nn.py 346.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14
"""
15
All layers just related to the neural network.
Y
Yu Yang 已提交
16 17
"""

18 19
from __future__ import print_function

20
import numpy as np
S
sneaxiy 已提交
21
import six
P
peizhilin 已提交
22
import os
S
sneaxiy 已提交
23
import inspect
Y
Yu Yang 已提交
24 25
from ..layer_helper import LayerHelper
from ..initializer import Normal, Constant
S
sneaxiy 已提交
26
from ..framework import Variable, OpProtoHolder
Y
yangyaming 已提交
27
from ..param_attr import ParamAttr
S
sneaxiy 已提交
28
from .layer_function_generator import autodoc, templatedoc, _generate_doc_string_
29 30
from .tensor import concat
from . import utils
F
fengjiayi 已提交
31
from .. import unique_name
32
from functools import reduce
33
from .. import core
X
Xin Pan 已提交
34
from ..imperative import layers
Y
Yu Yang 已提交
35 36

__all__ = [
X
Xin Pan 已提交
37 38 39 40 41 42 43 44 45 46
    'fc',
    'embedding',
    'dynamic_lstm',
    'dynamic_lstmp',
    'dynamic_gru',
    'gru_unit',
    'linear_chain_crf',
    'crf_decoding',
    'cos_sim',
    'cross_entropy',
47
    'bpr_loss',
X
Xin Pan 已提交
48 49 50 51 52 53 54 55 56 57
    'square_error_cost',
    'chunk_eval',
    'sequence_conv',
    'conv2d',
    'conv3d',
    'sequence_pool',
    'sequence_softmax',
    'softmax',
    'pool2d',
    'pool3d',
58 59
    'adaptive_pool2d',
    'adaptive_pool3d',
X
Xin Pan 已提交
60 61 62 63 64 65 66
    'batch_norm',
    'beam_search_decode',
    'conv2d_transpose',
    'conv3d_transpose',
    'sequence_expand',
    'sequence_expand_as',
    'sequence_pad',
Y
Yibing Liu 已提交
67
    'sequence_unpad',
X
Xin Pan 已提交
68 69 70 71 72 73 74 75
    'lstm_unit',
    'reduce_sum',
    'reduce_mean',
    'reduce_max',
    'reduce_min',
    'reduce_prod',
    'sequence_first_step',
    'sequence_last_step',
Y
Yibing Liu 已提交
76
    'sequence_slice',
X
Xin Pan 已提交
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
    'dropout',
    'split',
    'ctc_greedy_decoder',
    'edit_distance',
    'l2_normalize',
    'matmul',
    'topk',
    'warpctc',
    'sequence_reshape',
    'transpose',
    'im2sequence',
    'nce',
    'hsigmoid',
    'beam_search',
    'row_conv',
    'multiplex',
    'layer_norm',
D
Dun 已提交
94
    'group_norm',
X
Xin Pan 已提交
95 96 97 98 99 100 101 102 103 104 105 106 107
    'softmax_with_cross_entropy',
    'smooth_l1',
    'one_hot',
    'autoincreased_step_counter',
    'reshape',
    'squeeze',
    'unsqueeze',
    'lod_reset',
    'lrn',
    'pad',
    'pad_constant_like',
    'label_smooth',
    'roi_pool',
J
jerrywgz 已提交
108
    'roi_align',
X
Xin Pan 已提交
109 110 111 112
    'dice_loss',
    'image_resize',
    'image_resize_short',
    'resize_bilinear',
113
    'resize_nearest',
X
Xin Pan 已提交
114 115 116 117 118 119
    'gather',
    'scatter',
    'sequence_scatter',
    'random_crop',
    'mean_iou',
    'relu',
C
chengduo 已提交
120
    'selu',
X
Xin Pan 已提交
121 122 123
    'log',
    'crop',
    'rank_loss',
M
minqiyang 已提交
124
    'margin_rank_loss',
X
Xin Pan 已提交
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
    'elu',
    'relu6',
    'pow',
    'stanh',
    'hard_sigmoid',
    'swish',
    'prelu',
    'brelu',
    'leaky_relu',
    'soft_relu',
    'flatten',
    'sequence_mask',
    'stack',
    'pad2d',
    'unstack',
    'sequence_enumerate',
    'expand',
    'sequence_concat',
    'scale',
    'elementwise_add',
    'elementwise_div',
    'elementwise_sub',
    'elementwise_mul',
    'elementwise_max',
    'elementwise_min',
    'elementwise_pow',
    'uniform_random_batch_size_like',
    'gaussian_random',
    'sampling_id',
    'gaussian_random_batch_size_like',
    'sum',
    'slice',
    'shape',
    'logical_and',
    'logical_or',
    'logical_xor',
    'logical_not',
    'clip',
    'clip_by_norm',
    'mean',
    'mul',
    'sigmoid_cross_entropy_with_logits',
    'maxout',
J
JiabinYang 已提交
168
    'space_to_depth',
W
whs 已提交
169
    'affine_grid',
S
sneaxiy 已提交
170
    'sequence_reverse',
171
    'affine_channel',
B
barrierye 已提交
172
    'similarity_focus',
M
minqiyang 已提交
173
    'hash',
D
dengkaipeng 已提交
174
    'grid_sampler',
G
gmcather 已提交
175 176
    'log_loss',
    'add_position_encoding',
Q
Qiao Longfei 已提交
177
    'bilinear_tensor_product',
C
chengduo 已提交
178 179
    'merge_selected_rows',
    'get_tensor_from_selected_rows',
P
phlrain 已提交
180
    'lstm',
S
sneaxiy 已提交
181
    'py_func',
182
    'psroi_pool',
M
minqiyang 已提交
183
    'huber_loss',
Y
Yu Yang 已提交
184 185
]

J
jerrywgz 已提交
186 187
kIgnoreIndex = -100

Y
Yu Yang 已提交
188 189 190 191 192 193 194

def fc(input,
       size,
       num_flatten_dims=1,
       param_attr=None,
       bias_attr=None,
       act=None,
J
Jacek Czaja 已提交
195
       is_test=False,
196
       name=None):
Y
Yu Yang 已提交
197
    """
198
    **Fully Connected Layer**
Y
Yu Yang 已提交
199

200 201 202 203 204 205 206 207
    This function creates a fully connected layer in the network. It can take
    multiple tensors as its inputs. It creates a variable called weights for
    each input tensor, which represents a fully connected weight matrix from
    each input unit to each output unit. The fully connected layer multiplies
    each input tensor with its coresponding weight to produce an output Tensor.
    If multiple input tensors are given, the results of multiple multiplications
    will be sumed up. If bias_attr is not None, a bias variable will be created
    and added to the output. Finally, if activation is not None, it will be applied
F
fengjiayi 已提交
208
    to the output as well.
C
caoying03 已提交
209

C
caoying03 已提交
210
    This process can be formulated as follows:
211 212 213

    .. math::

214
        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
215 216 217

    In the above equation:

C
caoying03 已提交
218 219 220 221
    * :math:`N`: Number of the input.
    * :math:`X_i`: The input tensor.
    * :math:`W`: The weights created by this layer.
    * :math:`b`: The bias parameter created by this layer (if needed).
222
    * :math:`Act`: The activation function.
C
caoying03 已提交
223
    * :math:`Out`: The output tensor.
Y
Yu Yang 已提交
224 225

    Args:
R
ranqiu 已提交
226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
        input (Variable|list of Variable): The input tensor(s) of this layer, and the dimension of
            the input tensor(s) is at least 2.
        size(int): The number of output units in this layer.
        num_flatten_dims (int, default 1): The fc layer can accept an input tensor with more than
            two dimensions. If this happens, the multidimensional tensor will first be flattened
            into a 2-dimensional matrix. The parameter `num_flatten_dims` determines how the input
            tensor is flattened: the first `num_flatten_dims` (inclusive, index starts from 1)
            dimensions will be flatten to form the first dimension of the final matrix (height of
            the matrix), and the rest `rank(X) - num_flatten_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, suppose
            `X` is a 6-dimensional tensor with a shape [2, 3, 4, 5, 6], and `num_flatten_dims` = 3.
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30].
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for learnable
            parameters/weights of this layer.
        bias_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for the bias
241 242
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
R
ranqiu 已提交
243
        act (str, default None): Activation to be applied to the output of this layer.
J
Jacek Czaja 已提交
244
        is_test(bool): A flag indicating whether execution is in test phase.
R
ranqiu 已提交
245
        name (str, default None): The name of this layer.
Y
Yu Yang 已提交
246

247
    Returns:
F
fengjiayi 已提交
248
        Variable: The transformation result.
249 250

    Raises:
C
caoying03 已提交
251
        ValueError: If rank of the input tensor is less than 2.
252 253 254 255

    Examples:
        .. code-block:: python

F
fengjiayi 已提交
256
          data = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
257
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
Y
Yu Yang 已提交
258
    """
C
caoying03 已提交
259

C
caoying03 已提交
260
    helper = LayerHelper("fc", **locals())
Y
Yu Yang 已提交
261 262 263 264

    dtype = helper.input_dtype()

    mul_results = []
265 266
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
Y
Yu Yang 已提交
267 268 269
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
ying 已提交
270

Y
Yu Yang 已提交
271
        w = helper.create_parameter(
272
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
273
        tmp = helper.create_variable_for_type_inference(dtype)
274
        helper.append_op(
275 276 277
            type="mul",
            inputs={"X": input_var,
                    "Y": w},
278
            outputs={"Out": tmp},
M
mozga-intel 已提交
279 280
            attrs={"x_num_col_dims": num_flatten_dims,
                   "y_num_col_dims": 1})
281 282 283 284
        mul_results.append(tmp)

    if len(mul_results) == 1:
        pre_bias = mul_results[0]
285
    else:
X
Xin Pan 已提交
286
        pre_bias = helper.create_variable_for_type_inference(dtype)
287
        helper.append_op(
288 289 290
            type="sum",
            inputs={"X": mul_results},
            outputs={"Out": pre_bias},
X
Xin Pan 已提交
291
            attrs={"use_mkldnn": False})
292 293 294 295
    # add bias
    pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
    # add activation
    return helper.append_activation(pre_activation)
Y
Yu Yang 已提交
296 297


298 299 300
def embedding(input,
              size,
              is_sparse=False,
301
              is_distributed=False,
302 303 304
              padding_idx=None,
              param_attr=None,
              dtype='float32'):
Y
Yu Yang 已提交
305
    """
306 307
    **Embedding Layer**

308
    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
309 310
    a lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.
311 312 313

    All the input variables are passed in as local variables to the LayerHelper
    constructor.
Y
Yu Yang 已提交
314 315

    Args:
316 317 318 319 320
        input(Variable): The tensor variable containing the IDs.
        size(tuple|list): The shape of the look up table parameter. It should
            have two elements which indicate the size of the dictionary of
            embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update.
321
        is_distributed(bool): Whether to run lookup table from remote parameter server.
322 323
        padding_idx(int|long|None): If :attr:`None`, it makes no effect to lookup.
            Otherwise the given :attr:`padding_idx` indicates padding the output
324
            with zeros whenever lookup encounters it in :attr:`input`. If
325
            :math:`padding_idx < 0`, the :attr:`padding_idx` to use in lookup is
326 327
            :math:`size[0] + dim`.
        param_attr(ParamAttr): Parameters for this layer
328
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
Y
Yu Yang 已提交
329

330 331 332
    Returns:
        Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.
Y
Yu Yang 已提交
333

334 335
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
336

C
chengduoZH 已提交
337
          dict_size = len(dataset.ids)
338
          data = fluid.layers.data(name='ids', shape=[32, 32], dtype='float32')
C
chengduoZH 已提交
339
          fc = fluid.layers.embedding(input=data, size=[dict_size, 16])
Y
Yu Yang 已提交
340 341 342
    """

    helper = LayerHelper('embedding', **locals())
343 344 345
    remote_prefetch = False
    if os.environ.get('PADDLE_ENABLE_REMOTE_PREFETCH'):
        remote_prefetch = True
Q
Qiao Longfei 已提交
346 347
    if remote_prefetch:
        assert is_sparse is True and is_distributed is False
Y
Yu Yang 已提交
348 349
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
350
    tmp = helper.create_variable_for_type_inference(dtype)
351 352
    padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
        size[0] + padding_idx)
Y
Yu Yang 已提交
353 354 355 356 357
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
        outputs={'Out': tmp},
358 359 360
        attrs={
            'is_sparse': is_sparse,
            'is_distributed': is_distributed,
Q
Qiao Longfei 已提交
361
            'remote_prefetch': remote_prefetch,
362 363
            'padding_idx': padding_idx
        })
Y
Yu Yang 已提交
364 365 366
    return tmp


W
wopeizl 已提交
367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382
@templatedoc(op_type="lstm")
def dynamic_lstm(input,
                 size,
                 h_0=None,
                 c_0=None,
                 param_attr=None,
                 bias_attr=None,
                 use_peepholes=True,
                 is_reverse=False,
                 gate_activation='sigmoid',
                 cell_activation='tanh',
                 candidate_activation='tanh',
                 dtype='float32',
                 name=None):
    """
    ${comment}
Y
Yibing Liu 已提交
383

W
wopeizl 已提交
384 385 386 387 388 389 390 391 392 393 394
    Args:
        input (Variable): ${input_comment}
        size (int): 4 * hidden size.
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the hidden size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
Y
Yu Yang 已提交
395

W
wopeizl 已提交
396 397 398 399
                               - Weights = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}
                               - The shape is (D x 4D), where D is the hidden
                                 size.
Y
Yu Yang 已提交
400

W
wopeizl 已提交
401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486
                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                 - Biases = {:math:`b_c, b_i, b_f, b_o`}.
                                 - The shape is (1 x 4D).
                              2. `use_peepholes = True`
                                 - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
                                 - The shape is (1 x 7D).

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
        use_peepholes (bool): ${use_peepholes_comment}
        is_reverse (bool): ${is_reverse_comment}
        gate_activation (str): ${gate_activation_comment}
        cell_activation (str): ${cell_activation_comment}
        candidate_activation (str): ${candidate_activation_comment}
        dtype (str): Data type. Choices = ["float32", "float64"], default "float32".
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.

    Returns:
        tuple: The hidden state, and cell state of LSTM. The shape of both \
        is (T x D), and lod is the same with the `input`.

    Examples:
        .. code-block:: python

            hidden_dim = 512
            forward_proj = fluid.layers.fc(input=input_seq, size=hidden_dim * 4,
                                           bias_attr=False)
            forward, _ = fluid.layers.dynamic_lstm(
                input=forward_proj, size=hidden_dim * 4, use_peepholes=False)
    """
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
    helper = LayerHelper('lstm', **locals())
    size = size // 4
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 4 * size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    hidden = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, size), \
            'The shape of h0 should be (batch_size, %d)' % size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0

    helper.append_op(
        type='lstm',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'Cell': cell,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation
        })
    return hidden, cell
Y
Yu Yang 已提交
487 488


P
phlrain 已提交
489 490 491 492 493 494
def lstm(input,
         init_h,
         init_c,
         max_len,
         hidden_size,
         num_layers,
P
phlrain 已提交
495
         dropout_prob=0.0,
P
phlrain 已提交
496 497 498 499 500
         is_bidirec=False,
         is_test=False,
         name=None,
         default_initializer=None,
         seed=-1):
L
liuhongyu 已提交
501
    """
P
phlrain 已提交
502
    If Device is GPU, This op will use cudnn LSTM implementation
L
liuhongyu 已提交
503 504

    A four-gate Long Short-Term Memory network with no peephole connections.
505
    In the forward pass the output ht and cell output ct for a given iteration can be computed from the recurrent input ht-1,
L
liuhongyu 已提交
506 507
    the cell input ct-1 and the previous layer input xt given matrices W, R and biases bW, bR from the following equations:

P
phlrain 已提交
508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530
    $$ i_t = \\sigma(W_{ix}x_{t} + W_{ih}h_{t-1} + bx_i + bh_i) $$

    $$ f_t = \\sigma(W_{fx}x_{t} + W_{fh}h_{t-1} + bx_f + bh_f) $$

    $$ o_t = \\sigma(W_{ox}x_{t} + W_{oh}h_{t-1} + bx_o + bh_o) $$

    $$ \\tilde{c_t} = tanh(W_{cx}x_t + W_{ch}h_{t-1} + bx_c + bh_c) $$

    $$ c_t = f_t \\odot c_{t-1} + i_t \\odot \\tilde{c_t} $$

    $$ h_t = o_t \\odot tanh(c_t) $$

    - W terms denote weight matrices (e.g. $W_{ix}$ is the matrix
      of weights from the input gate to the input)
    - The b terms denote bias vectors ($bx_i$ and $bh_i$ are the input gate bias vector).
    - sigmoid is the logistic sigmoid function.
    - $i, f, o$ and $c$ are the input gate, forget gate, output gate,
      and cell activation vectors, respectively, all of which have the same size as
      the cell output activation vector $h$.
    - The $\odot$ is the element-wise product of the vectors.
    - `tanh` is the activation functions.
    - $\tilde{c_t}$ is also called candidate hidden state,
      which is computed based on the current input and the previous hidden state.
L
liuhongyu 已提交
531

532
    Where sigmoid is the sigmoid operator: sigmoid(x) = 1 / (1 + e^-x), * represents a point-wise multiplication,
L
liuhongyu 已提交
533 534 535 536 537
    X represensts a matrix multiplication


    Args:
        input (Variable): LSTM input tensor, shape MUST be ( seq_len x batch_size x input_size )
538
        init_h(Variable): The initial hidden state of the LSTM
L
liuhongyu 已提交
539 540 541 542 543
                       This is a tensor with shape ( num_layers x batch_size x hidden_size)
                       if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
        init_c(Variable): The initial cell state of the LSTM.
                       This is a tensor with shape ( num_layers x batch_size x hidden_size )
                       if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
544
        max_len (int): max length of LSTM. the first dim of input tensor CAN NOT greater than max_len
L
liuhongyu 已提交
545 546
        hidden_size (int): hidden size of the LSTM
        num_layers (int): total layers number of the LSTM
P
phlrain 已提交
547 548
        dropout_prob(float|0.0): dropout prob, dropout ONLY work between rnn layers, NOT between time steps
                             There is NO dropout work on rnn output of the last RNN layers
L
liuhongyu 已提交
549 550 551 552 553 554
        is_bidirec (bool): If it is bidirectional
        is_test (bool): If it is in test phrase
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
        default_initializer(Initialize|None): Where use initializer to initialize the Weight
                         If set None, defaule initializer will be used
P
phlrain 已提交
555
        seed(int): Seed for dropout in LSTM, If it's -1, dropout will use random seed
P
phlrain 已提交
556

L
liuhongyu 已提交
557 558 559 560 561 562

    Returns:
        rnn_out(Tensor): result of LSTM hidden, shape is (seq_len x batch_size x hidden_size)
                         if is_bidirec set to True, shape will be ( seq_len x batch_sze x hidden_size*2)
        last_h(Tensor): the hidden state of the last step of LSTM
                        shape is ( num_layers x batch_size x hidden_size )
563
                        if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)
L
liuhongyu 已提交
564 565
        last_c(Tensor): the cell state of the last step of LSTM
                        shape is ( num_layers x batch_size x hidden_size )
566
                        if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)
L
liuhongyu 已提交
567 568 569 570 571 572 573 574 575 576 577 578 579 580 581


    Examples:
        .. code-block:: python

            input = embedding
            batch_size = 20
            max_len = 100
            dropout_prob = 0.2
            input_size = 100
            hidden_size = 150
            num_layers = 1
            init_hidden1 = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0, stop_grad=False)
            init_cell1 = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0, stop_grad=False)

P
phlrain 已提交
582
            rnn_out, last_h, last_c = layers.lstm( input, init_h, init_c, \
L
liuhongyu 已提交
583 584 585 586 587 588
                    max_len, dropout_prob, input_size, hidden_size, \
                    num_layers)
    """

    helper = LayerHelper('cudnn_lstm', **locals())

P
phlrain 已提交
589 590 591
    dtype = input.dtype
    input_shape = list(input.shape)
    input_size = input_shape[-1]
L
liuhongyu 已提交
592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650
    weight_size = 0
    for i in range(num_layers):
        if i == 0:
            input_weight_size = (input_size * hidden_size) * 4
        else:
            if is_bidirec:
                input_weight_size = (hidden_size * 2 * hidden_size) * 4
            else:
                input_weight_size = (hidden_size * hidden_size) * 4

        hidden_weight_size = (hidden_size * hidden_size) * 4

        if is_bidirec:
            weight_size += (input_weight_size + hidden_weight_size) * 2
            weight_size += hidden_size * 8 * 2
        else:
            weight_size += input_weight_size + hidden_weight_size
            weight_size += hidden_size * 8

    weight = helper.create_parameter(
        attr=helper.param_attr,
        shape=[weight_size],
        dtype=dtype,
        default_initializer=default_initializer)

    out = helper.create_variable_for_type_inference(dtype)
    last_h = helper.create_variable_for_type_inference(dtype)
    last_c = helper.create_variable_for_type_inference(dtype)

    cache = helper.create_variable(
        persistable=True, type=core.VarDesc.VarType.RAW, stop_gradient=True)

    helper.append_op(
        type='cudnn_lstm',
        inputs={
            'Input': input,
            'InitH': init_h,
            'InitC': init_c,
            'W': weight,
            'Cache': cache,
        },
        outputs={
            'Out': out,
            'last_h': last_h,
            'last_c': last_c,
        },
        attrs={
            'max_len': max_len,
            'is_bidirec': is_bidirec,
            'input_size': input_size,
            'hidden_size': hidden_size,
            'num_layers': num_layers,
            'is_test': is_test,
            'dropout_prob': dropout_prob,
            'seed': seed,
        })
    return out, last_h, last_c


Y
Yibing Liu 已提交
651 652 653 654 655 656 657 658 659 660 661
def dynamic_lstmp(input,
                  size,
                  proj_size,
                  param_attr=None,
                  bias_attr=None,
                  use_peepholes=True,
                  is_reverse=False,
                  gate_activation='sigmoid',
                  cell_activation='tanh',
                  candidate_activation='tanh',
                  proj_activation='tanh',
662 663
                  dtype='float32',
                  name=None):
Y
Yibing Liu 已提交
664 665 666
    """
    **Dynamic LSTMP Layer**

667 668 669 670 671 672
    LSTMP (LSTM with recurrent projection) layer has a separate projection
    layer after the LSTM layer, projecting the original hidden state to a
    lower-dimensional one, which is proposed to reduce the number of total
    parameters and furthermore computational complexity for the LSTM,
    espeacially for the case that the size of output units is relative
    large (https://research.google.com/pubs/archive/43905.pdf).
Y
Yibing Liu 已提交
673 674 675 676 677

    The formula is as follows:

    .. math::

678
        i_t & = \sigma(W_{ix}x_{t} + W_{ir}r_{t-1} + W_{ic}c_{t-1} + b_i)
Y
Yibing Liu 已提交
679

680
        f_t & = \sigma(W_{fx}x_{t} + W_{fr}r_{t-1} + W_{fc}c_{t-1} + b_f)
Y
Yibing Liu 已提交
681

682
        \\tilde{c_t} & = act_g(W_{cx}x_t + W_{cr}r_{t-1} + b_c)
Y
Yibing Liu 已提交
683

684
        o_t & = \sigma(W_{ox}x_{t} + W_{or}r_{t-1} + W_{oc}c_t + b_o)
Y
Yibing Liu 已提交
685

686
        c_t & = f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}
Y
Yibing Liu 已提交
687

688
        h_t & = o_t \odot act_h(c_t)
Y
Yibing Liu 已提交
689

690
        r_t & = \overline{act_h}(W_{rh}h_t)
Y
Yibing Liu 已提交
691

Y
Yibing Liu 已提交
692 693 694 695 696 697
    In the above formula:

    * :math:`W`: Denotes weight matrices (e.g. :math:`W_{xi}` is \
          the matrix of weights from the input gate to the input).
    * :math:`W_{ic}`, :math:`W_{fc}`, :math:`W_{oc}`: Diagonal weight \
          matrices for peephole connections. In our implementation, \
698
          we use vectors to reprenset these diagonal weight matrices.
Y
Yibing Liu 已提交
699
    * :math:`b`: Denotes bias vectors (e.g. :math:`b_i` is the input gate \
700
          bias vector).
Y
Yibing Liu 已提交
701 702 703
    * :math:`\sigma`: The activation, such as logistic sigmoid function.
    * :math:`i, f, o` and :math:`c`: The input gate, forget gate, output \
          gate, and cell activation vectors, respectively, all of which have \
704
          the same size as the cell output activation vector :math:`h`.
Y
Yibing Liu 已提交
705
    * :math:`h`: The hidden state.
706
    * :math:`r`: The recurrent projection of the hidden state.
Y
Yibing Liu 已提交
707 708
    * :math:`\\tilde{c_t}`: The candidate hidden state, whose \
          computation is based on the current input and previous hidden state.
709
    * :math:`\odot`: The element-wise product of the vectors.
Y
Yibing Liu 已提交
710
    * :math:`act_g` and :math:`act_h`: The cell input and cell output \
711
          activation functions and `tanh` is usually used for them.
Y
Yibing Liu 已提交
712 713
    * :math:`\overline{act_h}`: The activation function for the projection \
          output, usually using `identity` or same as :math:`act_h`.
Y
Yibing Liu 已提交
714 715 716 717

    Set `use_peepholes` to `False` to disable peephole connection. The formula
    is omitted here, please refer to the paper
    http://www.bioinf.jku.at/publications/older/2604.pdf for details.
718

Y
Yibing Liu 已提交
719 720 721 722 723 724 725 726 727 728 729 730
    Note that these :math:`W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}`
    operations on the input :math:`x_{t}` are NOT included in this operator.
    Users can choose to use fully-connected layer before LSTMP layer.

    Args:
        input(Variable): The input of dynamic_lstmp layer, which supports
                         variable-time length input sequence. The underlying
                         tensor in this Variable is a matrix with shape
                         (T X 4D), where T is the total time steps in this
                         mini-batch, D is the hidden size.
        size(int): 4 * hidden size.
        proj_size(int): The size of projection output.
731
        param_attr(ParamAttr|None): The parameter attribute for the learnable
Y
Yibing Liu 已提交
732 733
                               hidden-hidden weight and projection weight.

734 735
                               - Hidden-hidden weight = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}.
736 737
                               - The shape of hidden-hidden weight is (P x 4D),
                                 where P is the projection size and D the hidden
Y
Yibing Liu 已提交
738 739
                                 size.
                               - Projection weight = {:math:`W_{rh}`}.
740
                               - The shape of projection weight is (D x P).
C
chengduo 已提交
741 742 743 744 745

                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
746
        bias_attr(ParamAttr|None): The bias attribute for the learnable bias
Y
Yibing Liu 已提交
747 748 749 750 751 752
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                - Biases = {:math:`b_c, b_i, b_f, b_o`}.
753
                                - The shape is (1 x 4D).
Y
Yibing Liu 已提交
754 755 756
                              2. `use_peepholes = True`
                                - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
757
                                - The shape is (1 x 7D).
C
chengduo 已提交
758 759 760 761 762

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
Y
Yibing Liu 已提交
763 764 765 766 767 768 769 770 771
        use_peepholes(bool): Whether to enable diagonal/peephole connections,
                             default `True`.
        is_reverse(bool): Whether to compute reversed LSTM, default `False`.
        gate_activation(str): The activation for input gate, forget gate and
                              output gate. Choices = ["sigmoid", "tanh", "relu",
                              "identity"], default "sigmoid".
        cell_activation(str): The activation for cell output. Choices = ["sigmoid",
                              "tanh", "relu", "identity"], default "tanh".
        candidate_activation(str): The activation for candidate hidden state.
772
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
773 774
                              default "tanh".
        proj_activation(str): The activation for projection output.
775
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
776 777
                              default "tanh".
        dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
778 779
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
Y
Yibing Liu 已提交
780 781

    Returns:
782 783 784 785
        tuple: A tuple of two output variable: the projection of hidden state, \
               and cell state of LSTMP. The shape of projection is (T x P), \
               for the cell state which is (T x D), and both LoD is the same \
               with the `input`.
Y
Yibing Liu 已提交
786 787

    Examples:
788

Y
Yibing Liu 已提交
789 790
        .. code-block:: python

791 792 793 794
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
Y
Yibing Liu 已提交
795
            hidden_dim, proj_dim = 512, 256
796
            fc_out = fluid.layers.fc(input=emb, size=hidden_dim * 4,
Y
Yibing Liu 已提交
797
                                     act=None, bias_attr=None)
798 799 800
            proj_out, _ = fluid.layers.dynamic_lstmp(input=fc_out,
                                                     size=hidden_dim * 4,
                                                     proj_size=proj_dim,
Y
Yibing Liu 已提交
801 802 803 804
                                                     use_peepholes=False,
                                                     is_reverse=True,
                                                     cell_activation="tanh",
                                                     proj_activation="tanh")
Y
Yibing Liu 已提交
805
    """
806

C
chengduo 已提交
807
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
Y
Yibing Liu 已提交
808
    helper = LayerHelper('lstmp', **locals())
M
minqiyang 已提交
809
    size = size // 4
Y
Yibing Liu 已提交
810 811 812 813 814 815 816 817 818 819
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[proj_size, 4 * size], dtype=dtype)
    proj_weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, proj_size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

X
Xin Pan 已提交
820 821 822 823 824 825
    projection = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    ordered_proj0 = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853

    helper.append_op(
        type='lstmp',
        inputs={
            'Input': input,
            'Weight': weight,
            'ProjWeight': proj_weight,
            'Bias': bias
        },
        outputs={
            'Projection': projection,
            'Cell': cell,
            'OrderedP0': ordered_proj0,
            'BatchHidden': batch_hidden,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation,
            'proj_activation': proj_activation
        })
    return projection, cell


G
guosheng 已提交
854 855 856 857 858 859 860 861 862
def dynamic_gru(input,
                size,
                param_attr=None,
                bias_attr=None,
                is_reverse=False,
                gate_activation='sigmoid',
                candidate_activation='tanh',
                h_0=None):
    """
863
    **Gated Recurrent Unit (GRU) Layer**
G
guosheng 已提交
864

865
    Refer to `Empirical Evaluation of Gated Recurrent Neural Networks on
866
    Sequence Modeling <https://arxiv.org/abs/1412.3555>`_ .
867

G
guosheng 已提交
868 869 870 871 872 873 874 875 876
    The formula is as follows:

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)
877

G
guosheng 已提交
878
        h_t & = (1-u_t) \odot h_{t-1} + u_t \odot \\tilde{h_t}
879

G
guosheng 已提交
880
    The :math:`\odot` is the element-wise product of the vectors. :math:`act_g`
881 882
    is the update gate and reset gate activation function and :math:`sigmoid`
    is usually used for it. :math:`act_c` is the activation function for
G
guosheng 已提交
883 884 885 886
    candidate hidden state and :math:`tanh` is usually used for it.

    Note that these :math:`W_{ux}x_{t}, W_{rx}x_{t}, W_{cx}x_{t}` operations on
    the input :math:`x_{t}` are NOT included in this operator. Users can choose
887
    to use fully-connect layer before GRU layer.
G
guosheng 已提交
888 889

    Args:
890 891
        input(Variable): The input of dynamic_gru layer, which supports
            variable-time length input sequence. The underlying tensor in this
G
guosheng 已提交
892
            Variable is a matrix with shape :math:`(T \\times 3D)`, where
893
            :math:`T` is the total time steps in this mini-batch, :math:`D`
G
guosheng 已提交
894 895
            is the hidden size.
        size(int): The dimension of the gru cell.
896
        param_attr(ParamAttr|None): The parameter attribute for the learnable
G
guosheng 已提交
897 898
            hidden-hidden weight matrix. Note:

899
            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
G
guosheng 已提交
900
              :math:`D` is the hidden size.
901
            - All elements in the weight matrix can be divided into two parts.
G
guosheng 已提交
902
              The first part are weights of the update gate and reset gate with
903
              shape :math:`(D \\times 2D)`, and the second part are weights for
G
guosheng 已提交
904
              candidate hidden state with shape :math:`(D \\times D)`.
905 906 907 908 909

            If it is set to None or one attribute of ParamAttr, dynamic_gru will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
910
            of GRU. Note that the bias with :math:`(1 \\times 3D)` concatenates
911
            the bias in the update gate, reset gate and candidate calculations.
912 913 914
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, dynamic_gru will create ParamAttr as
915 916
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
917
        is_reverse(bool): Whether to compute reversed GRU, default
G
guosheng 已提交
918 919 920
            :attr:`False`.
        gate_activation(str): The activation for update gate and reset gate.
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "sigmoid".
921
        candidate_activation(str): The activation for candidate hidden state.
G
guosheng 已提交
922
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "tanh".
923 924 925 926
        h_0 (Variable): This is initial hidden state. If not set, default is
            zero. This is a tensor with shape (N x D), where N is the number of
            total time steps of input mini-batch feature and D is the hidden
            size.
G
guosheng 已提交
927 928

    Returns:
G
guosheng 已提交
929
        Variable: The hidden state of GRU. The shape is :math:`(T \\times D)`, \
930
            and sequence length is the same with the input.
931

G
guosheng 已提交
932
    Examples:
933

G
guosheng 已提交
934 935
        .. code-block:: python

936 937 938 939
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
G
guosheng 已提交
940
            hidden_dim = 512
941
            x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
T
Tink_Y 已提交
942
            hidden = fluid.layers.dynamic_gru(input=x, size=hidden_dim)
G
guosheng 已提交
943 944 945 946 947 948 949 950 951
    """

    helper = LayerHelper('gru', **locals())
    dtype = helper.input_dtype()

    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=[1, 3 * size], dtype=dtype, is_bias=True)
Y
Yancey 已提交
952
    batch_size = input.shape[0]
G
guosheng 已提交
953
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
S
sneaxiy 已提交
954
    if h_0:
G
guosheng 已提交
955
        assert h_0.shape == (
Y
Yancey 已提交
956 957 958
            batch_size, size
        ), 'The shape of h0 should be(batch_size, %d)' % size
        inputs['H0'] = h_0
G
guosheng 已提交
959

X
Xin Pan 已提交
960 961 962 963
    hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_reset_hidden_prev = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981

    helper.append_op(
        type='gru',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'BatchGate': batch_gate,
            'BatchResetHiddenPrev': batch_reset_hidden_prev,
            'BatchHidden': batch_hidden
        },
        attrs={
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'activation': candidate_activation
        })
    return hidden


Y
Yu Yang 已提交
982 983 984
def gru_unit(input,
             hidden,
             size,
985 986
             param_attr=None,
             bias_attr=None,
Y
Yu Yang 已提交
987
             activation='tanh',
988
             gate_activation='sigmoid'):
Y
Yu Yang 已提交
989
    """
990
    GRU unit layer. The equation of a gru step is:
Y
Yu Yang 已提交
991

992 993
        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)
Y
Yu Yang 已提交
994

995
            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)
Y
Yu Yang 已提交
996

997
            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)
998

999
            h_t & = dot((1-u_t), m_t) + dot(u_t, h_{t-1})
1000 1001

    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
1002 1003 1004
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
1005 1006
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

1007 1008
    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
1009 1010 1011
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.
1012 1013 1014

    Args:
        input (Variable): The fc transformed input value of current step.
1015
        hidden (Variable): The hidden value of gru unit from previous step.
1016
        size (integer): The input dimension value.
1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            hidden-hidden weight matrix. Note:

            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
              :math:`D` is the hidden size.
            - All elements in the weight matrix can be divided into two parts.
              The first part are weights of the update gate and reset gate with
              shape :math:`(D \\times 2D)`, and the second part are weights for
              candidate hidden state with shape :math:`(D \\times D)`.

            If it is set to None or one attribute of ParamAttr, gru_unit will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
1031
            of GRU. Note that the bias with :math:`(1 \\times 3D)` concatenates
1032
            the bias in the update gate, reset gate and candidate calculations.
1033 1034 1035
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, gru_unit will create ParamAttr as
1036 1037
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
1038 1039 1040 1041
        activation (string): The activation type for cell (actNode).
                             Default: 'tanh'
        gate_activation (string): The activation type for gates (actGate).
                                  Default: 'sigmoid'
Y
Yu Yang 已提交
1042

1043 1044 1045 1046 1047 1048
    Returns:
        tuple: The hidden value, reset-hidden value and gate values.

    Examples:

        .. code-block:: python
Y
Yu Yang 已提交
1049

1050
             # assuming we have x_t_data and prev_hidden of size=10
1051
             x_t = fluid.layers.fc(input=x_t_data, size=30)
1052 1053
             hidden_val, r_h_val, gate_val = fluid.layers.gru_unit(input=x_t,
                                                    hidden = prev_hidden)
Y
Yu Yang 已提交
1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065

    """
    activation_dict = dict(
        identity=0,
        sigmoid=1,
        tanh=2,
        relu=3, )
    activation = activation_dict[activation]
    gate_activation = activation_dict[gate_activation]

    helper = LayerHelper('gru_unit', **locals())
    dtype = helper.input_dtype()
M
minqiyang 已提交
1066
    size = size // 3
Y
Yu Yang 已提交
1067 1068

    # create weight
1069 1070
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
Y
Yu Yang 已提交
1071

X
Xin Pan 已提交
1072 1073 1074
    gate = helper.create_variable_for_type_inference(dtype)
    reset_hidden_pre = helper.create_variable_for_type_inference(dtype)
    updated_hidden = helper.create_variable_for_type_inference(dtype)
1075
    inputs = {'Input': input, 'HiddenPrev': hidden, 'Weight': weight}
Y
Yu Yang 已提交
1076
    # create bias
1077
    if helper.bias_attr:
Y
Yu Yang 已提交
1078 1079 1080
        bias_size = [1, 3 * size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
1081
        inputs['Bias'] = bias
Y
Yu Yang 已提交
1082 1083 1084

    helper.append_op(
        type='gru_unit',
1085
        inputs=inputs,
Y
Yu Yang 已提交
1086 1087 1088 1089 1090 1091
        outputs={
            'Gate': gate,
            'ResetHiddenPrev': reset_hidden_pre,
            'Hidden': updated_hidden,
        },
        attrs={
1092 1093
            'activation': 2,  # tanh
            'gate_activation': 1,  # sigmoid
Y
Yu Yang 已提交
1094 1095 1096 1097 1098
        })

    return updated_hidden, reset_hidden_pre, gate


Y
yuyang18 已提交
1099
@templatedoc()
1100
def linear_chain_crf(input, label, param_attr=None):
Y
yuyang18 已提交
1101 1102 1103 1104 1105 1106 1107
    """
    Linear Chain CRF.

    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
D
dzhwinter 已提交
1108
        input(${transition_type}): ${transition_comment}
Y
yuyang18 已提交
1109 1110 1111 1112
        label(${label_type}): ${label_comment}
        param_attr(ParamAttr): The attribute of the learnable parameter.

    Returns:
D
dzhwinter 已提交
1113 1114 1115
        output(${emission_exps_type}): ${emission_exps_comment} \n
        output(${transition_exps_type}): ${transition_exps_comment} \n
        output(${log_likelihood_type}): ${log_likelihood_comment}
Y
yuyang18 已提交
1116 1117

    """
Y
Yu Yang 已提交
1118 1119 1120 1121 1122 1123
    helper = LayerHelper('linear_chain_crf', **locals())
    size = input.shape[1]
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
        dtype=helper.input_dtype())
X
Xin Pan 已提交
1124 1125 1126 1127 1128 1129 1130 1131
    alpha = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    emission_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    transition_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    log_likelihood = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
Y
Yu Yang 已提交
1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146
    helper.append_op(
        type='linear_chain_crf',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood
        })

    return log_likelihood


W
wopeizl 已提交
1147 1148 1149 1150
@templatedoc()
def crf_decoding(input, param_attr, label=None):
    """
    ${comment}
Y
yi.wu 已提交
1151

W
wopeizl 已提交
1152 1153
    Args:
        input(${emission_type}): ${emission_comment}
Y
yi.wu 已提交
1154

W
wopeizl 已提交
1155
        param_attr(ParamAttr): The parameter attribute for training.
Y
yuyang18 已提交
1156

W
wopeizl 已提交
1157
        label(${label_type}): ${label_comment}
1158

W
wopeizl 已提交
1159 1160
    Returns:
        Variable: ${viterbi_path_comment}
Y
yi.wu 已提交
1161

W
wopeizl 已提交
1162 1163
    Examples:
        .. code-block:: python
Y
yi.wu 已提交
1164

W
wopeizl 已提交
1165 1166 1167 1168 1169 1170 1171 1172 1173 1174
           crf_decode = layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
    """
    helper = LayerHelper('crf_decoding', **locals())
    transition = helper.get_parameter(param_attr.name)
    viterbi_path = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    helper.append_op(
        type='crf_decoding',
        inputs={"Emission": [input],
Y
Yu Yang 已提交
1175
                "Transition": transition,
W
wopeizl 已提交
1176 1177
                "Label": label},
        outputs={"ViterbiPath": [viterbi_path]})
Y
Yu Yang 已提交
1178

W
wopeizl 已提交
1179
    return viterbi_path
Y
Yu Yang 已提交
1180 1181


Y
yi.wu 已提交
1182
@templatedoc()
F
fengjiayi 已提交
1183
def cos_sim(X, Y):
Y
Yu Yang 已提交
1184
    """
Y
yi.wu 已提交
1185 1186 1187
    ${comment}

    Args:
1188 1189
        X (Variable): ${x_comment}.
        Y (Variable): ${y_comment}.
F
fengjiayi 已提交
1190

Y
yi.wu 已提交
1191
    Returns:
1192
        Variable: the output of cosine(X, Y).
Y
Yu Yang 已提交
1193
    """
F
fengjiayi 已提交
1194
    helper = LayerHelper('cos_sim', **locals())
X
Xin Pan 已提交
1195 1196 1197
    out = helper.create_variable_for_type_inference(dtype=X.dtype)
    xnorm = helper.create_variable_for_type_inference(dtype=X.dtype)
    ynorm = helper.create_variable_for_type_inference(dtype=X.dtype)
Y
Yu Yang 已提交
1198 1199 1200 1201 1202 1203 1204 1205 1206 1207
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
    return out


P
phlrain 已提交
1208 1209 1210 1211 1212
def dropout(x,
            dropout_prob,
            is_test=False,
            seed=None,
            name=None,
P
phlrain 已提交
1213
            dropout_implementation="downgrade_in_infer"):
1214 1215 1216 1217 1218
    """
    Computes dropout.

