linalg.py 131.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14

myq406450149's avatar
myq406450149 已提交
15
import numpy as np
16
from ..framework import LayerHelper
17
from ..framework import _varbase_creator, _dygraph_tracer, in_dygraph_mode, _non_static_mode
H
huangxu96 已提交
18
from ..fluid.data_feeder import check_variable_and_dtype, check_type, check_dtype
Z
zhiboniu 已提交
19
from ..static import Variable
20 21
from ..fluid.framework import _in_legacy_dygraph
from .manipulation import cast
22 23 24
from .math import multiply, add
from .logic import logical_not
from .creation import full
25

A
andyjpaddle 已提交
26
import paddle
27
import warnings
28 29
from paddle.common_ops_import import core
from paddle.common_ops_import import VarDesc
30
from paddle import _C_ops, _legacy_C_ops
31

32 33
__all__ = []

34 35 36
# Consistent with kDefaultDim from C++ Backend
K_DEFAULT_DIM = 9

37

38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
def transpose(x, perm, name=None):
    """
    Permute the data dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
        x (Tensor): The input Tensor. It is a N-D Tensor of data types bool, float32, float64, int32.
        perm (list|tuple): Permute the input according to the data of perm.
        name (str): The name of this layer. It is optional.

    Returns:
        Tensor: A transposed n-D Tensor, with data type being bool, float32, float64, int32, int64.

    For Example:

        .. code-block:: text

         x = [[[ 1  2  3  4] [ 5  6  7  8] [ 9 10 11 12]]
             [[13 14 15 16] [17 18 19 20] [21 22 23 24]]]
         shape(x) =  [2,3,4]

         # Example 1
         perm0 = [1,0,2]
         y_perm0 = [[[ 1  2  3  4] [13 14 15 16]]
                   [[ 5  6  7  8]  [17 18 19 20]]
                   [[ 9 10 11 12]  [21 22 23 24]]]
         shape(y_perm0) = [3,2,4]

         # Example 2
         perm1 = [2,1,0]
         y_perm1 = [[[ 1 13] [ 5 17] [ 9 21]]
                   [[ 2 14] [ 6 18] [10 22]]
                   [[ 3 15]  [ 7 19]  [11 23]]
                   [[ 4 16]  [ 8 20]  [12 24]]]
         shape(y_perm1) = [4,3,2]

    Examples:

        .. code-block:: python

            import paddle

            x = paddle.randn([2, 3, 4])
            x_transposed = paddle.transpose(x, perm=[1, 0, 2])
            print(x_transposed.shape)
            # [3L, 2L, 4L]

    """
    if in_dygraph_mode():
89
        return _C_ops.transpose(x, perm)
90 91
    else:
        if _in_legacy_dygraph():
92
            out, _ = _legacy_C_ops.transpose2(x, 'axis', perm)
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
            return out

    check_variable_and_dtype(x, 'x', [
        'bool', 'float16', 'float32', 'float64', 'int32', 'int64', 'complex64',
        'complex128'
    ], 'transpose')
    check_type(perm, 'perm', (list, tuple), 'transpose')
    if isinstance(perm, tuple):
        perm = list(perm)
    if len(perm) != len(x.shape):
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(x), "
            "its length should be equal to dimensions of Input(x), "
            "but received dimension of Input(x) is %s, "
            "the length of Input(perm) is %s." % (len(x.shape), len(perm)))
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
                "Each element in Input(perm) should be less than Input(x)'s dimension, "
                "but %d-th element in Input(perm) is %d which exceeds Input(x)'s "
                "dimension %d." % (idx, perm[idx], len(x.shape)))

    helper = LayerHelper('transpose', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
118 119 120 121 122 123 124
    helper.append_op(type='transpose2',
                     inputs={'X': [x]},
                     outputs={
                         'Out': [out],
                         'XShape': [x_shape]
                     },
                     attrs={'axis': perm})
125 126 127
    return out


