={'axis': 1},
            )
2695 2696 2697 2698
        else:
            pre_act = pre_bias

        out = self._helper.append_activation(pre_act, act=self._act)
2699 2700 2701 2702 2703 2704 2705 2706 2707
        return out


class SequenceConv(layers.Layer):
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.

2708
    Parameters:
L
lujun 已提交
2709
        name_scope(str): The name of this class.
2710
        num_filters (int): number of filters.
L
lujun 已提交
2711 2712 2713
        filter_size (int): the filter size (H and W). Default: 3.
        filter_stride (int): stride of the filter. Default: 1.
        padding (bool|None): if True, add paddings. Default: None
2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of sequence_conv.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of sequence_conv. If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.

2726 2727 2728 2729
    Attributes:
        weight (Parameter): the learnable weights of filters of this layer.
        bias (Parameter|None): the learnable bias of this layer.

2730 2731 2732 2733
    Returns:
        Variable: output of sequence_conv
    """

2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746
    def __init__(
        self,
        name_scope,
        num_filters,
        filter_size=3,
        filter_stride=1,
        padding=None,
        bias_attr=None,
        param_attr=None,
        act=None,
    ):
        assert (
            not _non_static_mode()
2747
        ), "SequenceConv is not supported by dynamic graph mode yet!"
2748
        super().__init__(name_scope)
2749 2750 2751 2752 2753 2754
        self._num_filters = num_filters
        self._filter_size = filter_size
        self._filter_stride = filter_stride
        self._padding = padding
        self._bias_attr = bias_attr
        self._param_attr = param_attr
2755
        self._act = act
2756

2757
    def _build_once(self, input):
2758 2759
        self._dtype = self._helper.input_dtype(input)
        filter_shape = [self._filter_size * input.shape[1], self._num_filters]
2760 2761 2762
        self.weight = self.create_parameter(
            attr=self._param_attr, shape=filter_shape, dtype=self._dtype
        )
2763

2764 2765 2766 2767 2768 2769
        self.bias = self.create_parameter(
            attr=self._bias_attr,
            shape=[self._num_filters],
            dtype=self._dtype,
            is_bias=True,
        )
2770

2771 2772
    def forward(self, input):
        pre_bias = self._helper.create_variable_for_type_inference(self._dtype)
2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785
        self._helper.append_op(
            type='sequence_conv',
            inputs={
                'X': [input],
                'Filter': [self.weight],
            },
            outputs={"Out": pre_bias},
            attrs={
                'contextStride': self._filter_stride,
                'contextStart': -int(self._filter_size // 2),
                'contextLength': self._filter_size,
            },
        )
2786

2787
        if self.bias is not None:
2788
            pre_act = self._helper.create_variable_for_type_inference(
2789 2790 2791 2792 2793 2794 2795 2796
                dtype=self._dtype
            )
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [pre_bias], 'Y': [self.bias]},
                outputs={'Out': [pre_act]},
                attrs={'axis': 1},
            )
2797 2798 2799 2800
        else:
            pre_act = pre_bias

        return self._helper.append_activation(pre_act, act=self._act)
L
lujun 已提交
2801 2802 2803


class RowConv(layers.Layer):
2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821
    """
    ***Row-convolution operator***

    The row convolution is called lookahead convolution.  This operator was introduced in the following paper for DeepSpeech2:
    http://www.cs.cmu.edu/~dyogatam/papers/wang+etal.iclrworkshop2016.pdf

    The main motivation is that a bidirectional RNN, useful in DeepSpeech like speech models, learns representation for a sequence by performing a
    forward and a backward pass through the entire sequence. However, unlike
    unidirectional RNNs, bidirectional RNNs are challenging to deploy in an online
    and low-latency setting. The lookahead convolution incorporates information
    from future subsequences in a computationally efficient manner to improve
    unidirectional recurrent neural networks. The row convolution operator is
    different from the 1D sequence convolution, and is computed as follows:

    Given an input sequence X of length t and input dimension D, and a filter (W) of size context * D.

    More details about row_conv please refer to the design document https://github.com/PaddlePaddle/Paddle/issues/2228#issuecomment-303903645 .

2822
    Parameters:
L
lujun 已提交
2823
        name_scope(str): The name of this class.
2824 2825 2826
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
        param_attr (ParamAttr): Attributes of parameters, including
L
lujun 已提交
2827 2828
            name, initializer etc. Default: None.
        act (str): Non-linear activation to be applied to output variable. Default: None.
2829

2830 2831 2832
    Attributes:
        weight (Parameter): the learnable weights of this layer.