    Drop or keep each element of `x` independently. Dropout is a regularization
    technique for reducing overfitting by preventing neuron co-adaption during
1219
    training. The dropout operator randomly sets (according to the given dropout
1220 1221 1222 1223
    probability) the outputs of some units to zero, while others are remain
    unchanged.

    Args:
1224 1225
        x (Variable): The input tensor variable.
        dropout_prob (float): Probability of setting units to zero.
1226 1227 1228 1229 1230 1231 1232
        is_test (bool): A flag indicating whether it is in test phrase or not.
        seed (int): A Python integer used to create random seeds. If this
                    parameter is set to None, a random seed is used.
                    NOTE: If an integer seed is given, always the same output
                    units will be dropped. DO NOT use a fixed seed in training.
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
P
phlrain 已提交
1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243
        dropout_implementation(string): ['downgrade_in_infer'(defauld)|'upscale_in_train']
                                        1. downgrade_in_infer(default), downgrade the outcome at inference
                                           train: out = input * mask
                                           inference: out = input * dropout_prob
                                           (make is a tensor same shape with input, value is 0 or 1
                                            ratio of 0 is dropout_prob)
                                        2. upscale_in_train, upscale the outcome at training time
                                           train: out = input * mask / ( 1.0 - dropout_prob )
                                           inference: out = input
                                           (make is a tensor same shape with input, value is 0 or 1
                                            ratio of 0 is dropout_prob)
1244
                                           dropout op can be removed from the program.
P
phlrain 已提交
1245
                                           the program will be efficient
1246

P
phlrain 已提交
1247

1248 1249

    Returns:
1250
        Variable: A tensor variable is the shape with `x`.
1251 1252

    Examples:
1253

1254 1255
        .. code-block:: python

1256 1257
            x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
            droped = fluid.layers.dropout(x, dropout_prob=0.5)
1258 1259
    """

F
fengjiayi 已提交
1260
    helper = LayerHelper('dropout', **locals())
X
Xin Pan 已提交
1261 1262 1263
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    mask = helper.create_variable_for_type_inference(
        dtype=x.dtype, stop_gradient=True)
C
chengduo 已提交
1264 1265 1266 1267

    if (seed is None or seed == 0) and helper.main_program.random_seed != 0:
        seed = helper.main_program.random_seed

1268 1269 1270 1271 1272
    helper.append_op(
        type='dropout',
        inputs={'X': [x]},
        outputs={'Out': [out],
                 'Mask': [mask]},
1273 1274 1275 1276
        attrs={
            'dropout_prob': dropout_prob,
            'is_test': is_test,
            'fix_seed': seed is not None,
P
phlrain 已提交
1277 1278
            'seed': seed if seed is not None else 0,
            'dropout_implementation': dropout_implementation,
1279
        })
1280 1281 1282
    return out


J
jerrywgz 已提交
1283
def cross_entropy(input, label, soft_label=False, ignore_index=kIgnoreIndex):
Y
Yu Yang 已提交
1284
    """
Y
Yibing Liu 已提交
1285 1286
    **Cross Entropy Layer**

1287 1288 1289
    This layer computes the cross entropy between `input` and `label`. It
    supports both standard cross-entropy and soft-label cross-entropy loss
    computation.
Y
Yibing Liu 已提交
1290 1291

    1) One-hot cross-entropy:
F
fengjiayi 已提交
1292
        `soft_label = False`, `Label[i, 0]` indicates the class index for sample i:
Y
yangyaming 已提交
1293

Y
Yibing Liu 已提交
1294
        .. math::
Y
yangyaming 已提交
1295

Y
Yibing Liu 已提交
1296 1297 1298
            Y[i] = -\log(X[i, Label[i]])

    2) Soft-label cross-entropy:
F
fengjiayi 已提交
1299 1300
        `soft_label = True`, `Label[i, j]` indicates the soft label of class j
        for sample i:
Y
Yibing Liu 已提交
1301 1302 1303 1304 1305

        .. math::

            Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}

Y
Yibing Liu 已提交
1306
       Please make sure that in this case the summation of each row of `label`
Y
Yibing Liu 已提交
1307 1308 1309
       equals one.

    3) One-hot cross-entropy with vecterized `label`:
F
fengjiayi 已提交
1310 1311
         As a special case of 2), when each row of 'label' has only one
         non-zero element which is equal to 1, soft-label cross-entropy degenerates
Y
Yibing Liu 已提交
1312
         to a one-hot cross-entropy with one-hot label representation.
Y
yangyaming 已提交
1313

Y
Yibing Liu 已提交
1314
    Args:
Y
yangyaming 已提交
1315
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
1316 1317 1318 1319
                                batch size and D is the number of classes. This
                                input is a probability computed by the previous
                                operator, which is almost always the result of
                                a softmax operator.
Y
yangyaming 已提交
1320
        label (Variable|list): the ground truth which is a 2-D tensor. When
1321 1322 1323 1324
                               `soft_label` is set to `False`, `label` is a
                               tensor<int64> with shape [N x 1]. When
                               `soft_label` is set to `True`, `label` is a
                               tensor<float/double> with shape [N x D].
F
fengjiayi 已提交
1325
        soft_label (bool): a flag indicating whether to
1326
                                           interpretate the given labels as soft
1327
                                           labels. Default: `False`.
M
minqiyang 已提交
1328 1329
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
J
jerrywgz 已提交
1330
                            if soft_label is set to False. Default: kIgnoreIndex
Y
Yibing Liu 已提交
1331 1332 1333 1334 1335

    Returns:
         A 2-D tensor with shape [N x 1], the cross entropy loss.

    Raises:
1336 1337 1338 1339 1340
        `ValueError`: 1) the 1st dimension of `input` and `label` are not equal.
                      2) when `soft_label == True`, and the 2nd dimension of
                         `input` and `label` are not equal.
                      3) when `soft_label == False`, and the 2nd dimension of
                         `label` is not 1.
Y
Yibing Liu 已提交
1341 1342 1343 1344 1345 1346

    Examples:
        .. code-block:: python

          predict = fluid.layers.fc(input=net, size=classdim, act='softmax')
          cost = fluid.layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
1347
    """
F
fengjiayi 已提交
1348
    helper = LayerHelper('cross_entropy', **locals())
X
Xin Pan 已提交
1349
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1350 1351 1352 1353 1354
    helper.append_op(
        type='cross_entropy',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
1355 1356
        attrs={"soft_label": soft_label,
               "ignore_index": ignore_index})
Y
Yu Yang 已提交
1357 1358 1359
    return out


F
frankwhzhang 已提交
1360
def bpr_loss(input, label, name=None):
F
frankwhzhang 已提交
1361 1362 1363
    """
    Bayesian Personalized Ranking Loss Operator.

1364
    This operator belongs to pairwise ranking loss. Label is the desired item.
F
frankwhzhang 已提交
1365 1366 1367 1368 1369 1370
    The loss at a given point in one session is defined as:
    $Y[i] = -\frac{1}{N_{i}-1} * \sum_{0\le j<N_{i},~ j\neq Label[i]}\log(\sigma(X[i, Label[i]]-X[i, j]))$

    Learn more details by reading paper <session-based recommendations with recurrent
    neural networks>(https://arxiv.org/abs/1511.06939)

1371 1372 1373 1374 1375 1376
    Args:
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
                                batch size and D is the number of classes.
                                This input is not probability but logits.
        label (Variable|list):  the ground truth which is a 2-D tensor.  `label`
                                is a tensor<int64> with shape [N x 1].
F
frankwhzhang 已提交
1377 1378
        name (str|None):        A name for this layer(optional). If set None, the
                                layer will be named automatically. Default: None.
1379 1380 1381
    Returns:
        A 2-D tensor with shape [N x 1], the bpr loss.

F
frankwhzhang 已提交
1382 1383 1384
    Examples:
        .. code-block:: python

1385
          cost = fluid.layers.bpr_loss(input=predict, label=label)
F
frankwhzhang 已提交
1386
    """
1387 1388 1389 1390 1391 1392

    helper = LayerHelper('bpr_loss', **locals())
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    helper.append_op(
        type='bpr_loss',
        inputs={'X': [input],
1393
                'Label': [label]},
1394 1395 1396 1397
        outputs={'Y': [out]})
    return out


F
fengjiayi 已提交
1398
def square_error_cost(input, label):
Y
Yu Yang 已提交
1399
    """
1400 1401
    **Square error cost layer**

1402 1403
    This layer accepts input predictions and target label and returns the
    squared error cost.
Y
ying 已提交
1404

1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417
    For predictions, :math:`X`, and target labels, :math:`Y`, the equation is:

    .. math::

        Out = (X - Y)^2

    In the above equation:

        * :math:`X`: Input predictions, a tensor.
        * :math:`Y`: Input labels, a tensor.
        * :math:`Out`: Output value, same shape with :math:`X`.

    Args:
1418 1419
        input (Variable): Input tensor, has predictions.
        label (Variable): Label tensor, has target labels.
1420 1421

    Returns:
G
guosheng 已提交
1422
        Variable: The tensor variable storing the element-wise squared error \
1423
                  difference of input and label.
1424 1425 1426 1427 1428 1429 1430 1431

    Examples:
        .. code-block:: python

          y = layers.data(name='y', shape=[1], dtype='float32')
          y_predict = layers.data(name='y_predict', shape=[1], dtype='float32')
          cost = layers.square_error_cost(input=y_predict, label=y)

Y
Yu Yang 已提交
1432
    """
F
fengjiayi 已提交
1433
    helper = LayerHelper('square_error_cost', **locals())
X
Xin Pan 已提交
1434
    minus_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1435 1436 1437 1438 1439 1440
    helper.append_op(
        type='elementwise_sub',
        inputs={'X': [input],
                'Y': [label]},
        outputs={'Out': [minus_out]})

X
Xin Pan 已提交
1441
    square_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1442
    helper.append_op(
F
fengjiayi 已提交
1443 1444
        type='square', inputs={'X': [minus_out]},
        outputs={'Out': [square_out]})
Y
Yu Yang 已提交
1445 1446 1447
    return square_out


Y
yi.wu 已提交
1448
@templatedoc()
Y
Yu Yang 已提交
1449 1450 1451 1452
def chunk_eval(input,
               label,
               chunk_scheme,
               num_chunk_types,
F
fengjiayi 已提交
1453
               excluded_chunk_types=None):
Y
Yu Yang 已提交
1454
    """
Y
yi.wu 已提交
1455
    **Chunk Evaluator**
Y
yi.wu 已提交
1456

Y
yangyaming 已提交
1457
    This function computes and outputs the precision, recall and
1458
    F1-score of chunk detection.
Y
yi.wu 已提交
1459

Y
yi.wu 已提交
1460 1461 1462 1463 1464 1465 1466 1467
    For some basics of chunking, please refer to
    'Chunking with Support Vector Machines <https://aclanthology.info/pdf/N/N01/N01-1025.pdf>'.

    ChunkEvalOp computes the precision, recall, and F1-score of chunk detection,
    and supports IOB, IOE, IOBES and IO (also known as plain) tagging schemes.
    Here is a NER example of labeling for these tagging schemes:

    .. code-block:: python
1468

Y
yi.wu 已提交
1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
              Li     Ming    works  at  Agricultural   Bank   of    China  in  Beijing.
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
       IO     I-PER  I-PER   O      O   I-ORG          I-ORG  I-ORG I-ORG  O   I-LOC
       IOB    B-PER  I-PER   O      O   B-ORG          I-ORG  I-ORG I-ORG  O   B-LOC
       IOE    I-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   E-LOC
       IOBES  B-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   S-LOC
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========

    There are three chunk types(named entity types) including PER(person), ORG(organization)
    and LOC(LOCATION), and we can see that the labels have the form <tag type>-<chunk type>.

    Since the calculations actually use label ids rather than labels, extra attention
    should be paid when mapping labels to ids to make CheckEvalOp work. The key point
    is that the listed equations are satisfied by ids.

    .. code-block:: python

       tag_type = label % num_tag_type
       chunk_type = label / num_tag_type

    where `num_tag_type` is the num of tag types in the tagging scheme, `num_chunk_type`
    is the num of chunk types, and `tag_type` get its value from the following table.

    .. code-block:: python
1494

Y
yi.wu 已提交
1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518
       Scheme Begin Inside End   Single
        plain   0     -      -     -
        IOB     0     1      -     -
        IOE     -     0      1     -
        IOBES   0     1      2     3

    Still use NER as example, assuming the tagging scheme is IOB while chunk types are ORG,
    PER and LOC. To satisfy the above equations, the label map can be like this:

    .. code-block:: python

       B-ORG  0
       I-ORG  1
       B-PER  2
       I-PER  3
       B-LOC  4
       I-LOC  5
       O      6

    It's not hard to verify the equations noting that the num of chunk types
    is 3 and the num of tag types in IOB scheme is 2. For example, the label
    id of I-LOC is 5, the tag type id of I-LOC is 1, and the chunk type id of
    I-LOC is 2, which consistent with the results from the equations.

Y
yi.wu 已提交
1519
    Args:
1520 1521 1522 1523 1524
        input (Variable): prediction output of the network.
        label (Variable): label of the test data set.
        chunk_scheme (str): ${chunk_scheme_comment}
        num_chunk_types (int): ${num_chunk_types_comment}
        excluded_chunk_types (list): ${excluded_chunk_types_comment}
F
fengjiayi 已提交
1525

Y
yi.wu 已提交
1526
    Returns:
Y
update  
yi.wu 已提交
1527 1528 1529
        tuple: tuple containing: precision, recall, f1_score,
        num_infer_chunks, num_label_chunks,
        num_correct_chunks
1530

Y
yi.wu 已提交
1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542
    Examples:
        .. code-block:: python

            crf = fluid.layers.linear_chain_crf(
                input=hidden, label=label, param_attr=ParamAttr(name="crfw"))
            crf_decode = fluid.layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
            fluid.layers.chunk_eval(
                input=crf_decode,
                label=label,
                chunk_scheme="IOB",
                num_chunk_types=(label_dict_len - 1) / 2)
Y
Yu Yang 已提交
1543
    """
F
fengjiayi 已提交
1544
    helper = LayerHelper("chunk_eval", **locals())
Y
Yu Yang 已提交
1545 1546

    # prepare output
X
Xin Pan 已提交
1547 1548 1549 1550 1551 1552 1553
    precision = helper.create_variable_for_type_inference(dtype="float32")
    recall = helper.create_variable_for_type_inference(dtype="float32")
    f1_score = helper.create_variable_for_type_inference(dtype="float32")
    num_infer_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_label_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_correct_chunks = helper.create_variable_for_type_inference(
        dtype="int64")
Y
Yu Yang 已提交
1554 1555 1556 1557 1558 1559 1560 1561

    helper.append_op(
        type="chunk_eval",
        inputs={"Inference": [input],
                "Label": [label]},
        outputs={
            "Precision": [precision],
            "Recall": [recall],
1562 1563 1564 1565
            "F1-Score": [f1_score],
            "NumInferChunks": [num_infer_chunks],
            "NumLabelChunks": [num_label_chunks],
            "NumCorrectChunks": [num_correct_chunks]
Y
Yu Yang 已提交
1566 1567 1568
        },
        attrs={
            "num_chunk_types": num_chunk_types,
G
guosheng 已提交
1569 1570
            "chunk_scheme": chunk_scheme,
            "excluded_chunk_types": excluded_chunk_types or []
Y
Yu Yang 已提交
1571
        })
1572 1573
    return (precision, recall, f1_score, num_infer_chunks, num_label_chunks,
            num_correct_chunks)
Y
Yu Yang 已提交
1574 1575


1576
@templatedoc()
Y
Yu Yang 已提交
1577 1578 1579 1580 1581 1582 1583
def sequence_conv(input,
                  num_filters,
                  filter_size=3,
                  filter_stride=1,
                  padding=None,
                  bias_attr=None,
                  param_attr=None,
C
chengduo 已提交
1584 1585
                  act=None,
                  name=None):
Y
Yu Yang 已提交
1586 1587 1588 1589
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.
1590 1591 1592 1593 1594 1595 1596

    Args:
        input (Variable): ${x_comment}
        num_filters (int): number of filters.
        filter_size (int): the filter size (H and W).
        filter_stride (int): stride of the filter.
        padding (bool): if True, add paddings.
C
chengduo 已提交
1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of sequence_conv.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of sequence_conv. If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
F
fengjiayi 已提交
1610

1611 1612
    Returns:
        Variable: output of sequence_conv
Y
Yu Yang 已提交
1613 1614 1615 1616 1617 1618 1619
    """

    helper = LayerHelper('sequence_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [filter_size * input.shape[1], num_filters]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
1620
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1621 1622 1623 1624 1625 1626 1627 1628 1629 1630

    helper.append_op(
        type='sequence_conv',
        inputs={
            'X': [input],
            'Filter': [filter_param],
        },
        outputs={"Out": pre_bias},
        attrs={
            'contextStride': filter_stride,
M
minqiyang 已提交
1631
            'contextStart': -int(filter_size // 2),
Y
Yu Yang 已提交
1632 1633 1634 1635 1636 1637
            'contextLength': filter_size
        })
    pre_act = helper.append_bias_op(pre_bias)
    return helper.append_activation(pre_act)


C
chengduo 已提交
1638
def sequence_softmax(input, use_cudnn=False, name=None):
1639 1640 1641
    """
    This function computes the softmax activation among all time-steps for each
    sequence. The dimension of each time-step should be 1. Thus, the shape of
1642
    input Tensor can be either :math:`[N, 1]` or :math:`[N]`, where :math:`N`
1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658
    is the sum of the length of all sequences.

    For i-th sequence in a mini-batch:

    .. math::

        Out(X[lod[i]:lod[i+1]], :) = \\frac{\exp(X[lod[i]:lod[i+1], :])}{\sum(\exp(X[lod[i]:lod[i+1], :]))}

    For example, for a mini-batch of 3 sequences with variable-length,
    each containing 2, 3, 2 time-steps, the lod of which is [0, 2, 5, 7],
    then softmax will be computed among :math:`X[0:2, :]`, :math:`X[2:5, :]`,
    :math:`X[5:7, :]`, and :math:`N` turns out to be 7.

    Args:
        input (Variable): The input variable which is a LoDTensor.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
C
chengduo 已提交
1659 1660 1661
            library is installed. Default: False.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
1662

1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673
    Returns:
        Variable: output of sequence_softmax

    Examples:

        .. code-block:: python

             x = fluid.layers.data(name='x', shape=[7, 1],
                              dtype='float32', lod_level=1)
             x_sequence_softmax = fluid.layers.sequence_softmax(input=x)
    """
1674 1675
    helper = LayerHelper('sequence_softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1676
    softmax_out = helper.create_variable_for_type_inference(dtype)
1677 1678 1679 1680 1681 1682 1683 1684
    helper.append_op(
        type="sequence_softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


C
chengduo 已提交
1685
def softmax(input, use_cudnn=True, name=None):
Q
qiaolongfei 已提交
1686
    """
1687
    The input of the softmax operator is a tensor of any rank. The output tensor
F
fengjiayi 已提交
1688
    has the same shape as the input.
Q
qiaolongfei 已提交
1689

1690 1691 1692 1693 1694 1695
    The input tensor will first be logically flattened to a 2-D matrix. The matrix's
    second dimension(row length) is as same as the last dimension of the input
    tensor, and the first dimension(column length) is the product of all other
    dimensions of the input tensor. For each row of the matrix, the softmax operator
    squashes the K-dimensional(K is the width of the matrix, which is also the size
    of the input tensor's last dimension) vector of arbitrary real values to a
F
fengjiayi 已提交
1696
    K-dimensional vector of real values in the range [0, 1] that add up to 1.
Q
qiaolongfei 已提交
1697 1698 1699 1700 1701 1702 1703

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

F
fengjiayi 已提交
1704
    For each row :math:`i` and each column :math:`j` in the matrix, we have:
Q
qiaolongfei 已提交
1705 1706 1707 1708 1709 1710 1711 1712

    .. math::

        Out[i, j] = \\frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}

    Args:
        input (Variable): The input variable.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
C
chengduo 已提交
1713 1714 1715
            library is installed.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
Q
qiaolongfei 已提交
1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727

    Returns:
        Variable: output of softmax

    Examples:

        .. code-block:: python

             fc = fluid.layers.fc(input=x, size=10)
             softmax = fluid.layers.softmax(input=fc)

    """
1728 1729
    helper = LayerHelper('softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1730
    softmax_out = helper.create_variable_for_type_inference(dtype)
1731 1732 1733 1734 1735 1736 1737 1738
    helper.append_op(
        type="softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


Y
Yu Yang 已提交
1739 1740 1741
def conv2d(input,
           num_filters,
           filter_size,
C
chengduoZH 已提交
1742 1743
           stride=1,
           padding=0,
1744
           dilation=1,
Y
Yu Yang 已提交
1745 1746 1747
           groups=None,
           param_attr=None,
           bias_attr=None,
C
chengduoZH 已提交
1748
           use_cudnn=True,
1749 1750
           act=None,
           name=None):
Y
Yu Yang 已提交
1751
    """
C
chengduoZH 已提交
1752
    The convolution2D layer calculates the output based on the input, filter
T
tensor-tang 已提交
1753 1754
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
1755
    channels, H is the height of the feature, and W is the width of the feature.
T
tensor-tang 已提交
1756 1757 1758 1759 1760 1761 1762
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more detials.
1763 1764 1765
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
C
chengduoZH 已提交
1766

1767
    For each input :math:`X`, the equation is:
C
refine  
chengduoZH 已提交
1768

C
chengduoZH 已提交
1769 1770
    .. math::

C
refine  
chengduoZH 已提交
1771
        Out = \sigma (W \\ast X + b)
C
chengduoZH 已提交
1772

T
tensor-tang 已提交
1773
    Where:
C
chengduoZH 已提交
1774

1775 1776 1777 1778 1779
    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
T
tensor-tang 已提交
1780
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1781 1782 1783

    Example:

1784 1785
        - Input:

W
weixing02 已提交
1786
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
C
refine  
chengduoZH 已提交
1787

W
weixing02 已提交
1788
          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
C
refine  
chengduoZH 已提交
1789

1790
        - Output:
T
tensor-tang 已提交
1791

W
weixing02 已提交
1792
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
C
refine  
chengduoZH 已提交
1793

C
chengduoZH 已提交
1794
        Where
1795 1796

        .. math::
C
chengduoZH 已提交
1797

W
weixing02 已提交
1798 1799
            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
chengduoZH 已提交
1800 1801

    Args:
1802
        input (Variable): The input image with [N, C, H, W] format.
T
tensor-tang 已提交
1803
        num_filters(int): The number of filter. It is as same as the output
1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
C
chengduo 已提交
1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831
            connected to the second half of the input channels. Default: groups=1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
             and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
1832 1833
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
1834 1835
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None
1836
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
1837
            will be named automatically. Default: None
C
chengduoZH 已提交
1838 1839

    Returns:
G
guosheng 已提交
1840
        Variable: The tensor variable storing the convolution and \
C
chengduoZH 已提交
1841 1842
                  non-linearity activation result.

C
refine  
chengduoZH 已提交
1843
    Raises:
1844 1845
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
C
refine  
chengduoZH 已提交
1846

C
chengduoZH 已提交
1847 1848 1849
    Examples:
        .. code-block:: python

1850 1851
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.conv2d(input=data, num_filters=2, filter_size=3, act="relu")
Y
Yu Yang 已提交
1852 1853 1854
    """

    num_channels = input.shape[1]
C
chengduo 已提交
1855
    assert param_attr is not False, "param_attr should not be False here."
1856
    l_type = 'conv2d'
X
xzl 已提交
1857 1858
    if (num_channels == groups and num_filters % num_channels == 0 and
            not use_cudnn):
1859
        l_type = 'depthwise_conv2d'
1860 1861 1862 1863

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

Y
Yu Yang 已提交
1864 1865 1866 1867 1868
    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
1869
        num_filter_channels = num_channels // groups
Y
Yu Yang 已提交
1870

C
chengduoZH 已提交
1871 1872 1873
    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
1874
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
1875

C
chengduoZH 已提交
1876 1877
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
1878 1879

    input_shape = input.shape
M
minqiyang 已提交
1880
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size
Y
Yu Yang 已提交
1881 1882

    def _get_default_param_initializer():
C
chengduo 已提交
1883 1884
        filter_elem_num = filter_size[0] * filter_size[1] * num_channels
        std = (2.0 / filter_elem_num)**0.5
Y
Yu Yang 已提交
1885 1886 1887 1888 1889 1890 1891 1892
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
1893
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1894

1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908
    if use_cudnn:
        helper.create_variable(
            name="kCUDNNFwdAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdDataAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdFilterAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)

Y
Yu Yang 已提交
1909
    helper.append_op(
1910
        type=l_type,
Y
Yu Yang 已提交
1911 1912 1913 1914 1915
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
C
chengduoZH 已提交
1916 1917 1918
        attrs={
            'strides': stride,
            'paddings': padding,
1919
            'dilations': dilation,
C
chengduoZH 已提交
1920
            'groups': groups,
1921
            'use_cudnn': use_cudnn,
1922
            'use_mkldnn': False,
C
chengduoZH 已提交
1923
        })
Y
Yu Yang 已提交
1924 1925 1926 1927 1928 1929

    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)

    return helper.append_activation(pre_act)


C
chengduoZH 已提交
1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946
def conv3d(input,
           num_filters,
           filter_size,
           stride=1,
           padding=0,
           dilation=1,
           groups=None,
           param_attr=None,
           bias_attr=None,
           use_cudnn=True,
           act=None,
           name=None):
    """
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
1947 1948 1949 1950 1951 1952
    Output(Output) are in NCDHW format. Where N is batch size C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.
C
chengduoZH 已提交
1953 1954 1955 1956 1957 1958 1959 1960 1961

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

1962 1963
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
C
chengduoZH 已提交
1964 1965 1966
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
1967
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
        input (Variable): The input image with [N, C, D, H, W] format.
            num_filters(int): The number of filter. It is as same as the output
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
1993
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
C
chengduoZH 已提交
1994 1995
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
1996
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
C
chengduoZH 已提交
1997 1998
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
1999
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
C
chengduoZH 已提交
2000 2001
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
2002
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
C
chengduoZH 已提交
2003 2004 2005 2006 2007 2008
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv3d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
C
chengduo 已提交
2009 2010 2011 2012 2013 2014 2015 2016 2017 2018
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d. If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
            :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
C
chengduoZH 已提交
2019 2020
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
2021 2022
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
C
chengduoZH 已提交
2023
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
2024
            will be named automatically. Default: None.
C
chengduoZH 已提交
2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036

    Returns:
        Variable: The tensor variable storing the convolution and \
                  non-linearity activation result.

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

2037 2038
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d = fluid.layers.conv3d(input=data, num_filters=2, filter_size=3, act="relu")
C
chengduoZH 已提交
2039 2040 2041
    """

    l_type = 'conv3d'
C
chengduo 已提交
2042
    assert param_attr is not False, "param_attr should not be False here."
C
chengduoZH 已提交
2043 2044 2045 2046 2047 2048 2049 2050 2051 2052
    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

    num_channels = input.shape[1]

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
2053
        num_filter_channels = num_channels // groups
C
chengduoZH 已提交
2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066

    filter_size = utils.convert_to_list(filter_size, 3, 'filter_size')
    stride = utils.convert_to_list(stride, 3, 'stride')
    padding = utils.convert_to_list(padding, 3, 'padding')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')

    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
C
chengduo 已提交
2067 2068 2069
        filter_elem_num = filter_size[0] * filter_size[1] * filter_size[
            2] * num_channels
        std = (2.0 / filter_elem_num)**0.5
C
chengduoZH 已提交
2070 2071 2072 2073 2074 2075 2076 2077
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
2078
    pre_bias = helper.create_variable_for_type_inference(dtype)
C
chengduoZH 已提交
2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092

    helper.append_op(
        type=l_type,
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
X
Xin Pan 已提交
2093
            'use_mkldnn': False
C
chengduoZH 已提交
2094 2095
        })

2096
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
C
chengduoZH 已提交
2097 2098 2099 2100

    return helper.append_activation(pre_act)


J
Jacek Czaja 已提交
2101
def sequence_pool(input, pool_type, is_test=False):
Y
Yu Yang 已提交
2102
    """
Y
yangyaming 已提交
2103 2104 2105
    This function add the operator for sequence pooling.
    It pools features of all time-steps of each instance, and is applied
    on top of the input using pool_type mentioned in the parameters.
L
Luo Tao 已提交
2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116

    It supports four pool_type:

    - average: :math:`Out[i] = \\frac{\sum_i X_i}{N}`
    - sum:     :math:`Out[i] = \sum_jX_{ij}`
    - sqrt:    :math:`Out[i] = \\frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}`
    - max:     :math:`Out[i] = max(X_i)`

    .. code-block:: text

       x is a 1-level LoDTensor:
2117
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2118 2119 2120 2121 2122
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2123
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2124 2125 2126 2127 2128 2129 2130

       for different pool_type:
         average: out.data = [2, 4, 3], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
         sum    : out.data = [4, 12, 6], where 4=1+3, 12=2+4+6, 6=5+1
         sqrt   : out.data = [2.82, 6.93, 4.24], where 2.82=(1+3)/sqrt(2),
                    6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
         max    : out.data = [3, 6, 5], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
2131 2132
         last   : out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
         first  : out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
2133

L
Luo Tao 已提交
2134 2135
    Args:
        input(variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
2136
        pool_type (string): The pooling type of sequence_pool.
L
Luo Tao 已提交
2137
            It supports average, sum, sqrt and max.
J
Jacek Czaja 已提交
2138
        is_test(bool, Default False): Used distinguish training from scoring mode.
L
Luo Tao 已提交
2139 2140 2141 2142 2143 2144 2145

    Returns:
        The sequence pooling variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2146

Y
yangyaming 已提交
2147
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2148 2149 2150 2151 2152
                              dtype='float32', lod_level=1)
             avg_x = fluid.layers.sequence_pool(input=x, pool_type='average')
             sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum')
             sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt')
             max_x = fluid.layers.sequence_pool(input=x, pool_type='max')
2153 2154
             last_x = fluid.layers.sequence_pool(input=x, pool_type='last')
             first_x = fluid.layers.sequence_pool(input=x, pool_type='first')
Y
Yu Yang 已提交
2155
    """
F
fengjiayi 已提交
2156
    helper = LayerHelper('sequence_pool', **locals())
Y
Yu Yang 已提交
2157
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2158 2159
    pool_out = helper.create_variable_for_type_inference(dtype)
    max_index = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2160 2161 2162 2163 2164 2165

    helper.append_op(
        type="sequence_pool",
        inputs={"X": input},
        outputs={"Out": pool_out,
                 "MaxIndex": max_index},
J
Jacek Czaja 已提交
2166 2167
        attrs={"pooltype": pool_type.upper(),
               "is_test": is_test})
Y
Yu Yang 已提交
2168

Y
yangyaming 已提交
2169 2170 2171 2172 2173
    # when pool_type is max, variable max_index is initialized,
    # so we stop the gradient explicitly here
    if pool_type == 'max':
        max_index.stop_gradient = True

Y
Yu Yang 已提交
2174 2175 2176
    return pool_out


C
add doc  
chengduoZH 已提交
2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195
@templatedoc()
def sequence_concat(input, name=None):
    """
    ${comment}

    Args:
        input(list): List of Variables to be concatenated.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: Output variable of the concatenation.

    Examples:
        .. code-block:: python

           out = fluid.layers.sequence_concat(input=[seq1, seq2, seq3])
    """
    helper = LayerHelper('sequence_concat', **locals())
X
Xin Pan 已提交
2196
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
C
add doc  
chengduoZH 已提交
2197 2198 2199 2200 2201
    helper.append_op(
        type='sequence_concat', inputs={'X': input}, outputs={'Out': [out]})
    return out


F
fengjiayi 已提交
2202
def sequence_first_step(input):
L
Luo Tao 已提交
2203
    """
L
Luo Tao 已提交
2204
    This function gets the first step of sequence.
L
Luo Tao 已提交
2205 2206 2207 2208

    .. code-block:: text

       x is a 1-level LoDTensor:
2209
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2210 2211 2212 2213 2214
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2215
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2216
         out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
2217

L
Luo Tao 已提交
2218 2219 2220 2221 2222 2223 2224 2225 2226
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's first step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2227

Y
yangyaming 已提交
2228
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2229 2230 2231
                              dtype='float32', lod_level=1)
             x_first_step = fluid.layers.sequence_first_step(input=x)
    """
2232 2233 2234
    return sequence_pool(input=input, pool_type="first")


F
fengjiayi 已提交
2235
def sequence_last_step(input):
L
Luo Tao 已提交
2236
    """
L
Luo Tao 已提交
2237
    This function gets the last step of sequence.
L
Luo Tao 已提交
2238 2239 2240 2241

    .. code-block:: text

       x is a 1-level LoDTensor:
2242
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2243 2244 2245 2246 2247
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2248
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2249
         out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
F
fengjiayi 已提交
2250

L
Luo Tao 已提交
2251 2252 2253 2254 2255 2256 2257 2258 2259
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's last step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2260

Y
yangyaming 已提交
2261
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2262 2263 2264
                              dtype='float32', lod_level=1)
             x_last_step = fluid.layers.sequence_last_step(input=x)
    """
2265 2266 2267
    return sequence_pool(input=input, pool_type="last")


Y
Yibing Liu 已提交
2268 2269 2270 2271
def sequence_slice(input, offset, length, name=None):
    """
    **Sequence Slice Layer**

2272
    The layer crops a subsequence from given sequence with given start
Y
Yibing Liu 已提交
2273 2274 2275 2276 2277
    offset and subsequence length.

    It only supports sequence data (LoDTensor with lod_level equal to 1).

    .. code-block:: text
2278

Y
Yibing Liu 已提交
2279 2280
	- Case:

2281
            Given the input Variable **input**:
2282

2283 2284 2285
                input.data = [[a1, a2], [b1, b2], [c1, c2], [d1, d2], [e1, e2]],
                input.lod = [[3, 2]],
                input.dims = (5, 2),
Y
Yibing Liu 已提交
2286

2287
            with offset.data = [[0], [1]] and length.data = [[2], [1]],
Y
Yibing Liu 已提交
2288

2289
            the output Variable will be
2290

2291 2292 2293
                out.data = [[a1, a2], [b1, b2], [e1, e2]],
                out.lod = [[2, 1]],
                out.dims = (3, 2).
2294 2295

    NOTE: The first dimension size of **input**, **offset** and **length**
2296
          should be equal. The **offset** should start from 0.
2297

Y
Yibing Liu 已提交
2298
    Args:
2299
        input(Variable): The input Variable which consists of the complete
Y
Yibing Liu 已提交
2300
                         sequences.
Y
Yibing Liu 已提交
2301 2302 2303 2304 2305 2306
        offset(Variable): The offset to slice each sequence.
        length(Variable): The length of each subsequence.
        name(str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
Y
Yibing Liu 已提交
2307
        Variable: The output subsequences.
Y
Yibing Liu 已提交
2308 2309 2310 2311 2312 2313 2314 2315 2316 2317

    Examples:

        .. code-block:: python

             import numpy as np
             seqs = fluid.layers.data(name='x', shape=[10, 5],
                              dtype='float32', lod_level=1)
             offset = fluid.layers.assign(input=np.array([[0, 1]]).astype("int32"))
             length = fluid.layers.assign(input=np.array([[2, 1]]).astype("int32"))
2318
             subseqs = fluid.layers.sequence_slice(input=seqs, offset=offset,
Y
Yibing Liu 已提交
2319 2320 2321 2322
                                                   length=length)
    """
    helper = LayerHelper("sequence_slice", **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2323
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337

    offset.stop_gradient = True
    length.stop_gradient = True

    helper.append_op(
        type="sequence_slice",
        inputs={"X": input,
                "Offset": offset,
                "Length": length},
        outputs={"Out": out})

    return out


F
fengjiayi 已提交
2338
@templatedoc()
Y
Yu Yang 已提交
2339
def pool2d(input,
C
chengduoZH 已提交
2340 2341
           pool_size=-1,
           pool_type="max",
C
chengduoZH 已提交
2342 2343
           pool_stride=1,
           pool_padding=0,
C
caoying03 已提交
2344
           global_pooling=False,
C
chengduoZH 已提交
2345
           use_cudnn=True,
2346
           ceil_mode=False,
2347 2348
           name=None,
           exclusive=True):
Y
Yu Yang 已提交
2349
    """
F
fengjiayi 已提交
2350
    ${comment}
2351 2352

    Args:
2353 2354 2355
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
F
fengjiayi 已提交
2356
                          feature, and W is the width of the feature.
J
JiabinYang 已提交
2357
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
J
JiabinYang 已提交
2358 2359
            it must contain two integers, (pool_size_Height, pool_size_Width).
            Otherwise, the pool kernel size will be a square of an int.
F
fengjiayi 已提交
2360
        pool_type: ${pooling_type_comment}
J
JiabinYang 已提交
2361 2362 2363 2364 2365 2366
        pool_stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
            it must contain two integers, (pool_stride_Height, pool_stride_Width).
            Otherwise, the pool stride size will be a square of an int.
        pool_padding (int|list|tuple): The pool padding size. If pool padding size is a tuple,
            it must contain two integers, (pool_padding_on_Height, pool_padding_on_Width).
            Otherwise, the pool padding size will be a square of an int.
2367 2368 2369
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
2370
        name (str|None): A name for this layer(optional). If set None, the
F
fengjiayi 已提交
2371
                        layer will be named automatically.
2372
        exclusive (bool): Whether to exclude padding points in average pooling
2373
                          mode, default is true
F
fengjiayi 已提交
2374

2375
    Returns:
F
fengjiayi 已提交
2376
        Variable: The pooling result.
F
fengjiayi 已提交
2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389

    Raises:
        ValueError: If 'pool_type' is not "max" nor "avg"
        ValueError: If 'global_pooling' is False and 'pool_size' is -1
        ValueError: If 'use_cudnn' is not a bool value.