S
ShenLiang 已提交
128
def matmul(x, y, transpose_x=False, transpose_y=False, name=None):
129
    """
130 131
    Applies matrix multiplication to two tensors. `matmul` follows
    the complete broadcast rules,
S
ShenLiang 已提交
132
    and its behavior is consistent with `np.matmul`.
S
swtkiwi 已提交
133

S
ShenLiang 已提交
134 135
    Currently, the input tensors' number of dimensions can be any, `matmul` can be used to
    achieve the `dot`, `matmul` and `batchmatmul`.
136 137 138 139 140

    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:

    - If a transpose flag is specified, the last two dimensions of the tensor
141 142
      are transposed. If the tensor is ndim-1 of shape, the transpose is invalid. If the tensor
      is ndim-1 of shape :math:`[D]`, then for :math:`x` it is treated as :math:`[1, D]`, whereas
S
ShenLiang 已提交
143 144 145 146 147 148 149 150
      for :math:`y` it is the opposite: It is treated as :math:`[D, 1]`.

    The multiplication behavior depends on the dimensions of `x` and `y`. Specifically:

    - If both tensors are 1-dimensional, the dot product result is obtained.

    - If both tensors are 2-dimensional, the matrix-matrix product is obtained.

151 152
    - If the `x` is 1-dimensional and the `y` is 2-dimensional,
      a `1` is prepended to its dimension in order to conduct the matrix multiply.
S
ShenLiang 已提交
153
      After the matrix multiply, the prepended dimension is removed.
154 155

    - If the `x` is 2-dimensional and `y` is 1-dimensional,
S
ShenLiang 已提交
156 157
      the matrix-vector product is obtained.

158 159 160 161 162 163 164 165 166
    - If both arguments are at least 1-dimensional and at least one argument
      is N-dimensional (where N > 2), then a batched matrix multiply is obtained.
      If the first argument is 1-dimensional, a 1 is prepended to its dimension
      in order to conduct the batched matrix multiply and removed after.
      If the second argument is 1-dimensional, a 1 is appended to its
      dimension for the purpose of the batched matrix multiple and removed after.
      The non-matrix (exclude the last two dimensions) dimensions are
      broadcasted according the broadcast rule.
      For example, if input is a (j, 1, n, m) tensor and the other is a (k, m, p) tensor,
S
ShenLiang 已提交
167
      out will be a (j, k, n, p) tensor.
168 169

    Args:
S
ShenLiang 已提交
170 171
        x (Tensor): The input tensor which is a Tensor.
        y (Tensor): The input tensor which is a Tensor.
172 173 174 175 176 177
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
S
ShenLiang 已提交
178
        Tensor: The output Tensor.
179 180 181

    Examples:

C
Chen Long 已提交
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
        .. code-block:: python

            import paddle

            # vector * vector
            x = paddle.rand([10])
            y = paddle.rand([10])
            z = paddle.matmul(x, y)
            print(z.shape)
            # [1]

            # matrix * vector
            x = paddle.rand([10, 5])
            y = paddle.rand([5])
            z = paddle.matmul(x, y)
            print(z.shape)
            # [10]

            # batched matrix * broadcasted vector
            x = paddle.rand([10, 5, 2])
            y = paddle.rand([2])
            z = paddle.matmul(x, y)
            print(z.shape)
            # [10, 5]

            # batched matrix * batched matrix
            x = paddle.rand([10, 5, 2])
            y = paddle.rand([10, 2, 5])
            z = paddle.matmul(x, y)
            print(z.shape)
            # [10, 5, 5]

            # batched matrix * broadcasted matrix
            x = paddle.rand([10, 1, 5, 2])
            y = paddle.rand([1, 3, 2, 5])
            z = paddle.matmul(x, y)
            print(z.shape)
            # [10, 3, 5, 5]
220 221

    """
222
    if in_dygraph_mode():
223
        return _C_ops.matmul(x, y, transpose_x, transpose_y)
224 225 226

    if _in_legacy_dygraph():
        op_type = 'matmul_v2'
227
        op = getattr(_legacy_C_ops, op_type)
S
ShenLiang 已提交
228 229
        return op(x, y, 'trans_x', transpose_x, 'trans_y', transpose_y)