2833
    Returns:
L
lujun 已提交
2834 2835
        the output(Out) is a LodTensor, which supports variable time-length input sequences.
        The underlying tensor in this LodTensor is a matrix with shape T x N, i.e., the same shape as X.
2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          import numpy

          with fluid.dygraph.guard():
              x = numpy.random.random((16)).astype('float32')
              rowConv = fluid.dygraph.nn.RowConv(
                    'RowConv', future_context_size=2)
              ret = rowConv(fluid.dygraph.base.to_variable(x))

    """

2851 2852 2853 2854 2855
    def __init__(
        self, name_scope, future_context_size, param_attr=None, act=None
    ):
        assert (
            not _non_static_mode()
2856
        ), "RowConv is not supported by dynamic graph mode yet!"
2857
        super().__init__(name_scope)
L
lujun 已提交
2858 2859 2860 2861
        self._act = act
        self._param_attr = param_attr
        self._future_context_size = future_context_size

2862
    def _build_once(self, input):
L
lujun 已提交
2863 2864
        self._dtype = self._helper.input_dtype(input)
        filter_shape = [self._future_context_size + 1, input.shape[1]]
2865 2866 2867 2868 2869 2870
        self.weight = self.create_parameter(
            attr=self._param_attr,
            shape=filter_shape,
            dtype=self._dtype,
            is_bias=False,
        )
L
lujun 已提交
2871 2872 2873

    def forward(self, input):
        out = self._helper.create_variable_for_type_inference(self._dtype)
2874 2875 2876 2877 2878
        self._helper.append_op(
            type='row_conv',
            inputs={'X': [input], 'Filter': [self.weight]},
            outputs={'Out': [out]},
        )
L
lujun 已提交
2879 2880 2881 2882 2883
        return self._helper.append_activation(out, act=self._act)


class GroupNorm(layers.Layer):
    """
2884
    :alias_main: paddle.nn.GroupNorm
2885 2886
        :alias: paddle.nn.GroupNorm,paddle.nn.layer.GroupNorm,paddle.nn.layer.norm.GroupNorm
        :old_api: paddle.fluid.dygraph.GroupNorm
2887

2888 2889 2890 2891 2892 2893
    This interface is used to construct a callable object of the ``GroupNorm`` class.
    For more details, refer to code examples.
    It implements the function of the Group Normalization Layer.
    Refer to `Group Normalization <https://arxiv.org/abs/1803.08494>`_ .

    Parameters:
2894
        channels(int): The number of channels of input.
2895 2896 2897 2898 2899 2900 2901 2902 2903
        groups(int): The number of groups that divided from channels.
        epsilon(float, optional): The small value added to the variance to prevent
                                  division by zero. Default: 1e-05.
        param_attr(ParamAttr, optional): The parameter attribute for the learnable
                                         scale :math:`g`. If it is set to False, no scale will be added to the output units.
                                         If it is set to None, the bias is initialized one. Default: None.
        bias_attr(ParamAttr, optional): The parameter attribute for the learnable
                                        bias :math:`b`. If it is set to False, no bias will be added to the output units.
                                        If it is set to None, the bias is initialized zero. Default: None.
T
tianshuo78520a 已提交
2904
        act(str, optional): Activation to be applied to the output of group normalization. Default: None.
2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917
        data_layout(str, optional): Specify the input data format. Only NCHW is supported. Default: NCHW.

    Returns:
        None

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          import numpy as np

          with fluid.dygraph.guard():
              x = np.random.random((8, 32, 32)).astype('float32')
2918
              groupNorm = fluid.dygraph.nn.GroupNorm(channels=32, groups=4)
2919
              ret = groupNorm(fluid.dygraph.base.to_variable(x))
L
lujun 已提交
2920 2921 2922

    """

2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933
    def __init__(
        self,
        channels,
        groups,
        epsilon=1e-05,
        param_attr=None,
        bias_attr=None,
        act=None,
        data_layout='NCHW',
        dtype='float32',
    ):
2934
        super().__init__()
L
lujun 已提交
2935 2936 2937
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._epsilon = epsilon
2938
        self._channels = channels
L
lujun 已提交
2939 2940
        self._groups = groups
        self._act = act
2941
        self._dtype = dtype
L
lujun 已提交
2942 2943 2944
        if data_layout != 'NCHW':
            raise ValueError("unsupported data layout:" + data_layout)