    Examples:

        .. code-block:: python

          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.pool2d(
2390 2391 2392 2393
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
F
fengjiayi 已提交
2394
                            global_pooling=False)
Y
Yu Yang 已提交
2395 2396 2397 2398 2399
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2400

C
chengduoZH 已提交
2401 2402 2403 2404 2405
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

C
chengduoZH 已提交
2406 2407 2408 2409
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 2, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')

C
chengduoZH 已提交
2410 2411
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2412

C
Add doc  
chengduoZH 已提交
2413
    l_type = 'pool2d'
2414 2415

    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2416
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2417
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2418 2419

    helper.append_op(
2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430
        type=l_type,
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
            "paddings": pool_padding,
            "use_cudnn": use_cudnn,
            "ceil_mode": ceil_mode,
2431 2432
            "use_mkldnn": False,
            "exclusive": exclusive,
2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445
        })

    return pool_out


def pool3d(input,
           pool_size=-1,
           pool_type="max",
           pool_stride=1,
           pool_padding=0,
           global_pooling=False,
           use_cudnn=True,
           ceil_mode=False,
2446 2447
           name=None,
           exclusive=True):
2448 2449
    """
    This function adds the operator for pooling in 3-dimensions, using the
Y
Yu Yang 已提交
2450
    pooling configurations mentioned in input parameters.
2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462

    Args:
        input (Variable): ${input_comment}
        pool_size (int): ${ksize_comment}
        pool_type (str): ${pooling_type_comment}
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
        name (str): A name for this layer(optional). If set None, the layer
            will be named automatically.
2463
        exclusive (bool): Whether to exclude padding points in average pooling
2464
                          mode, default is true
2465

2466
    Returns:
2467
        Variable: output of pool3d layer.
Y
Yu Yang 已提交
2468 2469 2470 2471 2472
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2473

C
chengduoZH 已提交
2474 2475 2476 2477 2478
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

2479 2480 2481
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 3, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 3, 'pool_stride')
C
chengduoZH 已提交
2482

C
chengduoZH 已提交
2483 2484
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2485

2486 2487
    l_type = "pool3d"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2488
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2489
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2490 2491

    helper.append_op(
2492
        type=l_type,
Y
Yu Yang 已提交
2493 2494 2495 2496 2497 2498 2499
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
C
chengduoZH 已提交
2500
            "paddings": pool_padding,
2501
            "use_cudnn": use_cudnn,
2502
            "ceil_mode": ceil_mode,
2503 2504
            "use_mkldnn": False,
            "exclusive": exclusive,
Y
Yu Yang 已提交
2505 2506 2507 2508 2509
        })

    return pool_out


2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542
@templatedoc(op_type="pool2d")
def adaptive_pool2d(input,
                    pool_size,
                    pool_type="max",
                    require_index=False,
                    name=None):
    """
    ${comment}

    Args:
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
                          feature, and W is the width of the feature.
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
            it must contain two integers, (pool_size_Height, pool_size_Width).
        pool_type: ${pooling_type_comment}
        require_index (bool): If true, the index of max pooling point along with outputs.
            it cannot be set in average pooling type.
        name (str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
        Variable: The pooling result.

    Raises:
        ValueError: 'pool_type' is not 'max' nor 'avg'.
        ValueError: invalid setting 'require_index' true when 'pool_type' is 'avg'.
        ValueError: 'pool_size' should be a list or tuple with length as 2.

    Examples:
        .. code-block:: python

2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556
          # suppose input data in shape of [N, C, H, W], `pool_size` is [m, n], 
          # output shape is [N, C, m, n], adaptive pool divide H and W dimentions
          # of input data into m * n grids averagely and performs poolings in each 
          # grid to get output.
          # adaptive average pool performs calculations as follow:
          # 
          #     for i in range(m):
          #         for j in range(n):
          #             hstart = floor(i * H / m)
          #             hend = ceil((i + 1) * H / m)
          #             wstart = floor(i * W / n)
          #             wend = ceil((i + 1) * W / n)
          #             output[:, :, i, j] = avg(input[:, :, hstart: hend, wstart: wend])
          #
2557 2558
          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
D
dengkaipeng 已提交
2559
          pool_out = fluid.layers.adaptive_pool2d(
2560 2561
                            input=data,
                            pool_size=[3, 3],
2562
                            pool_type='avg')
2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))

    if pool_type == "avg" and require_index:
        raise ValueError(
            "invalid setting 'require_index' true when 'pool_type' is 'avg'.")

    def _is_list_or_tuple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

    if not _is_list_or_tuple_(pool_size) or len(pool_size) != 2:
        raise ValueError(
            "'pool_size' should be a list or tuple with length as 2.")

    if pool_type == "max":
        l_type = 'max_pool2d_with_index'
    else:
        l_type = "pool2d"

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)

    outputs = {"Out": pool_out}
    if pool_type == "max":
        mask = helper.create_variable_for_type_inference(dtype)
        outputs["Mask"] = mask

    helper.append_op(
        type=l_type,
        inputs={"X": input},
        outputs=outputs,
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "adaptive": True,
        })

D
dengkaipeng 已提交
2604
    return (pool_out, mask) if require_index else pool_out
2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639


@templatedoc(op_type="pool3d")
def adaptive_pool3d(input,
                    pool_size,
                    pool_type="max",
                    require_index=False,
                    name=None):
    """
    ${comment}

    Args:
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
                          feature, and W is the width of the feature.
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
            it must contain two integers, (Depth, Height, Width).
        pool_type: ${pooling_type_comment}
        require_index (bool): If true, the index of max pooling point along with outputs.
            it cannot be set in average pooling type.
        name (str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
        Variable: The pooling result.

    Raises:
        ValueError: 'pool_type' is not 'max' nor 'avg'.
        ValueError: invalid setting 'require_index' true when 'pool_type' is 'avg'.
        ValueError: 'pool_size' should be a list or tuple with length as 2.

    Examples:
        .. code-block:: python

2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657
          # suppose input data in shape of [N, C, D, H, W], `pool_size` is [l, m, n],
          # output shape is [N, C, l, m, n], adaptive pool divide D, H and W dimentions
          # of input data into l * m * n grids averagely and performs poolings in each 
          # grid to get output.
          # adaptive average pool performs calculations as follow:
          # 
          #     for i in range(l):
          #         for j in range(m):
          #             for k in range(n):
          #                 dstart = floor(i * D / l)
          #                 dend = ceil((i + 1) * D / l)
          #                 hstart = floor(j * H / m)
          #                 hend = ceil((j + 1) * H / m)
          #                 wstart = floor(k * W / n)
          #                 wend = ceil((k + 1) * W / n)
          #                 output[:, :, i, j, k] = 
          #                     avg(input[:, :, dstart:dend, hstart: hend, wstart: wend])
          #
2658 2659
          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
D
dengkaipeng 已提交
2660
          pool_out, mask = fluid.layers.adaptive_pool3d(
2661 2662
                            input=data,
                            pool_size=[3, 3],
2663
                            pool_type='avg')
2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))

    if pool_type == "avg" and require_index:
        raise ValueError(
            "invalid setting 'require_index' true when 'pool_type' is 'avg'.")

    def _is_list_or_tuple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

    if not _is_list_or_tuple_(pool_size) or len(pool_size) != 3:
        raise ValueError(
            "'pool_size' should be a list or tuple with length as 3.")

    if pool_type == "max":
        l_type = 'max_pool3d_with_index'
    else:
        l_type = "pool3d"

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)

    outputs = {"Out": pool_out}
    if pool_type == "max":
        mask = helper.create_variable_for_type_inference(dtype)
        outputs["Mask"] = mask

    helper.append_op(
        type=l_type,
        inputs={"X": input},
        outputs=outputs,
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "adaptive": True,
        })

D
dengkaipeng 已提交
2705
    return (pool_out, mask) if require_index else pool_out
2706 2707


Y
Yu Yang 已提交
2708 2709 2710 2711 2712 2713 2714
def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
C
caoying03 已提交
2715
               data_layout='NCHW',
Y
Yang Yang 已提交
2716
               in_place=False,
2717 2718
               name=None,
               moving_mean_name=None,
W
wanghaoshuang 已提交
2719
               moving_variance_name=None,
2720
               do_model_average_for_mean_and_var=False,
2721 2722
               fuse_with_relu=False,
               use_global_stats=False):
Y
Yu Yang 已提交
2723
    """
Q
qiaolongfei 已提交
2724 2725 2726 2727
    **Batch Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:
Q
qiaolongfei 已提交
2728

Q
qiaolongfei 已提交
2729
    1. NHWC `[batch, in_height, in_width, in_channels]`
Q
qiaolongfei 已提交
2730

Q
qiaolongfei 已提交
2731 2732
    2. NCHW `[batch, in_channels, in_height, in_width]`

Q
qiaolongfei 已提交
2733 2734 2735
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.
Q
qiaolongfei 已提交
2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift
2748

2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761

    When use_global_stats = True, the :math:`\\mu_{\\beta}`
    and :math:`\\sigma_{\\beta}^{2}` are not the statistics of one mini-batch.
    They are global (or running) statistics. (It usually got from the
    pre-trained model.)
    The training and testing (or inference) have the same behavior:

    ..  math::

        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}}  \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta

2762
    Args:
Q
qiaolongfei 已提交
2763
        input(variable): The input variable which is a LoDTensor.
Q
qiaolongfei 已提交
2764 2765 2766 2767
        act(string, Default None): Activation type, linear|relu|prelu|...
        is_test(bool, Default False): Used for training or training.
        momentum(float, Default 0.9):
        epsilon(float, Default 1e-05):
C
chengduo 已提交
2768 2769 2770 2771 2772 2773 2774 2775
        param_attr(ParamAttr|None): The parameter attribute for Parameter `scale`
             of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the bias of batch_norm.
             If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
Q
qiaolongfei 已提交
2776
        data_layout(string, default NCHW): NCHW|NHWC
2777
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
Q
qiaolongfei 已提交
2778 2779 2780 2781
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
Q
qiaolongfei 已提交
2782
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.
2783
        fuse_with_relu (bool): if True, this OP performs relu after batch norm.
2784 2785 2786 2787 2788
        use_global_stats(bool, Default False): Whether to use global mean and
            variance. In inference or test mode, set use_global_stats to true
            or is_test to true, and the behavior is equivalent.
            In train mode, when setting use_global_stats True, the global mean
            and variance are also used during train period.
2789 2790

    Returns:
Q
qiaolongfei 已提交
2791
        Variable: A tensor variable which is the result after applying batch normalization on the input.
Q
qiaolongfei 已提交
2792 2793 2794 2795 2796 2797 2798

    Examples:

        .. code-block:: python

            hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.batch_norm(input=hidden1)
Y
Yu Yang 已提交
2799
    """
C
chengduo 已提交
2800
    assert bias_attr is not False, "bias_attr should not be False in batch_norm."
Y
Yu Yang 已提交
2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820
    helper = LayerHelper('batch_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))
2821 2822 2823
    # setting stop_gradient=True to reduce computation
    if use_global_stats and helper.param_attr.learning_rate == 0.:
        scale.stop_gradient = True
Y
Yu Yang 已提交
2824 2825

    bias = helper.create_parameter(
2826
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
2827 2828 2829
    # setting stop_gradient=True to reduce computation
    if use_global_stats and helper.bias_attr.learning_rate == 0.:
        scale.stop_gradient = True
Y
Yu Yang 已提交
2830

2831 2832
    mean = helper.create_parameter(
        attr=ParamAttr(
W
wanghaoshuang 已提交
2833 2834 2835
            name=moving_mean_name,
            initializer=Constant(0.0),
            trainable=False,
W
wanghaoshuang 已提交
2836
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2837
        shape=param_shape,
2838
        dtype=input.dtype)
2839 2840 2841 2842 2843 2844
    mean.stop_gradient = True

    variance = helper.create_parameter(
        attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
W
wanghaoshuang 已提交
2845
            trainable=False,
W
wanghaoshuang 已提交
2846
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2847
        shape=param_shape,
2848
        dtype=input.dtype)
2849
    variance.stop_gradient = True
Y
Yu Yang 已提交
2850 2851 2852 2853 2854 2855

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
X
Xin Pan 已提交
2856 2857 2858 2859
    saved_mean = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
Y
Yu Yang 已提交
2860

X
Xin Pan 已提交
2861 2862
    batch_norm_out = input if in_place else helper.create_variable_for_type_inference(
        dtype)
Y
Yu Yang 已提交
2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879

    helper.append_op(
        type="batch_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
            "Mean": mean,
            "Variance": variance
        },
        outputs={
            "Y": batch_norm_out,
            "MeanOut": mean_out,
            "VarianceOut": variance_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
2880 2881 2882 2883
        attrs={
            "momentum": momentum,
            "epsilon": epsilon,
            "is_test": is_test,
X
Xin Pan 已提交
2884
            "use_mkldnn": False,
2885 2886
            "fuse_with_relu": fuse_with_relu,
            "use_global_stats": use_global_stats
2887
        })
Y
Yu Yang 已提交
2888 2889 2890 2891

    return helper.append_activation(batch_norm_out)


Y
yuyang18 已提交
2892
@templatedoc()
G
guosheng 已提交
2893 2894 2895 2896 2897 2898 2899 2900 2901 2902
def layer_norm(input,
               scale=True,
               shift=True,
               begin_norm_axis=1,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               name=None):
    """
Y
yuyang18 已提交
2903
    ${comment}
G
guosheng 已提交
2904 2905 2906

    The formula is as follows:

Y
yuyang18 已提交
2907
    ..  math::
G
guosheng 已提交
2908 2909 2910 2911 2912 2913 2914

        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} a_i

        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}(a_i - \\mu)^2}

        h & = f(\\frac{g}{\\sigma}(a - \\mu) + b)

Y
yuyang18 已提交
2915 2916 2917 2918 2919 2920 2921 2922
    * :math:`a`: the vector representation of the summed inputs to the neurons
    in that layer.

    * :math:`H`: the number of hidden units in a layers

    * :math:`g`: the trainable scale parameter.

    * :math:`b`: the trainable bias parameter.
Y
yuyang18 已提交
2923

G
guosheng 已提交
2924 2925
    Args:
        input(Variable): The input tensor variable.
2926
        scale(bool): Whether to learn the adaptive gain :math:`g` after
S
sneaxiy 已提交
2927
            normalization. Default True.
2928
        shift(bool): Whether to learn the adaptive bias :math:`b` after
S
sneaxiy 已提交
2929 2930
            normalization. Default True.
        begin_norm_axis(int): The normalization will be performed along
G
guosheng 已提交
2931
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
S
sneaxiy 已提交
2932
            Default 1.
2933
        epsilon(float): The small value added to the variance to prevent
S
sneaxiy 已提交
2934
            division by zero. Default 1e-05.
G
guosheng 已提交
2935
        param_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
2936 2937
            gain :math:`g`. If :attr:`scale` is False, :attr:`param_attr` is
            omitted. If :attr:`scale` is True and :attr:`param_attr` is None,
2938 2939
            a default :code:`ParamAttr` would be added as scale. The
            :attr:`param_attr` is initialized as 1 if it is added. Default None.
G
guosheng 已提交
2940
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
2941 2942
            bias :math:`b`. If :attr:`shift` is False, :attr:`bias_attr` is
            omitted. If :attr:`shift` is True and :attr:`param_attr` is None,
2943
            a default :code:`ParamAttr` would be added as bias. The
S
sneaxiy 已提交
2944
            :attr:`bias_attr` is initialized as 0 if it is added. Default None.
G
guosheng 已提交
2945
        act(str): Activation to be applied to the output of layer normalizaiton.
S
sneaxiy 已提交
2946 2947 2948
                  Default None.
        name(str): The name of this layer. It is optional. Default None, and a
                   unique name would be generated automatically.
G
guosheng 已提交
2949 2950

    Returns:
Y
yuyang18 已提交
2951
        ${y_comment}
G
guosheng 已提交
2952 2953 2954

    Examples:

Y
yuyang18 已提交
2955 2956 2957
        >>> data = fluid.layers.data(name='data', shape=[3, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.layer_norm(input=data, begin_norm_axis=1)
G
guosheng 已提交
2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972
    """
    helper = LayerHelper('layer_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    param_shape = [reduce(lambda x, y: x * y, input_shape[begin_norm_axis:])]
    if scale:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
G
guosheng 已提交
2973
    if shift:
G
guosheng 已提交
2974 2975 2976 2977 2978 2979
        assert bias_attr is not False
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
X
Xin Pan 已提交
2980 2981 2982 2983 2984
    mean_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    layer_norm_out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999

    helper.append_op(
        type="layer_norm",
        inputs=inputs,
        outputs={
            "Y": layer_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "begin_norm_axis": begin_norm_axis})

    return helper.append_activation(layer_norm_out)


D
Dun 已提交
3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077
@templatedoc()
def group_norm(input,
               groups,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               data_layout='NCHW',
               name=None):
    """
    **Group Normalization Layer**

    Refer to `Group Normalization <https://arxiv.org/abs/1803.08494>`

    Args:
        input(Variable): The input tensor variable.
        groups(int): The number of groups that divided from channels.
        epsilon(float): The small value added to the variance to prevent
            division by zero.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            scale :math:`g`. If it is set to False, no scale will be added to the output units.
            If it is set to None, the bias is initialized one. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
            bias :math:`b`. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
        act(str): Activation to be applied to the output of group normalizaiton.
        data_layout(string|NCHW): Only NCHW is supported.
        name (str): The name of this layer. It is optional.

    Returns:
        Variable: A tensor variable which is the result after applying group normalization on the input.

    Examples:

        >>> data = fluid.layers.data(name='data', shape=[8, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.group_norm(input=data, groups=4)
    """
    helper = LayerHelper('group_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    if data_layout != 'NCHW':
        raise ValueError("unsupported data layout:" + data_layout)
    param_shape = [input_shape[1]]
    if param_attr:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
    if bias_attr:
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
    mean_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    variance_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    group_norm_out = helper.create_tmp_variable(dtype)

    helper.append_op(
        type="group_norm",
        inputs=inputs,
        outputs={
            "Y": group_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "groups": groups})

    return helper.append_activation(group_norm_out)


Y
Yu Yang 已提交
3078 3079 3080 3081
def conv2d_transpose(input,
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
3082 3083 3084
                     padding=0,
                     stride=1,
                     dilation=1,
3085
                     groups=None,
C
caoying03 已提交
3086
                     param_attr=None,
3087
                     bias_attr=None,
C
chengduoZH 已提交
3088
                     use_cudnn=True,
3089
                     act=None,
C
caoying03 已提交
3090
                     name=None):
Y
Yu Yang 已提交
3091
    """
3092 3093 3094 3095 3096 3097 3098 3099
    **Convlution2D transpose layer**

    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
3100 3101
    layer, please refer to the following explanation and references
    `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
3102 3103 3104
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
3105 3106 3107 3108 3109

    For each input :math:`X`, the equation is:

    .. math::

3110
        Out = \sigma (W \\ast X + b)
3111

3112
    Where:
3113 3114 3115

    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
3116 3117 3118 3119
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
3120

3121 3122 3123 3124
    Example:

        - Input:

3125
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
3126

3127
          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`
3128 3129 3130

        - Output:

3131
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
3132 3133

        Where
Y
Yu Yang 已提交
3134

3135 3136
        .. math::

3137 3138 3139 3140
           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\\\
           H_{out} \in [ H^\prime_{out}, H^\prime_{out} + strides[0] ) \\\\
           W_{out} \in [ W^\prime_{out}, W^\prime_{out} + strides[1] )
Y
Yu Yang 已提交
3141 3142

    Args:
3143 3144 3145 3146
        input(Variable): The input image with [N, C, H, W] format.
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
3147 3148 3149 3150
            tuple, it must contain two integers, (image_H, image_W). None if use
            filter_size, padding, and stride to calculate output_size.
            if output_size and filter_size are specified at the same time, They
            should follow the formula above.
3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv2d transpose layer. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
C
chengduo 已提交
3169 3170 3171 3172 3173 3174 3175 3176 3177 3178
            Default: groups = 1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
3179
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
C
chengduo 已提交
3180 3181 3182
            library is installed. Default: True.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
3183
        name(str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
3184
            will be named automatically. Default: True.
Y
Yu Yang 已提交
3185 3186

    Returns:
3187
        Variable: The tensor variable storing the convolution transpose result.
3188 3189

    Raises:
3190 3191
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
3192 3193 3194 3195

    Examples:
       .. code-block:: python

3196 3197
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d_transpose = fluid.layers.conv2d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
3198
    """
C
chengduo 已提交
3199
    assert param_attr is not False, "param_attr should not be False in conv2d_transpose."
3200 3201 3202 3203 3204 3205 3206 3207
    input_channel = input.shape[1]

    op_type = 'conv2d_transpose'
    if (input_channel == groups and num_filters == input_channel and
            not use_cudnn):
        op_type = 'depthwise_conv2d_transpose'

    helper = LayerHelper(op_type, **locals())
Y
Yu Yang 已提交
3208 3209 3210
    if not isinstance(input, Variable):
        raise TypeError("Input of conv2d_transpose must be Variable")

C
chengduoZH 已提交
3211 3212 3213
    padding = utils.convert_to_list(padding, 2, 'padding')
    stride = utils.convert_to_list(stride, 2, 'stride')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
G
guosheng 已提交
3214

C
chengduoZH 已提交
3215 3216
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
G
guosheng 已提交
3217

Y
Yu Yang 已提交
3218 3219 3220 3221 3222
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]
G
guosheng 已提交
3223

Y
Yu Yang 已提交
3224 3225
        h_in = input.shape[2]
        w_in = input.shape[3]
G
guosheng 已提交
3226

C
chengduoZH 已提交
3227
        filter_size_h = (output_size[0] - (h_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
3228
                         padding[0] - 1) // dilation[0] + 1
C
chengduoZH 已提交
3229
        filter_size_w = (output_size[1] - (w_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
3230
                         padding[1] - 1) // dilation[1] + 1
Y
Yu Yang 已提交
3231
        filter_size = [filter_size_h, filter_size_w]
C
chengduoZH 已提交
3232 3233 3234
    else:
        filter_size = utils.convert_to_list(filter_size, 2,
                                            'conv2d_transpose.filter_size')
C
chengduo 已提交
3235

3236 3237 3238 3239 3240 3241 3242
    if output_size is None:
        output_size = []
    elif isinstance(output_size, list) or isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 2, 'output_size')
    else:
        raise ValueError("output_size should be list or int")
    padding = utils.convert_to_list(padding, 2, 'padding')
3243
    groups = 1 if groups is None else groups
M
minqiyang 已提交
3244
    filter_shape = [input_channel, num_filters // groups] + filter_size
C
chengduo 已提交
3245

Y
Yu Yang 已提交
3246 3247 3248
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
3249
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
3250
    helper.append_op(
3251
        type=op_type,
Y
Yu Yang 已提交
3252 3253
        inputs={'Input': [input],
                'Filter': [img_filter]},
3254
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
3255
        attrs={
3256
            'output_size': output_size,
3257 3258 3259 3260 3261
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn
Y
Yu Yang 已提交
3262 3263
        })

3264 3265 3266
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
    return out
Y
Yu Yang 已提交
3267 3268


3269
def conv3d_transpose(input,
Y
Yu Yang 已提交
3270 3271 3272
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
3273 3274 3275
                     padding=0,
                     stride=1,
                     dilation=1,
3276
                     groups=None,
C
caoying03 已提交
3277
                     param_attr=None,
3278
                     bias_attr=None,
C
chengduoZH 已提交
3279
                     use_cudnn=True,
3280
                     act=None,
C
caoying03 已提交
3281
                     name=None):
Y
Yu Yang 已提交
3282
    """
3283
    **Convlution3D transpose layer**
3284

3285
    The convolution3D transpose layer calculates the output based on the input,
3286
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
3287 3288 3289 3290 3291 3292
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
3293 3294 3295
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
3296 3297 3298 3299 3300

    For each input :math:`X`, the equation is:

    .. math::

3301
        Out = \sigma (W \\ast X + b)
3302 3303 3304

    In the above equation:

3305 3306
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
3307 3308 3309 3310
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
3311

3312 3313 3314 3315
    Example:

        - Input:

3316
          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
3317

3318
          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`
3319 3320 3321

        - Output:

3322
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
3323 3324

        Where
Y
Yu Yang 已提交
3325

3326 3327
        .. math::

3328 3329 3330
           D_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1
Y
Yu Yang 已提交
3331 3332

    Args:
3333
        input(Variable): The input image with [N, C, D, H, W] format.
3334 3335 3336
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
3337
            tuple, it must contain three integers, (image_D, image_H, image_W). This
3338 3339
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
3340
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
3341 3342 3343
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
3344 3345
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
3346
        stride(int|tuple): The stride size. If stride is a tuple, it must
3347 3348
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
3349
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
3350 3351 3352
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv3d transpose layer. Inspired by
3353 3354 3355 3356 3357
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
C
chengduo 已提交
3358 3359 3360 3361 3362 3363 3364 3365 3366
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
3367 3368
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
3369 3370
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
3371 3372
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
3373 3374

    Returns:
3375
        Variable: The tensor variable storing the convolution transpose result.
3376 3377

    Raises:
3378 3379
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
3380 3381 3382 3383

    Examples:
       .. code-block:: python

3384 3385
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d_transpose = fluid.layers.conv3d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
3386
    """
C
chengduo 已提交
3387
    assert param_attr is not False, "param_attr should not be False in conv3d_transpose."
3388 3389
    l_type = "conv3d_transpose"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
3390
    if not isinstance(input, Variable):
3391
        raise TypeError("Input of conv3d_transpose must be Variable")
Y
Yu Yang 已提交
3392 3393
    input_channel = input.shape[1]

3394 3395 3396
    padding = utils.convert_to_list(padding, 3, 'padding')
    stride = utils.convert_to_list(stride, 3, 'stride')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')
C
chengduoZH 已提交
3397

C
chengduoZH 已提交
3398 3399 3400
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

Y
Yu Yang 已提交
3401 3402 3403 3404 3405 3406
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]

3407 3408 3409
        d_in = input.shape[2]
        h_in = input.shape[3]
        w_in = input.shape[4]
C
chengduoZH 已提交
3410

3411
        filter_size_d = (output_size[0] - (d_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
3412
                         padding[0] - 1) // dilation[0] + 1
3413
        filter_size_h = (output_size[1] - (h_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
3414
                         padding[1] - 1) // dilation[1] + 1
3415
        filter_size_w = (output_size[2] - (w_in - 1) * stride[2] + 2 *
M
minqiyang 已提交
3416
                         padding[2] - 1) // dilation[2] + 1
3417
        filter_size = [filter_size_d, filter_size_h, filter_size_w]
C
chengduoZH 已提交
3418
    else:
3419 3420
        filter_size = utils.convert_to_list(filter_size, 3,
                                            'conv3d_transpose.filter_size')
Y
Yu Yang 已提交
3421

3422
    groups = 1 if groups is None else groups
M
minqiyang 已提交
3423
    filter_shape = [input_channel, num_filters // groups] + filter_size
Y
Yu Yang 已提交
3424 3425 3426
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
3427
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
3428
    helper.append_op(
3429
        type=l_type,
Y
Yu Yang 已提交
3430 3431
        inputs={'Input': [input],
                'Filter': [img_filter]},
3432
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
3433 3434 3435 3436
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
3437
            'groups': groups,
C
chengduoZH 已提交
3438 3439
            'use_cudnn': use_cudnn
        })
Y
Yu Yang 已提交
3440

3441 3442
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
Y
Yu Yang 已提交
3443
    return out
Y
yangyaming 已提交
3444 3445


Y
yangyaming 已提交
3446
def sequence_expand(x, y, ref_level=-1, name=None):
3447
    """Sequence Expand Layer. This layer will expand the input variable **x**
Y
yangyaming 已提交
3448 3449 3450 3451
    according to specified level lod of **y**. Please note that lod level of
    **x** is at most 1 and rank of **x** is at least 2. When rank of **x**
    is greater than 2, then it would be viewed as a 2-D tensor.
    Following examples will explain how sequence_expand works:
3452 3453 3454 3455 3456

    .. code-block:: text

        * Case 1
            x is a LoDTensor:
3457
                x.lod  = [[2,        2]]
Y
yangyaming 已提交
3458
                x.data = [[a], [b], [c], [d]]
3459 3460 3461
                x.dims = [4, 1]

            y is a LoDTensor:
3462 3463
                y.lod = [[2,    2],
                         [3, 3, 1, 1]]
3464

Y
yangyaming 已提交
3465
            ref_level: 0
3466

Y
yangyaming 已提交
3467
            then output is a 1-level LoDTensor:
3468
                out.lod =  [[2,        2,        2,        2]]
Y
yangyaming 已提交
3469
                out.data = [[a], [b], [a], [b], [c], [d], [c], [d]]
3470 3471 3472 3473
                out.dims = [8, 1]

        * Case 2
            x is a Tensor:
Y
yangyaming 已提交
3474
                x.data = [[a], [b], [c]]
3475 3476 3477
                x.dims = [3, 1]

            y is a LoDTensor:
3478
                y.lod = [[2, 0, 3]]
3479

Y
yangyaming 已提交
3480
            ref_level: -1
3481

Y
yangyaming 已提交
3482 3483 3484
            then output is a Tensor:
                out.data = [[a], [a], [c], [c], [c]]
                out.dims = [5, 1]
3485 3486 3487
    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
3488 3489
        ref_level (int): Lod level of `y` to be referred by `x`. If set to -1,
                         refer the last level of lod.
C
caoying03 已提交
3490
        name(str|None): A name for this layer(optional). If set None, the layer
Y
yangyaming 已提交
3491
                        will be named automatically.
3492 3493 3494 3495 3496 3497 3498 3499 3500 3501

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
Y
yangyaming 已提交
3502
            out = layers.sequence_expand(x=x, y=y, ref_level=0)
3503
    """
Y
yangyaming 已提交
3504
    helper = LayerHelper('sequence_expand', input=x, **locals())
3505
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3506
    tmp = helper.create_variable_for_type_inference(dtype)
3507
    helper.append_op(
Y
yangyaming 已提交
3508 3509 3510 3511 3512
        type='sequence_expand',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp},
        attrs={'ref_level': ref_level})
3513
    return tmp
3514 3515


C
chengduo 已提交
3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571
def sequence_expand_as(x, y, name=None):
    """Sequence Expand As Layer. This layer will expand the input variable **x**
    according to the zeroth level lod of **y**. Current implementation requires
    the level number of Input(Y)'s lod must be 1, and the first dimension of
    Input(X) should be equal to the size of Input(Y)'s zeroth level lod, and
    lod of Input(X) is not considered.

    Following examples will explain how sequence_expand_as works:

    .. code-block:: text

        * Case 1:

            Given a 1-level LoDTensor input(X)
                X.data = [[a], [b], [c], [d]]
                X.dims = [4, 1]
            and input(Y)
                Y.lod = [[0, 3, 6, 7, 8]]
            ref_level: 0
            then we get 1-level LoDTensor
                Out.lod =  [[0,            3,              6,  7,  8]]
                Out.data = [[a], [a], [a], [b], [b], [b], [c], [d]]
                Out.dims = [8, 1]

        * Case 2:

            Given a common Tensor input(X)
                X.data = [[a, b], [c, d], [e, f]]
                X.dims = [3, 2]
            and input(Y)
                Y.lod = [[0, 2, 3, 6]]
            ref_level: 0
            then we get a common LoDTensor
                Out.lod =  [[0,             2,     3,                    6]]
                Out.data = [[a, b], [a, b] [c, d], [e, f], [e, f], [e, f]]
                Out.dims = [6, 2]

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
            out = layers.sequence_expand_as(x=x, y=y)
    """
    helper = LayerHelper('sequence_expand_as', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3572
    tmp = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
3573 3574 3575 3576 3577 3578 3579 3580
    helper.append_op(
        type='sequence_expand_as',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp})
    return tmp


F
fengjiayi 已提交
3581
@templatedoc()
3582
def sequence_pad(x, pad_value, maxlen=None, name=None):
F
fengjiayi 已提交
3583 3584 3585 3586 3587
    """
    ${comment}

    Args:
        x(Variable): Input variable which should contain lod information.
M
minqiyang 已提交
3588 3589 3590
        pad_value(Variable): The Variable that holds values that will be fill
            into padded steps. It can be a scalar or a tensor whose shape
            equals to time steps in sequences. If it's a scalar, it will be
F
fengjiayi 已提交
3591
            automatically broadcasted to the shape of time step.
M
minqiyang 已提交
3592 3593 3594 3595
        maxlen(int, default None): The length of padded sequences. It can be
            None or any positive int. When it is None, all sequences will be
            padded up to the length of the longest one among them; when it a
            certain positive value, it must be greater than the length of the
3596 3597 3598
            longest original sequence.
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
M
minqiyang 已提交
3599

F
fengjiayi 已提交
3600
    Returns:
M
minqiyang 已提交
3601
        Variable: The padded sequence batch and the original lengths before
3602
                  padding. All sequences has the same length.
M
minqiyang 已提交
3603

F
fengjiayi 已提交
3604 3605 3606 3607 3608 3609 3610
    Examples:
        .. code-block:: python

            import numpy

            x = fluid.layers.data(name='y', shape=[10, 5],
                             dtype='float32', lod_level=1)
G
gmcather 已提交
3611
            pad_value = fluid.layers.assign(
D
dongzhihong 已提交
3612
                input=numpy.array([0.0], dtype=numpy.float32))
F
fengjiayi 已提交
3613 3614 3615 3616 3617
            out = fluid.layers.sequence_pad(x=x, pad_value=pad_value)
    """

    helper = LayerHelper('sequence_pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3618 3619
    out = helper.create_variable_for_type_inference(dtype)
    length = helper.create_variable_for_type_inference(dtype)
3620 3621 3622 3623

    pad_value.stop_gradient = True
    length.stop_gradient = True

F
fengjiayi 已提交
3624 3625 3626 3627 3628 3629
    if maxlen is None:
        maxlen = -1
    helper.append_op(
        type='sequence_pad',
        inputs={'X': x,
                'PadValue': pad_value},
3630 3631
        outputs={'Out': out,
                 'Length': length},
F
fengjiayi 已提交
3632
        attrs={'padded_length': maxlen})
3633
    return out, length
F
fengjiayi 已提交
3634 3635


3636
def sequence_unpad(x, length, name=None):
Y
Yibing Liu 已提交
3637
    """
3638
    **Sequence Unpad Layer**
Y
Yibing Liu 已提交
3639

3640 3641
    This layer removes the padding data in the input sequences and convert
    them into sequences with actual length as output, identitied by lod
Y
Yibing Liu 已提交
3642 3643 3644 3645 3646 3647 3648 3649 3650
    information.

    .. code-block:: text

	Example:

	Given input Variable **x**:
	    x.data = [[ 1.0,  2.0,  3.0,  4.0,  5.0],
		      [ 6.0,  7.0,  8.0,  9.0, 10.0],
3651 3652 3653
		      [11.0, 12.0, 13.0, 14.0, 15.0]],

	in which there are 3 sequences padded to length 5, and the acutal length
3654
	specified by input Variable **length**:
Y
Yibing Liu 已提交
3655 3656 3657 3658 3659 3660

	    length.data = [[2], [3], [4]],

	after unpadding, the output Variable will be:

	    out.data = [[1.0, 2.0, 6.0, 7.0, 8.0, 11.0, 12.0, 13.0, 14.0]]
3661
	    out.lod = [[2, 3, 4]]
Y
Yibing Liu 已提交
3662 3663 3664 3665 3666 3667

    Args:
        x(Variable): Input Variable which contains the padded sequences with
            equal length.
        length(Variable): The Variable that specifies the actual ength of
            sequences after unpadding.
3668 3669
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yibing Liu 已提交
3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683

    Returns:
        Variable: The Variable contains the unpadded sequences.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10, 5], dtype='float32')
            len = fluid.layers.data(name='length', shape=[1], dtype='int64')
            out = fluid.layers.sequence_unpad(x=x, length=len)
    """

    helper = LayerHelper('sequence_unpad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3684
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695

    length.stop_gradient = True

    helper.append_op(
        type='sequence_unpad',
        inputs={'X': x,
                'Length': length},
        outputs={'Out': out})
    return out


3696 3697 3698 3699 3700 3701 3702 3703 3704
def beam_search(pre_ids,
                pre_scores,
                ids,
                scores,
                beam_size,
                end_id,
                level=0,
                name=None):
    """
3705 3706
    Beam search is a classical algorithm for selecting candidate words in a
    machine translation task.
Y
Yan Chunwei 已提交
3707 3708 3709

    Refer to `Beam search <https://en.wikipedia.org/wiki/Beam_search>`_
    for more details.
M
minqiyang 已提交
3710 3711

    This layer does the search in beams for one time step. Specifically, it
3712 3713 3714 3715 3716 3717
    selects the top-K candidate word ids of current step from :attr:`ids`
    according to their :attr:`scores` for all source sentences, where K is
    :attr:`beam_size` and :attr:`ids, scores` are predicted results from the
    computation cell. Additionally, :attr:`pre_ids` and :attr:`pre_scores` are
    the output of beam_search at previous step, they are needed for special use
    to handle ended candidate translations.
M
minqiyang 已提交
3718

3719 3720 3721 3722 3723 3724 3725 3726
    Note that the :attr:`scores` passed in should be accumulated scores, and
    length penalty should be done with extra operators before calculating the
    accumulated scores if needed, also suggest finding top-K before it and
    using the top-K candidates following.