230
    attrs = {
S
ShenLiang 已提交
231 232
        'trans_x': transpose_x,
        'trans_y': transpose_y,
233 234 235 236 237
    }

    def __check_input(x, y):
        var_names = {'x': x, 'y': y}
        for name, val in var_names.items():
S
ShenLiang 已提交
238
            check_variable_and_dtype(
239 240 241
                val, name,
                ['float16', 'float32', 'float64', 'complex64', 'complex128'],
                'matmul')
242 243 244

    __check_input(x, y)

S
ShenLiang 已提交
245
    helper = LayerHelper('matmul_v2', **locals())
246
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
247 248 249 250 251 252 253
    helper.append_op(type='matmul_v2',
                     inputs={
                         'X': x,
                         'Y': y
                     },
                     outputs={'Out': out},
                     attrs=attrs)
254
    return out
Z
Zhang Ting 已提交
255 256


myq406450149's avatar
myq406450149 已提交
257
def norm(x, p='fro', axis=None, keepdim=False, name=None):
258
    """
S
swtkiwi 已提交
259

260 261 262
    Returns the matrix norm (Frobenius) or vector norm (the 1-norm, the Euclidean
    or 2-norm, and in general the p-norm for p > 0) of a given tensor.

263
    Note:
264 265 266 267 268
        This norm API is different from `numpy.linalg.norm`.
        This api supports high-order input tensors (rank >= 3), and certain axis need to be pointed out to calculate the norm.
        But `numpy.linalg.norm` only supports 1-D vector or 2-D matrix as input tensor.
        For p-order matrix norm, this api actually treats matrix as a flattened vector to calculate the vector norm, NOT REAL MATRIX NORM.

269
    Args:
myq406450149's avatar
myq406450149 已提交
270
        x (Tensor): The input tensor could be N-D tensor, and the input data
271
            type could be float32 or float64.
myq406450149's avatar
myq406450149 已提交
272
        p (float|string, optional): Order of the norm. Supported values are `fro`, `0`, `1`, `2`,
273
            `inf`, `-inf` and any positive real number yielding the corresponding p-norm. Not supported: ord < 0 and nuclear norm.
myq406450149's avatar
myq406450149 已提交
274
            Default value is `fro`.
myq406450149's avatar
myq406450149 已提交
275 276
        axis (int|list|tuple, optional): The axis on which to apply norm operation. If axis is int
            or list(int)/tuple(int)  with only one element, the vector norm is computed over the axis.
277
            If `axis < 0`, the dimension to norm operation is rank(input) + axis.
myq406450149's avatar
myq406450149 已提交
278
            If axis is a list(int)/tuple(int) with two elements, the matrix norm is computed over the axis.
279
            Default value is `None`.
280 281 282 283 284 285 286 287
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have fewer dimension
            than the :attr:`input` unless :attr:`keepdim` is true, default
            value is False.
        name (str, optional): The default value is None. Normally there is no need for
            user to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
myq406450149's avatar
myq406450149 已提交
288
        Tensor: results of norm operation on the specified axis of input tensor,
289
        it's data type is the same as input's Tensor.
290

291 292
    Examples:
        .. code-block:: python
293

294
            import paddle
295 296 297 298 299 300 301 302 303
            x = paddle.arange(24, dtype="float32").reshape([2, 3, 4]) - 12
            # x: Tensor(shape=[2, 3, 4], dtype=float32, place=Place(cpu), stop_gradient=True,
            #          [[[-12., -11., -10., -9. ],
            #            [-8. , -7. , -6. , -5. ],
            #            [-4. , -3. , -2. , -1. ]],

            #           [[ 0. ,  1. ,  2. ,  3. ],
            #            [ 4. ,  5. ,  6. ,  7. ],
            #            [ 8. ,  9. ,  10.,  11.]]])
myq406450149's avatar
myq406450149 已提交
304