2945
        param_shape = [self._channels]
L
lujun 已提交
2946

2947 2948 2949 2950 2951 2952
        self.weight = self.create_parameter(
            attr=self._param_attr or False,
            shape=param_shape,
            dtype=self._dtype,
            default_initializer=Constant(1.0),
        )
2953

2954 2955 2956 2957 2958 2959
        self.bias = self.create_parameter(
            attr=self._bias_attr or False,
            shape=param_shape,
            dtype=self._dtype,
            is_bias=True,
        )
L
lujun 已提交
2960 2961

    def forward(self, input):
2962
        mean_out = self._helper.create_variable_for_type_inference(
2963 2964
            dtype=self._dtype, stop_gradient=True
        )
2965
        variance_out = self._helper.create_variable_for_type_inference(
2966 2967
            dtype=self._dtype, stop_gradient=True
        )
2968
        if in_dygraph_mode():
2969 2970 2971 2972 2973 2974 2975 2976
            out = _C_ops.group_norm(
                input,
                self.weight,
                self.bias,
                self._epsilon,
                self._groups,
                "NCHW",
            )
2977

2978 2979 2980
            return dygraph_utils._append_activation_in_dygraph(out, self._act)

        elif _in_legacy_dygraph():
2981
            attrs = ('epsilon', self._epsilon, 'groups', self._groups)
2982 2983 2984
            out, _, _ = _legacy_C_ops.group_norm(
                input, self.weight, self.bias, mean_out, variance_out, *attrs
            )
2985 2986

            return dygraph_utils._append_activation_in_dygraph(out, self._act)
J
Jiabin Yang 已提交
2987 2988 2989 2990 2991 2992 2993 2994 2995
        else:
            inputs = {'X': input}
            if self.bias is not None:
                inputs['Bias'] = self.bias
            if self.weight is not None:
                inputs['Scale'] = self.weight

            # create output
            group_norm_out = self._helper.create_variable_for_type_inference(
2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008
                dtype=self._dtype
            )

            self._helper.append_op(
                type="group_norm",
                inputs=inputs,
                outputs={
                    "Y": group_norm_out,
                    "Mean": mean_out,
                    "Variance": variance_out,
                },
                attrs={"epsilon": self._epsilon, "groups": self._groups},
            )
J
Jiabin Yang 已提交
3009 3010

            return self._helper.append_activation(group_norm_out, self._act)
L
lujun 已提交
3011 3012 3013


class SpectralNorm(layers.Layer):
3014
    r"""
3015 3016
    This interface is used to construct a callable object of the ``SpectralNorm`` class.
    For more details, refer to code examples. It implements the function of the Spectral Normalization Layer.
3017 3018 3019 3020 3021 3022 3023 3024 3025 3026
    This layer calculates the spectral normalization value of weight parameters of
    fc, conv1d, conv2d, conv3d layers which should be 2-D, 3-D, 4-D, 5-D
    Parameters. Calculations are showed as follows.

    Step 1:
    Generate vector U in shape of [H], and V in shape of [W].
    While H is the :attr:`dim` th dimension of the input weights,
    and W is the product result of remaining dimensions.

    Step 2:
T
tianshuo78520a 已提交
3027
    :attr:`power_iters` should be a positive integer, do following
3028 3029 3030 3031
    calculations with U and V for :attr:`power_iters` rounds.

    .. math::

3032
        \mathbf{v} := \frac{\mathbf{W}^{T} \mathbf{u}}{\|\mathbf{W}^{T} \mathbf{u}\|_2}
3033

3034
        \mathbf{u} := \frac{\mathbf{W}^{T} \mathbf{v}}{\|\mathbf{W}^{T} \mathbf{v}\|_2}
3035 3036 3037 3038 3039 3040 3041 3042

    Step 3:
    Calculate :math:`\sigma(\mathbf{W})` and normalize weight values.

    .. math::

        \sigma(\mathbf{W}) = \mathbf{u}^{T} \mathbf{W} \mathbf{v}

3043
        \mathbf{W} = \frac{\mathbf{W}}{\sigma(\mathbf{W})}
3044 3045 3046 3047


    Refer to `Spectral Normalization <https://arxiv.org/abs/1802.05957>`_ .