    Please see the following demo for a fully beam search usage example:

        fluid/tests/book/test_machine_translation.py
Y
Yan Chunwei 已提交
3727

3728
    Args:
3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753
        pre_ids(Variable): The LodTensor variable which is the output of
            beam_search at previous step. It should be a LodTensor with shape
            :math:`(batch_size, 1)` and lod
            :math:`[[0, 1, ... , batch_size], [0, 1, ..., batch_size]]` at the
            first step.
        pre_scores(Variable): The LodTensor variable which is the output of
            beam_search at previous step.
        ids(Variable): The LodTensor variable containing the candidates ids.
            Its shape should be :math:`(batch_size \\times beam_size, K)`,
            where :math:`K` supposed to be :attr:`beam_size`.
        scores(Variable): The LodTensor variable containing the accumulated
            scores corresponding to :attr:`ids` and its shape is the same as
            the shape of :attr:`ids`.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        level(int, default 0): It can be ignored and mustn't change currently.
            It means the source level of lod, which is explained as following.
            The lod level of :attr:`ids` should be 2. The first level is source
            level which describes how many prefixes (branchs) for each source
            sentece (beam), and the second level is sentence level which
            describes how these candidates belong to the prefix. The paths
            linking prefixes and selected candidates are organized and reserved
            in lod.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
F
fengjiayi 已提交
3754

3755
    Returns:
3756 3757
        Variable: The LodTensor pair containing the selected ids and the \
            corresponding scores.
Y
Yan Chunwei 已提交
3758 3759 3760 3761

    Examples:
        .. code-block:: python

3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778
            # Suppose `probs` contains predicted results from the computation
            # cell and `pre_ids` and `pre_scores` is the output of beam_search
            # at previous step.
            topk_scores, topk_indices = layers.topk(probs, k=beam_size)
            accu_scores = layers.elementwise_add(
                x=layers.log(x=topk_scores)),
                y=layers.reshape(
                    pre_scores, shape=[-1]),
                axis=0)
            selected_ids, selected_scores = layers.beam_search(
                pre_ids=pre_ids,
                pre_scores=pre_scores,
                ids=topk_indices,
                scores=accu_scores,
                beam_size=beam_size,
                end_id=end_id)
    """
Q
Qiao Longfei 已提交
3779 3780 3781 3782
    helper = LayerHelper('beam_search', **locals())
    score_type = scores.dtype
    id_type = ids.dtype

X
Xin Pan 已提交
3783 3784 3785
    selected_scores = helper.create_variable_for_type_inference(
        dtype=score_type)
    selected_ids = helper.create_variable_for_type_inference(dtype=id_type)
Q
Qiao Longfei 已提交
3786 3787 3788 3789 3790

    helper.append_op(
        type='beam_search',
        inputs={
            'pre_ids': pre_ids,
3791
            'pre_scores': pre_scores,
Q
Qiao Longfei 已提交
3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808
            'ids': ids,
            'scores': scores,
        },
        outputs={
            'selected_ids': selected_ids,
            'selected_scores': selected_scores,
        },
        attrs={
            # TODO(ChunweiYan) to assure other value support
            'level': level,
            'beam_size': beam_size,
            'end_id': end_id,
        })

    return selected_ids, selected_scores


3809 3810 3811 3812 3813 3814 3815
def beam_search_decode(ids, scores, beam_size, end_id, name=None):
    """
    Beam Search Decode Layer. This layer constructs the full hypotheses for
    each source sentence by walking back along the LoDTensorArray :attr:`ids`
    whose lods can be used to restore the path in the beam search tree.
    Please see the following demo for a fully beam search usage example:
        fluid/tests/book/test_machine_translation.py
G
guosheng 已提交
3816

3817 3818 3819 3820 3821 3822 3823 3824 3825
    Args:
        ids(Variable): The LodTensorArray variable containing the selected ids
            of all steps.
        scores(Variable): The LodTensorArray variable containing the selected
            scores of all steps.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
G
guosheng 已提交
3826

3827 3828 3829 3830 3831 3832
    Returns:
        Variable: The LodTensor pair containing the generated id sequences \
            and the corresponding scores. The shapes and lods of the two \
            LodTensor are same. The lod level is 2 and the two levels \
            separately indicate how many hypotheses each source sentence has \
            and how many ids each hypothesis has.
G
guosheng 已提交
3833

3834 3835
    Examples:
        .. code-block:: python
T
Tink_Y 已提交
3836

3837 3838 3839 3840 3841 3842
            # Suppose `ids` and `scores` are LodTensorArray variables reserving
            # the selected ids and scores of all steps
            finished_ids, finished_scores = layers.beam_search_decode(
                ids, scores, beam_size=5, end_id=0)
    """
    helper = LayerHelper('beam_search_decode', **locals())
X
Xin Pan 已提交
3843 3844
    sentence_ids = helper.create_variable_for_type_inference(dtype=ids.dtype)
    sentence_scores = helper.create_variable_for_type_inference(dtype=ids.dtype)
3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859

    helper.append_op(
        type="beam_search_decode",
        inputs={"Ids": ids,
                "Scores": scores},
        outputs={
            "SentenceIds": sentence_ids,
            "SentenceScores": sentence_scores
        },
        attrs={"beam_size": beam_size,
               "end_id": end_id})

    return sentence_ids, sentence_scores


Y
yangyaming 已提交
3860 3861 3862 3863
def lstm_unit(x_t,
              hidden_t_prev,
              cell_t_prev,
              forget_bias=0.0,
Y
yangyaming 已提交
3864
              param_attr=None,
C
caoying03 已提交
3865 3866
              bias_attr=None,
              name=None):
Y
yangyaming 已提交
3867 3868 3869 3870
    """Lstm unit layer. The equation of a lstm step is:

        .. math::

3871
            i_t & = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i)
Y
yangyaming 已提交
3872

3873
            f_t & = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + b_f)
Y
yangyaming 已提交
3874

3875
            c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t + W_{h_c}h_{t-1} + b_c)
Y
yangyaming 已提交
3876

3877
            o_t & = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + b_o)
Y
yangyaming 已提交
3878 3879 3880

            h_t & = o_t tanh(c_t)

3881 3882 3883 3884 3885 3886
    The inputs of lstm unit include :math:`x_t`, :math:`h_{t-1}` and
    :math:`c_{t-1}`. The 2nd dimensions of :math:`h_{t-1}` and :math:`c_{t-1}`
    should be same. The implementation separates the linear transformation and
    non-linear transformation apart. Here, we take :math:`i_t` as an example.
    The linear transformation is applied by calling a `fc` layer and the
    equation is:
Y
yangyaming 已提交
3887 3888 3889

        .. math::

3890
            L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i
Y
yangyaming 已提交
3891 3892 3893 3894 3895 3896 3897 3898

    The non-linear transformation is applied by calling `lstm_unit_op` and the
    equation is:

        .. math::

            i_t = \sigma(L_{i_t})

Y
yangyaming 已提交
3899
    This layer has two outputs including :math:`h_t` and :math:`o_t`.
Y
yangyaming 已提交
3900 3901

    Args:
Y
yangyaming 已提交
3902 3903 3904 3905 3906 3907
        x_t (Variable): The input value of current step, a 2-D tensor with shape
            M x N, M for batch size and N for input size.
        hidden_t_prev (Variable): The hidden value of lstm unit, a 2-D tensor
            with shape M x S, M for batch size and S for size of lstm unit.
        cell_t_prev (Variable): The cell value of lstm unit, a 2-D tensor with
            shape M x S, M for batch size and S for size of lstm unit.
Y
yangyaming 已提交
3908
        forget_bias (float): The forget bias of lstm unit.
C
chengduo 已提交
3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
                               If it is set to None or one attribute of ParamAttr,
                               lstm_unit will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights. If it is set to False, no bias will be added
                              to the output units. If it is set to None or one attribute of ParamAttr,
                              lstm_unit will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
C
caoying03 已提交
3921 3922
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
Y
yangyaming 已提交
3923 3924

    Returns:
Y
yangyaming 已提交
3925
        tuple: The hidden value and cell value of lstm unit.
Y
yangyaming 已提交
3926 3927

    Raises:
3928 3929 3930 3931
        ValueError: The ranks of **x_t**, **hidden_t_prev** and **cell_t_prev**
                    not be 2 or the 1st dimensions of **x_t**, **hidden_t_prev**
                    and **cell_t_prev** not be the same or the 2nd dimensions of
                    **hidden_t_prev** and **cell_t_prev** not be the same.
Y
yangyaming 已提交
3932 3933 3934 3935 3936 3937

    Examples:

        .. code-block:: python

             x_t = fluid.layers.fc(input=x_t_data, size=10)
3938
             prev_hidden = fluid.layers.fc(input=prev_hidden_data, size=30)
Y
yangyaming 已提交
3939
             prev_cell = fluid.layers.fc(input=prev_cell_data, size=30)
Y
yangyaming 已提交
3940
             hidden_value, cell_value = fluid.layers.lstm_unit(x_t=x_t,
Y
yangyaming 已提交
3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956
                                                    hidden_t_prev=prev_hidden,
                                                    cell_t_prev=prev_cell)
    """
    helper = LayerHelper('lstm_unit', **locals())

    if len(x_t.shape) != 2:
        raise ValueError("Rank of x_t must be 2.")

    if len(hidden_t_prev.shape) != 2:
        raise ValueError("Rank of hidden_t_prev must be 2.")

    if len(cell_t_prev.shape) != 2:
        raise ValueError("Rank of cell_t_prev must be 2.")

    if x_t.shape[0] != hidden_t_prev.shape[0] or x_t.shape[
            0] != cell_t_prev.shape[0]:
Y
yangyaming 已提交
3957
        raise ValueError("The 1st dimensions of x_t, hidden_t_prev and "
3958 3959 3960 3961
                         "cell_t_prev must be the same.")

    if hidden_t_prev.shape[1] != cell_t_prev.shape[1]:
        raise ValueError("The 2nd dimensions of hidden_t_prev and "
Y
yangyaming 已提交
3962 3963
                         "cell_t_prev must be the same.")

Y
yangyaming 已提交
3964 3965 3966
    if bias_attr is None:
        bias_attr = ParamAttr()

Y
yangyaming 已提交
3967
    size = cell_t_prev.shape[1]
3968
    concat_out = concat(input=[x_t, hidden_t_prev], axis=1)
Y
yangyaming 已提交
3969 3970
    fc_out = fc(input=concat_out,
                size=4 * size,
Y
yangyaming 已提交
3971
                param_attr=param_attr,
3972
                bias_attr=bias_attr)
Y
yangyaming 已提交
3973
    dtype = x_t.dtype
X
Xin Pan 已提交
3974 3975
    c = helper.create_variable_for_type_inference(dtype)
    h = helper.create_variable_for_type_inference(dtype)
Y
yangyaming 已提交
3976 3977 3978 3979 3980 3981 3982 3983 3984

    helper.append_op(
        type='lstm_unit',
        inputs={"X": fc_out,
                "C_prev": cell_t_prev},
        outputs={"C": c,
                 "H": h},
        attrs={"forget_bias": forget_bias})

Y
yangyaming 已提交
3985
    return h, c
G
guosheng 已提交
3986 3987


C
caoying03 已提交
3988
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
3989
    """
Y
yangyaming 已提交
3990
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
3991 3992 3993

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3994
        dim (list|int|None): The dimensions along which the sum is performed. If
Y
yangyaming 已提交
3995 3996
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
3997 3998
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
3999
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
4000
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
4001
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4002 4003
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
4004 4005 4006

    Returns:
        Variable: The reduced Tensor variable.
F
fengjiayi 已提交
4007

G
guosheng 已提交
4008 4009 4010 4011 4012 4013
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
Q
qiaolongfei 已提交
4014
            # Each example is followed by the corresponding output tensor.
G
guosheng 已提交
4015 4016 4017 4018
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
W
whs 已提交
4019 4020 4021 4022

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
Q
qiaolongfei 已提交
4023
            # Each example is followed by the corresponding output tensor.
W
whs 已提交
4024 4025 4026
            fluid.layers.reduce_sum(x, dim=[1, 2]) # [10, 26]
            fluid.layers.reduce_sum(x, dim=[0, 1]) # [16, 20]

G
guosheng 已提交
4027 4028
    """
    helper = LayerHelper('reduce_sum', **locals())
X
Xin Pan 已提交
4029
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4030 4031
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
4032 4033 4034 4035 4036
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4037
            'dim': dim if dim != None else [0],
G
guosheng 已提交
4038 4039 4040 4041
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
4042 4043


C
caoying03 已提交
4044
def reduce_mean(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
4045
    """
Y
Yibing Liu 已提交
4046
    Computes the mean of the input tensor's elements along the given dimension.
G
guosheng 已提交
4047 4048 4049

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
Y
Yibing Liu 已提交
4050 4051 4052
        dim (list|int|None): The dimension along which the mean is computed. If
            `None`, compute the mean over all elements of :attr:`input`
            and return a variable with a single element, otherwise it
Y
yangyaming 已提交
4053
            must be in the range :math:`[-rank(input), rank(input))`. If
4054
            :math:`dim[i] < 0`, the dimension to reduce is
Y
Yibing Liu 已提交
4055
            :math:`rank(input) + dim[i]`.
Y
yangyaming 已提交
4056 4057
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
4058
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
Yibing Liu 已提交
4059
        name(str|None): A name for this layer(optional). If set `None`, the layer
C
caoying03 已提交
4060
                       will be named automatically.
G
guosheng 已提交
4061 4062

    Returns:
Y
Yibing Liu 已提交
4063
        Variable: The reduced mean Variable.
F
fengjiayi 已提交
4064

G
guosheng 已提交
4065 4066 4067 4068 4069 4070 4071 4072 4073 4074
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x)  # [0.4375]
            fluid.layers.reduce_mean(x, dim=0)  # [0.15, 0.25, 0.55, 0.8]
            fluid.layers.reduce_mean(x, dim=-1)  # [0.475, 0.4]
F
stash  
fengjiayi 已提交
4075 4076
            fluid.layers.reduce_mean(
                x, dim=1, keep_dim=True)  # [[0.475], [0.4]]
W
whs 已提交
4077 4078 4079 4080 4081 4082 4083

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x, dim=[1, 2]) # [2.5, 6.5]
            fluid.layers.reduce_mean(x, dim=[0, 1]) # [4.0, 5.0]
G
guosheng 已提交
4084 4085
    """
    helper = LayerHelper('reduce_mean', **locals())
X
Xin Pan 已提交
4086
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4087 4088
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
4089 4090 4091 4092 4093
    helper.append_op(
        type='reduce_mean',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4094
            'dim': dim if dim != None else [0],
G
guosheng 已提交
4095 4096 4097 4098
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
4099 4100


C
caoying03 已提交
4101
def reduce_max(input, dim=None, keep_dim=False, name=None):
4102
    """
Y
yangyaming 已提交
4103
    Computes the maximum of tensor elements over the given dimension.
4104 4105 4106

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4107
        dim (list|int|None): The dimension along which the maximum is computed.
Y
yangyaming 已提交
4108 4109 4110
            If :attr:`None`, compute the maximum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
4111
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
4112 4113
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
4114
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4115 4116
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
4117 4118 4119

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
4120

4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x)  # [0.9]
            fluid.layers.reduce_max(x, dim=0)  # [0.2, 0.3, 0.6, 0.9]
            fluid.layers.reduce_max(x, dim=-1)  # [0.9, 0.7]
            fluid.layers.reduce_max(x, dim=1, keep_dim=True)  # [[0.9], [0.7]]
W
whs 已提交
4132 4133 4134 4135 4136 4137 4138

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x, dim=[1, 2]) # [4.0, 8.0]
            fluid.layers.reduce_max(x, dim=[0, 1]) # [7.0, 8.0]
4139 4140
    """
    helper = LayerHelper('reduce_max', **locals())
X
Xin Pan 已提交
4141
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4142 4143
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4144 4145 4146 4147 4148
    helper.append_op(
        type='reduce_max',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4149
            'dim': dim if dim != None else [0],
4150 4151 4152 4153 4154 4155
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
4156
def reduce_min(input, dim=None, keep_dim=False, name=None):
4157
    """
Y
yangyaming 已提交
4158
    Computes the minimum of tensor elements over the given dimension.
4159 4160 4161

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4162
        dim (list|int|None): The dimensions along which the minimum is computed.
Y
yangyaming 已提交
4163 4164 4165
            If :attr:`None`, compute the minimum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
4166
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
4167 4168
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
4169
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4170 4171
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
4172 4173 4174

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
4175

4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x)  # [0.1]
            fluid.layers.reduce_min(x, dim=0)  # [0.1, 0.2, 0.5, 0.7]
            fluid.layers.reduce_min(x, dim=-1)  # [0.2, 0.1]
            fluid.layers.reduce_min(x, dim=1, keep_dim=True)  # [[0.2], [0.1]]
W
whs 已提交
4187 4188 4189 4190 4191 4192 4193

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x, dim=[1, 2]) # [1.0, 5.0]
            fluid.layers.reduce_min(x, dim=[0, 1]) # [1.0, 2.0]
4194 4195
    """
    helper = LayerHelper('reduce_min', **locals())
X
Xin Pan 已提交
4196
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4197 4198
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4199 4200 4201 4202 4203
    helper.append_op(
        type='reduce_min',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4204
            'dim': dim if dim != None else [0],
4205 4206 4207 4208
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
4209 4210


4211 4212 4213 4214 4215 4216
def reduce_prod(input, dim=None, keep_dim=False, name=None):
    """
    Computes the product of tensor elements over the given dimension.

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4217
        dim (list|int|None): The dimensions along which the product is performed. If
4218 4219
            :attr:`None`, multipy all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
4220 4221
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
4222 4223 4224
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
yangyaming 已提交
4225
        name(str|None): A name for this layer(optional). If set None, the
Z
zhouhanqing 已提交
4226
            layer will be named automatically.
4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x)  # [0.0002268]
            fluid.layers.reduce_prod(x, dim=0)  # [0.02, 0.06, 0.3, 0.63]
            fluid.layers.reduce_prod(x, dim=-1)  # [0.027, 0.0084]
Y
yangyaming 已提交
4241
            fluid.layers.reduce_prod(x, dim=1,
Z
zhouhanqing 已提交
4242
                                     keep_dim=True)  # [[0.027], [0.0084]]
W
whs 已提交
4243 4244 4245 4246 4247 4248 4249

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x, dim=[1, 2]) # [24.0, 1680.0]
            fluid.layers.reduce_prod(x, dim=[0, 1]) # [105.0, 384.0]
4250 4251
    """
    helper = LayerHelper('reduce_prod', **locals())
X
Xin Pan 已提交
4252
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4253 4254
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4255 4256 4257 4258 4259
    helper.append_op(
        type='reduce_prod',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4260
            'dim': dim if dim != None else [0],
4261 4262 4263 4264 4265 4266
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
4267
def split(input, num_or_sections, dim=-1, name=None):
G
guosheng 已提交
4268
    """
C
caoying03 已提交
4269
    Split the input tensor into multiple sub-tensors.
G
guosheng 已提交
4270 4271 4272

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
C
caoying03 已提交
4273 4274 4275 4276 4277
        num_or_sections (int|list): If :attr:`num_or_sections` is an integer,
            then the integer indicates the number of equal sized sub-tensors
            that the tensor will be divided into. If :attr:`num_or_sections`
            is a list of integers, the length of list indicates the number of
            sub-tensors and the integers indicate the sizes of sub-tensors'
G
guosheng 已提交
4278
            :attr:`dim` dimension orderly.
C
caoying03 已提交
4279
        dim (int): The dimension along which to split. If :math:`dim < 0`, the
G
guosheng 已提交
4280
            dimension to split along is :math:`rank(input) + dim`.
C
caoying03 已提交
4281 4282
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
4283 4284

    Returns:
D
dzhwinter 已提交
4285
        list(Variable): The list of segmented tensor variables.
G
guosheng 已提交
4286 4287 4288 4289 4290 4291 4292 4293 4294

    Examples:
        .. code-block:: python

            # x is a Tensor variable with shape [3, 9, 5]:
            x0, x1, x2 = fluid.layers.split(x, num_or_sections=3, dim=1)
            x0.shape  # [3, 3, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 3, 5]
F
stash  
fengjiayi 已提交
4295 4296
            x0, x1, x2 = fluid.layers.split(
                x, num_or_sections=[2, 3, 4], dim=1)
G
guosheng 已提交
4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311
            x0.shape  # [3, 2, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 4, 5]
    """
    helper = LayerHelper('split', **locals())
    input_shape = input.shape
    dim = (len(input_shape) + dim) if dim < 0 else dim
    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
        num = num_or_sections
    else:
        assert len(num_or_sections) < input_shape[
            dim], 'len(num_or_sections) must not be more than input.shape[dim].'
        num = len(num_or_sections)
    outs = [
X
Xin Pan 已提交
4312
        helper.create_variable_for_type_inference(dtype=helper.input_dtype())
G
guosheng 已提交
4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325
        for i in range(num)
    ]
    helper.append_op(
        type='split',
        inputs={'X': input},
        outputs={'Out': outs},
        attrs={
            'num': num_or_sections if isinstance(num_or_sections, int) else 0,
            'sections': num_or_sections
            if isinstance(num_or_sections, list) else [],
            'axis': dim
        })
    return outs
C
caoying03 已提交
4326 4327 4328 4329 4330 4331 4332 4333 4334


def l2_normalize(x, axis, epsilon=1e-12, name=None):
    """
    **L2 normalize Layer**

    The l2 normalize layer normalizes `x` along dimension `axis` using an L2
    norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes

4335
    .. math::
4336 4337

        y = \\frac{x}{ \sqrt{\sum {x^2} + epsion }}
C
caoying03 已提交
4338 4339 4340 4341 4342

    For `x` with more dimensions, this layer independently normalizes each 1-D
    slice along dimension `axis`.

    Args:
4343
        x(Variable|list): The input tensor to l2_normalize layer.
4344
        axis(int): The axis on which to apply normalization. If `axis < 0`, \
4345 4346
            the dimension to normalization is rank(X) + axis. -1 is the
            last dimension.
4347
        epsilon(float): The epsilon value is used to avoid division by zero, \
4348
            the defalut value is 1e-10.
4349
        name(str|None): A name for this layer(optional). If set None, the layer \
4350
            will be named automatically.
C
caoying03 已提交
4351 4352

    Returns:
4353
        Variable: The output tensor variable is the same shape with `x`.
C
caoying03 已提交
4354 4355

    Examples:
4356

C
caoying03 已提交
4357 4358
        .. code-block:: python

4359 4360 4361 4362
            data = fluid.layers.data(name="data",
                                     shape=(3, 17, 13),
                                     dtype="float32")
            normed = fluid.layers.l2_normalize(x=data, axis=1)
C
caoying03 已提交
4363 4364
    """

F
fengjiayi 已提交
4365 4366
    if len(x.shape) == 1:
        axis = 0
C
caoying03 已提交
4367 4368
    helper = LayerHelper("l2_normalize", **locals())

X
Xin Pan 已提交
4369 4370
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    norm = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
4371
    helper.append_op(
4372 4373 4374 4375
        type="norm",
        inputs={"X": x},
        outputs={"Out": out,
                 "Norm": norm},
C
caoying03 已提交
4376
        attrs={
4377 4378
            "axis": 1 if axis is None else axis,
            "epsilon": epsilon,
C
caoying03 已提交
4379 4380
        })
    return out
4381 4382


S
sneaxiy 已提交
4383
def matmul(x, y, transpose_x=False, transpose_y=False, alpha=1.0, name=None):
G
guosheng 已提交
4384
    """
Y
ying 已提交
4385 4386 4387 4388
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.
G
guosheng 已提交
4389

C
chengduoZH 已提交
4390
    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
4391
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:
G
guosheng 已提交
4392

4393 4394 4395 4396 4397
    - If a transpose flag is specified, the last two dimensions of the tensor
      are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
      :math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
      :math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
      opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
4398
      :math:`[1, D]` in transposed form.
G
guosheng 已提交
4399

C
chengduoZH 已提交
4400
    - After transpose, the two tensors are 2-D or n-D and matrix multiplication
4401
      performs in the following way.
G
guosheng 已提交
4402

4403
      - If both are 2-D, they are multiplied like conventional matrices.
C
chengduoZH 已提交
4404
      - If either is n-D, it is treated as a stack of matrices residing in the
Y
ying 已提交
4405
        last two dimensions and a batched matrix multiply supporting broadcast
4406
        applies on the two tensors.
G
guosheng 已提交
4407

Y
ying 已提交
4408 4409
    Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
C
chengduoZH 已提交
4410
    removed after matrix multiplication.
G
guosheng 已提交
4411 4412 4413

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
4414 4415 4416
        y (Variable): The input variable which is a Tensor or LoDTensor.
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
S
sneaxiy 已提交
4417
        alpha (float): The scale of output. Default 1.0.
4418
        name(str|None): A name for this layer(optional). If set None, the layer
4419
            will be named automatically.
G
guosheng 已提交
4420 4421

    Returns:
4422
        Variable: The product Tensor variable.
G
guosheng 已提交
4423

G
guosheng 已提交
4424 4425 4426
    Examples:
        .. code-block:: python

4427
            # Examples to clarify shapes of the inputs and output
C
chengduoZH 已提交
4428 4429
            # x: [B, ..., M, K], y: [B, ..., K, N]
            fluid.layers.matmul(x, y)  # out: [B, ..., M, N]
Y
ying 已提交
4430

4431 4432
            # x: [B, M, K], y: [B, K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
4433

4434 4435
            # x: [B, M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
4436

4437 4438
            # x: [M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [M, N]
Y
ying 已提交
4439 4440 4441 4442

            # x: [B, M, K], y: [K]
            fluid.layers.matmul(x, y)  # out: [B, M]

4443 4444
            # x: [K], y: [K]
            fluid.layers.matmul(x, y)  # out: [1]
4445

Y
ying 已提交
4446
            # x: [M], y: [N]
4447
            fluid.layers.matmul(x, y, True, True)  # out: [M, N]
G
guosheng 已提交
4448
    """
Y
ying 已提交
4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460

    def __check_input(x, y):
        if len(y.shape) > len(x.shape):
            raise ValueError(
                "Invalid inputs for matmul. "
                "x's rank should be always greater than or equal to y'rank.")

        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
Y
ying 已提交
4461
            y_shape = y_shape + [1]
Y
ying 已提交
4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477

        # check the inner 2 dimensions
        if transpose_x:
            x_shape[-2], x_shape[-1] = x_shape[-1], x_shape[-2]
        if transpose_y:
            y_shape[-2], y_shape[-1] = y_shape[-1], y_shape[-2]
        if x_shape[-1] != y_shape[-2]:
            raise ValueError("Invalid inputs for matmul.")

        if len(y_shape) > 2:
            for i, dim_x in enumerate(x_shape[:-2]):
                if dim_x != y_shape[i]:
                    raise ValueError("Invalid inputs for matmul.")

    __check_input(x, y)

4478
    helper = LayerHelper('matmul', **locals())
X
Xin Pan 已提交
4479
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
G
guosheng 已提交
4480
    helper.append_op(
4481 4482 4483 4484
        type='matmul',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
S
sneaxiy 已提交
4485 4486 4487
        attrs={
            'transpose_X': transpose_x,
            'transpose_Y': transpose_y,
S
sneaxiy 已提交
4488
            'alpha': float(alpha),
S
sneaxiy 已提交
4489
        })
4490
    return out
4491 4492


4493
def topk(input, k, name=None):
Q
qingqing01 已提交
4494 4495 4496 4497
    """
    This operator is used to find values and indices of the k largest entries
    for the last dimension.

F
fengjiayi 已提交
4498
    If the input is a vector (1-D Tensor), finds the k largest entries in the vector
Q
qingqing01 已提交
4499 4500 4501 4502 4503 4504
    and outputs their values and indices as vectors. Thus values[j] is the j-th
    largest entry in input, and its index is indices[j].

    If the input is a Tensor with higher rank, this operator computes the top k
    entries along the last dimension.

F
fengjiayi 已提交
4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525
    For example:

    .. code-block:: text

        If:
            input = [[5, 4, 2, 3],
                     [9, 7, 10, 25],
                     [6, 2, 10, 1]]
            k = 2

        Then:
            The first output:
            values = [[5, 4],
                      [10, 25],
                      [6, 10]]

            The second output:
            indices = [[0, 1],
                       [2, 3],
                       [0, 2]]

Q
qingqing01 已提交
4526 4527 4528
    Args:
        input(Variable): The input variable which can be a vector or Tensor with
            higher rank.
4529
        k(int):  The number of top elements to look for along the last dimension
F
fengjiayi 已提交
4530
                 of input.
4531
        name(str|None): A name for this layer(optional). If set None, the layer
4532
                       will be named automatically.
F
fengjiayi 已提交
4533
                       Default: None
Q
qingqing01 已提交
4534 4535

    Returns:
4536 4537 4538
        Tuple[Variable]: A tuple with two elements. Each element is a Variable.
        The first one is k largest elements along each last
        dimensional slice. The second one is indices of values
F
fengjiayi 已提交
4539
        within the last dimension of input.
Q
qingqing01 已提交
4540

F
fengjiayi 已提交
4541 4542
    Raises:
        ValueError: If k < 1 or k is not less than the last dimension of input
Q
qingqing01 已提交
4543 4544 4545 4546 4547 4548 4549

    Examples:
        .. code-block:: python

            top5_values, top5_indices = layers.topk(input, k=5)
    """
    helper = LayerHelper("top_k", **locals())
X
Xin Pan 已提交
4550 4551
    values = helper.create_variable_for_type_inference(dtype=input.dtype)
    indices = helper.create_variable_for_type_inference(dtype="int64")
Q
qingqing01 已提交
4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562
    helper.append_op(
        type="top_k",
        inputs={"X": [input]},
        outputs={"Out": [values],
                 "Indices": [indices]},
        attrs={"k": k})
    values.stop_gradient = True
    indices.stop_gradient = True
    return values, indices


4563
def edit_distance(input, label, normalized=True, ignored_tokens=None):
4564
    """
Y
ying 已提交
4565 4566 4567 4568 4569 4570 4571 4572 4573
    EditDistance operator computes the edit distances between a batch of
    hypothesis strings and their references. Edit distance, also called
    Levenshtein distance, measures how dissimilar two strings are by counting
    the minimum number of operations to transform one string into anthor.
    Here the operations include insertion, deletion, and substitution.

    For example, given hypothesis string A = "kitten" and reference
    B = "sitting", the edit distance is 3 for A will be transformed into B
    at least after two substitutions and one insertion:
W
wanghaoshuang 已提交
4574

Y
ying 已提交
4575
    "kitten" -> "sitten" -> "sittin" -> "sitting"
W
wanghaoshuang 已提交
4576

4577
    The input is a LoDTensor consisting of all the hypothesis strings with
Y
ying 已提交
4578 4579
    the total number denoted by `batch_size`, and the separation is specified
    by the LoD information. And the `batch_size` reference strings are arranged
4580
    in order in the same way in the input LoDTensor.
W
wanghaoshuang 已提交
4581

4582
    The output contains the `batch_size` results and each stands for the edit
Y
ying 已提交
4583 4584
    distance for a pair of strings respectively. If Attr(normalized) is true,
    the edit distance will be divided by the length of reference string.
W
wanghaoshuang 已提交
4585

4586 4587 4588
    Args:
        input(Variable): The indices for hypothesis strings.
        label(Variable): The indices for reference strings.
4589
        normalized(bool, default True): Indicated whether to normalize the edit distance by
Y
ying 已提交
4590
                          the length of reference string.
4591
        ignored_tokens(list<int>, default None): Tokens that should be removed before
Y
ying 已提交
4592
                                     calculating edit distance.
4593
        name (str): The name of this layer. It is optional.
4594

W
wanghaoshuang 已提交
4595
    Returns:
W
wanghaoshuang 已提交
4596
        Variable: sequence-to-sequence edit distance in shape [batch_size, 1].
W
wanghaoshuang 已提交
4597 4598 4599 4600

    Examples:
        .. code-block:: python

T
tink2123 已提交
4601 4602
            x = fluid.layers.data(name='x', shape=[1], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='float32')
4603
            cost = fluid.layers.edit_distance(input=x,label=y)
4604
    """
4605
    helper = LayerHelper("edit_distance", **locals())
4606

4607
    # remove some tokens from input and labels
W
wanghaoshuang 已提交
4608
    if ignored_tokens is not None and len(ignored_tokens) > 0:
X
Xin Pan 已提交
4609 4610
        erased_input = helper.create_variable_for_type_inference(dtype="int64")
        erased_label = helper.create_variable_for_type_inference(dtype="int64")
4611 4612 4613 4614 4615

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [input]},
            outputs={"Out": [erased_input]},
W
wanghaoshuang 已提交
4616
            attrs={"tokens": ignored_tokens})
4617 4618 4619 4620 4621
        input = erased_input

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [label]},
W
whs 已提交
4622
            outputs={"Out": [erased_label]},
W
wanghaoshuang 已提交
4623
            attrs={"tokens": ignored_tokens})
4624 4625
        label = erased_label

4626
    # edit distance op
X
Xin Pan 已提交
4627 4628
    edit_distance_out = helper.create_variable_for_type_inference(dtype="int64")
    sequence_num = helper.create_variable_for_type_inference(dtype="int64")
4629 4630 4631 4632
    helper.append_op(
        type="edit_distance",
        inputs={"Hyps": [input],
                "Refs": [label]},
4633 4634
        outputs={"Out": [edit_distance_out],
                 "SequenceNum": [sequence_num]},
4635 4636
        attrs={"normalized": normalized})

4637
    return edit_distance_out, sequence_num
4638 4639 4640 4641 4642


def ctc_greedy_decoder(input, blank, name=None):
    """
    This op is used to decode sequences by greedy policy by below steps:
Y
yi.wu 已提交
4643

Y
ying 已提交
4644 4645 4646 4647
    1. Get the indexes of max value for each row in input. a.k.a.
       numpy.argmax(input, axis=0).
    2. For each sequence in result of step1, merge repeated tokens between two
       blanks and delete all blanks.
4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664

    A simple example as below:

    .. code-block:: text

        Given:

        input.data = [[0.6, 0.1, 0.3, 0.1],
                      [0.3, 0.2, 0.4, 0.1],
                      [0.1, 0.5, 0.1, 0.3],
                      [0.5, 0.1, 0.3, 0.1],

                      [0.5, 0.1, 0.3, 0.1],
                      [0.2, 0.2, 0.2, 0.4],
                      [0.2, 0.2, 0.1, 0.5],
                      [0.5, 0.1, 0.3, 0.1]]

4665
        input.lod = [[4, 4]]
4666

W
whs 已提交
4667
        Computation:
4668

W
whs 已提交
4669 4670 4671 4672 4673 4674
        step1: Apply argmax to first input sequence which is input.data[0:4]. Then we get:
               [[0], [2], [1], [0]]
        step2: merge repeated tokens and remove blank which is 0. Then we get first output sequence:
               [[2], [1]]

        Finally:
4675 4676 4677 4678 4679

        output.data = [[2],
                       [1],
                       [3]]

4680
        output.lod = [[2, 1]]
4681

W
whs 已提交
4682

4683 4684
    Args:

Y
ying 已提交
4685 4686 4687 4688 4689 4690 4691 4692 4693
        input(Variable): (LoDTensor<float>), the probabilities of
                         variable-length sequences, which is a 2-D Tensor with
                         LoD information. It's shape is [Lp, num_classes + 1],
                         where Lp is the sum of all input sequences' length and
                         num_classes is the true number of classes. (not
                         including the blank label).
        blank(int): the blank label index of Connectionist Temporal
                    Classification (CTC) loss, which is in thehalf-opened
                    interval [0, num_classes + 1).
4694
        name (str): The name of this layer. It is optional.
4695 4696

    Returns:
W
whs 已提交
4697 4698
        Variable: CTC greedy decode result which is a 2-D tensor with shape [Lp, 1].
                  'Lp' is the sum if all output sequences' length. If all the sequences
4699
                  in result were empty, the result LoDTensor will be [-1] with
W
whs 已提交
4700
                  LoD [[]] and dims [1, 1].
4701 4702 4703 4704 4705

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
W
wanghaoshuang 已提交
4706

4707
            cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
W
wanghaoshuang 已提交
4708
    """
4709
    helper = LayerHelper("ctc_greedy_decoder", **locals())
Q
qingqing01 已提交
4710
    _, topk_indices = topk(input, k=1)
4711 4712

    # ctc align op
X
Xin Pan 已提交
4713
    ctc_out = helper.create_variable_for_type_inference(dtype="int64")
4714 4715 4716
    helper.append_op(
        type="ctc_align",
        inputs={"Input": [topk_indices]},
W
wanghaoshuang 已提交
4717
        outputs={"Output": [ctc_out]},
4718 4719
        attrs={"merge_repeated": True,
               "blank": blank})
4720
    return ctc_out
4721 4722


W
Wu Yi 已提交
4723
def warpctc(input, label, blank=0, norm_by_times=False, use_cudnn=False):
W
wanghaoshuang 已提交
4724
    """
4725 4726
    An operator integrating the open source Warp-CTC library
    (https://github.com/baidu-research/warp-ctc)
W
wanghaoshuang 已提交
4727
    to compute Connectionist Temporal Classification (CTC) loss.
4728 4729
    It can be aliased as softmax with CTC, since a native softmax activation is
    interated to the Warp-CTC library, to to normlize values for each row of the
W
wanghaoshuang 已提交
4730 4731 4732
    input tensor.

    Args:
4733
       input (Variable): The unscaled probabilities of variable-length sequences,
W
wanghaoshuang 已提交
4734 4735 4736 4737
         which is a 2-D Tensor with LoD information.
         It's shape is [Lp, num_classes + 1], where Lp is the sum of all input
         sequences' length and num_classes is the true number of classes.
         (not including the blank label).
4738
       label (Variable): The ground truth of variable-length sequence,
4739 4740 4741
         which is a 2-D Tensor with LoD information. It is of the shape [Lg, 1],
         where Lg is th sum of all labels' length.
       blank (int, default 0): The blank label index of Connectionist
W
wanghaoshuang 已提交
4742 4743
         Temporal Classification (CTC) loss, which is in the
         half-opened interval [0, num_classes + 1).
4744 4745 4746
       norm_by_times(bool, default false): Whether to normalize the gradients
         by the number of time-step, which is also the sequence's length.
         There is no need to normalize the gradients if warpctc layer was
4747
         follewed by a mean_op.
W
Wu Yi 已提交
4748
       use_cudnn (bool, default false): Whether to use cudnn.
W
wanghaoshuang 已提交
4749 4750

    Returns:
4751 4752
        Variable: The Connectionist Temporal Classification (CTC) loss,
        which is a 2-D Tensor of the shape [batch_size, 1].
W
wanghaoshuang 已提交
4753 4754

    Examples:
4755

W
wanghaoshuang 已提交
4756
        .. code-block:: python
4757

4758 4759 4760
            label = fluid.layers.data(shape=[11, 8], dtype='float32', lod_level=1)
            predict = fluid.layers.data(shape=[11, 1], dtype='float32')
            cost = fluid.layers.warpctc(input=predict, label=label)
W
wanghaoshuang 已提交
4761 4762

    """
F
fengjiayi 已提交
4763
    helper = LayerHelper('warpctc', **locals())
X
Xin Pan 已提交
4764 4765
    loss_out = helper.create_variable_for_type_inference(dtype=input.dtype)
    grad_out = helper.create_variable_for_type_inference(dtype=input.dtype)
W
wanghaoshuang 已提交
4766 4767 4768 4769 4770 4771
    helper.append_op(
        type='warpctc',
        inputs={'Logits': [input],
                'Label': [label]},
        outputs={'WarpCTCGrad': [grad_out],
                 'Loss': [loss_out]},
W
Wu Yi 已提交
4772 4773 4774 4775 4776
        attrs={
            'blank': blank,
            'norm_by_times': norm_by_times,
            'use_cudnn': use_cudnn
        })
W
wanghaoshuang 已提交
4777
    return loss_out
4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792


def sequence_reshape(input, new_dim):
    """
    **Sequence Reshape Layer**

    This layer will rearrange the input sequences. The new dimension is set by
    user. Length of each sequence is computed according to original length,
    original dimension and new dimension. The following example will help to
    illustrate the function of this layer:

    .. code-block:: text

        x is a LoDTensor:
            x.lod  = [[0, 2, 6]]
4793 4794 4795
            x.data = [[1,  2], [3,  4],
                      [5,  6], [7,  8],
                      [9, 10], [11, 12]]
4796 4797 4798 4799 4800
            x.dims = [6, 2]

        set new_dim = 4

        then out is a LoDTensor:
4801

4802
            out.lod  = [[0, 1, 3]]
4803 4804 4805 4806

            out.data = [[1,  2,  3,  4],
                        [5,  6,  7,  8],
                        [9, 10, 11, 12]]
4807 4808 4809 4810 4811 4812 4813
            out.dims = [3, 4]

    Currently, only 1-level LoDTensor is supported and please make sure
    (original length * original dimension) can be divided by new dimension with
    no remainder for each sequence.

    Args:
4814 4815 4816

       input (Variable): A 2-D LoDTensor with shape being [N, M] where M for dimension.
       new_dim (int): New dimension that the input LoDTensor is reshaped to.
4817 4818

    Returns:
4819

4820 4821 4822 4823 4824
        Variable: Reshaped LoDTensor according to new dimension.

    Examples:
        .. code-block:: python

4825
            x = fluid.layers.data(shape=[5, 20], dtype='float32', lod_level=1)
4826
            x_reshaped = fluid.layers.sequence_reshape(input=x, new_dim=10)
4827 4828
    """
    helper = LayerHelper('sequence_reshape', **locals())
X
Xin Pan 已提交
4829
    out = helper.create_variable_for_type_inference(helper.input_dtype())
4830 4831 4832 4833 4834 4835
    helper.append_op(
        type='sequence_reshape',
        inputs={'X': [input]},
        outputs={'Out': [out]},
        attrs={'new_dim': new_dim})
    return out
Y
ying 已提交
4836 4837


4838 4839 4840 4841
# FIXME(wuyi): let docstring_checker.py understand @autodoc.
# For now, the comments in c++ use types like Tensor, but in python side
# the type is often "Variable", and arguments may vary.
@templatedoc(op_type="nce")
Y
Yang Yu 已提交
4842 4843 4844 4845 4846 4847
def nce(input,
        label,
        num_total_classes,
        sample_weight=None,
        param_attr=None,
        bias_attr=None,
C
chengduo 已提交
4848
        num_neg_samples=None,
4849 4850 4851
        name=None,
        sampler="uniform",
        custom_dist=None,
4852 4853
        seed=0,
        is_sparse=False):
4854 4855 4856 4857 4858 4859 4860
    """
    ${comment}

    Args:
        input (Variable): input variable.
        label (Variable): label.
        num_total_classes (int):${num_total_classes_comment}
4861 4862
        sample_weight (Variable|None): A Variable of shape [batch_size, 1]
            storing a weight for each sample. The default weight for each
4863
            sample is 1.0.
C
chengduo 已提交
4864 4865 4866 4867 4868 4869 4870 4871 4872
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of nce. If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of nce.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
4873
        num_neg_samples (int): ${num_neg_samples_comment}
C
chengduo 已提交
4874 4875
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
4876 4877 4878
        sampler (str): The sampler used to sample class from negtive classes.
                       It can be 'uniform', 'log_uniform' or 'custom_dist'.
                       default: 'uniform'.
4879
        custom_dist (float[]): A float[] with size=num_total_classes.
4880 4881 4882 4883
                       It is used when sampler is set to 'custom_dist'.
                       custom_dist[i] is the probsbility of i-th class to be sampled.
                       default: None.
        seed (int): The seed used in sampler. default: 0.
4884
        is_sparse(bool): The flag indicating whether to use sparse update, the weight@GRAD and bias@GRAD will be changed to SelectedRows.
F
fengjiayi 已提交
4885

4886
    Returns:
Y
Yibing Liu 已提交
4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913
        Variable: The output nce loss.