305
            # compute frobenius norm along last two dimensions.
306
            out_fro = paddle.linalg.norm(x, p='fro', axis=[0,1])
307 308
            # out_fro: Tensor(shape=[4], dtype=float32, place=Place(cpu), stop_gradient=True,
            #                 [17.43559647, 16.91153526, 16.73320007, 16.91153526])
myq406450149's avatar
myq406450149 已提交
309

310
            # compute 2-order vector norm along last dimension.
311
            out_pnorm = paddle.linalg.norm(x, p=2, axis=-1)
312 313 314
            # out_pnorm: Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #                [[21.11871147, 13.19090557, 5.47722578 ],
            #                 [3.74165750 , 11.22497177, 19.13112640]])
myq406450149's avatar
myq406450149 已提交
315 316

            # compute 2-order  norm along [0,1] dimension.
317
            out_pnorm = paddle.linalg.norm(x, p=2, axis=[0,1])
318 319
            # out_pnorm: Tensor(shape=[4], dtype=float32, place=Place(cpu), stop_gradient=True,
            #                  [17.43559647, 16.91153526, 16.73320007, 16.91153526])
myq406450149's avatar
myq406450149 已提交
320 321

            # compute inf-order  norm
322 323 324 325 326 327 328 329 330
            out_pnorm = paddle.linalg.norm(x, p=float("inf"))
            # out_pnorm  = Tensor(shape=[1], dtype=float32, place=Place(cpu), stop_gradient=True,
            #                    [12.])

            out_pnorm = paddle.linalg.norm(x, p=float("inf"), axis=0)
            # out_pnorm: Tensor(shape=[3, 4], dtype=float32, place=Place(cpu), stop_gradient=True,
            #                 [[12., 11., 10., 9. ],
            #                  [8. , 7. , 6. , 7. ],
            #                  [8. , 9. , 10., 11.]])
myq406450149's avatar
myq406450149 已提交
331 332

            # compute -inf-order  norm
333 334 335 336 337 338 339 340 341
            out_pnorm = paddle.linalg.norm(x, p=-float("inf"))
            # out_pnorm: Tensor(shape=[1], dtype=float32, place=Place(cpu), stop_gradient=True,
            #                  [0.])

            out_pnorm = paddle.linalg.norm(x, p=-float("inf"), axis=0)
            # out_pnorm: Tensor(shape=[3, 4], dtype=float32, place=Place(cpu), stop_gradient=True,
            #                  [[0., 1., 2., 3.],
            #                  [4., 5., 6., 5.],
            #                  [4., 3., 2., 1.]])
342 343
    """

myq406450149's avatar
myq406450149 已提交
344
    def frobenius_norm(input, dim=None, keepdim=False, name=None):
345 346 347 348 349 350 351 352 353 354 355
        """
        The frobenius norm OP is to calculate the frobenius norm of certain two dimensions of Tensor `input`.
        Args:
          input (Variable): Tensor, data type float32, float64.
          dim (list, optional): None for last two dimensions.
          keepdim (bool, optional): Whether keep the dimensions as the `input`, Default False.
        """
        if dim is not None and not (isinstance(dim, list) and len(dim) == 2):
            raise ValueError(
                "The dim of frobenius norm op should be None or two elements list!"
            )
F
From00 已提交
356 357 358

        if in_dygraph_mode():
            if dim is None:
359 360
                return _C_ops.frobenius_norm(input, [], keepdim, True)
            return _C_ops.frobenius_norm(input, dim, keepdim, False)
F
From00 已提交
361
        if _in_legacy_dygraph():
myq406450149's avatar
myq406450149 已提交
362
            if dim is None:
363 364 365 366
                return _legacy_C_ops.frobenius_norm(input, 'keep_dim', keepdim,
                                                    'reduce_all', True)
            return _legacy_C_ops.frobenius_norm(input, 'dim', dim, 'keep_dim',
                                                keepdim, 'reduce_all', False)
myq406450149's avatar
myq406450149 已提交
367 368
        attrs = {'dim': dim, 'keep_dim': keepdim, 'reduce_all': False}
        if dim is None:
369 370 371 372 373
            attrs['reduce_all'] = True
        check_variable_and_dtype(input, 'input', ['float32', 'float64'],
                                 'frobenius_norm')

        helper = LayerHelper('frobenius_norm', **locals())
myq406450149's avatar
myq406450149 已提交
374 375
        out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype())
376