3048
    Parameters:
3049
        weight_shape(list or tuple): The shape of weight parameter.
3050 3051 3052 3053
        dim(int, optional): The index of dimension which should be permuted to the first before reshaping Input(Weight) to matrix, it should be set as 0 if Input(Weight) is the weight of fc layer, and should be set as 1 if Input(Weight) is the weight of conv layer. Default: 0.
        power_iters(int, optional): The number of power iterations to calculate spectral norm. Default: 1.
        eps(float, optional): The epsilon for numerical stability in calculating norms. Default: 1e-12.
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name` .
3054
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
3055 3056

    Returns:
3057
        None
3058 3059 3060 3061

    Examples:
       .. code-block:: python

C
Chen Long 已提交
3062 3063
            import paddle
            x = paddle.rand((2,8,32,32))
3064

C
Chen Long 已提交
3065 3066 3067 3068
            spectral_norm = paddle.nn.SpectralNorm(x.shape, dim=1, power_iters=2)
            spectral_norm_out = spectral_norm(x)

            print(spectral_norm_out.shape) # [2, 8, 32, 32]
3069 3070 3071

    """

3072 3073 3074
    def __init__(
        self, weight_shape, dim=0, power_iters=1, eps=1e-12, dtype='float32'
    ):
3075
        super().__init__()
L
lujun 已提交
3076 3077 3078
        self._power_iters = power_iters
        self._eps = eps
        self._dim = dim
3079
        self._dtype = dtype
L
lujun 已提交
3080

3081
        self._weight_shape = list(weight_shape)
3082 3083 3084 3085 3086
        assert (
            np.prod(self._weight_shape) > 0
        ), "Any dimension of `weight_shape` cannot be equal to 0."
        assert dim < len(self._weight_shape), (
            "The input `dim` should be less than the "
3087
            "length of `weight_shape`, but received dim="
3088 3089
            "{}".format(dim)
        )
3090 3091
        h = self._weight_shape[self._dim]
        w = np.prod(self._weight_shape) // h
L
lujun 已提交
3092

3093 3094 3095 3096 3097 3098
        self.weight_u = self.create_parameter(
            attr=ParamAttr(),
            shape=[h],
            dtype=self._dtype,
            default_initializer=Normal(0.0, 1.0),
        )
3099
        self.weight_u.stop_gradient = True
L
lujun 已提交
3100

3101 3102 3103 3104 3105 3106
        self.weight_v = self.create_parameter(
            attr=ParamAttr(),
            shape=[w],
            dtype=self._dtype,
            default_initializer=Normal(0.0, 1.0),
        )
3107
        self.weight_v.stop_gradient = True
L
lujun 已提交
3108 3109

    def forward(self, weight):
3110
        if in_dygraph_mode():
3111 3112 3113 3114 3115 3116 3117 3118
            return _C_ops.spectral_norm(
                weight,
                self.weight_u,
                self.weight_v,
                self._dim,
                self._power_iters,
                self._eps,
            )
3119

3120 3121 3122
        check_variable_and_dtype(
            weight, "weight", ['float32', 'float64'], 'SpectralNorm'
        )
3123
        inputs = {'Weight': weight, 'U': self.weight_u, 'V': self.weight_v}
L
lujun 已提交
3124
        out = self._helper.create_variable_for_type_inference(self._dtype)
3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136
        self._helper.append_op(
            type="spectral_norm",
            inputs=inputs,
            outputs={
                "Out": out,
            },
            attrs={
                "dim": self._dim,
                "power_iters": self._power_iters,
                "eps": self._eps,
            },
        )
L
lujun 已提交
3137 3138 3139 3140 3141

        return out


class TreeConv(layers.Layer):
3142
    """
3143 3144 3145 3146 3147 3148 3149 3150
    This interface is used to construct a callable object of the ``TreeConv`` class.
    For more details, refer to code examples.
    Tree-Based Convolution is a kind of convolution based on tree structure.
    Tree-Based Convolution is a part of Tree-Based Convolution Neural Network(TBCNN),
    which is used to classify tree structures, such as Abstract Syntax Tree.
    Tree-Based Convolution proposed a kind of data structure called continuous binary tree,
    which regards multiway tree as binary tree.
    The paper of Tree-Based Convolution Operator is here: `tree-based convolution <https://arxiv.org/abs/1409.5718v1/>`_ .
3151

3152
    Parameters:
3153
        feature_size(int): last dimension of nodes_vector.
3154 3155 3156 3157 3158 3159 3160
        output_size(int): output feature width.
        num_filters(int, optional): number of filters, Default: 1.
        max_depth(int, optional): max depth of filters, Default: 2.
        act(str, optional): activation function, Default: tanh.
        param_attr(ParamAttr, optional): the parameter attribute for the filters, Default: None.
        bias_attr(ParamAttr, optional): the parameter attribute for the bias of this layer, Default: None.
        name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` .
3161
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
3162

3163 3164
    Attribute:
        **weight** (Parameter): the learnable weights of filters of this layer.
3165