    Examples:
        .. code-block:: python

            window_size = 5
            words = []
            for i in xrange(window_size):
                words.append(layers.data(
                    name='word_{0}'.format(i), shape=[1], dtype='int64'))

            dict_size = 10000
            label_word = int(window_size / 2) + 1

            embs = []
            for i in xrange(window_size):
                if i == label_word:
                    continue

                emb = layers.embedding(input=words[i], size=[dict_size, 32],
                                       param_attr='emb.w', is_sparse=True)
                embs.append(emb)

            embs = layers.concat(input=embs, axis=1)
            loss = layers.nce(input=embs, label=words[label_word],
                          num_total_classes=dict_size, param_attr='nce.w',
                          bias_attr='nce.b')
4914 4915 4916 4917 4918 4919 4920 4921 4922

            #or use custom distribution
            dist = fluid.layers.assign(input=np.array([0.05,0.5,0.1,0.3,0.05]).astype("float32"))
            loss = layers.nce(input=embs, label=words[label_word],
                          num_total_classes=5, param_attr='nce.w',
                          bias_attr='nce.b',
                          num_neg_samples=3,
                          sampler="custom_dist",
                          custom_dist=dist)
4923

4924
    """
Y
Yang Yu 已提交
4925 4926 4927
    helper = LayerHelper('nce', **locals())
    assert isinstance(input, Variable)
    assert isinstance(label, Variable)
C
chengduo 已提交
4928 4929

    dim = input.shape[1]
Y
Yang Yu 已提交
4930 4931 4932 4933 4934 4935
    num_true_class = label.shape[1]
    w = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_total_classes, dim],
        is_bias=False,
        dtype=input.dtype)
4936
    inputs = {}
C
chengduo 已提交
4937 4938 4939 4940 4941 4942 4943
    if helper.bias_attr:
        b = helper.create_parameter(
            attr=helper.bias_attr,
            shape=[num_total_classes, 1],
            is_bias=True,
            dtype=input.dtype)
        inputs['Bias'] = b
X
Xin Pan 已提交
4944 4945 4946
    cost = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_logits = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_labels = helper.create_variable_for_type_inference(dtype=label.dtype)
Y
Yang Yu 已提交
4947

4948 4949 4950 4951
    inputs['Input'] = input
    inputs['Label'] = label
    inputs['Weight'] = w
    inputs['SampleWeight'] = sample_weight if sample_weight is not None else []
4952 4953 4954 4955 4956 4957 4958

    if sampler == "uniform":
        sampler = 0
    elif sampler == "log_uniform":
        sampler = 1
    elif sampler == "custom_dist":
        assert custom_dist is not None
4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010
        # assert isinstance(custom_dist, Variable)

        custom_dist_len = len(custom_dist)
        alias_probs_ = [0] * custom_dist_len
        alias_ = [0] * custom_dist_len
        bigs = []
        littles = []
        for i in range(custom_dist_len):
            normal_prob = custom_dist[i] * custom_dist_len
            if normal_prob - 1.0 > 1e-4:
                bigs.append((i, normal_prob))
            elif 1.0 - normal_prob > 1e-4:
                littles.append((i, normal_prob))
            else:
                alias_probs_[i] = normal_prob
                alias_[i] = -1

        while len(bigs) and len(littles):
            big = bigs.pop(0)
            little = littles.pop(0)

            big_idx = big[0]
            big_prob = big[1]

            alias_probs_[little[0]] = little[1]
            alias_[little[0]] = big_idx
            big_left = big[1] + little[1] - 1
            if big_left - 1.0 > 1e-4:
                bigs.append((big_idx, big_left))
            elif 1.0 - big_left > 1e-4:
                littles.append((big_idx, big_left))
            else:
                alias_probs_[big_idx] = big_left
                alias_[big_idx] = -1

        if len(bigs):
            big = bigs.pop(0)
            alias_probs_[big[0]] = 1.0
            alias_[big[0]] = -1
        if len(littles):
            little = littles.pop(0)
            alias_probs_[little[0]] = 1.0
            alias_[little[0]] = -1

        probs = assign(input=np.array(custom_dist).astype('float32'))
        custom_alias = assign(input=np.array(alias_).astype('int32'))
        custom_alias_probs = assign(
            input=np.array(alias_probs_).astype('float32'))

        inputs['CustomDistProbs'] = probs
        inputs['CustomDistAlias'] = custom_alias
        inputs['CustomDistAliasProbs'] = custom_alias_probs
5011 5012 5013 5014
        sampler = 2
    else:
        raise Exception("Unsupported sampler type.")

5015 5016 5017 5018 5019
    if num_neg_samples is None:
        num_neg_samples = 10
    else:
        num_neg_samples = int(num_neg_samples)

Y
Yang Yu 已提交
5020 5021
    attrs = {
        'num_total_classes': int(num_total_classes),
5022 5023
        'num_neg_samples': num_neg_samples,
        'seed': seed,
5024 5025
        'sampler': sampler,
        'is_sparse': is_sparse
Y
Yang Yu 已提交
5026
    }
Y
Yang Yu 已提交
5027 5028 5029

    helper.append_op(
        type='nce',
C
chengduo 已提交
5030
        inputs=inputs,
Y
Yang Yu 已提交
5031 5032 5033 5034 5035 5036
        outputs={
            'Cost': cost,
            'SampleLogits': sample_logits,
            'SampleLabels': sample_labels
        },
        attrs=attrs)
Y
Yang Yu 已提交
5037
    return cost / (num_neg_samples + 1)
5038 5039


C
chengduo 已提交
5040 5041
def hsigmoid(input,
             label,
5042
             num_classes,
C
chengduo 已提交
5043 5044
             param_attr=None,
             bias_attr=None,
J
JiabinYang 已提交
5045
             name=None,
5046 5047 5048
             path_table=None,
             path_code=None,
             is_custom=False,
J
JiabinYang 已提交
5049
             is_sparse=False):
W
weixing02 已提交
5050 5051
    """
    The hierarchical sigmoid operator is used to accelerate the training
M
minqiyang 已提交
5052
    process of language model. This operator organizes the classes into a
5053
    complete binary tree, or you can use is_custom to pass your own tree to
5054
    implement hierarchical. Each leaf node represents a class(a word) and each
G
guosheng 已提交
5055 5056 5057 5058 5059 5060
    internal node acts as a binary classifier. For each word there's a unique
    path from root to it's leaf node, hsigmoid calculate the cost for each
    internal node on the path, and sum them to get a total cost. hsigmoid can
    achive a acceleration from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
    represents the size of word dict.

5061
    Using default tree you can Refer to `Hierarchical Probabilistic Neural Network Language Model
G
guosheng 已提交
5062
    <http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>`_
M
minqiyang 已提交
5063

5064 5065 5066 5067 5068
    And if you want to use the costumed tree by set 'is_custom' as true you may need to do following things first:
        1. using your word dict to build a binary tree, each leaf node should be an word of your word dict
        2. build a dict to store word_id -> word's leaf to root path, we call it path_table.
        3. build a dict to store word_id -> code of word's leaf to root path, we call it path_code. Code
         means label of each binary classification, using 1 indicate true, 0 indicate false.
5069
        4. now, each word should has its path and code along the path, you can pass a batch of path and code
5070 5071 5072
        related to the same batch of inputs.


W
weixing02 已提交
5073
    Args:
M
minqiyang 已提交
5074
        input (Variable): The input tensor variable with shape
G
guosheng 已提交
5075 5076 5077 5078
            :math:`[N \\times D]`, where :math:`N` is the size of mini-batch,
            and :math:`D` is the feature size.
        label (Variable): The tensor variable contains labels of training data.
            It's a tensor with shape is :math:`[N \\times 1]`.
5079 5080
        num_classes: (int), The number of classes, must not be less than 2. with default tree this has to be set,
            it should never be None under is_custom=False, but while is_custom is true, it should be non leaf num
5081
            which indicates the num of classes using by binary classify.
C
chengduo 已提交
5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of hsigmoid. If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of hsigmoid.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
5093
        path_table: (Variable|None) this variable can store each batch of samples' path to root,
5094
            it should be in leaf -> root order
5095 5096 5097
            path_table should have the same shape with path_code, and for each sample i path_table[i] indicates a np.array like
            structure and each element in this array is indexes in parent nodes' Weight Matrix.
        path_code:  (Variable|None) this variable can store each batch of samples' code,
5098
            each code consist with every code of parent nodes. it should be in leaf -> root order
5099
        is_custom: (bool|False)using user defined binary tree instead of default complete binary tree, if costum is
5100
             set you need to set path_table/path_code/num_classes, otherwise num_classes should be set
5101
        is_sparse: (bool|False)using sparse update instead of dense update, if set, the gradient
5102
             of W and input will be sparse.
W
weixing02 已提交
5103 5104

    Returns:
J
JiabinYang 已提交
5105
        Out: (LodTensor) The cost of hierarchical sigmoid operator. the shape is [N, 1]
W
weixing02 已提交
5106 5107 5108 5109 5110

    Examples:

        .. code-block:: python

G
guosheng 已提交
5111 5112 5113
            x = fluid.layers.data(name='x', shape=[2], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='int64')
            out = fluid.layers.hsigmoid(input=x, label=y, num_classes=6)
W
weixing02 已提交
5114 5115 5116 5117
    """

    helper = LayerHelper('hierarchical_sigmoid', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5118 5119
    out = helper.create_variable_for_type_inference(dtype)
    pre_out = helper.create_variable_for_type_inference(dtype)
W
weixing02 已提交
5120
    dim = input.shape[1]
5121
    if ((num_classes is None) or (num_classes < 2)) and (not is_custom):
J
JiabinYang 已提交
5122 5123 5124
        raise ValueError(
            "num_classes must not be less than 2 with default tree")

5125 5126 5127 5128
    if (is_custom) and (path_code is None):
        raise ValueError("path_code should not be None with costum tree")
    elif (is_custom) and (path_table is None):
        raise ValueError("path_table should not be None with costum tree")
5129 5130
    elif (is_custom) and (num_classes is None):
        raise ValueError("num_classes should not be None with costum tree")
5131 5132 5133
    else:
        pass

J
JiabinYang 已提交
5134 5135
    weights = None

5136
    if not is_custom:
J
JiabinYang 已提交
5137 5138 5139 5140 5141 5142 5143 5144
        weights = helper.create_parameter(
            attr=helper.param_attr,
            shape=[num_classes - 1, dim],
            is_bias=False,
            dtype=input.dtype)
    else:
        weights = helper.create_parameter(
            attr=helper.param_attr,
5145
            shape=[num_classes, dim],
J
JiabinYang 已提交
5146 5147
            is_bias=False,
            dtype=input.dtype)
5148 5149 5150
    inputs = {
        "X": input,
        "W": weights,
5151 5152
        "PTable": path_table,
        "PathCode": path_code,
5153 5154
        "Label": label
    }
W
weixing02 已提交
5155
    if helper.bias_attr:
5156
        if not is_custom:
J
JiabinYang 已提交
5157 5158
            bias = helper.create_parameter(
                attr=helper.bias_attr,
J
JiabinYang 已提交
5159
                shape=[num_classes - 1, 1],
J
JiabinYang 已提交
5160 5161 5162 5163 5164 5165
                is_bias=True,
                dtype=input.dtype)
            inputs['Bias'] = bias
        else:
            bias = helper.create_parameter(
                attr=helper.bias_attr,
5166
                shape=[num_classes, 1],
J
JiabinYang 已提交
5167 5168 5169
                is_bias=True,
                dtype=input.dtype)
            inputs['Bias'] = bias
W
weixing02 已提交
5170 5171
    helper.append_op(
        type="hierarchical_sigmoid",
W
weixing02 已提交
5172
        inputs=inputs,
W
weixing02 已提交
5173 5174
        outputs={"Out": out,
                 "PreOut": pre_out},
J
JiabinYang 已提交
5175 5176
        attrs={"num_classes": num_classes,
               "is_sparse": is_sparse})
W
weixing02 已提交
5177 5178 5179
    return out


Y
fix ci.  
ying 已提交
5180
def transpose(x, perm, name=None):
Y
ying 已提交
5181 5182 5183 5184 5185 5186 5187
    """
    Permute the dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
5188 5189 5190
        x (Variable): The input Tensor.
        perm (list): A permutation of the dimensions of `input`.
        name (str): The name of this layer. It is optional.
Y
ying 已提交
5191 5192 5193 5194 5195 5196 5197

    Returns:
        Variable: A transposed Tensor.

    Examples:
        .. code-block:: python

5198
            # use append_batch_size=False to avoid prepending extra
5199
            # batch size in shape
5200
            x = fluid.layers.data(name='x', shape=[5, 10, 15],
5201
                            dtype='float32', append_batch_size=False)
Y
fix ci.  
ying 已提交
5202
            x_transposed = layers.transpose(x, perm=[1, 0, 2])
Y
ying 已提交
5203 5204
    """

Y
fix ci.  
ying 已提交
5205
    if len(perm) != len(x.shape):
Y
ying 已提交
5206 5207 5208
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(input). "
            "It's length shoud be equal to Input(input)'s rank.")
Y
ying 已提交
5209 5210 5211 5212 5213 5214
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
                "Each element in perm should be less than x's rank. "
                "%d-th element in perm is %d which accesses x's rank %d." %
                (idx, perm[idx], len(x.shape)))
Y
ying 已提交
5215 5216

    helper = LayerHelper('transpose', **locals())
X
Xin Pan 已提交
5217 5218
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
Y
ying 已提交
5219
    helper.append_op(
5220
        type='transpose2',
Y
fix ci.  
ying 已提交
5221
        inputs={'X': [x]},
5222 5223
        outputs={'Out': [out],
                 'XShape': [x_shape]},
Y
ying 已提交
5224 5225
        attrs={'axis': perm})
    return out
5226 5227


5228 5229 5230 5231 5232 5233 5234
def im2sequence(input,
                filter_size=1,
                stride=1,
                padding=0,
                input_image_size=None,
                out_stride=1,
                name=None):
5235
    """
5236 5237 5238 5239 5240 5241 5242
    Extracts image patches from the input tensor to form a tensor of shape
    {input.batch_size * output_height * output_width, filter_size_H *
    filter_size_W * input.channels} which is similar with im2col.
    This op use filter / kernel to scan images and convert these images to
    sequences. After expanding, the number of time step are
    output_height * output_width for an image, in which output_height and
    output_width are calculated by below equation:
5243 5244 5245 5246 5247 5248 5249 5250 5251 5252

    .. math::

        output\_size = 1 + \
            (2 * padding + img\_size - block\_size + stride - 1) / stride

    And the dimension of each time step is block_y * block_x * input.channels.

    Args:
        input (Variable): The input should be a tensor in NCHW format.
W
wanghaoshuang 已提交
5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270

        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.

        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.

        padding(int|tuple): The padding size. If padding is a tuple, it can
            contain two integers like (padding_H, padding_W) which means
            padding_up = padding_down = padding_H and
            padding_left = padding_right = padding_W. Or it can use
            (padding_up, padding_left, padding_down, padding_right) to indicate
            paddings of four direction. Otherwise, a scalar padding means
            padding_up = padding_down = padding_left = padding_right = padding
            Default: padding = 0.

5271 5272 5273 5274 5275 5276 5277 5278 5279
        input_image_size(Variable): the input contains image real size.It's dim
            is [batchsize, 2]. It is dispensable.It is just for batch inference.

        out_stride(int|tuple): The scaling of image through CNN. It is
            dispensable. It is valid only when input_image_size is not null.
            If out_stride is tuple,  it must contain two intergers,
            (out_stride_H, out_stride_W). Otherwise,
            the out_stride_H = out_stride_W = out_stride.

5280 5281 5282
        name (int): The name of this layer. It is optional.

    Returns:
W
wanghaoshuang 已提交
5283 5284 5285 5286 5287
        output: The output is a LoDTensor with shape
        {input.batch_size * output_height * output_width,
        filter_size_H * filter_size_W * input.channels}.
        If we regard output as a matrix, each row of this matrix is
        a step of a sequence.
5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314

    Examples:

        .. code-block:: text

            Given:

            x = [[[[ 6.  2.  1.]
                   [ 8.  3.  5.]
                   [ 0.  2.  6.]]

                  [[ 2.  4.  4.]
                   [ 6.  3.  0.]
                   [ 6.  4.  7.]]]

                 [[[ 6.  7.  1.]
                   [ 5.  7.  9.]
                   [ 2.  4.  8.]]

                  [[ 1.  2.  1.]
                   [ 1.  3.  5.]
                   [ 9.  0.  8.]]]]

            x.dims = {2, 2, 3, 3}

            And:

W
wanghaoshuang 已提交
5315 5316 5317
            filter = [2, 2]
            stride = [1, 1]
            padding = [0, 0]
5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329

            Then:

            output.data = [[ 6.  2.  8.  3.  2.  4.  6.  3.]
                           [ 2.  1.  3.  5.  4.  4.  3.  0.]
                           [ 8.  3.  0.  2.  6.  3.  6.  4.]
                           [ 3.  5.  2.  6.  3.  0.  4.  7.]
                           [ 6.  7.  5.  7.  1.  2.  1.  3.]
                           [ 7.  1.  7.  9.  2.  1.  3.  5.]
                           [ 5.  7.  2.  4.  1.  3.  9.  0.]
                           [ 7.  9.  4.  8.  3.  5.  0.  8.]]

5330
            output.dims = {8, 8}
5331

5332
            output.lod = [[4, 4]]
5333

T
Tink_Y 已提交
5334
    Examples:
5335 5336 5337

        .. code-block:: python

5338 5339
            output = fluid.layers.im2sequence(
                input=layer, stride=[1, 1], filter_size=[2, 2])
5340 5341

    """
W
wanghaoshuang 已提交
5342 5343 5344 5345 5346 5347 5348 5349 5350 5351

    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]
    if len(padding) == 2:
        padding.append(padding[0])
        padding.append(padding[1])
5352 5353 5354 5355 5356 5357 5358
    inputs = {"X": input}
    attrs = {"kernels": filter_size, "strides": stride, "padding": padding}
    if input_image_size:
        if isinstance(out_stride, int):
            out_stride = [out_stride, out_stride]
        inputs["Y"] = input_image_size
        attrs["out_stride"] = out_stride
5359
    helper = LayerHelper('im2sequence', **locals())
X
Xin Pan 已提交
5360
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
5361
    helper.append_op(
5362
        type='im2sequence', inputs=inputs, outputs={'Out': out}, attrs=attrs)
5363
    return out
5364 5365


Y
yuyang18 已提交
5366
@templatedoc()
5367
def row_conv(input, future_context_size, param_attr=None, act=None):
Y
yuyang18 已提交
5368 5369
    """
    ${comment}
5370 5371

    Args:
Y
yuyang18 已提交
5372
        input (${x_type}): ${x_comment}.
Y
yangyaming 已提交
5373 5374
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
5375 5376 5377 5378 5379
        param_attr (ParamAttr): Attributes of parameters, including
            name, initializer etc.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
Y
yuyang18 已提交
5380
        ${out_comment}.
5381 5382

    Examples:
Y
yuyang18 已提交
5383 5384 5385 5386
        >>> import paddle.fluid as fluid
        >>> x = fluid.layers.data(name='x', shape=[16],
        >>>                        dtype='float32', lod_level=1)
        >>> out = fluid.layers.row_conv(input=x, future_context_size=2)
5387 5388 5389 5390 5391 5392
    """
    helper = LayerHelper('row_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [future_context_size + 1, input.shape[1]]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
5393
    out = helper.create_variable_for_type_inference(dtype)
5394 5395 5396 5397 5398
    helper.append_op(
        type='row_conv',
        inputs={'X': [input],
                'Filter': [filter_param]},
        outputs={'Out': [out]})
Y
yangyaming 已提交
5399
    return helper.append_activation(out)
5400 5401


Y
yuyang18 已提交
5402
@templatedoc()
5403 5404
def multiplex(inputs, index):
    """
Y
yuyang18 已提交
5405 5406 5407 5408 5409 5410 5411
    ${comment}

    >>> import paddle.fluid as fluid
    >>> x1 = fluid.layers.data(name='x1', shape=[4], dtype='float32')
    >>> x2 = fluid.layers.data(name='x2', shape=[4], dtype='float32')
    >>> index = fluid.layers.data(name='index', shape=[1], dtype='int32')
    >>> out = fluid.layers.multiplex(inputs=[x1, x2], index=index)
5412 5413

    Args:
Y
yuyang18 已提交
5414 5415
       inputs (list): ${x_comment}.
       index (${ids_type}): ${ids_comment}.
5416 5417

    Returns:
Y
yuyang18 已提交
5418
        ${out_comment}.
5419 5420
    """
    helper = LayerHelper('multiplex', **locals())
Y
yangyaming 已提交
5421 5422 5423 5424 5425

    if not isinstance(inputs, list) and len(inputs) < 2:
        raise ValueError("inputs should be a list object and contains at least "
                         "2 elements.")

X
Xin Pan 已提交
5426
    out = helper.create_variable_for_type_inference(inputs[0].dtype)
5427 5428 5429 5430 5431 5432
    helper.append_op(
        type='multiplex',
        inputs={'X': inputs,
                'Ids': index},
        outputs={'Out': [out]})
    return out
5433 5434


5435 5436 5437
def softmax_with_cross_entropy(logits,
                               label,
                               soft_label=False,
J
jerrywgz 已提交
5438
                               ignore_index=kIgnoreIndex,
5439 5440
                               numeric_stable_mode=False,
                               return_softmax=False):
5441 5442
    """
    **Softmax With Cross Entropy Operator.**
5443

5444 5445 5446 5447
    Cross entropy loss with softmax is used as the output layer extensively. This
    operator computes the softmax normalized values for each row of the input
    tensor, after which cross-entropy loss is computed. This provides a more
    numerically stable gradient.
5448

5449 5450 5451
    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
5452

5453 5454 5455
    When the attribute soft_label is set false, this operators expects mutually
    exclusive hard labels, each sample in a batch is in exactly one class with a
    probability of 1.0. Each sample in the batch will have a single label.
5456

5457
    The equation is as follows:
5458

5459
    1) Hard label (one-hot label, so every sample has exactly one class)
5460

5461 5462 5463 5464
    .. math::

        loss_j =  -\\text{logit}_{label_j} +
        \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{logit}_i)\\right), j = 1,..., K
5465

5466 5467 5468
    2) Soft label (each sample can have a distribution over all classes)

    .. math::
5469

5470 5471 5472 5473
        loss_j =  -\\sum_{i=0}^{K}\\text{label}_i
        \\left(\\text{logit}_i - \\log\\left(\\sum_{i=0}^{K}
        \\exp(\\text{logit}_i)\\right)\\right), j = 1,...,K

S
sneaxiy 已提交
5474 5475 5476
    3) If numeric_stable_mode is True, softmax is calculated first by:

    .. math::
5477

S
sneaxiy 已提交
5478 5479 5480 5481 5482 5483 5484 5485
        max_j = \\max_{i=0}^{K}{\\text{logit}_i}

        log\\_max\\_sum_j = \\log\\sum_{i=0}^{K}\\exp(logit_i - max_j)

        softmax_j = \\exp(logit_j - max_j - {log\\_max\\_sum}_j)

    and then cross entropy loss is calculated by softmax and label.

5486 5487 5488 5489 5490 5491 5492 5493
    Args:
        logits (Variable): The unscaled log probabilities, which is a 2-D tensor
            with shape [N x K]. N is the batch_size, and K is the class number.
        label (Variable): The ground truth which is a 2-D tensor. If soft_label
            is set to false, Label is a Tensor<int64> with shape [N x 1]. If
            soft_label is set to true, Label is a Tensor<float/double> with
        soft_label (bool): A flag to indicate whether to interpretate the given
            labels as soft labels. By default, `soft_label` is set to False.
M
minqiyang 已提交
5494 5495
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
J
jerrywgz 已提交
5496
                            if soft_label is set to False. Default: kIgnoreIndex
S
sneaxiy 已提交
5497 5498 5499
        numeric_stable_mode (bool): A flag to indicate whether to use a more
                                    numerically stable algorithm. Only valid
                                    when soft_label is False and GPU is used.
5500 5501 5502
                                    When soft_label is True or CPU is used,
                                    the algorithm is always numerically stable.
                                    Note that the speed may be slower when use
S
sneaxiy 已提交
5503
                                    stable algorithm. Default: False
5504
        return_softmax (bool): A flag indicating whether to return the softmax
5505
                               along with the cross entropy loss. Default: False
5506

5507
    Returns:
5508 5509 5510 5511
        Variable or Tuple of two Variables: Return the cross entropy loss if
                              `return_softmax` is False, otherwise the tuple
                              (loss, softmax), where the cross entropy loss is
                              a 2-D tensor with shape [N x 1], and softmax is a
5512
                              2-D tensor with shape [N x K].
5513 5514 5515 5516 5517 5518 5519

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
F
stash  
fengjiayi 已提交
5520 5521
            out = fluid.layers.softmax_with_cross_entropy(
                logits=fc, label=label)
5522 5523
    """
    helper = LayerHelper('softmax_with_cross_entropy', **locals())
X
Xin Pan 已提交
5524 5525
    softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
    loss = helper.create_variable_for_type_inference(dtype=logits.dtype)
5526 5527 5528 5529 5530 5531
    helper.append_op(
        type='softmax_with_cross_entropy',
        inputs={'Logits': logits,
                'Label': label},
        outputs={'Softmax': softmax,
                 'Loss': loss},
S
sneaxiy 已提交
5532 5533 5534 5535 5536
        attrs={
            'soft_label': soft_label,
            'ignore_index': ignore_index,
            'numeric_stable_mode': numeric_stable_mode
        })
5537 5538 5539 5540

    if return_softmax:
        return loss, softmax

5541 5542 5543 5544 5545
    return loss


def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
    """
Y
Yibing Liu 已提交
5546 5547
    This layer computes the smooth L1 loss for Variable :attr:`x` and :attr:`y`.
    It takes the first dimension of :attr:`x` and :attr:`y` as batch size.
Q
qingqing01 已提交
5548
    For each instance, it computes the smooth L1 loss element by element first
5549
    and then sums all the losses. So the shape of ouput Variable is
5550
    [batch_size, 1].
5551

5552 5553
    Args:
        x (Variable): A tensor with rank at least 2. The input value of smooth
Q
qingqing01 已提交
5554
            L1 loss op with shape [batch_size, dim1, ..., dimN].
5555
        y (Variable): A tensor with rank at least 2. The target value of smooth
Y
Yibing Liu 已提交
5556
            L1 loss op with same shape as :attr:`x`.
5557
        inside_weight (Variable|None):  A tensor with rank at least 2. This
5558 5559
            input is optional and should have same shape with :attr:`x`. If
            provided, the result of (:attr:`x` - :attr:`y`) will be multiplied
Y
Yibing Liu 已提交
5560
            by this tensor element by element.
5561
        outside_weight (Variable|None): A tensor with rank at least 2. This
5562 5563
            input is optional and should have same shape with :attr:`x`. If
            provided, the out smooth L1 loss will be multiplied by this tensor
Y
Yibing Liu 已提交
5564
            element by element.
5565
        sigma (float|None): Hyper parameter of smooth L1 loss layer. A float
5566 5567
           scalar with default value 1.0.

5568
    Returns:
5569
        Variable: The output smooth L1 loss with shape [batch_size, 1].
5570 5571 5572 5573 5574

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
F
stash  
fengjiayi 已提交
5575 5576
            label = fluid.layers.data(
                name='label', shape=[100], dtype='float32')
5577
            fc = fluid.layers.fc(input=data, size=100)
F
fengjiayi 已提交
5578
            out = fluid.layers.smooth_l1(x=fc, y=label)
5579
    """
5580

5581
    helper = LayerHelper('smooth_l1_loss', **locals())
X
Xin Pan 已提交
5582 5583
    diff = helper.create_variable_for_type_inference(dtype=x.dtype)
    loss = helper.create_variable_for_type_inference(dtype=x.dtype)
5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595
    helper.append_op(
        type='smooth_l1_loss',
        inputs={
            'X': x,
            'Y': y,
            'InsideWeight': inside_weight,
            'OutsideWeight': outside_weight
        },
        outputs={'Diff': diff,
                 'Out': loss},
        attrs={'sigma': sigma})
    return loss
5596 5597 5598 5599


def one_hot(input, depth):
    """
Y
Yibing Liu 已提交
5600
    This layer creates the one-hot representations for input indices.
5601 5602

    Args:
Y
Yibing Liu 已提交
5603 5604
        input(Variable): Input indices, last dimension must be 1.
        depth(scalar): An interger defining the depth of the one-hot dimension.
5605 5606

    Returns:
Y
Yibing Liu 已提交
5607
        Variable: The one-hot representations of input.
5608 5609

    Examples:
C
caoying03 已提交
5610
        .. code-block:: python
5611

Y
Yibing Liu 已提交
5612 5613
            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
5614 5615
    """
    helper = LayerHelper("one_hot", **locals())
X
Xin Pan 已提交
5616
    one_hot_out = helper.create_variable_for_type_inference(dtype='float32')
5617 5618 5619 5620 5621 5622
    helper.append_op(
        type="one_hot",
        inputs={'X': input},
        attrs={'depth': depth},
        outputs={'Out': one_hot_out})
    return one_hot_out
Y
Yu Yang 已提交
5623 5624


Y
Yu Yang 已提交
5625
def autoincreased_step_counter(counter_name=None, begin=1, step=1):
Y
Yu Yang 已提交
5626
    """
Y
yi.wu 已提交
5627 5628 5629
    Create an auto-increase variable
    which will be automatically increased by 1 every mini-batch
    Return the run counter of the main program, default is started from 1.
Y
Yu Yang 已提交
5630 5631 5632 5633 5634 5635

    Args:
        counter_name(str): The counter name, default is '@STEP_COUNTER@'.
        begin(int): The first value of this counter.
        step(int): The increment step between each execution.

5636 5637
    Returns:
        Variable: The global run counter.
Y
yi.wu 已提交
5638 5639 5640 5641 5642 5643

    Examples:
        .. code-block:: python

           global_step = fluid.layers.autoincreased_step_counter(
               counter_name='@LR_DECAY_COUNTER@', begin=begin, step=1)
Y
Yu Yang 已提交
5644 5645
    """
    helper = LayerHelper('global_step_counter')
Y
Yu Yang 已提交
5646 5647
    if counter_name is None:
        counter_name = '@STEP_COUNTER@'
Y
Yu Yang 已提交
5648 5649 5650 5651 5652
    counter, is_new_var = helper.create_or_get_global_variable(
        name=counter_name, dtype='int64', shape=[1], persistable=True)
    if is_new_var:
        helper.set_variable_initializer(
            counter, initializer=Constant(
Y
Yu Yang 已提交
5653
                value=begin - 1, force_cpu=True))
W
Wu Yi 已提交
5654
        helper.main_program.global_block()._prepend_op(
Y
Yu Yang 已提交
5655 5656
            type='increment',
            inputs={'X': [counter]},
Y
Yu Yang 已提交
5657 5658
            outputs={'Out': [counter]},
            attrs={'step': float(step)})
Y
Yu Yang 已提交
5659 5660 5661
        counter.stop_gradient = True

    return counter
Y
yangyaming 已提交
5662 5663


5664
def reshape(x, shape, actual_shape=None, act=None, inplace=False, name=None):
C
caoying03 已提交
5665
    """
C
caoying03 已提交
5666 5667
    Gives a new shape to the input Tensor without changing its data.

5668 5669 5670 5671 5672
    The target shape can be given by :attr:`shape` or :attr:`actual_shape`.
    :attr:`shape` is a list of integer while :attr:`actual_shape` is a tensor
    variable. :attr:`actual_shape` has a higher priority than :attr:`shape`
    if it is provided, while :attr:`shape` still should be set correctly to
    gurantee shape inference in compile-time.
C
caoying03 已提交
5673

5674
    Some tricks exist when specifying the target shape.
C
caoying03 已提交
5675

5676 5677 5678 5679
    1. -1 means the value of this dimension is inferred from the total element
    number of x and remaining dimensions. Thus one and only one dimension can
    be set -1.

5680
    2. 0 means the actual dimension value is going to be copied from the
5681 5682 5683 5684
    corresponding dimension of x. The indice of 0s in shape can not exceed
    Rank(X).

    Here are some examples to explain it.
C
caoying03 已提交
5685 5686

    1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
W
wanghaoshuang 已提交
5687
    is [6, 8], the reshape operator will transform x into a 2-D tensor with
5688
    shape [6, 8] and leaving x's data unchanged.
C
caoying03 已提交
5689

5690
    2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
5691 5692
    specified is [2, 3, -1, 2], the reshape operator will transform x into a
    4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this
W
wanghaoshuang 已提交
5693 5694
    case, one dimension of the target shape is set to -1, the value of this
    dimension is inferred from the total element number of x and remaining
5695
    dimensions.
C
caoying03 已提交
5696

5697
    3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
5698 5699 5700 5701
    is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor
    with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case,
    besides -1, 0 means the actual dimension value is going to be copied from
    the corresponding dimension of x.
C
caoying03 已提交
5702 5703

    Args:
5704
        x(variable): The input tensor.
C
caoying03 已提交
5705 5706
        shape(list): The new shape. At most one dimension of the new shape can
                     be -1.
5707 5708 5709 5710 5711
        actual_shape(variable): An optional input. If provided, reshape
                                according to this given shape rather than
                                :attr:`shape` specifying shape. That is to
                                say :attr:`actual_shape` has a higher priority
                                than :attr:`shape`.
5712 5713
        act (str): The non-linear activation to be applied to the reshaped tensor
                   variable.
5714 5715 5716 5717 5718 5719 5720
        inplace(bool): Must use :attr:`False` if :attr:`x` is used in multiple
                       operators. If this flag is set :attr:`True`, reuse input
                       :attr:`x` to reshape, which will change the shape of
                       tensor variable :attr:`x` and might cause errors when
                       :attr:`x` is used in multiple operators. If :attr:`False`,
                       preserve the shape :attr:`x` and create a new output tensor
                       variable whose data is copied from input x but reshaped.
5721
        name (str): The name of this layer. It is optional.
C
caoying03 已提交
5722

5723
    Returns:
G
guosheng 已提交
5724 5725 5726 5727
        Variable: The reshaped tensor variable if :attr:`act` is None. It is a \
                  new tensor variable if :attr:`inplace` is :attr:`False`, \
                  otherwise it is :attr:`x`. If :attr:`act` is not None, return \
                  the activated tensor variable.
C
caoying03 已提交
5728

X
Xin Pan 已提交
5729 5730 5731
    Raises:
        TypeError: if actual_shape is neither Variable nor None.

C
caoying03 已提交
5732 5733
    Examples:
        .. code-block:: python
G
guosheng 已提交
5734

5735
            data = fluid.layers.data(
5736
                name='data', shape=[2, 4, 6], dtype='float32')
C
caoying03 已提交
5737
            reshaped = fluid.layers.reshape(
G
guosheng 已提交
5738
                x=data, shape=[-1, 0, 3, 2], inplace=True)
C
caoying03 已提交
5739 5740 5741
    """

    if not (isinstance(shape, list) or isinstance(shape, tuple)):
L
luotao1 已提交
5742
        raise ValueError("Input shape must be a python list or tuple.")
X
Xin Pan 已提交
5743 5744 5745 5746 5747
    inputs = {"X": x}
    if isinstance(actual_shape, Variable):
        inputs["Shape"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None")
C
caoying03 已提交
5748

5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763
    # Validate the shape
    unk_dim_idx = -1
    for dim_idx, dim_size in enumerate(shape):
        if dim_size == -1:
            assert unk_dim_idx == -1, (
                "Only one dimension in shape can be unknown.")
            unk_dim_idx = dim_idx
        elif dim_size == 0:
            assert dim_idx < len(x.shape), (
                "The indice of 0s in shape can not exceed Rank(X).")
        else:
            assert dim_size > 0, (
                "Each dimension size given in shape must not be negtive "
                "except one unknown dimension.")

5764
    helper = LayerHelper("reshape2", **locals())
5765 5766
    out = x if inplace else helper.create_variable_for_type_inference(
        dtype=x.dtype)
X
Xin Pan 已提交
5767
    x_shape = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
5768
    helper.append_op(
5769
        type="reshape2",
X
Xin Pan 已提交
5770
        inputs=inputs,
D
dzhwinter 已提交
5771
        attrs={"shape": shape},
5772 5773
        outputs={"Out": out,
                 "XShape": x_shape})
C
caoying03 已提交
5774

D
dzhwinter 已提交
5775
    return helper.append_activation(out)
5776

5777

5778
def squeeze(input, axes, name=None):
Y
Yibing Liu 已提交
5779
    """
M
minqiyang 已提交
5780 5781 5782
    Remove single-dimensional entries from the shape of a tensor. Takes a
    parameter axes with a list of axes to squeeze. If axes is not provided, all
    the single dimensions will be removed from the shape. If an axis is
Y
Yibing Liu 已提交
5783
    selected with shape entry not equal to one, an error is raised.
M
minqiyang 已提交
5784

Y
Yibing Liu 已提交
5785 5786
    Examples:
    Case 1:
M
minqiyang 已提交
5787
      Given
Y
Yibing Liu 已提交
5788 5789 5790 5791 5792 5793 5794 5795
        X.shape = (1, 3, 1, 5)
      and
        axes = [0]
      we get:
        Out.shape = (3, 1, 5)
      Case 2:
        Given
          X.shape = (1, 3, 1, 5)
M
minqiyang 已提交
5796
        and
Y
Yibing Liu 已提交
5797 5798 5799
          axes = []
        we get:
          Out.shape = (3, 5)
M
minqiyang 已提交
5800

Y
Yibing Liu 已提交
5801
    Args:
5802
        input (Variable): The input variable to be squeezed.
Y
Yibing Liu 已提交
5803
        axes (list): List of integers, indicating the dimensions to be squeezed.
5804
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
5805 5806 5807 5808 5809 5810 5811 5812

    Returns:
        Variable: Output squeezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 1, 10])
5813
            y = layers.sequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
5814 5815
    """
    helper = LayerHelper("squeeze", **locals())
X
Xin Pan 已提交
5816 5817
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
5818
    helper.append_op(
5819
        type="squeeze2",
5820
        inputs={"X": input},
Y
Yibing Liu 已提交
5821
        attrs={"axes": axes},
5822 5823
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
5824

5825 5826 5827
    return out


5828
def unsqueeze(input, axes, name=None):
Y
Yibing Liu 已提交
5829
    """
M
minqiyang 已提交
5830 5831 5832
    Insert single-dimensional entries to the shape of a tensor. Takes one
    required argument axes, a list of dimensions that will be inserted.
    Dimension indices in axes are as seen in the output tensor.
Y
Yibing Liu 已提交
5833

M
minqiyang 已提交
5834 5835
    For example:
      Given a tensor such that tensor with shape [3, 4, 5],
Y
Yibing Liu 已提交
5836
      then Unsqueezed tensor with axes=[0, 4] has shape [1, 3, 4, 5, 1].
M
minqiyang 已提交
5837

Y
Yibing Liu 已提交
5838
    Args:
5839
        input (Variable): The input variable to be unsqueezed.
Y
Yibing Liu 已提交
5840
        axes (list): List of integers, indicating the dimensions to be inserted.
5841
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
5842 5843 5844 5845 5846 5847 5848 5849

    Returns:
        Variable: Output unsqueezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 10])
5850
            y = layers.unsequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
5851 5852
    """
    helper = LayerHelper("unsqueeze", **locals())
X
Xin Pan 已提交
5853 5854
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
5855
    helper.append_op(
5856
        type="unsqueeze2",
5857
        inputs={"X": input},
Y
Yibing Liu 已提交
5858
        attrs={"axes": axes},
5859 5860
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
5861

5862 5863
    return out

5864

Y
yangyaming 已提交
5865
def lod_reset(x, y=None, target_lod=None):
Y
yangyaming 已提交
5866
    """
Y
Yibing Liu 已提交
5867
    Set LoD of :attr:`x` to a new one specified by :attr:`y` or
5868 5869 5870 5871
    :attr:`target_lod`. When :attr:`y` provided, :attr:`y.lod` would be
    considered as target LoD first, otherwise :attr:`y.data` would be
    considered as target LoD. If :attr:`y` is not provided, target LoD should
    be specified by :attr:`target_lod`. If target LoD is specified by
Y
Yibing Liu 已提交
5872
    :attr:`Y.data` or :attr:`target_lod`, only one level LoD is supported.
Y
yangyaming 已提交
5873 5874 5875 5876 5877 5878

    .. code-block:: text

        * Example 1:

            Given a 1-level LoDTensor x:
5879
                x.lod =  [[ 2,           3,                   1 ]]
Y
yangyaming 已提交
5880 5881 5882
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

5883
            target_lod: [4, 2]
Y
yangyaming 已提交
5884 5885

            then we get a 1-level LoDTensor:
5886
                out.lod =  [[4,                          2]]
Y
yangyaming 已提交
5887 5888 5889 5890 5891 5892
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 2:

            Given a 1-level LoDTensor x:
5893
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
5894 5895 5896 5897
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a Tensor:
5898
                y.data = [[2, 4]]
Y
yangyaming 已提交
5899 5900 5901
                y.dims = [1, 3]

            then we get a 1-level LoDTensor:
5902
                out.lod =  [[2,            4]]
Y
yangyaming 已提交
5903 5904 5905 5906 5907 5908
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 3:

            Given a 1-level LoDTensor x:
5909
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
5910 5911 5912 5913
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a 2-level LoDTensor:
5914
                y.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
5915 5916 5917 5918
                y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
                y.dims = [6, 1]

            then we get a 2-level LoDTensor:
5919
                out.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
5920 5921 5922 5923 5924
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

    Args:
        x (Variable): Input variable which could be a Tensor or LodTensor.
5925
        y (Variable|None): If provided, output's LoD would be derived
Y
Yibing Liu 已提交
5926
                           from :attr:`y`.
Y
yangyaming 已提交
5927
        target_lod (list|tuple|None): One level LoD which should be considered
Y
Yibing Liu 已提交
5928
                                      as target LoD when :attr:`y` not provided.
Y
yangyaming 已提交
5929 5930

    Returns:
Y
Yibing Liu 已提交
5931
        Variable: Output variable with LoD specified by this layer.
Y
yangyaming 已提交
5932 5933

    Raises:
Y
Yibing Liu 已提交
5934
        ValueError: If :attr:`y` and :attr:`target_lod` are both None.
Y
yangyaming 已提交
5935 5936 5937 5938 5939 5940 5941 5942 5943

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[10])
            y = layers.data(name='y', shape=[10, 20], lod_level=2)
            out = layers.lod_reset(x=x, y=y)
    """
    helper = LayerHelper("lod_reset", **locals())
X
Xin Pan 已提交
5944
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
yangyaming 已提交
5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958
    if y is not None:
        helper.append_op(
            type="lod_reset", inputs={'X': x,
                                      'Y': y}, outputs={'Out': out})
    elif target_lod is not None:
        helper.append_op(
            type="lod_reset",
            inputs={'X': x},
            attrs={'target_lod': target_lod},
            outputs={'Out': out})
    else:
        raise ValueError("y and target_lod should not be both None.")

    return out
D
dragonwarrior 已提交
5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969


def lrn(input, n=5, k=1.0, alpha=1e-4, beta=0.75, name=None):
    """
    Local Response Normalization Layer. This layer performs a type of
    "lateral inhibition" by normalizing over local input regions.