377 378 379 380
        helper.append_op(type='frobenius_norm',
                         inputs={'X': input},
                         outputs={'Out': out},
                         attrs=attrs)
381 382 383 384 385 386
        return out

    def vector_norm(input,
                    porder=None,
                    axis=None,
                    keepdim=False,
myq406450149's avatar
myq406450149 已提交
387
                    asvector=False,
388 389 390 391 392 393 394 395 396
                    name=None):
        """
        Calculate the p-order vector norm for certain  dimension of Tensor `input`.
        Args:
          input (Variable): Tensor, data type float32, float64.
          porder (float, optional): None for porder=2.0.
          axis (int, optional): None for last dimension.
          keepdim (bool, optional): Whether keep the dimensions as the `input`, Default False.
        """
397 398
        if in_dygraph_mode():
            if axis is None: axis = -1
399
            return _C_ops.p_norm(input, porder, axis, 1e-12, keepdim, asvector)
400 401

        if _in_legacy_dygraph():
myq406450149's avatar
myq406450149 已提交
402
            if axis is None: axis = -1
403 404 405
            return _legacy_C_ops.p_norm(input, 'porder', porder, 'axis', axis,
                                        'keepdim', keepdim, 'asvector',
                                        asvector)
406

407 408 409 410
        if porder is not None:
            check_type(porder, 'porder', (float, int), 'p_norm')
        if axis is not None:
            check_type(axis, 'axis', (int), 'p_norm')
myq406450149's avatar
myq406450149 已提交
411 412 413
        check_variable_and_dtype(input, 'input', ['float32', 'float64'],
                                 'p_norm')

414 415 416 417
        attrs = {
            'axis': axis if axis is not None else -1,
            'porder': float(porder) if porder is not None else 2.0,
            'keepdim': keepdim,
myq406450149's avatar
myq406450149 已提交
418
            'asvector': asvector,
419 420 421
            'epsilon': 1e-12,
        }
        helper = LayerHelper('p_norm', **locals())
myq406450149's avatar
myq406450149 已提交
422 423
        out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype())
424

425 426 427 428
        helper.append_op(type='p_norm',
                         inputs={'X': input},
                         outputs={'Out': out},
                         attrs=attrs)
429 430
        return out

myq406450149's avatar
myq406450149 已提交
431 432 433 434 435 436
    def inf_norm(input,
                 porder=None,
                 axis=axis,
                 keepdim=False,
                 asvector=False,
                 name=None):
437
        if in_dygraph_mode():
438
            out = _C_ops.abs(input)
439 440 441 442 443
            reduce_all = True if axis == None or axis == [] or asvector == True else False
            axis = axis if axis != None and axis != [] else [0]
            if reduce_all:
                assert (axis == []) or (axis is None)
            if porder == np.float64('inf'):
444
                return _C_ops.max(out, axis, keepdim)
445
            else:
446
                return _C_ops.min(out, axis, keepdim)
447

O
OccupyMars2025 已提交
448
        helper = LayerHelper('inf_norm', **locals())
myq406450149's avatar
myq406450149 已提交
449 450 451 452 453 454 455 456 457
        out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype())
        helper.append_op(type='abs', inputs={'X': input}, outputs={'Out': out})
        reduce_out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype())

        reduce_all = True if axis == None or axis == [] or asvector == True else False
        axis = axis if axis != None and axis != [] else [0]