3166
        **bias** (Parameter or None): the learnable bias of this layer.
3167

3168 3169
    Returns:
        None
L
lujun 已提交
3170

3171
    Examples:
L
lujun 已提交
3172

3173
        .. code-block:: python
3174

3175 3176
          import paddle.fluid as fluid
          import numpy
3177

3178 3179 3180 3181
          with fluid.dygraph.guard():
              nodes_vector = numpy.random.random((1, 10, 5)).astype('float32')
              edge_set = numpy.random.random((1, 9, 2)).astype('int32')
              treeConv = fluid.dygraph.nn.TreeConv(
3182
                feature_size=5, output_size=6, num_filters=1, max_depth=2)
3183
              ret = treeConv(fluid.dygraph.base.to_variable(nodes_vector), fluid.dygraph.base.to_variable(edge_set))
3184 3185
    """

3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197
    def __init__(
        self,
        feature_size,
        output_size,
        num_filters=1,
        max_depth=2,
        act='tanh',
        param_attr=None,
        bias_attr=None,
        name=None,
        dtype='float32',
    ):
3198
        super().__init__()
L
lujun 已提交
3199
        self._name = name
3200
        self._feature_size = feature_size
L
lujun 已提交
3201 3202 3203 3204 3205 3206
        self._output_size = output_size
        self._act = act
        self._max_depth = max_depth
        self._num_filters = num_filters
        self._bias_attr = bias_attr
        self._param_attr = param_attr
3207 3208
        self._dtype = dtype
        w_shape = [self._feature_size, 3, self._output_size, self._num_filters]
L
lujun 已提交
3209
        if self._bias_attr:
3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221
            self.bias = self.create_parameter(
                attr=self._bias_attr,
                shape=[self._num_filters],
                dtype=self._dtype,
                is_bias=True,
            )
        self.weight = self.create_parameter(
            attr=self._param_attr,
            shape=w_shape,
            dtype=self._dtype,
            is_bias=False,
        )
L
lujun 已提交
3222 3223

    def forward(self, nodes_vector, edge_set):
3224 3225
        check_type(nodes_vector, 'nodes_vector', (Variable), 'TreeConv')
        check_type(edge_set, 'edge_set', (Variable), 'TreeConv')
L
lujun 已提交
3226
        if self._name:
3227 3228 3229
            out = self.create_variable(
                name=self._name, dtype=self._dtype, persistable=False
            )
L
lujun 已提交
3230 3231
        else:
            out = self._helper.create_variable_for_type_inference(
3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245
                dtype=self._dtype
            )
        self._helper.append_op(
            type='tree_conv',
            inputs={
                'NodesVector': nodes_vector,
                'EdgeSet': edge_set,
                'Filter': self.weight,
            },
            outputs={
                'Out': out,
            },
            attrs={'max_depth': self._max_depth},
        )
L
lujun 已提交
3246 3247
        if self._bias_attr:
            pre_activation = self._helper.create_variable_for_type_inference(
3248 3249 3250 3251 3252 3253 3254 3255
                dtype=self._dtype
            )
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [out], 'Y': [self.bias]},
                outputs={'Out': [pre_activation]},
                attrs={'axis': 1},
            )
L
lujun 已提交
3256 3257 3258
        else:
            pre_activation = out
        return self._helper.append_activation(pre_activation, act=self._act)
3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269


class Flatten(layers.Layer):
    """
    This interface is used to construct a callable object of the ``FLatten`` class.
    For more details, refer to code examples.
    It implements flatten a contiguous range of dims into a tensor.

    Parameters:
        start_axis(int): first dim to flatten (default = 1)
        stop_axis(int): last dim to flatten (default = -1).
3270

3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281
    Returns:
        None

    Examples:

        .. code-block:: python

          import paddle
          import numpy as np

          inp_np = np.ones([5, 2, 3, 4]).astype('float32')
Z
Zhou Wei 已提交
3282
          inp_np = paddle.to_tensor(inp_np)
3283 3284 3285 3286 3287 3288
          flatten = paddle.nn.Flatten(start_axis=1, stop_axis=2)
          flatten_res = flatten(inp_np)

    """

    def __init__(self, start_axis=1, stop_axis=-1):
3289
        super().__init__()
3290 3291 3292 3293
        self.start_axis = start_axis
        self.stop_axis = stop_axis

    def forward(self, input):
3294 3295 3296
        out = paddle.tensor.manipulation.flatten(
            input, start_axis=self.start_axis, stop_axis=self.stop_axis
        )
3297
        return out