    The formula is as follows:

    .. math::

D
dzhwinter 已提交
5970
      Output(i, x, y) = Input(i, x, y) / \\left(k + \\alpha \\sum\\limits^{\\min(C, c + n/2)}_{j = \\max(0, c - n/2)}(Input(j, x, y))^2\\right)^{\\beta}
D
dragonwarrior 已提交
5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998

    In the above equation:

    * :math:`n`: The number of channels to sum over.
    * :math:`k`: The offset (avoid being divided by 0).
    * :math:`alpha`: The scaling parameter.
    * :math:`beta`: The exponent parameter.

    Refer to `ImageNet Classification with Deep Convolutional Neural Networks
    <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_

    Args:
        input (Variable): The input tensor of this layer, and the dimension of input tensor must be 4.
        n (int, default 5): The number of channels to sum over.
        k (float, default 1.0): An offset (usually positive to avoid dividing by 0).
        alpha (float, default 1e-4): The scaling parameter.
        beta (float, default 0.75): The exponent.
        name (str, default None): A name for this operation.

    Raises:
        ValueError: If rank of the input tensor is not 4.

    Returns:
        A tensor variable storing the transformation result.

    Examples:
        .. code-block:: python

F
stash  
fengjiayi 已提交
5999 6000
          data = fluid.layers.data(
              name="data", shape=[3, 112, 112], dtype="float32")
D
dragonwarrior 已提交
6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012
          lrn = fluid.layers.lrn(input=data)
    """
    helper = LayerHelper('lrn', **locals())
    dtype = helper.input_dtype()
    input_shape = input.shape
    dims = len(input_shape)

    if dims != 4:
        raise ValueError(
            "dims of input must be 4(not %d), and it's order must be NCHW" %
            (dims))

X
Xin Pan 已提交
6013 6014 6015
    mid_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    lrn_out = helper.create_variable_for_type_inference(dtype)
D
dragonwarrior 已提交
6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028
    helper.append_op(
        type="lrn",
        inputs={"X": input},
        outputs={
            "Out": lrn_out,
            "MidOut": mid_out,
        },
        attrs={"n": n,
               "k": k,
               "alpha": alpha,
               "beta": beta})

    return lrn_out
G
guosheng 已提交
6029 6030 6031 6032


def pad(x, paddings, pad_value=0., name=None):
    """
G
guosheng 已提交
6033
    Pads a tensor with a constant value given by :attr:`pad_value`, and the
W
wanghaoshuang 已提交
6034
    padded width is specified by :attr:`paddings`.
G
guosheng 已提交
6035

G
guosheng 已提交
6036 6037 6038 6039
    Specifically, the number of values padded before the contents of :attr:`x`
    in dimension :attr:`i` is indicated by :attr:`paddings[i]`, and the number
    of values padded after the contents of :attr:`x` in dimension :attr:`i` is
    indicated by :attr:`paddings[i+1]`.
G
guosheng 已提交
6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061

    See below for an example.

    .. code-block:: text

        Given:
            x = [[1, 2], [3, 4]]

            paddings = [0, 1, 1, 2]

            pad_value = 0

        Return:

            out = [[0, 1, 2, 0, 0]
                   [0, 3, 4, 0, 0]
                   [0, 0, 0, 0, 0]]

    Args:
        x (Variable): The input tensor variable.
        paddings (list): A list of integers. Its elements specify the padded
                         width before and after for each dimension in turn.
W
wanghaoshuang 已提交
6062
                         The length of :attr:paddings must be
G
guosheng 已提交
6063 6064 6065 6066 6067 6068 6069 6070 6071 6072
                         :math:`rank(x) \\times 2`.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python
G
guosheng 已提交
6073

G
guosheng 已提交
6074 6075 6076 6077 6078 6079
            # x is a rank 2 tensor variable.
            out = fluid.layers.pad(
                x=x, paddings=[0, 1, 1, 2], pad_value=0.)
    """
    helper = LayerHelper('pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6080
    out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
6081 6082 6083 6084 6085 6086 6087
    helper.append_op(
        type='pad',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'paddings': paddings,
               'pad_value': float(pad_value)})
    return out
6088 6089


C
chengduo 已提交
6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120
def pad_constant_like(x, y, pad_value=0., name=None):
    """
    Pad input(Y) with :attr:`pad_value`, the number of values padded to
    the edges of each axis is specified by the difference of the shape
    of X and Y. ((0, shape_x_0 - shape_y_0), ... (0, shape_x_n - shape_y_n))
    unique pad widths for each axis. The input should be a k-D
    tensor(k > 0 and k < 7).

    See below for an example.

    .. code-block:: text

        Given:
            X = [[[[ 0,  1,  2],
                   [ 3,  4,  5]],
                  [[ 6,  7,  8],
                   [ 9, 10, 11]],
                  [[12, 13, 14],
                   [15, 16, 17]]],
                 [[[18, 19, 20],
                   [21, 22, 23]],
                  [[24, 25, 26],
                   [27, 28, 29]],
                  [[30, 31, 32],
                   [33, 34, 35]]]]
            X.shape = (2, 3, 2, 3)

            Y = [[[[35, 36, 37]],
                  [[38, 39, 40]],
                  [[41, 42, 43]]]]
            Y.shape = (1, 3, 1, 3)
T
Tink_Y 已提交
6121 6122
		And
            pad_value = -1,
C
chengduo 已提交
6123

T
Tink_Y 已提交
6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137
        Return:
            Out = [[[[35, 36, 37],
                     [-1, -1, -1]],
                    [[38, 39, 40],
                     [-1, -1, -1]],
                    [[41, 42, 43],
                     [-1, -1, -1]]],
                  [[[-1, -1, -1],
                    [-1, -1, -1]],
                   [[-1, -1, -1],
                    [-1, -1, -1]],
                   [[-1, -1, -1],
                    [-1, -1, -1]]]]
            Out.shape = (2, 3, 2, 3)
C
chengduo 已提交
6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158

    Args:
        x (Variable): The input tensor variable.
        y (Variable): The input tensor variable.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python

            # x is a rank 4 tensor variable, x.shape = (2, 3, 2, 3)
            # y is a rank 4 tensor variable, y.shape = (1, 3, 1, 3)
            out = fluid.layers.pad_constant_like(x=x, y=y, pad_value=0.)
            # out is a rank 4 tensor variable, and out.shape = [2, 3 ,2 , 3]
    """
    helper = LayerHelper('pad_constant_like', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6159
    out = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
6160 6161 6162 6163 6164 6165 6166 6167 6168
    helper.append_op(
        type='pad_constant_like',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'pad_value': float(pad_value)})
    return out


6169 6170 6171 6172 6173 6174 6175
def label_smooth(label,
                 prior_dist=None,
                 epsilon=0.1,
                 dtype="float32",
                 name=None):
    """
    Label smoothing is a mechanism to regularize the classifier layer and is
6176 6177
    called label-smoothing regularization (LSR).

6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200
    Label smoothing is proposed to encourage the model to be less confident,
    since optimizing the log-likelihood of the correct label directly may
    cause overfitting and reduce the ability of the model to adapt. Label
    smoothing replaces the ground-truth label :math:`y` with the weighted sum
    of itself and some fixed distribution :math:`\mu`. For class :math:`k`,
    i.e.

    .. math::

        \\tilde{y_k} = (1 - \epsilon) * y_k + \epsilon * \mu_k,

    where :math:`1 - \epsilon` and :math:`\epsilon` are the weights
    respectively, and :math:`\\tilde{y}_k` is the smoothed label. Usually
    uniform distribution is used for :math:`\mu`.

    See more details about label smoothing in https://arxiv.org/abs/1512.00567.

    Args:
        label(Variable): The input variable containing the label data. The
                          label data should use one-hot representation.
        prior_dist(Variable): The prior distribution to be used to smooth
                              labels. If not provided, an uniform distribution
                              is used. The shape of :attr:`prior_dist` should
6201
                              be :math:`(1, class\_num)`.
6202 6203
        epsilon(float): The weight used to mix up the original ground-truth
                        distribution and the fixed distribution.
6204
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32,
6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223
                                                  float_64, int etc.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The tensor variable containing the smoothed labels.

    Examples:
        .. code-block:: python

            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
            smooth_label = layers.label_smooth(
                label=one_hot_label, epsilon=0.1, dtype="float32")
    """
    if epsilon > 1. or epsilon < 0.:
        raise ValueError("The value of epsilon must be between 0 and 1.")
    helper = LayerHelper("label_smooth", **locals())
    label.stop_gradient = True
X
Xin Pan 已提交
6224
    smooth_label = helper.create_variable_for_type_inference(dtype)
6225 6226 6227 6228 6229 6230 6231
    helper.append_op(
        type="label_smooth",
        inputs={"X": label,
                "PriorDist": prior_dist} if prior_dist else {"X": label},
        outputs={"Out": smooth_label},
        attrs={"epsilon": float(epsilon)})
    return smooth_label
6232 6233


W
wopeizl 已提交
6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269
@templatedoc()
def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0):
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0

    Returns:
        Variable: ${out_comment}.

    Examples:
        .. code-block:: python

            pool_out = fluid.layers.roi_pool(input=x, rois=rois, 7, 7, 1.0)
    """
    helper = LayerHelper('roi_pool', **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)
    argmaxes = helper.create_variable_for_type_inference(dtype='int32')
    helper.append_op(
        type="roi_pool",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": pool_out,
                 "Argmax": argmaxes},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale
        })
    return pool_out
W
whs 已提交
6270 6271


J
jerrywgz 已提交
6272 6273 6274 6275 6276 6277
@templatedoc()
def roi_align(input,
              rois,
              pooled_height=1,
              pooled_width=1,
              spatial_scale=1.0,
J
jerrywgz 已提交
6278 6279
              sampling_ratio=-1,
              name=None):
J
jerrywgz 已提交
6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
        sampling_ratio(intger): ${sampling_ratio_comment} Default: -1

    Returns:
        Variable: ${out_comment}.
    Examples:
        .. code-block:: python

6296 6297 6298
            align_out = fluid.layers.roi_align(input=x,
                                               rois=rois,
                                               pooled_height=7,
J
jerrywgz 已提交
6299 6300 6301 6302 6303 6304
                                               pooled_width=7,
                                               spatial_scale=0.5,
                                               sampling_ratio=-1)
    """
    helper = LayerHelper('roi_align', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6305
    align_out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319
    helper.append_op(
        type="roi_align",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": align_out},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale,
            "sampling_ratio": sampling_ratio
        })
    return align_out


W
whs 已提交
6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345
def dice_loss(input, label, epsilon=0.00001):
    """
    Dice loss for comparing the similarity of two batch of data,
    usually is used for binary image segmentation i.e. labels are binary.
    The dice loss can be defined as below equation:

    .. math::

        dice\_loss &= 1 - \\frac{2 * intersection\_area}{total\_area} \\\\
                  &= \\frac{(total\_area - intersection\_area) - intersection\_area}{total\_area} \\\\
                  &= \\frac{(union\_area - intersection\_area)}{total\_area}


    Args:
        input (Variable): The predictions with rank>=2. The first dimension is batch size,
                          and the last dimension is class number.
        label (Variable): The groud truth with the same rank with input. The first dimension
                          is batch size, and the last dimension is 1.
        epsilon (float): The epsilon will be added to the numerator and denominator.
                         If both input and label are empty, it makes sure dice is 1.
                         Default: 0.00001

    Returns:
        dice_loss (Variable): The dice loss with shape [1].

    Examples:
6346 6347
        .. code-block:: python

W
whs 已提交
6348 6349 6350 6351
            predictions = fluid.layers.softmax(x)
            loss = fluid.layers.dice_loss(input=predictions, label=label, 2)
    """
    label = one_hot(label, depth=input.shape[-1])
6352
    reduce_dim = list(range(1, len(input.shape)))
W
whs 已提交
6353 6354 6355 6356 6357 6358
    inse = reduce_sum(input * label, dim=reduce_dim)
    dice_denominator = reduce_sum(
        input, dim=reduce_dim) + reduce_sum(
            label, dim=reduce_dim)
    dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
    return reduce_mean(dice_score)
6359 6360


6361 6362 6363 6364
def image_resize(input,
                 out_shape=None,
                 scale=None,
                 name=None,
6365 6366
                 resample='BILINEAR',
                 actual_shape=None):
6367
    """
Q
qiaolongfei 已提交
6368
    **Resize a Batch of Images**
F
stash  
fengjiayi 已提交
6369

6370
    The input must be a tensor of the shape (num_batches, channels, in_h, in_w),
6371 6372 6373
    and the resizing only applies on the last two dimensions(hight and width).

    Supporting resample methods:
Q
update  
qiaolongfei 已提交
6374

6375
        'BILINEAR' : Bilinear interpolation
T
Tink_Y 已提交
6376

6377
        'NEAREST' : Nearest neighbor interpolation
F
stash  
fengjiayi 已提交
6378

6379
    Args:
6380
        input (Variable): The input tensor of image resize layer,
6381 6382
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
6383
        out_shape(list|tuple|Variable|None): Output shape of image resize
6384 6385
                                    layer, the shape is (out_h, out_w).
                                    Default: None
B
baiyf 已提交
6386
        scale(float|None): The multiplier for the input height or width.
6387 6388 6389
                         At least one of out_shape or scale must be set.
                         And out_shape has a higher priority than scale.
                         Default: None
6390 6391
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
6392
        resample(str): The resample method. It supports 'BILINEAR' and 'NEAREST'
6393
                       currently.
6394
                       Default: 'BILINEAR'
6395 6396 6397
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
6398
                                :attr:`out_shape` and :attr:`scale` specifying
6399 6400 6401 6402 6403 6404 6405
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
6406 6407
                                constructing stage.
                                Default: None
6408 6409

    Returns:
Q
update  
qiaolongfei 已提交
6410 6411
        Variable: The output is a 4-D tensor of the shape
        (num_batches, channls, out_h, out_w).
F
stash  
fengjiayi 已提交
6412

6413 6414 6415
    Raises:
        TypeError: out_shape should be a list or tuple or Variable.
        TypeError: actual_shape should either be Variable or None.
6416
        ValueError: The 'resample' of image_resize can only be 'BILINEAR'
6417 6418 6419 6420
                    or 'NEAREST' currently.
        ValueError: One of out_shape and scale must not be None.
        ValueError: out_shape length should be 2.

6421 6422 6423
    Examples:
        .. code-block:: python

6424
            out = fluid.layers.image_resize(input, out_shape=[12, 12], resample="NEAREST")
6425
    """
6426 6427 6428 6429
    resample_methods = {
        'BILINEAR': 'bilinear',
        'NEAREST': 'nearest',
    }
6430 6431
    if resample not in resample_methods:
        raise ValueError(
6432
            "The 'resample' of image_resize can only be 'BILINEAR' or 'NEAREST' currently."
6433
        )
6434
    resample_type = resample_methods[resample]
6435
    if out_shape is None and scale is None:
6436
        raise ValueError("One of out_shape and scale must not be None.")
6437
    helper = LayerHelper('{}_interp'.format(resample_type), **locals())
6438
    dtype = helper.input_dtype()
6439 6440 6441 6442

    def _is_list_or_turple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

6443 6444 6445
    out_h = 0
    out_w = 0
    inputs = {"X": input}
6446
    if out_shape is not None:
6447 6448 6449 6450
        if isinstance(out_shape, Variable):
            warnings.warn("out_shape as Variable type is deprecated, \
                    it is recommended to use actual_shape instead of \
                    out_shape to specify output shape dynamically.")
6451
            inputs['OutSize'] = out_shape
6452 6453 6454 6455 6456 6457 6458 6459
        elif not (_is_list_or_turple_(out_shape)):
            raise TypeError("out_shape should be a list or tuple or Variable.")
        elif len(out_shape) != 2:
            raise ValueError("out_shape length should be 2.")

        out_shape = list(map(int, out_shape))
        out_h = out_shape[0]
        out_w = out_shape[1]
6460 6461 6462 6463
    else:
        out_h = int(input.shape[2] * scale)
        out_w = int(input.shape[3] * scale)

6464 6465 6466 6467 6468
    if isinstance(actual_shape, Variable):
        inputs["OutSize"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None.")

X
Xin Pan 已提交
6469
    out = helper.create_variable_for_type_inference(dtype)
6470
    helper.append_op(
6471
        type='{}_interp'.format(resample_type),
6472
        inputs=inputs,
6473
        outputs={"Out": out},
6474 6475 6476
        attrs={"out_h": out_h,
               "out_w": out_w,
               "interp_method": resample_type})
6477
    return out
F
stash  
fengjiayi 已提交
6478 6479


6480
@templatedoc(op_type="bilinear_interp")
6481 6482 6483 6484 6485
def resize_bilinear(input,
                    out_shape=None,
                    scale=None,
                    name=None,
                    actual_shape=None):
6486
    """
6487 6488
    Resize input by performing bilinear interpolation based on given
    output shape which specified by actual_shape, out_shape and scale
6489 6490
    in priority order.

6491 6492 6493 6494
    Bilinear interpolation is an extension of linear interpolation for
    interpolating functions of two variables (e.g. H-direction and
    W-direction in this op) on a rectilinear 2D grid. The key idea is
    to perform linear interpolation first in one direction, and then
6495 6496
    again in the other direction.

6497
    For details of bilinear interpolation, please refer to Wikipedia:
6498
    https://en.wikipedia.org/wiki/Bilinear_interpolation
Y
yuyang18 已提交
6499 6500 6501 6502 6503

    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
6504

Y
yuyang18 已提交
6505 6506 6507 6508 6509
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.
6510 6511 6512
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
6513
                                :attr:`out_shape` and :attr:`scale` specifying
6514 6515 6516 6517 6518 6519 6520
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
6521 6522
                                constructing stage.
                                Default: None
Y
yuyang18 已提交
6523 6524 6525

    Returns:
        ${out_comment}.
6526 6527 6528 6529 6530

    Examples:
        .. code-block:: python

            out = fluid.layers.resize_bilinear(input, out_shape=[12, 12])
6531 6532
    """

6533
    return image_resize(input, out_shape, scale, name, 'BILINEAR', actual_shape)
6534 6535


6536
@templatedoc(op_type="nearest_interp")
6537 6538 6539 6540 6541
def resize_nearest(input,
                   out_shape=None,
                   scale=None,
                   name=None,
                   actual_shape=None):
6542
    """
6543
    Resize input by performing nearest neighbor interpolation in both the
6544 6545
    3rd dimention(in height direction) and the 4th dimention(in width
    direction) based on given output shape which specified by actual_shape,
6546 6547
    out_shape and scale in priority order.

6548
    For details of nearest neighbor interpolation, please refer to Wikipedia:
6549
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation
Y
yuyang18 已提交
6550 6551 6552 6553 6554

    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
6555

Y
yuyang18 已提交
6556 6557 6558 6559 6560
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.
6561 6562 6563
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
6564
                                :attr:`out_shape` and :attr:`scale` specifying
6565 6566 6567 6568 6569 6570 6571
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
6572 6573
                                constructing stage.
                                Default: None
Y
yuyang18 已提交
6574 6575 6576

    Returns:
        ${out_comment}.
6577 6578 6579 6580 6581

    Examples:
        .. code-block:: python

            out = fluid.layers.resize_nearest(input, out_shape=[12, 12])
6582 6583
    """

6584
    return image_resize(input, out_shape, scale, name, 'NEAREST', actual_shape)
6585 6586 6587 6588


def image_resize_short(input, out_short_len, resample='BILINEAR'):
    """
6589 6590 6591
    Resize a batch of images. The short edge of input images will be
    resized to the given 'out_short_len'. The long edge of input images
    will be resized proportionately to make images' length-width ratio
6592 6593 6594 6595 6596 6597 6598
    constant.

    Args:
        input (Variable): The input tensor of image resize layer,
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
        out_short_len(int): The length of output images' short edge.
6599
        resample (str): resample method, default: BILINEAR.
F
fengjiayi 已提交
6600

6601
    Returns:
Q
update  
qiaolongfei 已提交
6602
        Variable: The output is a 4-D tensor of the shape
6603
        (num_batches, channls, out_h, out_w).
6604 6605 6606 6607 6608 6609 6610 6611 6612 6613
    """
    in_shape = input.shape
    if len(in_shape) != 4:
        raise ValueError(
            "The rank of input must be 4 (num_batches, channels, in_h, in_w).")
    hw = in_shape[2:4]
    short_idx = hw.index(min(hw))
    long_idx = 1 - short_idx
    out_shape = list(hw)
    out_shape[short_idx] = out_short_len
F
fengjiayi 已提交
6614 6615 6616
    out_shape[long_idx] = int(
        float(out_shape[long_idx]) * (float(out_short_len) / float(hw[
            short_idx])) + 0.5)
6617 6618 6619
    return image_resize(input=input, out_shape=out_shape, resample=resample)


W
whs 已提交
6620 6621
def gather(input, index):
    """
Q
qiaolongfei 已提交
6622 6623
    **Gather Layer**

6624
    Output is obtained by gathering entries of the outer-most dimension
W
whs 已提交
6625 6626 6627 6628
    of X indexed by `index` and concatenate them together.

    .. math::

6629
        Out = X[Index]
W
whs 已提交
6630 6631 6632 6633 6634 6635 6636


    .. code-block:: text


                Given:

6637 6638
                X = [[1, 2],
                     [3, 4],
W
whs 已提交
6639 6640 6641 6642 6643 6644 6645 6646 6647 6648
                     [5, 6]]

                Index = [1, 2]

                Then:

                Out = [[3, 4],
                       [5, 6]]

    Args:
6649
        input (Variable): The source input with rank>=1.
W
whs 已提交
6650 6651 6652 6653 6654 6655
        index (Variable): The index input with rank=1.

    Returns:
        output (Variable): The output is a tensor with the same rank as input.

    Examples:
W
whs 已提交
6656

W
whs 已提交
6657 6658 6659 6660 6661 6662
        .. code-block:: python

            output = fluid.layers.gather(x, index)
    """
    helper = LayerHelper('gather', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6663
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
6664 6665 6666 6667 6668 6669 6670 6671
    helper.append_op(
        type="gather",
        inputs={"X": input,
                "Index": index},
        outputs={"Out": out})
    return out


6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702
def scatter(input, index, updates, name=None):
    """
    **Scatter Layer**

    Output is obtained by updating the input on selected indices on the first
    axis.

    .. math::

        Out = X
        Out[Ids] = Updates

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): The index input with rank=1. Its dtype should be
                          int32 or int64 as it is used as indexes.
        updates (Variable): The updated value of scatter op.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.scatter(input, index, updates)

    """
    helper = LayerHelper('scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6703
    out = helper.create_variable_for_type_inference(dtype)
6704 6705 6706 6707 6708 6709 6710 6711 6712
    helper.append_op(
        type="scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Q
Qingsheng Li 已提交
6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762
def sequence_scatter(input, index, updates, name=None):
    """
    **Sequence Scatter Layer**

    This operator scatters the Updates tensor to the input X. It uses the LoD
    information of Ids to select the rows to update, and use the values in Ids as
    the columns to update in each row of X.

    Here is an example:
    Given the following input:
    .. code-block:: text
        input.data = [[1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0]]
        input.dims = [3, 6]

        index.data = [[0], [1], [2], [5], [4], [3], [2], [1], [3], [2], [5], [4]]
        index.lod =  [[0,        3,                       8,                 12]]

        updates.data = [[0.3], [0.3], [0.4], [0.1], [0.2], [0.3], [0.4], [0.0], [0.2], [0.3], [0.1], [0.4]]
        updates.lod =  [[  0,            3,                                 8,                         12]]

    Then we have the output:
    .. code-block:: text
        out.data = [[1.3, 1.3, 1.4, 1.0, 1.0, 1.0],
                    [1.0, 1.0, 1.4, 1.3, 1.2, 1.1],
                    [1.0, 1.0, 1.3, 1.2, 1.4, 1.1]]
        out.dims = X.dims = [3, 6]

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): A LoD Tensor. The index input of sequence scatter op
            where input will be  updated. The index input with rank=1. Its dtype
            should be int32 or int64 as it is used as indexes.
        updates (Variable): A LoD Tensor. The values to scatter to the input
            tensor X, must be a LoDTensor with the same LoD information as index.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.sequence_scatter(input, index, updates)

    """
    helper = LayerHelper('sequence_scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6763
    out = helper.create_variable_for_type_inference(dtype)
Q
Qingsheng Li 已提交
6764 6765 6766 6767 6768 6769 6770 6771 6772
    helper.append_op(
        type="sequence_scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Y
yuyang18 已提交
6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785
@templatedoc()
def random_crop(x, shape, seed=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        shape(${shape_type}): ${shape_comment}
        seed(int|${seed_type}|None): ${seed_comment} By default, the seed will
            get from `random.randint(-65536, 65535)`.

    Returns:
        ${out_comment}
6786

6787 6788 6789
    Examples:
        >>> img = fluid.layers.data("img", [3, 256, 256])
        >>> cropped_img = fluid.layers.random_crop(img, shape=[3, 224, 224])
Y
yuyang18 已提交
6790
    """
F
stash  
fengjiayi 已提交
6791
    helper = LayerHelper("random_crop", **locals())
F
fengjiayi 已提交
6792
    dtype = x.dtype
X
Xin Pan 已提交
6793
    out = helper.create_variable_for_type_inference(dtype)
Y
yuyang18 已提交
6794
    if seed is None:
6795
        seed = np.random.randint(-65536, 65536)
F
fengjiayi 已提交
6796
    op_attrs = {"shape": shape}
F
stash  
fengjiayi 已提交
6797
    if isinstance(seed, int):
F
fengjiayi 已提交
6798 6799 6800 6801 6802
        op_attrs["startup_seed"] = seed
        seed = helper.create_variable(
            name=unique_name.generate("random_crop_seed"),
            dtype="int64",
            persistable=True)
F
stash  
fengjiayi 已提交
6803 6804 6805 6806
    elif not isinstance(seed, Variable):
        raise ValueError("'seed' must be a Variable or an int.")
    helper.append_op(
        type="random_crop",
F
fix  
fengjiayi 已提交
6807
        inputs={"X": x,
F
stash  
fengjiayi 已提交
6808 6809
                "Seed": seed},
        outputs={"Out": out,
F
fengjiayi 已提交
6810 6811
                 "SeedOut": seed},
        attrs=op_attrs)
F
stash  
fengjiayi 已提交
6812
    return out
W
whs 已提交
6813 6814


6815
def log(x, name=None):
W
wanghaoshuang 已提交
6816 6817 6818 6819 6820
    """
    Calculates the natural log of the given input tensor, element-wise.

    .. math::

6821
        Out = \\ln(x)
W
wanghaoshuang 已提交
6822 6823

    Args:
6824
        x (Variable): Input tensor.
6825 6826
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
6827 6828 6829 6830 6831 6832 6833 6834

    Returns:
        Variable: The natural log of the input tensor computed element-wise.

    Examples:

        .. code-block:: python

6835
            output = fluid.layers.log(x)
W
wanghaoshuang 已提交
6836 6837
    """
    helper = LayerHelper('log', **locals())
W
wanghaoshuang 已提交
6838
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
6839
    out = helper.create_variable_for_type_inference(dtype)
W
wanghaoshuang 已提交
6840
    helper.append_op(type="log", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
6841 6842 6843
    return out


6844
def relu(x, name=None):
W
wanghaoshuang 已提交
6845 6846
    """
    Relu takes one input data (Tensor) and produces one output data (Tensor)
6847
    where the rectified linear function, y = max(0, x), is applied to
W
wanghaoshuang 已提交
6848 6849 6850 6851
    the tensor elementwise.

    .. math::

6852
        Out = \\max(0, x)
W
wanghaoshuang 已提交
6853 6854

    Args:
6855
        x (Variable): The input tensor.
6856 6857
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
6858 6859 6860 6861 6862 6863 6864 6865

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

6866
            output = fluid.layers.relu(x)
W
wanghaoshuang 已提交
6867 6868
    """
    helper = LayerHelper('relu', **locals())
W
wanghaoshuang 已提交
6869
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
6870
    out = helper.create_variable_for_type_inference(dtype)
X
Xin Pan 已提交
6871 6872
    helper.append_op(
        type="relu", inputs={"X": helper.input('x')}, outputs={"Out": out})
W
wanghaoshuang 已提交
6873
    return out
6874 6875


C
chengduo 已提交
6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916
@templatedoc()
def selu(x, scale=None, alpha=None, name=None):
    """
    ${comment}

    Args:
        x (Variable): The input tensor.
        scale(float, None): If the scale is not set,
            the default value is 1.0507009873554804934193349852946.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        alpha(float, None): If the alpha is not set,
            the default value is 1.6732632423543772848170429916717.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.selu(x)
    """
    helper = LayerHelper('selu', **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    attrs = {}
    if scale is not None:
        attrs["scale"] = scale
    if alpha is not None:
        attrs["alpha"] = alpha

    helper.append_op(
        type="selu", inputs={"X": x}, outputs={"Out": out}, attrs=attrs)
    return out


W
whs 已提交
6917 6918 6919
def mean_iou(input, label, num_classes):
    """
    Mean Intersection-Over-Union is a common evaluation metric for
6920 6921 6922 6923
    semantic image segmentation, which first computes the IOU for each
    semantic class and then computes the average over classes.
    IOU is defined as follows:

W
whs 已提交
6924
    .. math::
6925 6926

        IOU = \\frac{true\_positiv}{(true\_positive + false\_positive + false\_negative)}.
W
whs 已提交
6927

6928
    The predictions are accumulated in a confusion matrix and mean-IOU
W
whs 已提交
6929 6930 6931 6932 6933
    is then calculated from it.


    Args:
        input (Variable): A Tensor of prediction results for semantic labels with type int32 or int64.
6934
        label (Variable): A Tensor of ground truth labels with type int32 or int64.
W
whs 已提交
6935
                           Its shape should be the same as input.
6936
        num_classes (int): The possible number of labels.
W
whs 已提交
6937 6938 6939 6940

    Returns:
        mean_iou (Variable): A Tensor representing the mean intersection-over-union with shape [1].
        out_wrong(Variable): A Tensor with shape [num_classes]. The wrong numbers of each class.
6941
        out_correct(Variable): A Tensor with shape [num_classes]. The correct numbers of each class.
W
whs 已提交
6942 6943 6944 6945

    Examples:

        .. code-block:: python
6946

W
whs 已提交
6947 6948 6949 6950
            iou, wrongs, corrects = fluid.layers.mean_iou(predict, label, num_classes)
    """
    helper = LayerHelper('mean_iou', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6951 6952 6953
    out_mean_iou = helper.create_variable_for_type_inference(dtype='float32')
    out_wrong = helper.create_variable_for_type_inference(dtype='int32')
    out_correct = helper.create_variable_for_type_inference(dtype='int32')
W
whs 已提交
6954 6955
    helper.append_op(
        type="mean_iou",
W
whs 已提交
6956 6957
        inputs={"Predictions": input,
                "Labels": label},
W
whs 已提交
6958
        outputs={
W
whs 已提交
6959 6960 6961
            "OutMeanIou": out_mean_iou,
            "OutWrong": out_wrong,
            "OutCorrect": out_correct
W
whs 已提交
6962 6963 6964
        },
        attrs={"num_classes": num_classes})
    return out_mean_iou, out_wrong, out_correct
6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032


def crop(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

    .. code-block:: text

        * Case 1:
            Given
                X = [[0, 1, 2, 0, 0]
                     [0, 3, 4, 0, 0]
                     [0, 0, 0, 0, 0]],
            and
                shape = [2, 2],
                offsets = [0, 1],
            output is:
                Out = [[1, 2],
                       [3, 4]].
        * Case 2:
            Given
                X = [[0, 1, 2, 5, 0]
                     [0, 3, 4, 6, 0]
                     [0, 0, 0, 0, 0]],
            and shape is tensor
                shape = [[0, 0, 0]
                         [0, 0, 0]]
            and
                offsets = [0, 1],

            output is:
                Out = [[1, 2, 5],
                       [3, 4, 6]].

    Args:
        x (Variable): The input tensor variable.
        shape (Variable|list/tuple of integer): The output shape is specified
            by `shape`, which can a Variable or a list/tupe of integer.
            If a tensor Variable, it's rank must be the same as `x`. This way
            is suitable for the case that the output shape may be changed each
            iteration. If a list/tupe of integer, it's length must be the same
            as the rank of `x`
        offsets (Variable|list/tuple of integer|None): Specifies the copping
            offsets at each dimension. It can be a Variable or or a list/tupe
            of integer. If a tensor Variable, it's rank must be the same as `x`.
            This way is suitable for the case that the offsets may be changed
            each iteration. If a list/tupe of integer, it's length must be the
            same as the rank of `x`. If None, the offsets are 0 at each
            dimension.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The cropped tensor variable.

    Raises:
        ValueError: If shape is not a list, tuple or Variable.

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[3, 5], dtype="float32")
            y = fluid.layers.data(name="y", shape=[2, 3], dtype="float32")
            crop = fluid.layers.crop(x, shape=y)

            # or
            z = fluid.layers.data(name="z", shape=[3, 5], dtype="float32")
T
Tink_Y 已提交
7033
            crop = fluid.layers.crop(z, shape=[-1, 2, 3])
7034 7035 7036 7037 7038

    """
    helper = LayerHelper('crop', **locals())

    if not (isinstance(shape, list) or isinstance(shape, tuple) or \
7039
            isinstance(shape, Variable)):
7040 7041 7042 7043 7044
        raise ValueError("The shape should be a list, tuple or Variable.")

    if offsets is None:
        offsets = [0] * len(x.shape)

X
Xin Pan 已提交
7045
    out = helper.create_variable_for_type_inference(x.dtype)
7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062
    ipts = {'X': x}
    attrs = {}
    if isinstance(shape, Variable):
        ipts['Y'] = shape
    else:
        attrs['shape'] = shape
    if isinstance(offsets, Variable):
        ipts['Offsets'] = offsets
    else:
        attrs['offsets'] = offsets

    helper.append_op(
        type='crop',
        inputs=ipts,
        outputs={'Out': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out
7063 7064


W
whs 已提交
7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081
def affine_grid(theta, out_shape, name=None):
    """
    It generates a grid of (x,y) coordinates using the parameters of
    the affine transformation that correspond to a set of points where
    the input feature map should be sampled to produce the transformed
    output feature map.

    .. code-block:: text

        * Case 1:

          Given:

              theta = [[[x_11, x_12, x_13]
                        [x_14, x_15, x_16]]
                       [[x_21, x_22, x_23]
                        [x_24, x_25, x_26]]]
7082

W
whs 已提交
7083
              out_shape = [2, 3, 5, 5]
7084

W
whs 已提交
7085
          Step 1:
7086

W
whs 已提交
7087 7088 7089
              Generate normalized coordinates according to out_shape.
              The values of the normalized coordinates are in the interval between -1 and 1.
              The shape of the normalized coordinates is [2, H, W] as below:
7090

W
whs 已提交
7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160
              C = [[[-1.  -1.  -1.  -1.  -1. ]
                    [-0.5 -0.5 -0.5 -0.5 -0.5]
                    [ 0.   0.   0.   0.   0. ]
                    [ 0.5  0.5  0.5  0.5  0.5]
                    [ 1.   1.   1.   1.   1. ]]
                   [[-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]]]
              C[0] is the coordinates in height axis and  C[1] is the coordinates in width axis.

          Step2:

              Tanspose and reshape C to shape [H * W, 2] and append ones to last dimension. The we get:
              C_ = [[-1.  -1.   1. ]
                    [-0.5 -1.   1. ]
                    [ 0.  -1.   1. ]
                    [ 0.5 -1.   1. ]
                    [ 1.  -1.   1. ]
                    [-1.  -0.5  1. ]
                    [-0.5 -0.5  1. ]
                    [ 0.  -0.5  1. ]
                    [ 0.5 -0.5  1. ]
                    [ 1.  -0.5  1. ]
                    [-1.   0.   1. ]
                    [-0.5  0.   1. ]
                    [ 0.   0.   1. ]
                    [ 0.5  0.   1. ]
                    [ 1.   0.   1. ]
                    [-1.   0.5  1. ]
                    [-0.5  0.5  1. ]
                    [ 0.   0.5  1. ]
                    [ 0.5  0.5  1. ]
                    [ 1.   0.5  1. ]
                    [-1.   1.   1. ]
                    [-0.5  1.   1. ]
                    [ 0.   1.   1. ]
                    [ 0.5  1.   1. ]
                    [ 1.   1.   1. ]]
          Step3:
              Compute output by equation $$Output[i] = C_ * Theta[i]^T$$

    Args:
        theta (Variable): A batch of affine transform parameters with shape [N, 2, 3].
        out_shape (Variable | list | tuple): The shape of target output with format [N, C, H, W].
        out_shape can be a Variable or a list or tuple.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The output with shape [N, H, W, 2].

    Raises:
        ValueError: If the type of arguments is not supported.

    Examples:

        .. code-block:: python
            theta = fluid.layers.data(name="x", shape=[2, 3], dtype="float32")
            out_shape = fluid.layers.data(name="y", shape=[-1], dtype="float32")
            data = fluid.layers.affine_grid(theta, out_shape)

            # or
            data = fluid.layers.affine_grid(theta, [5, 3, 28, 28])

    """
    helper = LayerHelper('affine_grid')

    if not (isinstance(out_shape, list) or isinstance(out_shape, tuple) or \
7161
            isinstance(out_shape, Variable)):
W
whs 已提交
7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182
        raise ValueError("The out_shape should be a list, tuple or Variable.")

    if not isinstance(theta, Variable):
        raise ValueError("The theta should be a Variable.")

    out = helper.create_variable_for_type_inference(theta.dtype)
    ipts = {'Theta': theta}
    attrs = {}
    if isinstance(out_shape, Variable):
        ipts['OutputShape'] = out_shape
    else:
        attrs['output_shape'] = out_shape

    helper.append_op(
        type='affine_grid',
        inputs=ipts,
        outputs={'Output': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out


7183 7184 7185 7186 7187 7188 7189 7190
def rank_loss(label, left, right, name=None):
    """
    **Rank loss layer for RankNet**

    RankNet(http://icml.cc/2015/wp-content/uploads/2015/06/icml_ranking.pdf)
    is a pairwise ranking model with a training sample consisting of a pair
    of documents, A and B. Label P indicates whether A is ranked higher than B
    or not:
M
minqiyang 已提交
7191

7192 7193
    P = {0, 1} or {0, 0.5, 1}, where 0.5 means that there is no information
    about the rank of the input pair.
M
minqiyang 已提交
7194

7195 7196 7197 7198
    Rank loss layer takes three inputs: left (o_i), right (o_j) and
    label (P_{i,j}). The inputs respectively represent RankNet's output scores
    for documents A and B and the value of label P. The following equation
    computes rank loss C_{i,j} from the inputs:
M
minqiyang 已提交
7199

7200 7201 7202 7203 7204
    $$
      C_{i,j} = -\tilde{P_{ij}} * o_{i,j} + \log(1 + e^{o_{i,j}}) \\
      o_{i,j} =  o_i - o_j  \\
      \tilde{P_{i,j}} = \left \{0, 0.5, 1 \right \} \ or \ \left \{0, 1 \right \}
    $$
M
minqiyang 已提交
7205 7206 7207

    Rank loss layer takes batch inputs with size batch_size (batch_size >= 1).

7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242
    Args:
        label (Variable): Indicats whether A ranked higher than B or not.
        left (Variable): RankNet's output score for doc A.
        right (Variable): RankNet's output score for doc B.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        list: The value of rank loss.

    Raises:
        ValueError: Any of label, left, and right is not a variable.