458
        reduce_type = 'reduce_max' if porder == np.float64(
myq406450149's avatar
myq406450149 已提交
459
            'inf') else 'reduce_min'
460 461 462 463 464 465 466 467
        helper.append_op(type=reduce_type,
                         inputs={'X': out},
                         outputs={'Out': reduce_out},
                         attrs={
                             'dim': axis,
                             'keep_dim': keepdim,
                             'reduce_all': reduce_all
                         })
myq406450149's avatar
myq406450149 已提交
468 469 470 471

        return reduce_out

    def p_matrix_norm(input, porder=1., axis=axis, keepdim=False, name=None):
472 473 474 475
        """
        NOTE:
            This function actually treats the matrix as flattened vector to calculate vector norm instead of matrix norm.
        """
476
        if in_dygraph_mode():
477 478 479 480
            abs_out = _C_ops.abs(input)
            pow_out = _C_ops.pow(abs_out, porder)
            sum_out = _C_ops.sum(pow_out, axis, None, keepdim)
            out = _C_ops.pow(sum_out, float(1. / porder))
481 482
            return out

myq406450149's avatar
myq406450149 已提交
483 484 485 486 487
        block = LayerHelper('norm', **locals())
        out = block.create_variable_for_type_inference(
            dtype=block.input_dtype())
        abs_out = block.create_variable_for_type_inference(
            dtype=block.input_dtype())
488 489 490
        block.append_op(type='abs',
                        inputs={'X': input},
                        outputs={'Out': abs_out})
myq406450149's avatar
myq406450149 已提交
491 492 493
        pow_out = block.create_variable_for_type_inference(
            dtype=block.input_dtype())

494 495 496 497
        block.append_op(type='pow',
                        inputs={'X': abs_out},
                        outputs={'Out': pow_out},
                        attrs={'factor': porder})
myq406450149's avatar
myq406450149 已提交
498 499
        sum_out = block.create_variable_for_type_inference(
            dtype=block.input_dtype())
500 501 502 503 504 505 506 507 508 509 510 511
        block.append_op(type='reduce_sum',
                        inputs={'X': pow_out},
                        outputs={'Out': sum_out},
                        attrs={
                            'dim': axis,
                            'keep_dim': keepdim,
                            'reduce_all': True if axis is None else False
                        })
        block.append_op(type='pow',
                        inputs={'X': sum_out},
                        outputs={'Out': out},
                        attrs={'factor': float(1. / porder)})
myq406450149's avatar
myq406450149 已提交
512 513
        return out

514 515 516
    if axis is None and p is not None:
        if isinstance(p, str):
            if p == "fro":
myq406450149's avatar
myq406450149 已提交
517
                return frobenius_norm(x, dim=axis, keepdim=keepdim, name=name)
518 519 520 521
            else:
                raise ValueError(
                    "only valid string values are 'fro', found {}".format(p))
        elif isinstance(p, (int, float)):
522 523 524 525 526 527
            return vector_norm(x,
                               porder=p,
                               axis=axis,
                               keepdim=keepdim,
                               asvector=True,
                               name=name)
528
        else:
529 530 531
            raise ValueError(
                "only valid p type is string or float, found {}".format(
                    type(p)))
532

myq406450149's avatar
myq406450149 已提交
533 534
    if isinstance(axis, tuple):
        axis = list(axis)
535 536 537 538 539
    if isinstance(axis, list) and len(axis) == 1:
        axis = axis[0]

    #calculate vector norm, where axis is int or list with only one integer
    if isinstance(axis, int):
myq406450149's avatar
myq406450149 已提交
540 541
        if isinstance(p, str):
            if p == "fro":
542 543 544 545 546 547
                return vector_norm(x,
                                   porder=2,
                                   axis=axis,
                                   keepdim=keepdim,
                                   asvector=False,
                                   name=name)
myq406450149's avatar
myq406450149 已提交
548 549 550 551 552