    Examples:

        .. code-block:: python

            label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
            left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
            right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
            out = fluid.layers.rank_loss(label, left, right)


    """
    helper = LayerHelper('rank_loss', **locals())

    if not (isinstance(label, Variable)):
        raise ValueError("The label should be a Variable")

    if not (isinstance(left, Variable)):
        raise ValueError("The left should be a Variable")

    if not (isinstance(right, Variable)):
        raise ValueError("The right should be a Variable")

X
Xin Pan 已提交
7243
    out = helper.create_variable_for_type_inference("float32")
7244 7245 7246 7247 7248 7249 7250 7251

    helper.append_op(
        type='rank_loss',
        inputs={"Label": label,
                "Left": left,
                "Right": right},
        outputs={'Out': out})
    return out
7252 7253


M
minqiyang 已提交
7254 7255
def margin_rank_loss(label, left, right, margin=0.1, name=None):
    """
M
minqiyang 已提交
7256
    Margin Ranking Loss Layer for ranking problem,
M
minqiyang 已提交
7257
    which compares left score and right score passed in.
M
minqiyang 已提交
7258
    The ranking loss can be defined as following equation:
M
minqiyang 已提交
7259 7260 7261 7262 7263 7264

    .. math::

        rank\_loss &= max(0, -label * (left - right) + margin)

    Args:
M
minqiyang 已提交
7265
       label (Variable): Indicates whether the left is ranked higher than the right or not.
M
minqiyang 已提交
7266 7267
       left (Variable): Ranking score for left.
       right (Variable): Ranking score for right.
M
minqiyang 已提交
7268
       margin (float): Indicates the given margin.
M
minqiyang 已提交
7269 7270 7271
       name (str|None): A name for this layer (optional). If set None, the layer
                       will be named automatically.
    Returns:
M
minqiyang 已提交
7272
       Variable: The ranking loss.
M
minqiyang 已提交
7273
    Raises:
M
minqiyang 已提交
7274
       ValueError: Any of label, left, and right is not a Variable.
M
minqiyang 已提交
7275 7276 7277 7278 7279 7280 7281
    Examples:
        .. code-block:: python
           label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
           left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
           right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
           out = fluid.layers.margin_rank_loss(label, left, right)
    """
M
minqiyang 已提交
7282
    helper = LayerHelper('margin_rank_loss', **locals())
M
minqiyang 已提交
7283 7284 7285 7286 7287 7288
    if not isinstance(label, Variable):
        raise ValueError("The label should be a Variable.")
    if not isinstance(left, Variable):
        raise ValueError("The left should be a Variable.")
    if not isinstance(right, Variable):
        raise ValueError("The right should be a Variable.")
X
Xin Pan 已提交
7289 7290
    out = helper.create_variable_for_type_inference(left.dtype)
    act = helper.create_variable_for_type_inference(left.dtype)
M
minqiyang 已提交
7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301
    helper.append_op(
        type='margin_rank_loss',
        inputs={"Label": label,
                "X1": left,
                "X2": right},
        outputs={'Out': out,
                 'Activated': act},
        attrs={'margin': margin})
    return out


W
whs 已提交
7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313
def pad2d(input,
          paddings=[0, 0, 0, 0],
          mode='constant',
          pad_value=0.0,
          data_format="NCHW",
          name=None):
    """
    Pad 2-d images accordding to 'paddings' and 'mode'.
    If mode is 'reflect', paddings[0] and paddings[1] must be no greater
    than height-1. And the width dimension has the same condition.

    Example:
T
Tink_Y 已提交
7314
        .. code-block:: text
W
whs 已提交
7315

T
Tink_Y 已提交
7316
	      Given that X is a channel of image from input:
M
minqiyang 已提交
7317

T
Tink_Y 已提交
7318 7319
	      X = [[1, 2, 3],
		   [4, 5, 6]]
M
minqiyang 已提交
7320

T
Tink_Y 已提交
7321
	      Case 0:
M
minqiyang 已提交
7322

T
Tink_Y 已提交
7323 7324 7325
		paddings = [0, 1, 2, 3],
		mode = 'constant'
		pad_value = 0
M
minqiyang 已提交
7326

T
Tink_Y 已提交
7327 7328 7329
		Out = [[0, 0, 1, 2, 3, 0, 0, 0]
		       [0, 0, 4, 5, 6, 0, 0, 0]
		       [0, 0, 0, 0, 0, 0, 0, 0]]
M
minqiyang 已提交
7330

T
Tink_Y 已提交
7331
	      Case 1:
M
minqiyang 已提交
7332

T
Tink_Y 已提交
7333 7334
		paddings = [0, 1, 2, 1],
		mode = 'reflect'
M
minqiyang 已提交
7335

T
Tink_Y 已提交
7336 7337 7338
		Out = [[3, 2, 1, 2, 3, 2]
		       [6, 5, 4, 5, 6, 5]
		       [3, 2, 1, 2, 3, 2]]
M
minqiyang 已提交
7339

T
Tink_Y 已提交
7340
	      Case 2:
M
minqiyang 已提交
7341

T
Tink_Y 已提交
7342 7343
		paddings = [0, 1, 2, 1],
		mode = 'edge'
M
minqiyang 已提交
7344

T
Tink_Y 已提交
7345 7346 7347
		Out = [[1, 1, 1, 2, 3, 3]
		       [4, 4, 4, 5, 6, 6]
		       [4, 4, 4, 5, 6, 6]]
M
minqiyang 已提交
7348 7349


W
whs 已提交
7350 7351
    Args:
        input (Variable): The input image with [N, C, H, W] format or [N, H, W, C] format.
7352
        paddings (tuple|list|Variable): The padding size. If padding is a tuple, it must
W
whs 已提交
7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375
            contain four integers, (padding_top, padding_bottom, padding_left, padding_right).
            Default: padding = [0, 0, 0, 0].
        mode (str): Three modes: constant(default), reflect, edge. Default: constant
        pad_value (float32): The value to fill the padded areas in constant mode. Default: 0
        data_format (str): An optional string from: "NHWC", "NCHW". Specify the data format of
                           the input data.
                           Default: "NCHW"
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: The tensor variable padded accordding to paddings and mode.


    Examples:
        .. code-block:: python

          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          result = fluid.layers.pad2d(input=data, padding=[1,2,3,4], mode='reflect')
    """

    helper = LayerHelper('pad2d', **locals())
    dtype = helper.input_dtype(input_param_name='input')
X
Xin Pan 已提交
7376
    out = helper.create_variable_for_type_inference(dtype)
7377 7378 7379 7380 7381 7382 7383 7384 7385
    inputs = {'X': input}
    attrs = {'mode': mode, 'pad_value': pad_value, 'data_format': data_format}

    if isinstance(paddings, Variable):
        inputs['Paddings'] = paddings
        attrs['paddings'] = []
    else:
        attrs['paddings'] = paddings

W
whs 已提交
7386
    helper.append_op(
7387
        type='pad2d', inputs=inputs, outputs={"Out": out}, attrs=attrs)
W
whs 已提交
7388 7389 7390 7391

    return out


7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403
@templatedoc()
def elu(x, alpha=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|1.0): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7404 7405 7406 7407 7408

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7409 7410
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.elu(x, alpha=0.2)
7411 7412
    """
    helper = LayerHelper('elu', **locals())
X
Xin Pan 已提交
7413
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433
    helper.append_op(
        type='elu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def relu6(x, threshold=6.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|6.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7434 7435 7436 7437 7438

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7439 7440
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.relu6(x, threshold=6.0)
7441 7442
    """
    helper = LayerHelper('relu6', **locals())
X
Xin Pan 已提交
7443
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463
    helper.append_op(
        type='relu6',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


@templatedoc()
def pow(x, factor=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        factor(${factor_type}|1.0): ${factor_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7464 7465 7466 7467 7468

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7469 7470
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.pow(x, factor=2.0)
7471 7472
    """
    helper = LayerHelper('pow', **locals())
X
Xin Pan 已提交
7473
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494
    helper.append_op(
        type='pow',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'factor': factor})
    return out


@templatedoc()
def stanh(x, scale_a=2.0 / 3.0, scale_b=1.7159, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        scale_a(${scale_a_type}|2.0 / 3.0): ${scale_a_comment}
        scale_b(${scale_b_type}|1.7159): ${scale_b_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7495 7496 7497 7498 7499

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7500
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
Z
ZhenWang 已提交
7501
            y = fluid.layers.stanh(x, scale_a=0.67, scale_b=1.72)
7502 7503
    """
    helper = LayerHelper('stanh', **locals())
X
Xin Pan 已提交
7504
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526
    helper.append_op(
        type='stanh',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'scale_a': scale_a,
               'scale_b': scale_b})
    return out


@templatedoc()
def hard_sigmoid(x, slope=0.2, offset=0.5, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        slope(${slope_type}|0.2): ${slope_comment}
        offset(${offset_type}|0.5): ${offset_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7527 7528 7529 7530 7531

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7532 7533
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.hard_sigmoid(x, slope=0.3, offset=0.8)
7534 7535
    """
    helper = LayerHelper('hard_sigmoid', **locals())
X
Xin Pan 已提交
7536
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557
    helper.append_op(
        type='hard_sigmoid',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': slope,
               'offset': offset})
    return out


@templatedoc()
def swish(x, beta=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        beta(${beta_type}|1.0): ${beta_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7558 7559 7560 7561 7562

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7563 7564
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.swish(x, beta=2.0)
7565 7566
    """
    helper = LayerHelper('swish', **locals())
X
Xin Pan 已提交
7567
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7568 7569 7570 7571 7572 7573 7574 7575
    helper.append_op(
        type='swish',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': beta})
    return out


J
jerrywgz 已提交
7576 7577 7578 7579
def prelu(x, mode, param_attr=None, name=None):
    """
    Equation:

J
jerrywgz 已提交
7580
        y = \max(0, x) + alpha * \min(0, x)
J
jerrywgz 已提交
7581 7582 7583

    Args:
        x (Variable): The input tensor.
J
jerrywgz 已提交
7584
        param_attr(ParamAttr|None): The parameter attribute for the learnable
T
Tink_Y 已提交
7585
          weight (alpha).
J
jerrywgz 已提交
7586
        mode (string): The mode for weight sharing. It supports all, channel
T
Tink_Y 已提交
7587 7588 7589
          and element. all: all elements share same weight
          channel:elements in a channel share same weight
          element:each element has a weight
J
jerrywgz 已提交
7590
        name(str|None): A name for this layer(optional). If set None, the layer
T
Tink_Y 已提交
7591
          will be named automatically.
J
jerrywgz 已提交
7592 7593 7594 7595 7596 7597 7598 7599

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

J
jerrywgz 已提交
7600
            x = fluid.layers.data(name="x", shape=[10,10], dtype="float32")
J
jerrywgz 已提交
7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613
            mode = 'channel'
            output = fluid.layers.prelu(x,mode)
    """
    helper = LayerHelper('prelu', **locals())
    if mode not in ['all', 'channel', 'element']:
        raise ValueError('mode should be one of all, channel, element.')
    alpha_shape = [1]
    if mode == 'channel':
        alpha_shape = [1, x.shape[1], 1, 1]
    elif mode == 'element':
        alpha_shape = x.shape
    dtype = helper.input_dtype(input_param_name='x')
    alpha = helper.create_parameter(
Q
Qiao Longfei 已提交
7614
        attr=helper.param_attr,
J
jerrywgz 已提交
7615 7616 7617 7618
        shape=alpha_shape,
        dtype='float32',
        is_bias=False,
        default_initializer=Constant(1.0))
X
Xin Pan 已提交
7619
    out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
7620 7621 7622 7623 7624 7625 7626 7627 7628
    helper.append_op(
        type="prelu",
        inputs={"X": x,
                'Alpha': alpha},
        attrs={"mode": mode},
        outputs={"Out": out})
    return out


7629 7630 7631 7632 7633 7634 7635 7636 7637 7638
@templatedoc()
def brelu(x, t_min=0.0, t_max=24.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        t_min(${t_min_type}|0.0): ${t_min_comment}
        t_max(${t_max_type}|24.0): ${t_max_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
7639
    Returns:
7640
        output(${out_type}): ${out_comment}
7641 7642 7643 7644 7645 7646 7647

    Examples:

        .. code-block:: python

        x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
        y = fluid.layers.brelu(x, t_min=1.0, t_max=20.0)
7648 7649
    """
    helper = LayerHelper('brelu', **locals())
X
Xin Pan 已提交
7650
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668
    helper.append_op(
        type='brelu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'t_min': t_min,
               't_max': t_max})
    return out


@templatedoc()
def leaky_relu(x, alpha=0.02, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|0.02): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
7669
    Returns:
7670
        output(${out_type}): ${out_comment}
7671 7672 7673 7674 7675 7676 7677

    Examples:

        .. code-block:: python

        x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
        y = fluid.layers.leaky_relu(x, alpha=0.01)
7678 7679
    """
    helper = LayerHelper('leaky_relu', **locals())
X
Xin Pan 已提交
7680
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697
    helper.append_op(
        type='leaky_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def soft_relu(x, threshold=40.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|40.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
7698
    Returns:
7699
        output(${out_type}): ${out_comment}
7700 7701 7702 7703 7704 7705 7706

    Examples:

        .. code-block:: python

        x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
        y = fluid.layers.soft_relu(x, threshold=20.0)
7707 7708
    """
    helper = LayerHelper('soft_relu', **locals())
X
Xin Pan 已提交
7709
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7710 7711 7712 7713 7714 7715 7716 7717
    helper.append_op(
        type='soft_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730
def flatten(x, axis=1, name=None):
    """
    **Flatten layer**
    Flattens the input tensor into a 2D matrix.

    Examples:
    Case 1:
      Given
        X.shape = (3, 100, 100, 4)
      and
        axis = 2
      We get:
        Out.shape = (3 * 100, 4 * 100)
7731

7732 7733 7734 7735 7736 7737 7738 7739 7740 7741
    Case 2:
      Given
        X.shape = (3, 100, 100, 4)
      and
        axis = 0
      We get:
        Out.shape = (1, 3 * 100 * 100 * 4)

    Args:
        x (Variable): A tensor of rank >= axis.
7742 7743
        axis (int): Indicate up to which input dimensions (exclusive) should
                    be flattened to the outer dimension of the output.
7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758
                    The value for axis must be in the range [0, R], where R
                    is the rank of the input tensor. When axis = 0, the shape
                    of the output tensor is (1, (d_0 X d_1 ... d_n), where the
                    shape of the input tensor is (d_0, d_1, ... d_n).
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: A 2D tensor with the contents of the input tensor, with input
                  dimensions up to axis flattened to the outer dimension of
                  the output and remaining input dimensions flattened into the
                  inner dimension of the output.

    Raises:
        ValueError: If x is not a variable.
7759
        ValueError: If axis is not in range [0, rank(x)].
7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[4, 4, 3], dtype="float32")
            out = fluid.layers.flatten(x=x, axis=2)
    """
    helper = LayerHelper('flatten', **locals())

    if not (isinstance(x, Variable)):
        raise ValueError("The input x should be a Variable")

    if not (isinstance(axis, int)) or axis > len(x.shape) or axis < 0:
        raise ValueError("The axis should be a int, and in range [0, rank(x)]")

X
Xin Pan 已提交
7776 7777
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
7778
    helper.append_op(
7779
        type='flatten2',
7780
        inputs={"X": x},
7781 7782
        outputs={'Out': out,
                 'XShape': x_shape},
7783 7784
        attrs={"axis": axis})
    return out
X
Xin Pan 已提交
7785 7786


C
chenweihang 已提交
7787
def sequence_enumerate(input, win_size, pad_value=0, name=None):
C
chenweihang 已提交
7788
    """
C
chenweihang 已提交
7789
    Generate a new sequence for the input index sequence, which enumerates all the
M
minqiyang 已提交
7790
    sub-sequences with length `win_size` of the input.
C
chenweihang 已提交
7791 7792
    The enumerated sequence has the same 1st dimension with variable `input`, and
    the 2nd dimension is `win_size`, padded by `pad_value` if necessary in generation.
M
minqiyang 已提交
7793

C
chenweihang 已提交
7794 7795 7796 7797
    Examples:
    Case 1:
      Input:
        X.lod = [[0, 3, 5]]
7798
        X.data = [[1], [2], [3], [4], [5]]
C
chenweihang 已提交
7799 7800 7801 7802 7803 7804
        X.dims = [5, 1]
      Attrs:
        win_size = 2
        pad_value = 0
      Output:
        Out.lod = [[0, 3, 5]]
7805
        Out.data = [[1, 2], [2, 3], [3, 0], [4, 5], [5, 0]]
C
chenweihang 已提交
7806 7807 7808
        Out.dims = [5, 2]

    Args:
C
chenweihang 已提交
7809 7810 7811
        input (Variable): The input variable which is a index sequence.
        win_size (int): The window size for enumerating all sub-sequences.
        pad_value (int): The padding value, default 0.
C
chenweihang 已提交
7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822

    Returns:
        Variable: The enumerate sequence variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(shape[30, 1], dtype='int32', lod_level=1)
            out = fluid.layers.sequence_enumerate(input=x, win_size=3, pad_value=0)
    """
    helper = LayerHelper('sequence_enumerate', **locals())
X
Xin Pan 已提交
7823 7824
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
C
chenweihang 已提交
7825 7826 7827 7828 7829 7830
    helper.append_op(
        type='sequence_enumerate',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'win_size': win_size,
               'pad_value': pad_value})
M
minqiyang 已提交
7831
    return out
7832

7833

S
sneaxiy 已提交
7834 7835 7836 7837 7838 7839 7840 7841 7842
def sequence_mask(x, maxlen=None, dtype='int64', name=None):
    """
    **SequenceMask Layer**

    This layer outputs a mask according to the input :code:`x` and
    :code:`maxlen` with data type of :code:`dtype`.

    Supposing :code:`x` is a Tensor with shape [d_1, d_2, ..., d_n], the
    :code:`y` is a mask with shape [d_1, d_2, ..., d_n, maxlen], where:
7843

S
sneaxiy 已提交
7844
    .. math::
7845

S
sneaxiy 已提交
7846 7847 7848
        y(i_1, i_2,..., i_n, j) = (j < x(i_1, i_2,..., i_n))

    Args:
7849
        x (Variable): Input tensor of sequence_mask layer,
S
sneaxiy 已提交
7850 7851 7852 7853
                      whose elements are integers less than :code:`maxlen`.
        maxlen (int|None): Maximum length of the sequence. If :code:`maxlen`
                           is None, it would be replace with :math:`max(x)`.
        dtype (np.dtype|core.VarDesc.VarType|str): Data type of the output.
7854 7855 7856
        name (str|None): A name for this layer(optional). If set None, the
                         layer will be named automatically.

S
sneaxiy 已提交
7857 7858
    Returns:
        Variable: The output sequence mask.
7859

S
sneaxiy 已提交
7860 7861
    """

Q
qingqing01 已提交
7862
    helper = LayerHelper('sequence_mask', **locals())
S
sneaxiy 已提交
7863
    if name is None:
X
Xin Pan 已提交
7864
        out = helper.create_variable_for_type_inference(dtype=dtype)
S
sneaxiy 已提交
7865
    else:
X
Xin Pan 已提交
7866
        out = helper.create_variable_for_type_inference(dtype=dtype, name=name)
S
sneaxiy 已提交
7867

Q
qingqing01 已提交
7868 7869 7870
    helper.append_op(
        type='sequence_mask',
        inputs={'X': [x]},
S
sneaxiy 已提交
7871 7872
        outputs={'Y': out},
        attrs={
7873
            'maxlen': maxlen if maxlen is not None else -1,
S
sneaxiy 已提交
7874 7875 7876
            'out_dtype': out.dtype
        })
    return out
S
sneaxiy 已提交
7877 7878


X
Xin Pan 已提交
7879
def stack(x, axis=0):
S
sneaxiy 已提交
7880 7881 7882 7883
    """
    **Stack Layer**

    This layer stacks all of the input :code:`x` along axis.
7884 7885 7886 7887 7888 7889 7890

    Input :code:`x` can be a single variable, a :code:`list` of variables,
    or a :code:`tuple` of variables. If :code:`x` is a :code:`list` or
    :code:`tuple`, the shapes of all these variables must be the same.
    Supposing the shape of each input is :math:`[d_0, d_1, ..., d_{n-1}]`,
    the shape of the output variable would be
    :math:`[d_0, d_1, ..., d_{axis}=len(x), ..., d_{n-1}]`.
S
sneaxiy 已提交
7891
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x[0])+1`.
7892
    If :code:`axis` is None, it would be replaced with 0.
S
sneaxiy 已提交
7893 7894

    Args:
7895
        x (Variable|list(Variable)|tuple(Variable)): Input variables.
S
sneaxiy 已提交
7896
        axis (int|None): The axis along which all inputs are stacked.
7897

S
sneaxiy 已提交
7898 7899
    Returns:
        Variable: The stacked variable.
7900

S
sneaxiy 已提交
7901 7902
    """

X
Xin Pan 已提交
7903 7904 7905 7906 7907 7908
    helper = LayerHelper('stack', **locals())
    axis = 0 if axis is None else axis

    if not isinstance(x, list) and not isinstance(x, tuple):
        x = [x]

X
Xin Pan 已提交
7909
    out = helper.create_variable_for_type_inference(x[0].dtype)
X
Xin Pan 已提交
7910
    helper.append_op(
S
sneaxiy 已提交
7911 7912
        type='stack', inputs={'X': x}, outputs={'Y': out},
        attrs={'axis': axis})
7913

X
Xin Pan 已提交
7914
    return out
D
dzhwinter 已提交
7915 7916 7917 7918 7919 7920 7921


def unstack(x, axis=0, num=None):
    """
    **UnStack Layer**

    This layer unstacks input :code:`x` into several tensors along axis.
M
minqiyang 已提交
7922

D
dzhwinter 已提交
7923 7924 7925
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x)`.
    If :code:`num` is None, it would be inferred from :code:`x.shape[axis]`,
    and if :code:`x.shape[axis]` <= 0 or is unknown, :code:`ValueError` is
M
minqiyang 已提交
7926
    raised.
D
dzhwinter 已提交
7927 7928

    Args:
M
minqiyang 已提交
7929
        x (Variable): Input variable.
D
dzhwinter 已提交
7930 7931
        axis (int): The axis along which the input is unstacked.
        num (int|None): The number of output variables.
M
minqiyang 已提交
7932

D
dzhwinter 已提交
7933 7934
    Returns:
        list(Variable): The unstacked variables.
M
minqiyang 已提交
7935

D
dzhwinter 已提交
7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946
    """

    helper = LayerHelper('unstack', **locals())
    if num is None:
        if axis is None or x.shape[axis] <= 0:
            raise ValueError('unknown unstack number')
        else:
            num = x.shape[axis]

    outs = []
    for _ in num:
X
Xin Pan 已提交
7947
        outs.append(helper.create_variable_for_type_inference(x.dtype))
D
dzhwinter 已提交
7948 7949 7950 7951 7952 7953 7954 7955

    helper.append_op(
        type='unstack',
        inputs={'X': [x]},
        outputs={'Y': outs},
        attrs={'axis': axis,
               'num': num})
    return outs
W
whs 已提交
7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967


def expand(x, expand_times, name=None):
    """Expand operator tiles the input by given times number. You should set times
    number for each dimension by providing attribute 'expand_times'. The rank of X
    should be in [1, 6]. Please note that size of 'expand_times' must be the same
    with X's rank. Following is a using case:


    .. code-block:: text

        Input(X) is a 3-D tensor with shape [2, 3, 1]:
M
minqiyang 已提交
7968

W
whs 已提交
7969 7970 7971 7972
                [
                   [[1], [2], [3]],
                   [[4], [5], [6]]
                ]
M
minqiyang 已提交
7973

W
whs 已提交
7974
        Attr(expand_times):  [1, 2, 2]
M
minqiyang 已提交
7975

W
whs 已提交
7976
        Output(Out) is a 3-D tensor with shape [2, 6, 2]:
M
minqiyang 已提交
7977

W
whs 已提交
7978 7979 7980 7981
                [
                    [[1, 1], [2, 2], [3, 3], [1, 1], [2, 2], [3, 3]],
                    [[4, 4], [5, 5], [6, 6], [4, 4], [5, 5], [6, 6]]
                ]
M
minqiyang 已提交
7982

W
whs 已提交
7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998
    Args:
        x (Variable): A tensor with rank in [1, 6].
        expand_times (list|tuple): Expand times number for each dimension.

    Returns:
        Variable: The expanded variable which is a LoDTensor. After expanding, size of each dimension of Output(Out) is equal to ithe size of the corresponding dimension of Input(X) multiplying the corresponding value given by expand_times.


    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            out = fluid.layers.expand(x=x, expand_times=[1, 2, 2])
    """
    helper = LayerHelper('expand', input=x, **locals())
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
7999
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
8000 8001 8002 8003 8004 8005
    helper.append_op(
        type='expand',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'expand_times': expand_times})
    return out
S
sneaxiy 已提交
8006 8007


G
fix  
gongweibao 已提交
8008 8009 8010
from paddle.fluid.framework import convert_np_dtype_to_dtype_


G
gongweibao 已提交
8011
@templatedoc()
G
fix  
gongweibao 已提交
8012 8013 8014 8015 8016 8017 8018 8019 8020
def uniform_random_batch_size_like(input,
                                   shape,
                                   dtype='float32',
                                   input_dim_idx=0,
                                   output_dim_idx=0,
                                   min=-1.0,
                                   max=1.0,
                                   seed=0):
    """
G
gongweibao 已提交
8021
    ${comment}
G
fix  
gongweibao 已提交
8022 8023

    Args:
G
gongweibao 已提交
8024 8025 8026
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
8027
        output_dim_idx (Int): ${output_dim_idx_comment}
G
gongweibao 已提交
8028 8029 8030
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
8031 8032
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
    Returns:
G
gongweibao 已提交
8033
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
8034

8035 8036 8037 8038 8039
    Examples:
        .. code-block:: python

            input = layers.data(name="input", shape=[13, 11], dtype='float32')
            out = layers.uniform_random_batch_size_like(input, [-1, 11])
G
fix  
gongweibao 已提交
8040 8041 8042
    """

    helper = LayerHelper('uniform_random_batch_size_like', **locals())
X
Xin Pan 已提交
8043
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='uniform_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'min': min,
            'max': max,
            'seed': seed,
            'dtype': c_dtype
        })

    return out
G
fix  
gongweibao 已提交
8060 8061


G
gongweibao 已提交
8062
@templatedoc()
X
Xin Pan 已提交
8063
def gaussian_random(shape, mean=0.0, std=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
8064
    """
G
gongweibao 已提交
8065
    ${comment}
G
fix  
gongweibao 已提交
8066 8067

    Args:
G
gongweibao 已提交
8068 8069 8070 8071
        shape (tuple|list): ${shape_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
8072 8073 8074
        dtype(np.dtype|core.VarDesc.VarType|str): Output data type.

    Returns:
G
gongweibao 已提交
8075
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
8076

8077 8078 8079 8080
    Examples:
        .. code-block:: python

            out = layers.gaussian_random(shape=[20, 30])
G
fix  
gongweibao 已提交
8081 8082 8083
    """

    helper = LayerHelper('gaussian_random', **locals())
X
Xin Pan 已提交
8084
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
8085 8086 8087 8088 8089 8090 8091 8092 8093 8094
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random',
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype,
X
Xin Pan 已提交
8095
            'use_mkldnn': False
G
fix  
gongweibao 已提交
8096 8097 8098 8099 8100
        })

    return out


G
gongweibao 已提交
8101
@templatedoc()
G
fix  
gongweibao 已提交
8102
def sampling_id(x, min=0.0, max=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
8103
    """
G
gongweibao 已提交
8104
    ${comment}
G
fix  
gongweibao 已提交
8105 8106

    Args:
G
gongweibao 已提交
8107 8108 8109 8110
        x (Variable): ${x_comment}
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Float): ${seed_comment}
G
fix  
gongweibao 已提交
8111
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
8112 8113

    Returns:
G
gongweibao 已提交
8114
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
8115

8116 8117 8118 8119 8120 8121 8122 8123 8124 8125
    Examples:
        .. code-block:: python

            x = layers.data(
                name="X",
                shape=[13, 11],
                dtype='float32',
                append_batch_size=False)

            out = layers.sampling_id(x)
G
fix  
gongweibao 已提交
8126 8127 8128
    """

    helper = LayerHelper('sampling_id', **locals())
X
Xin Pan 已提交
8129
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140
    helper.append_op(
        type='sampling_id',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'min': min,
               'max': max,
               'seed': seed})

    return out


G
gongweibao 已提交
8141
@templatedoc()
G
fix  
gongweibao 已提交
8142 8143 8144 8145 8146 8147 8148 8149 8150
def gaussian_random_batch_size_like(input,
                                    shape,
                                    input_dim_idx=0,
                                    output_dim_idx=0,
                                    mean=0.0,
                                    std=1.0,
                                    seed=0,
                                    dtype='float32'):
    """
G
gongweibao 已提交
8151
    ${comment}
G
fix  
gongweibao 已提交
8152 8153

    Args:
G
gongweibao 已提交
8154 8155
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
G
gongweibao 已提交
8156
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
8157 8158 8159 8160
        output_dim_idx (Int): ${output_dim_idx_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
8161
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
8162 8163

    Returns:
G
gongweibao 已提交
8164
        out (Variable): ${out_comment}
8165 8166 8167 8168 8169 8170 8171 8172

    Examples:
        .. code-block:: python

            input = layers.data(name="input", shape=[13, 11], dtype='float32')

            out = layers.gaussian_random_batch_size_like(
                input, shape=[-1, 11], mean=1.0, std=2.0)
G
fix  
gongweibao 已提交
8173 8174 8175
    """

    helper = LayerHelper('gaussian_random_batch_size_like', **locals())
X
Xin Pan 已提交
8176
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype
        })

    return out


G
gongweibao 已提交
8195
@templatedoc()
X
Xin Pan 已提交
8196
def sum(x):
G
fix  
gongweibao 已提交
8197
    """
G
gongweibao 已提交
8198
    ${comment}
G
fix  
gongweibao 已提交
8199 8200

    Args:
G
gongweibao 已提交
8201
        x (Variable): ${x_comment}
G
fix  
gongweibao 已提交
8202 8203

    Returns:
G
gongweibao 已提交
8204
        out (Variable): ${out_comment}
8205 8206 8207 8208 8209 8210

    Examples:
        .. code-block:: python

            input = layers.data(name="input", shape=[13, 11], dtype='float32')
            out = layers.sum(input)
G
fix  
gongweibao 已提交
8211 8212 8213
    """

    helper = LayerHelper('sum', **locals())
X
Xin Pan 已提交
8214 8215
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('x'))
G
fix  
gongweibao 已提交
8216 8217 8218 8219
    helper.append_op(
        type='sum',
        inputs={'X': x},
        outputs={'Out': out},
X
Xin Pan 已提交
8220
        attrs={'use_mkldnn': False})
G
fix  
gongweibao 已提交
8221 8222 8223 8224

    return out


G
gongweibao 已提交
8225
@templatedoc()
G
fix  
gongweibao 已提交
8226 8227
def slice(input, axes, starts, ends):
    """
G
gongweibao 已提交
8228
    ${comment}
G
fix  
gongweibao 已提交
8229 8230

    Args:
G
gongweibao 已提交
8231 8232 8233 8234
        input (Variable): ${input_comment}.
        axes (List): ${axes_comment}
        starts (List): ${starts_comment}
        ends (List): ${ends_comment}
G
fix  
gongweibao 已提交
8235 8236

    Returns:
G
gongweibao 已提交
8237
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
8238

8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249
    Examples:
        .. code-block:: python

            starts = [1, 0, 2]
            ends = [3, 3, 4]
            axes = [0, 1, 2]

            input = layers.data(
                name="input", shape=[3, 4, 5, 6], dtype='float32')

            out = layers.slice(input, axes=axes, starts=starts, ends=ends)
G
fix  
gongweibao 已提交
8250 8251 8252
    """

    helper = LayerHelper('slice', **locals())
X
Xin Pan 已提交
8253 8254
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265
    helper.append_op(
        type='slice',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={'axes': axes,
               'starts': starts,
               'ends': ends})

    return out


G
gongweibao 已提交
8266
@templatedoc()
G
fix  
gongweibao 已提交
8267 8268
def shape(input):
    """
G
gongweibao 已提交
8269
    ${comment}
G
fix  
gongweibao 已提交
8270 8271

    Args:
G
gongweibao 已提交
8272
        input (Variable): ${input_comment}
G
fix  
gongweibao 已提交
8273 8274

    Returns:
G
gongweibao 已提交
8275
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
8276

8277 8278 8279 8280 8281 8282
    Examples:
        .. code-block:: python

            input = layers.data(
                name="input", shape=[3, 100, 100], dtype="float32")
            out = layers.shape(input)
G
fix  
gongweibao 已提交
8283 8284 8285
    """

    helper = LayerHelper('shape', **locals())
X
Xin Pan 已提交
8286 8287
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
8288
    helper.append_op(
G
fix  
gongweibao 已提交
8289
        type='shape', inputs={'Input': input}, outputs={'Out': out})
G
fix  
gongweibao 已提交
8290 8291

    return out
G
merge  
gongweibao 已提交
8292 8293


S
sneaxiy 已提交
8294 8295 8296 8297 8298 8299 8300 8301
def _elementwise_op(helper):
    op_type = helper.layer_type
    x = helper.kwargs.get('x', None)
    y = helper.kwargs.get('y', None)
    assert x is not None, 'x cannot be None in {}'.format(op_type)
    assert y is not None, 'y cannot be None in {}'.format(op_type)
    axis = helper.kwargs.get('axis', -1)
    use_mkldnn = helper.kwargs.get('use_mkldnn', False)
S
sneaxiy 已提交
8302 8303
    name = helper.kwargs.get('name', None)
    if name is None:
X
Xin Pan 已提交
8304
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
8305 8306 8307
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
8308

S
sneaxiy 已提交
8309 8310 8311 8312 8313 8314 8315 8316 8317 8318 8319
    helper.append_op(
        type=op_type,
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'axis': axis,
               'use_mkldnn': use_mkldnn})
    return helper.append_activation(out)


@templatedoc()
S
sneaxiy 已提交
8320
def scale(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
S
sneaxiy 已提交
8321 8322 8323 8324 8325 8326 8327 8328
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        scale(${scale_type}): ${scale_comment}
        bias(${bias_type}): ${bias_comment}
        bias_after_scale(${bias_after_scale_type}): ${bias_after_scale_comment}
S
sneaxiy 已提交
8329
        act(basestring|None): Activation applied to the output.
M
minqiyang 已提交
8330
        name(basestring|None): Name of the output.
S
sneaxiy 已提交
8331 8332 8333 8334 8335 8336

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper('scale', **locals())
S
sneaxiy 已提交
8337
    if name is None:
X
Xin Pan 已提交
8338
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
8339 8340 8341
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
8342 8343 8344 8345 8346 8347 8348 8349 8350 8351

    helper.append_op(
        type='scale',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={
            'scale': float(scale),
            'bias': float(bias),
            'bias_after_scale': bias_after_scale
        })
S
sneaxiy 已提交
8352
    return helper.append_activation(out)
S
sneaxiy 已提交
8353 8354


X
Xin Pan 已提交
8355
def elementwise_add(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8356 8357 8358
    return _elementwise_op(LayerHelper('elementwise_add', **locals()))


X
Xin Pan 已提交
8359
def elementwise_div(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8360 8361 8362
    return _elementwise_op(LayerHelper('elementwise_div', **locals()))


X
Xin Pan 已提交
8363
def elementwise_sub(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8364 8365 8366
    return _elementwise_op(LayerHelper('elementwise_sub', **locals()))


X
Xin Pan 已提交
8367
def elementwise_mul(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8368 8369 8370
    return _elementwise_op(LayerHelper('elementwise_mul', **locals()))


X
Xin Pan 已提交
8371
def elementwise_max(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8372 8373 8374
    return _elementwise_op(LayerHelper('elementwise_max', **locals()))


X
Xin Pan 已提交
8375
def elementwise_min(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8376 8377 8378
    return _elementwise_op(LayerHelper('elementwise_min', **locals()))


X
Xin Pan 已提交
8379
def elementwise_pow(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8380 8381 8382 8383 8384 8385 8386 8387 8388 8389 8390
    return _elementwise_op(LayerHelper('elementwise_pow', **locals()))


for func in [
        elementwise_add, elementwise_div, elementwise_sub, elementwise_mul,
        elementwise_max, elementwise_min, elementwise_pow
]:
    op_proto = OpProtoHolder.instance().get_op_proto(func.__name__)
    func.__doc__ = _generate_doc_string_(
        op_proto,
        additional_args_lines=[
S
sneaxiy 已提交
8391 8392
            "act (basestring|None): Activation applied to the output.",
            "name (basestring|None): Name of the output."
S
sneaxiy 已提交
8393
        ])
M
minqiyang 已提交
8394 8395


8396
def _logical_op(op_name, x, y, out=None, name=None, binary_op=True):
M
minqiyang 已提交
8397 8398
    helper = LayerHelper(op_name, **locals())

M
minqiyang 已提交
8399 8400
    if binary_op:
        assert x.dtype == y.dtype
M
minqiyang 已提交
8401 8402 8403

    if out is None:
        if name is None:
X
Xin Pan 已提交
8404
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
M
minqiyang 已提交
8405 8406 8407 8408 8409 8410 8411 8412 8413 8414 8415 8416 8417 8418 8419
        else:
            out = helper.create_variable(
                name=name, dtype=x.dtype, persistable=False)

    if binary_op:
        helper.append_op(
            type=op_name, inputs={"X": x,
                                  "Y": y}, outputs={"Out": out})
    else:
        helper.append_op(type=op_name, inputs={"X": x}, outputs={"Out": out})

    return out


@templatedoc()
8420
def logical_and(x, y, out=None, name=None):
M
minqiyang 已提交
8421 8422 8423 8424 8425 8426 8427 8428 8429 8430 8431
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8432 8433 8434 8435 8436 8437 8438 8439 8440

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_and(x=left, y=right)
M
minqiyang 已提交
8441 8442 8443 8444 8445 8446 8447
    """

    return _logical_op(
        op_name="logical_and", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
8448
def logical_or(x, y, out=None, name=None):
M
minqiyang 已提交
8449 8450 8451 8452 8453 8454 8455 8456 8457 8458 8459
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8460 8461 8462 8463 8464 8465 8466 8467 8468

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_or(x=left, y=right)
M
minqiyang 已提交
8469 8470 8471 8472 8473 8474 8475
    """

    return _logical_op(
        op_name="logical_or", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
8476
def logical_xor(x, y, out=None, name=None):
M
minqiyang 已提交
8477 8478 8479 8480 8481 8482 8483 8484 8485 8486 8487
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8488 8489 8490 8491 8492 8493 8494 8495 8496

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_xor(x=left, y=right)
M
minqiyang 已提交
8497 8498 8499 8500 8501 8502 8503
    """

    return _logical_op(
        op_name="logical_xor", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
8504
def logical_not(x, out=None, name=None):
M
minqiyang 已提交
8505 8506 8507 8508 8509 8510 8511 8512 8513 8514
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8515 8516 8517 8518 8519 8520 8521

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            result = fluid.layers.logical_not(x=left)
M
minqiyang 已提交
8522 8523 8524 8525
    """

    return _logical_op(
        op_name="logical_not", x=x, y=None, name=name, out=out, binary_op=False)
8526 8527 8528 8529 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539 8540


@templatedoc()
def clip(x, min, max, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        min(${min_type}): ${min_comment}
        max(${max_type}): ${max_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8541 8542 8543 8544 8545 8546 8547

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip(x=input, min=-1.0, max=1.0)
8548 8549 8550 8551 8552
    """

    helper = LayerHelper("clip", **locals())

    if name is None:
S
sneaxiy 已提交
8553 8554 8555 8556
        name = unique_name.generate(".".join([helper.name, 'tmp']))

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572 8573 8574 8575 8576 8577 8578 8579

    helper.append_op(
        type="clip",
        inputs={"X": x},
        attrs={"min": min,
               "max": max},
        outputs={"Out": out})

    return out


@templatedoc()
def clip_by_norm(x, max_norm, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        max_norm(${max_norm_type}): ${max_norm_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8580 8581 8582 8583 8584 8585 8586

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip_by_norm(x=input, max_norm=1.0)
8587 8588 8589 8590 8591
    """

    helper = LayerHelper("clip_by_norm", **locals())

    if name is None:
S
sneaxiy 已提交
8592 8593 8594 8595
        name = unique_name.generate(".".join([helper.name, 'tmp']))

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
8596 8597 8598 8599 8600 8601 8602 8603

    helper.append_op(
        type="clip_by_norm",
        inputs={"X": x},
        attrs={"max_norm": max_norm},
        outputs={"Out": out})

    return out
X
Xin Pan 已提交
8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619 8620 8621


@templatedoc()
def mean(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mean", **locals())

    if name is None:
X
Xin Pan 已提交
8622
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
8623 8624 8625 8626 8627 8628 8629 8630 8631 8632
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mean", inputs={"X": x}, attrs={}, outputs={"Out": out})

    return out


C
chengduo 已提交
8633 8634 8635 8636 8637 8638 8639 8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655
@templatedoc()
def merge_selected_rows(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("merge_selected_rows", **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type="merge_selected_rows",
        inputs={"X": x},
        attrs={},
        outputs={"Out": out})
    return out


X
Xin Pan 已提交
8656 8657 8658 8659 8660 8661 8662 8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674
@templatedoc()
def mul(x, y, x_num_col_dims=1, y_num_col_dims=1, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        x_num_col_dims(${x_num_col_dims_type}): ${x_num_col_dims_comment}
        y_num_col_dims(${y_num_col_dims_type}): ${y_num_col_dims_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mul", **locals())

    if name is None:
X
Xin Pan 已提交
8675
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
8676 8677 8678 8679 8680 8681 8682 8683 8684
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mul",
        inputs={"X": x,
                "Y": y},
        attrs={
X
fix  
Xin Pan 已提交
8685 8686
            "x_num_col_dims": x_num_col_dims,
            "y_num_col_dims": y_num_col_dims
X
Xin Pan 已提交
8687 8688 8689 8690 8691 8692
        },
        outputs={"Out": out})
    return out


@templatedoc()
J
jerrywgz 已提交
8693 8694 8695 8696
def sigmoid_cross_entropy_with_logits(x,
                                      label,
                                      ignore_index=kIgnoreIndex,
                                      name=None):
X
Xin Pan 已提交
8697 8698 8699 8700 8701 8702
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        label(${label_type}): ${label_comment}
8703
        ignore_index(&{ignore_index}): ${ignore_index_comment}
X
Xin Pan 已提交
8704 8705 8706 8707 8708 8709 8710 8711 8712
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("sigmoid_cross_entropy_with_logits", **locals())

    if name is None:
X
Xin Pan 已提交
8713
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
8714 8715 8716 8717 8718 8719 8720 8721
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sigmoid_cross_entropy_with_logits",
        inputs={"X": x,
                "Label": label},
8722
        attrs={"ignore_index": ignore_index},
X
Xin Pan 已提交
8723 8724 8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741 8742
        outputs={"Out": out})
    return out


@templatedoc()
def maxout(x, groups, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        groups(${groups_type}): ${groups_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """
    helper = LayerHelper("maxout", **locals())

    if name is None:
X
Xin Pan 已提交
8743
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
8744 8745 8746 8747 8748 8749 8750 8751 8752 8753
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="maxout",
        inputs={"X": x},
        attrs={"groups": groups},
        outputs={"Out": out})
    return out
8754 8755


J
JiabinYang 已提交
8756
def space_to_depth(x, blocksize, name=None):
J
JiabinYang 已提交
8757
    """
J
JiabinYang 已提交
8758
    Gives a blocksize to space_to_depth the input LoDtensor with Layout: [batch, channel, height, width]
8759 8760 8761

    This op rearranges blocks of spatial data, into depth. More specifically, this op outputs a copy of the
    input LoDtensor where values from the height and width dimensions are moved to the channel dimension.
J
JiabinYang 已提交
8762
    The attr blocksize indicates the input block size.
8763 8764

    space_to_depth will reorgnize the elements of input with shape[batch, channel, height, width] according
J
JiabinYang 已提交
8765
    to blocksize to construct output with shape [batch, channel * blocksize * blocksize, height/blocksize, width/blocksize]:
8766 8767

    space_to_depth is used to This operation is useful for resizing the activations between convolutions
J
JiabinYang 已提交
8768
    (but keeping all data)
J
JiabinYang 已提交
8769

J
JiabinYang 已提交
8770
    - Non-overlapping blocks of size block_size x block size are rearranged into depth at each location.
8771
    - The depth of the output tensor is block_size * block_size * input channel
J
JiabinYang 已提交
8772 8773 8774 8775 8776
    - The Y, X coordinates within each block of the input become the high order component of the output channel index
    - channel should be divisible by square of blocksize
    - height, width should be divsible by blocksize


J
JiabinYang 已提交
8777
    Args:
J
JiabinYang 已提交
8778
        x(variable): The input LoDtensor.
J
JiabinYang 已提交
8779
        blocksize(variable): The blocksize to select the element on each feature map should be > 2
J
JiabinYang 已提交
8780 8781

    Returns:
J
JiabinYang 已提交
8782
        Variable: The output LoDtensor.
J
JiabinYang 已提交
8783 8784

    Raises:
J
JiabinYang 已提交
8785
        TypeError: blocksize type must be a long.
J
JiabinYang 已提交
8786 8787 8788 8789 8790 8791

    Examples:
        .. code-block:: python

            data = fluid.layers.data(
                name='data', shape=[1, 4, 2, 2], dtype='float32')
J
JiabinYang 已提交
8792
            space_to_depthed = fluid.layers.space_to_depth(
J
JiabinYang 已提交
8793
                x=data, blocksize=2)
J
JiabinYang 已提交
8794 8795
    """

J
JiabinYang 已提交
8796
    helper = LayerHelper("space_to_depth", **locals())
J
JiabinYang 已提交
8797

J
JiabinYang 已提交
8798 8799
    if not (isinstance(blocksize, int)):
        raise ValueError("blocksize must be a python Int")
J
JiabinYang 已提交
8800 8801

    if name is None:
J
JiabinYang 已提交
8802 8803
        out = helper.create_variable_for_type_inference(
            dtype=x.dtype)  #fix create
J
JiabinYang 已提交
8804 8805 8806 8807 8808
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
J
JiabinYang 已提交
8809
        type="space_to_depth",
J
JiabinYang 已提交
8810
        inputs={"X": x},
J
JiabinYang 已提交
8811
        attrs={"blocksize": blocksize},
J
JiabinYang 已提交
8812
        outputs={"Out": out})
J
JiabinYang 已提交
8813 8814
    return out

J
JiabinYang 已提交
8815

S
sneaxiy 已提交
8816 8817
@templatedoc()
def sequence_reverse(x, name=None):
8818
    """
S
sneaxiy 已提交
8819 8820 8821 8822 8823 8824 8825 8826 8827 8828 8829
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${y_type}): ${y_comment}
    """
    helper = LayerHelper("sequence_reverse", **locals())
    if name is None:
S
sneaxiy 已提交
8830
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
8831 8832 8833 8834 8835 8836 8837 8838 8839 8840
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sequence_reverse",
        inputs={"X": x},
        outputs={"Y": out},
        attrs=dict())
    return out
S
sneaxiy 已提交
8841 8842


8843 8844 8845 8846 8847 8848
def affine_channel(x, scale=None, bias=None, data_layout='NCHW', name=None):
    """
    Applies a separate affine transformation to each channel of the input.
    Useful for replacing spatial batch norm with its equivalent fixed
    transformation. The input also can be 2D tensor and applies a affine
    transformation in second dimension.
8849

8850 8851 8852 8853 8854 8855 8856 8857 8858 8859 8860 8861 8862 8863 8864 8865 8866 8867 8868
    Args:
        x (Variable): Feature map input can be a 4D tensor with order NCHW
            or NHWC. It also can be a 2D tensor and the affine transformation
            is applied in the second dimension.
        scale (Variable): 1D input of shape (C), the c-th element is the scale
            factor of the affine transformation for the c-th channel of
            the input.
        bias (Variable): 1D input of shape (C), the c-th element is the bias
            of the affine transformation for the c-th channel of the input.
        data_layout (string, default NCHW): NCHW or NHWC. If input is 2D
            tensor, you can ignore data_layout.
        name (str, default None): The name of this layer.

    Returns:
        out (Variable): A tensor of the same shape and data layout with x.
    """
    helper = LayerHelper("affine_channel", **locals())

    if name is None:
X
Xin Pan 已提交
8869
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
8870 8871 8872 8873 8874 8875 8876 8877 8878 8879 8880 8881
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="affine_channel",
        inputs={"X": x,
                'Scale': scale,
                'Bias': bias},
        attrs={"data_layout": data_layout},
        outputs={"Out": out})
    return out
8882 8883


B
barrierye 已提交
8884
def similarity_focus(input, axis, indexes, name=None):
8885
    """
B
barrierye 已提交
8886
    SimilarityFocus Operator
B
barrierye 已提交
8887 8888

    Generate a similarity focus mask with the same shape of input using the following method:
8889 8890 8891
    1. Extract the 3-D tensor(here the first dimension is BatchSize) corresponding
       to the axis according to the indexes. For example, if axis=1 and indexes=[a],
       it will get the matrix T=X[:, a, :, :]. In this case, if the shape of input X
B
barrierye 已提交
8892
       is (BatchSize, A, B, C), the shape of tensor T is (BatchSize, B, C).
8893 8894 8895 8896 8897 8898 8899
    2. For each index, find the largest numbers in the tensor T, so that the same
       row and same column has at most one number(what it means is that if the
       largest number has been found in the i-th row and the j-th column, then
       the numbers in the i-th row or j-th column will be skipped. And then the
       next largest number will be selected from the remaining numbers. Obviously
       there will be min(B, C) numbers), and mark the corresponding position of the
       3-D similarity focus mask as 1, otherwise as 0. Do elementwise-or for
B
barrierye 已提交
8900
       each index.
B
barrierye 已提交
8901 8902 8903 8904
    3. Broadcast the 3-D similarity focus mask to the same shape of input X.

    Refer to `Similarity Focus Layer <http://www.aclweb.org/anthology/N16-1108>`_

B
barrierye 已提交
8905 8906 8907 8908 8909 8910 8911 8912 8913 8914 8915 8916 8917 8918 8919 8920 8921 8922 8923 8924 8925 8926 8927 8928 8929 8930 8931 8932 8933 8934 8935 8936 8937 8938 8939 8940 8941 8942 8943 8944 8945 8946 8947 8948 8949 8950 8951 8952 8953
    .. code-block:: text

        * Example :

            Given a 4-D tensor x with the shape (BatchSize, C, A, B), where C is
            the number of channels and the shape of feature map is (A, B):
                x.shape = (2, 3, 2, 2)
                x.data = [[[[0.8, 0.1],
                            [0.4, 0.5]],

                           [[0.9, 0.7],
                            [0.9, 0.9]],

                           [[0.8, 0.9],
                            [0.1, 0.2]]],


                          [[[0.2, 0.5],
                            [0.3, 0.4]],

                           [[0.9, 0.7],
                            [0.8, 0.4]],

                           [[0.0, 0.2],
                            [0.4, 0.7]]]]

            Given axis: 1 (the axis of the channel)
            Given indexes: [0]

            then we get a 4-D tensor out with the same shape of input x:
                out.shape = (2, 3, 2, 2)
                out.data = [[[[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]]],

                            [[[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]]]]

B
barrierye 已提交
8954
    Args:
8955
        input(Variable): The input tensor variable(default float). It should
B
barrierye 已提交
8956
            be a 4-D tensor with shape [BatchSize, A, B, C].
B
barrierye 已提交
8957
        axis(int): Indicating the dimension to be selected. It can only be
B
barrierye 已提交
8958
            1, 2 or 3.
B
barrierye 已提交
8959
        indexes(list): Indicating the indexes of the selected dimension.
B
barrierye 已提交
8960 8961

    Returns:
8962
        Variable: A tensor variable with the same shape and same type
B
barrierye 已提交
8963
            as the input.
8964

B
barrierye 已提交
8965 8966 8967
    Examples:
        .. code-block:: python
            data = fluid.layers.data(
B
barrierye 已提交
8968 8969
              name='data', shape=[2, 3, 2, 2], dtype='float32')
            x = fluid.layers.layer_norm(input=data, axis=1, indexes=[0])
B
barrierye 已提交
8970 8971 8972 8973 8974 8975 8976 8977 8978 8979 8980 8981
    """
    helper = LayerHelper('similarity_focus', **locals())
    # check attrs
    if isinstance(axis, int) is False:
        raise TypeError("axis must be int type.")
    if isinstance(indexes, list) is False:
        raise TypeError("indexes must be list type.")
    if axis != 1 and axis != 2 and axis != 3:
        raise ValueError("axis must be 1, 2 or 3.")
    if len(indexes) == 0:
        raise ValueError("indexes can not be empty.")

B
barrierye 已提交
8982 8983 8984 8985 8986
    if name is None:
        out = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)
B
barrierye 已提交
8987 8988 8989 8990 8991 8992 8993
    helper.append_op(
        type='similarity_focus',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={"axis": axis,
               "indexes": indexes})
    return out
B
barrierye 已提交
8994 8995


M
minqiyang 已提交
8996 8997
def hash(input, hash_size, num_hash=1, name=None):
    """
M
minqiyang 已提交
8998 8999
    Hash the input to an integer whose value is less than the given hash size.

M
minqiyang 已提交
9000 9001
    The hash algorithm we used was xxHash - Extremely fast hash algorithm
    (https://github.com/Cyan4973/xxHash/tree/v0.6.5)
M
minqiyang 已提交
9002 9003 9004 9005 9006 9007 9008 9009 9010 9011 9012 9013 9014 9015 9016 9017 9018 9019 9020 9021 9022 9023 9024 9025 9026 9027 9028 9029 9030 9031 9032 9033 9034 9035 9036 9037 9038 9039

    A simple example as below:

    .. code-block:: text

        Given:

        # shape [2, 2]
        input.data = [
            [[1], [2]],
            [[3], [4]],
        ]

        input.lod = [[0, 2]]

        hash_size = 10000

        num_hash = 4

        Then:

        Hash op will take all number in input's 2nd dimension as hash algorithm's
        input for each time. Each input will be hashed for 4 times, and get an
        array whose length is 4. Each value in the array ranges from 0 to 9999.

        # shape [2, 4]
        output.data = [
            [[9662], [9217], [1129], [8487]],
            [[8310], [1327], [1654], [4567]],
        ]

        output.lod = [[0, 2]]

    Args:
        input (Variable): The input variable which is a one-hot word. The
            dimensions of the input variable must be 2.
        hash_size (int): The space size for hash algorithm. The output value
            will keep in the range:math:`[0, hash_size - 1]`.
M
minqiyang 已提交
9040
        num_hash (int): The times of hash, default 1.
M
minqiyang 已提交
9041
        name (str, default None): The name of this layer.
M
minqiyang 已提交
9042 9043 9044 9045 9046 9047 9048 9049 9050

    Returns:
       Variable: The hash result variable which is a LoDTensor.

    Examples:
       .. code-block:: python
           word_dict = paddle.dataset.imdb.word_dict()
           x = fluid.layers.data(shape[1], dtype='int32', lod_level=1)
           out = fluid.layers.hash(input=x, num_hash=4, hash_size=1000)
M
minqiyang 已提交
9051 9052
    """
    helper = LayerHelper('hash', **locals())
M
minqiyang 已提交
9053 9054
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
M
minqiyang 已提交
9055 9056 9057 9058 9059 9060 9061
    helper.append_op(
        type='hash',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'num_hash': num_hash,
               'mod_by': hash_size})
    return out
G
gmcather 已提交
9062 9063


D
dengkaipeng 已提交
9064
@templatedoc()
9065 9066
def grid_sampler(x, grid, name=None):
    """
9067
    This operation samples input X by using bilinear interpolation based on
9068
    flow field grid, which is usually gennerated by affine_grid. The grid of
9069 9070 9071 9072
    shape [N, H, W, 2] is the concatenation of (grid_x, grid_y) coordinates
    with shape [N, H, W] each, where grid_x is indexing the 4th dimension
    (in width dimension) of input data x and grid_y is indexng the 3rd
    dimention (in height dimension), finally results is the bilinear
9073
    interpolation value of 4 nearest corner points.
9074 9075 9076 9077 9078 9079 9080 9081

    Step 1:
    Get (x, y) grid coordinates and scale to [0, H-1/W-1].

    grid_x = 0.5 * (grid[:, :, :, 0] + 1) * (W - 1)
    grid_y = 0.5 * (grid[:, :, :, 1] + 1) * (H - 1)

    Step 2:
9082
    Indices input data X with grid (x, y) in each [H, W] area, and bilinear
9083 9084 9085 9086 9087 9088 9089 9090 9091 9092 9093 9094 9095 9096 9097 9098 9099 9100 9101 9102 9103 9104 9105 9106 9107 9108 9109 9110 9111
    interpolate point value by 4 nearest points.

      wn ------- y_n ------- en
      |           |           |
      |          d_n          |
      |           |           |
     x_w --d_w-- grid--d_e-- x_e
      |           |           |
      |          d_s          |
      |           |           |
      ws ------- y_s ------- wn

    x_w = floor(x)              // west side x coord
    x_e = x_w + 1               // east side x coord
    y_n = floor(y)              // north side y coord
    y_s = y_s + 1               // south side y coord

    d_w = grid_x - x_w          // distance to west side
    d_e = x_e - grid_x          // distance to east side
    d_n = grid_y - y_n          // distance to north side
    d_s = y_s - grid_y          // distance to south side

    wn = X[:, :, y_n, x_w]      // north-west point value
    en = X[:, :, y_n, x_e]      // north-east point value
    ws = X[:, :, y_s, x_w]      // south-east point value
    es = X[:, :, y_s, x_w]      // north-east point value

    output = wn * d_e * d_s + en * d_w * d_s
           + ws * d_e * d_n + es * d_w * d_n
D
dengkaipeng 已提交
9112 9113

    Args:
9114 9115 9116
        x(Variable): Input data of shape [N, C, H, W].
        grid(Variable): Input grid tensor of shape [N, H, W, 2].
        name (str, default None): The name of this layer.
D
dengkaipeng 已提交
9117 9118

    Returns:
9119
        out(Variable): Output of shape [N, C, H, W] data samples input X
9120 9121 9122 9123 9124 9125 9126 9127 9128
        using bilnear interpolation based on input grid.

    Exmples:
    .. code-block:: python

        x = fluid.layers.data(name='x', shape=[3, 10, 32, 32], dtype='float32')
        theta = fluid.layers.data(name='theta', shape=[3, 2, 3], dtype='float32')
        grid = fluid.layers.affine_grid(input=theta, size=[3, 10, 32, 32]})
        out = fluid.layers.grid_sampler(x=x, grid=grid)
D
dengkaipeng 已提交
9129 9130 9131 9132 9133 9134 9135 9136 9137
    """
    helper = LayerHelper("grid_sampler", **locals())

    if not isinstance(x, Variable):
        return ValueError("The x should be a Variable")

    if not isinstance(grid, Variable):
        return ValueError("The grid should be a Variable")

9138
    out = helper.create_variable_for_type_inference(x.dtype)
D
dengkaipeng 已提交
9139 9140
    ipts = {'X': x, 'Grid': grid}

9141
    helper.append_op(type='grid_sampler', inputs=ipts, outputs={'Output': out})
9142 9143 9144
    return out


G
gmcather 已提交
9145 9146 9147 9148 9149 9150 9151 9152 9153 9154 9155 9156 9157 9158 9159 9160 9161 9162 9163 9164 9165 9166 9167 9168 9169 9170 9171 9172 9173 9174 9175 9176 9177 9178 9179 9180 9181 9182 9183 9184 9185 9186 9187 9188 9189 9190 9191 9192 9193 9194 9195 9196 9197 9198 9199 9200 9201 9202 9203 9204 9205 9206 9207 9208 9209 9210 9211 9212 9213 9214 9215 9216 9217 9218 9219 9220 9221 9222 9223 9224 9225 9226 9227 9228 9229 9230 9231 9232 9233 9234 9235 9236 9237 9238
def log_loss(input, label, epsilon=1e-4, name=None):
    """
    **Negative Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    negative log loss.

    .. math::

        Out = -label * \\log{(input + \\epsilon)}
              - (1 - label) * \\log{(1 - input + \\epsilon)}

    Args:
        input (Variable|list):  a 2-D tensor with shape [N x 1], where N is the
                                batch size. This input is a probability computed
                                by the previous operator.
        label (Variable|list):  the ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size.
        epsilon (float): epsilon
        name (string): the name of log_loss

    Returns:
        Variable: A 2-D tensor with shape [N x 1], the negative log loss.

    Examples:
        .. code-block:: python

          prob = fluid.layers.sigmoid(net)
          cost = fluid.layers.log_loss(input=prob, label=label)
    """
    helper = LayerHelper('log_loss', **locals())

    if name is None:
        loss = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        loss = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)

    helper.append_op(
        type='log_loss',
        inputs={'Predicted': [input],
                'Labels': [label]},
        outputs={'Loss': [loss]},
        attrs={'epsilon': epsilon})
    return loss


def add_position_encoding(input, alpha, beta, name=None):
    """
    **Add Position Encoding Layer**

    This layer accepts an input 3D-Tensor of shape [N x M x P], and return an
    output Tensor of shape [N x M x P] with positional encoding value.

    Refer to `Attention Is All You Need<http://arxiv.org/pdf/1706.03762.pdf>`_ .

    .. math::
        PE(pos, 2i) = \\sin{(pos / 10000^{2i / P})}   \\\\
        PE(pos, 2i + 1) = \\cos{(pos / 10000^{2i / P})}  \\\\
        Out(:, pos, i) = \\alpha * input(:, pos, i) + \\beta * PE(pos, i)

    Where:
    * PE(pos, 2i): the increment for the number at even position
    * PE(pos, 2i + 1): the increment for the number at odd position

    Args:
        input (Variable): 3-D input tensor with shape [N x M x P]
        alpha (float): multiple of Input Tensor
        beta (float): multiple of Positional Encoding Tensor
        name (string): the name of position encoding layer

    Returns:
        Variable: A 3-D Tensor of shape [N x M x P] with positional encoding.

    Examples:
        .. code-block:: python

          position_tensor = fluid.layers.add_position_encoding(input=tensor)
    """
    helper = LayerHelper('add_position_encoding', **locals())
    dtype = helper.input_dtype()

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    helper.append_op(
        type="add_position_encoding",
        inputs={"X": input},
        outputs={"Out": out},
        attrs={"alpha": alpha,
               "beta": beta})
    return out
Q
Qiao Longfei 已提交
9239 9240 9241 9242 9243 9244 9245 9246 9247 9248


def bilinear_tensor_product(x,
                            y,
                            size,
                            act=None,
                            name=None,
                            param_attr=None,
                            bias_attr=None):
    """
Q
Qiao Longfei 已提交
9249
    **Add Bilinear Tensor Product Layer**
Q
Qiao Longfei 已提交
9250

Q
Qiao Longfei 已提交
9251
    This layer performs bilinear tensor product on two inputs.
Q
Qiao Longfei 已提交
9252 9253 9254
    For example:

    .. math::
9255
       out{i} = x * W_{i} * {y^\mathrm{T}}, i=0,1,...,size-1
Q
Qiao Longfei 已提交
9256

Q
Qiao Longfei 已提交
9257
    In this formula:
9258 9259
      - :math:`x`: the first input contains M elements, shape is [batch_size, M].
      - :math:`y`: the second input contains N elements, shape is [batch_size, N].
Q
Qiao Longfei 已提交
9260
      - :math:`W_{i}`: the i-th learned weight, shape is [M, N]
9261
      - :math:`out{i}`: the i-th element of out, shape is [batch_size, size].
Q
Qiao Longfei 已提交
9262 9263 9264
      - :math:`y^\mathrm{T}`: the transpose of :math:`y_{2}`.

    Args:
9265 9266
        x (Variable): 2-D input tensor with shape [batch_size, M]
        y (Variable): 2-D input tensor with shape [batch_size, N]
Q
Qiao Longfei 已提交
9267 9268 9269
        size (int): The dimension of this layer.
        act (str, default None): Activation to be applied to the output of this layer.
        name (str, default None): The name of this layer.
Q
Qiao Longfei 已提交
9270
        param_attr (ParamAttr, default None): The parameter attribute for the learnable w.
Q
Qiao Longfei 已提交
9271
            parameters/weights of this layer.
Q
Qiao Longfei 已提交
9272
        bias_attr (ParamAttr, default None): The parameter attribute for the bias
Q
Qiao Longfei 已提交
9273 9274 9275 9276
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.

    Returns:
Q
Qiao Longfei 已提交
9277
        Variable: A 2-D Tensor of shape [batch_size, size].
Q
Qiao Longfei 已提交
9278 9279 9280 9281

    Examples:
        .. code-block:: python

Q
Qiao Longfei 已提交
9282
          tensor = bilinear_tensor_product(x=layer1, y=layer2, size=1000)
Q
Qiao Longfei 已提交
9283 9284
    """
    helper = LayerHelper('bilinear_tensor_product', **locals())
Q
Qiao Longfei 已提交
9285
    dtype = helper.input_dtype('x')
Q
Qiao Longfei 已提交
9286 9287 9288 9289

    param_shape = [size, x.shape[1], y.shape[1]]

    w = helper.create_parameter(
Q
Qiao Longfei 已提交
9290
        attr=helper.param_attr, shape=param_shape, dtype=dtype, is_bias=False)
Q
Qiao Longfei 已提交
9291 9292 9293 9294 9295 9296 9297 9298 9299 9300 9301 9302 9303 9304 9305 9306 9307

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    inputs = {"X": x, "Y": y, "Weight": w}
    if helper.bias_attr:
        bias_size = [1, size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
        inputs["Bias"] = bias
    helper.append_op(
        type="bilinear_tensor_product", inputs=inputs, outputs={"Out": out})

    # add activation
    return helper.append_activation(out)
C
chengduo 已提交
9308 9309 9310 9311 9312 9313 9314 9315 9316 9317 9318 9319 9320 9321 9322 9323 9324 9325 9326 9327 9328 9329 9330


@templatedoc()
def get_tensor_from_selected_rows(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper('get_tensor_from_selected_rows', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='get_tensor_from_selected_rows',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={})
    return out
9331 9332


S
sneaxiy 已提交
9333
class PyFuncRegistry(object):
S
sneaxiy 已提交
9334 9335 9336
    _register_funcs = []

    def __init__(self, func):
S
sneaxiy 已提交
9337
        if func is None or not callable(func):
S
sneaxiy 已提交
9338 9339 9340 9341
            raise TypeError('func must be a Python function')

        self._func = func
        # find named args using reflection 
S
sneaxiy 已提交
9342 9343 9344 9345 9346 9347 9348
        args = inspect.getargspec(self._func)
        if len(args[0]) == 0 and args[1] is None and args[2] is None:
            # Function with no inputs
            self._named_args = None
        else:
            self._named_args = args[0]
        self._id = core._append_python_callable_object_and_return_id(self)
S
sneaxiy 已提交
9349 9350 9351 9352 9353
        '''
        Why record self here?

        1. For debug usage. Users can call 
           :code:`py_func.registered_func(idx)` method 
S
sneaxiy 已提交
9354
           to find the registered function corresponding
S
sneaxiy 已提交
9355 9356 9357 9358 9359 9360 9361 9362
           to :code:`idx`. 

        2. For increasing reference count of self. 
           It seems that to release Python object 
           whose reference count is 1 would cause
           segmentation fault error in C++ side. 
           May be lack of Python GC in C++ side?
        '''
S
sneaxiy 已提交
9363
        PyFuncRegistry._register_funcs.append(self)
S
sneaxiy 已提交
9364 9365 9366 9367 9368 9369 9370 9371 9372 9373 9374 9375 9376 9377

    @classmethod
    def registered_func(cls, idx):
        return cls._register_funcs[idx]._func

    @classmethod
    def registered_func_num(cls):
        return len(cls._register_funcs)

    @property
    def id(self):
        return self._id

    def __call__(self, *args):
S
sneaxiy 已提交
9378 9379 9380 9381 9382 9383 9384 9385 9386
        if self._named_args is None:
            func_ret = self._func()
        else:
            kwargs = dict()
            idx = 0
            for arg in self._named_args:
                kwargs[arg] = args[idx]
                idx += 1
            func_ret = self._func(*args[idx:], **kwargs)
S
sneaxiy 已提交
9387

S
sneaxiy 已提交
9388 9389
        if not isinstance(func_ret, (list, tuple)):
            func_ret = (func_ret, )
S
sneaxiy 已提交
9390 9391

        ret = []
S
sneaxiy 已提交
9392 9393 9394
        for each_ret in func_ret:
            if each_ret is None or isinstance(each_ret, core.LoDTensor):
                ret.append(each_ret)
S
sneaxiy 已提交
9395 9396
                continue

S
sneaxiy 已提交
9397 9398
            if not isinstance(each_ret, np.ndarray):
                each_ret = np.array(each_ret)
S
sneaxiy 已提交
9399

S
sneaxiy 已提交
9400 9401 9402
            tensor = core.LoDTensor()
            tensor.set(each_ret, core.CPUPlace())
            ret.append(tensor)
S
sneaxiy 已提交
9403

S
sneaxiy 已提交
9404
        return tuple(ret)
S
sneaxiy 已提交
9405 9406


S
sneaxiy 已提交
9407 9408 9409 9410 9411 9412 9413 9414 9415 9416 9417 9418 9419
@templatedoc()
def py_func(func, x, out, backward_func=None, skip_vars_in_backward_input=None):
    """
    PyFunc Operator.
    
    User can use :code:`py_func` to register operators in Python side.
    The inputs of :code:`func` is :code:`LoDTensor` and outputs can be
    numpy array or :code:`LoDTensor`. Paddle would call the registered
    :code:`func` in forward part, and call :code:`backward_func` in
    backward part (if :code:`backward_func` is not None).

    User should set the right data type and shape of :code:`out` before
    calling this function. However, data types and shapes of gradients of
S
sneaxiy 已提交
9420
    :code:`out` and :code:`x` would be inferred automatically.
S
sneaxiy 已提交
9421

S
sneaxiy 已提交
9422 9423
    Input orders of :code:`backward_func` would be: forward inputs
    :code:`x`, forward outputs :code:`out` and backward input gradients of
S
sneaxiy 已提交
9424 9425 9426 9427
    :code:`out`. If some variables of :code:`out` have no gradient, the input
    tensor would be None in Python side. If some variables of :code:`in` have
    no gradient, users should return None.

S
sneaxiy 已提交
9428 9429 9430 9431
    This function can also be used to debug the running network. User can
    add a :code:`py_func` operator without output, and print input 
    :code:`x` inside :code:`func`.

S
sneaxiy 已提交
9432 9433 9434 9435 9436 9437 9438 9439 9440 9441 9442 9443 9444 9445 9446 9447
    Args:
        func (callable): forward Python function.
        x (Variable|list(Variable)|tuple(Variable)): inputs of :code:`func`.
        out (Variable|list(Variable)|tuple(Variable)): outputs of :code:`func`.
            Paddle cannot infer shapes and data types of :code:`out`. Users
            should create :code:`out` beforehand. 
        backward_func (callable|None): backward Python function.
                                       None means no backward. Default None. 
        skip_vars_in_backward_input (Variable|list(Variable)|tuple(Variable)):
            Variables that are not needed in :code:`backward_func` inputs. 
            These variables must be any of :code:`x` and :code:`out`.
            If set, these vars would not be inputs of :code:`backward_func`,
            Only useful when :code:`backward_func` is not None. Default None. 

    Returns:
        out (Variable|list(Variable)|tuple(Variable)): input :code:`out`
S
sneaxiy 已提交
9448 9449 9450 9451 9452 9453 9454 9455 9456 9457 9458 9459 9460 9461 9462 9463 9464 9465 9466 9467 9468 9469 9470 9471 9472 9473 9474 9475 9476 9477 9478 9479 9480 9481 9482 9483 9484 9485 9486 9487 9488

    Examples:
    
        >>> import paddle.fluid as fluid
        >>> import six
        >>>
        >>> def create_tmp_var(name, dtype, shape):
        >>>     return fluid.default_main_program().current_block().create_var(
        >>>         name=name, dtype=dtype, shape=shape) 
        >>>
        >>> # tanh activation has been provided by Paddle C++ op
        >>> # Here, we only use tanh to be an example to show the usage 
        >>> # of py_func
        >>> def tanh(x):
        >>>     return np.tanh(x)
        >>> 
        >>> # forward input x is skipped
        >>> def tanh_grad(y, dy):
        >>>     return np.array(dy) * (1 - np.square(np.array(y)))
        >>>
        >>> def debug_func(x):
        >>>     print(x) 
        >>>
        >>> def simple_net(img, label):
        >>>     hidden = img
        >>>     for idx in six.moves.range(4):
        >>>         hidden = fluid.layers.fc(hidden, size=200)
        >>>         new_hidden = create_tmp_var(name='hidden_{}'.format(idx),
        >>>             dtype=hidden.dtype, shape=hidden.shape)    
        >>>
        >>>         # user-defined layers with forward and backward
        >>>         hidden = fluid.layers.py_func(func=tanh, x=hidden, 
        >>>             out=new_hidden, backward_func=tanh_grad, 
        >>>             skip_vars_in_backward_input=hidden)
        >>>
        >>>         # user-defined debug layers to print variables
        >>>         fluid.layers.py_func(func=debug_func, x=hidden, out=None)
        >>>
        >>>     prediction = fluid.layers.fc(hidden, size=10, act='softmax')
        >>>     loss = fluid.layers.cross_entropy(input=prediction, label=label)
        >>>     return fluid.layers.mean(loss)
S
sneaxiy 已提交
9489
    """
S
sneaxiy 已提交
9490
    helper = LayerHelper('py_func', **locals())
S
sneaxiy 已提交
9491 9492 9493
    if x is None:
        x = []
    elif isinstance(x, Variable):
S
sneaxiy 已提交
9494
        x = [x]
S
sneaxiy 已提交
9495 9496
    elif not isinstance(x, (list, tuple)):
        raise TypeError('Input must be Variable/list(Variable)/tuple(Variable)')
S
sneaxiy 已提交
9497

S
sneaxiy 已提交
9498 9499 9500
    if out is None:
        out_list = []
    elif isinstance(out, Variable):
S
sneaxiy 已提交
9501
        out_list = [out]
S
sneaxiy 已提交
9502
    elif isinstance(out, (list, tuple)):
S
sneaxiy 已提交
9503
        out_list = out
S
sneaxiy 已提交
9504 9505 9506
    else:
        raise TypeError(
            'Output must be Variable/list(Variable)/tuple(Variable)')
S
sneaxiy 已提交
9507

S
sneaxiy 已提交
9508 9509
    fwd_func_id = PyFuncRegistry(func).id
    bwd_func_id = PyFuncRegistry(
S
sneaxiy 已提交
9510
        backward_func).id if backward_func is not None else -1
S
sneaxiy 已提交
9511 9512

    for each_out in out_list:
S
sneaxiy 已提交
9513 9514
        if len(each_out.shape) == 0:
            raise ValueError(
S
sneaxiy 已提交
9515 9516
                'Output shapes of py_func op should be provided by users manually'
            )
S
sneaxiy 已提交
9517

S
sneaxiy 已提交
9518 9519 9520 9521 9522 9523 9524 9525 9526 9527 9528 9529 9530 9531 9532
    backward_skip_vars = set()
    if backward_func is not None and skip_vars_in_backward_input is not None:
        if isinstance(skip_vars_in_backward_input, Variable):
            skip_vars_in_backward_input = [skip_vars_in_backward_input]

        fwd_in_out = [v.name for v in x]
        fwd_in_out.extend([v.name for v in out_list])
        fwd_in_out = set(fwd_in_out)
        backward_skip_vars = set()
        for v in skip_vars_in_backward_input:
            if not v.name in fwd_in_out:
                raise ValueError(
                    'Variable {} is not found in forward inputs and outputs'
                    .format(v.name))
            backward_skip_vars.add(v.name)
S
sneaxiy 已提交
9533 9534 9535 9536

    helper.append_op(
        type='py_func',
        inputs={'X': x},
S
sneaxiy 已提交
9537 9538
        outputs={'Out': out_list},
        attrs={
S
sneaxiy 已提交
9539 9540 9541
            'forward_callable_id': fwd_func_id,
            'backward_callable_id': bwd_func_id,
            'backward_skip_vars': list(backward_skip_vars)
S
sneaxiy 已提交
9542
        })
S
sneaxiy 已提交
9543
    return out
S
sneaxiy 已提交
9544 9545 9546


# For debug usage
S
sneaxiy 已提交
9547 9548 9549 9550
py_func.registered_func = PyFuncRegistry.registered_func
py_func.registered_func_num = PyFuncRegistry.registered_func_num


9551 9552 9553 9554 9555 9556 9557 9558 9559 9560 9561 9562 9563 9564 9565 9566 9567 9568 9569 9570 9571 9572 9573 9574 9575 9576 9577 9578 9579 9580 9581 9582 9583 9584 9585 9586 9587 9588 9589 9590 9591 9592 9593 9594 9595 9596 9597 9598 9599 9600 9601 9602
@templatedoc()
def psroi_pool(input,
               rois,
               output_channels,
               spatial_scale,
               pooled_height,
               pooled_width,
               name=None):
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        output_channels (integer): ${output_channels_comment}
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        name (str, default None): The name of this layer.

    Returns:
        Variable: ${out_comment}.

    Examples:
        .. code-block:: python

            pool_out = fluid.layers.psroi_pool(input=x, rois=rois, 490, 1.0, 7, 7)
    """
    helper = LayerHelper('psroi_pool', **locals())
    # check attrs
    if not isinstance(output_channels, int):
        raise TypeError("output_channels must be int type")
    if not isinstance(spatial_scale, float):
        raise TypeError("spatial_scale must be float type")
    if not isinstance(pooled_height, int):
        raise TypeError("pooled_height must be int type")
    if not isinstance(pooled_width, int):
        raise TypeError("pooled_width must be int type")
    dtype = helper.input_dtype()
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type='psroi_pool',
        inputs={'X': input,
                'ROIs': rois},
        outputs={'Out': out},
        attrs={
            'output_channels': output_channels,
            'spatial_scale': spatial_scale,
            'pooled_height': pooled_height,
            'pooled_width': pooled_width
        })
    return out
9603

M
minqiyang 已提交
9604

M
minqiyang 已提交
9605
def huber_loss(input, label, delta):
9606
    """
M
minqiyang 已提交
9607 9608 9609
    Huber loss is a loss function used in robust.
    Huber loss can evaluate the fitness of input to label.
    Different from MSE loss, Huber loss is more robust for outliers.
9610 9611 9612 9613

    When the difference between input and label is large than delta
    .. math::

M
minqiyang 已提交
9614
        huber\_loss = delta * (label - input) - 0.5 * delta * delta
9615 9616 9617 9618

    When the difference between input and label is less than delta
    .. math::

M
minqiyang 已提交
9619
        huber\_loss = 0.5 * (label - input) * (label - input)
9620 9621 9622 9623 9624 9625 9626


    Args:
        input (Variable): This input is a probability computed by the previous operator.
                          The first dimension is batch size, and the last dimension is 1.
        label (Variable): The groud truth whose first dimension is batch size
                          and last dimension is 1.
M
minqiyang 已提交
9627
        delta (float): The parameter of huber loss, which controls
9628 9629 9630
                       the range of outliers

    Returns:
M
minqiyang 已提交
9631
        huber\_loss (Variable): The huber loss with shape [batch_size, 1].
9632 9633 9634 9635 9636

    Examples:
        .. code-block:: python

            predictions = fluid.layers.softmax(x)
M
minqiyang 已提交
9637
            loss = fluid.layers.huber_loss(input=predictions, label=label, 1.0)
9638
    """
M
minqiyang 已提交
9639
    helper = LayerHelper('huber_loss', **locals())
9640 9641 9642 9643 9644 9645 9646 9647 9648 9649 9650
    residual = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    helper.append_op(
        type='huber_loss',
        inputs={'X': input,
                'Y': label},
        outputs={'Out': out,
                 'Residual': residual},
        attrs={'delta': delta})
    return out
X
Xin Pan 已提交
9651 9652 9653 9654 9655 9656 9657 9658 9659 9660 9661 9662 9663 9664 9665 9666 9667 9668 9669 9670 9671 9672 9673 9674 9675 9676 9677 9678 9679 9680 9681 9682 9683 9684 9685 9686 9687 9688 9689 9690 9691 9692 9693 9694


class FC(layers.PyLayer):
    def __init__(self,
                 size,
                 param_attr=None,
                 num_flatten_dims=1,
                 dtype=core.VarDesc.VarType.FP32):
        super(FC, self).__init__()
        self._size = size
        self._num_flatten_dims = num_flatten_dims
        self._dtype = dtype
        self._helper = LayerHelper('FC', param_attr=param_attr)

    def _build_once(self, inputs):
        input_shape = inputs[0].shape
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[self._num_flatten_dims:], 1)
        ] + [self._size]
        self._w = self._helper.create_parameter(
            attr=self._helper.param_attr,
            shape=param_shape,
            dtype=self._dtype,
            is_bias=False)

    def forward(self, inputs):
        tmp = self._helper.create_variable_for_type_inference(self._dtype)
        self._helper.append_op(
            type="mul",
            inputs={"X": inputs[0],
                    "Y": self._w},
            outputs={"Out": tmp},
            attrs={
                "x_num_col_dims": self._num_flatten_dims,
                "y_num_col_dims": 1
            })

        out = self._helper.create_variable_for_type_inference(self._dtype)
        self._helper.append_op(
            type="sum",
            inputs={"X": [tmp]},
            outputs={"Out": out},
            attrs={"use_mkldnn": False})
        return out