            else:
                raise ValueError(
                    "only valid string values are 'fro', found {}".format(p))
        elif isinstance(p, (int, float)):
553 554 555 556 557 558
            return vector_norm(x,
                               axis=axis,
                               porder=p,
                               keepdim=keepdim,
                               asvector=False,
                               name=name)
559 560 561 562 563 564 565
        else:
            raise ValueError(
                "unspport p for p-order vector norm. except float, found {}".
                format(p))
    #calculate matrix norm, where axis is list with two integers
    elif isinstance(axis, list) and len(axis) == 2:
        if p == "fro":
myq406450149's avatar
myq406450149 已提交
566 567 568
            return frobenius_norm(x, dim=axis, keepdim=keepdim, name=name)
        elif p == np.inf or p == -np.inf:
            return inf_norm(x, porder=p, axis=axis, keepdim=keepdim, name=name)
myq406450149's avatar
myq406450149 已提交
569 570
        elif p == 0:
            raise ValueError(
571 572
                "just suport axis type int or list (length of list <=1) if p = 0, found {}"
                .format(axis))
573
        else:
574 575 576 577 578
            return p_matrix_norm(x,
                                 porder=p,
                                 axis=axis,
                                 keepdim=keepdim,
                                 name=name)
579 580 581 582 583 584
    else:
        raise ValueError(
            "except axis type int or list (length of list <=2), found {}".
            format(axis))


585
def dist(x, y, p=2, name=None):
586
    r"""
S
swtkiwi 已提交
587

Z
Zhang Ting 已提交
588
    This OP returns the p-norm of (x - y). It is not a norm in a strict sense, only as a measure
589 590
    of distance. The shapes of x and y must be broadcastable. The definition is as follows, for
    details, please refer to the `numpy's broadcasting <https://docs.scipy.org/doc/numpy/user/basics.broadcasting.html>`_:
Z
Zhang Ting 已提交
591

592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614
    - Each input has at least one dimension.
    - Match the two input dimensions from back to front, the dimension sizes must either be equal, one of them is 1, or one of them does not exist.

    Where, z = x - y, the shapes of x and y are broadcastable, then the shape of z can be
    obtained as follows:

    1. If the number of dimensions of x and y are not equal, prepend 1 to the dimensions of the
    tensor with fewer dimensions.

    For example, The shape of x is [8, 1, 6, 1], the shape of y is [7, 1, 5], prepend 1 to the
    dimension of y.

    x (4-D Tensor):  8 x 1 x 6 x 1

    y (4-D Tensor):  1 x 7 x 1 x 5

    2. Determine the size of each dimension of the output z: choose the maximum value from the
    two input dimensions.

    z (4-D Tensor):  8 x 7 x 6 x 5

    If the number of dimensions of the two inputs are the same, the size of the output can be
    directly determined in step 2. When p takes different values, the norm formula is as follows:
Z
Zhang Ting 已提交
615 616 617 618 619 620 621

    When p = 0, defining $0^0=0$, the zero-norm of z is simply the number of non-zero elements of z.

    .. math::

        ||z||_{0}=\lim_{p \\rightarrow 0}\sum_{i=1}^{m}|z_i|^{p}

Z
Zhong Hui 已提交
622
    When p = inf, the inf-norm of z is the maximum element of the absolute value of z.
Z
Zhang Ting 已提交
623 624 625 626 627

    .. math::

        ||z||_\infty=\max_i |z_i|

Z
Zhong Hui 已提交
628
    When p = -inf, the negative-inf-norm of z is the minimum element of the absolute value of z.
Z
Zhang Ting 已提交
629 630 631 632 633 634 635 636 637 638 639 640

    .. math::

        ||z||_{-\infty}=\min_i |z_i|

    Otherwise, the p-norm of z follows the formula,

    .. math::

        ||z||_{p}=(\sum_{i=1}^{m}|z_i|^p)^{\\frac{1}{p}}

    Args:
641 642
        x (Tensor): 1-D to 6-D Tensor, its data type is float32 or float64.
        y (Tensor): 1-D to 6-D Tensor, its data type is float32 or float64.
Z
Zhang Ting 已提交
643 644 645
        p (float, optional): The norm to be computed, its data type is float32 or float64. Default: 2.

    Returns:
646
        Tensor: Tensor that is the p-norm of (x - y).
Z
Zhang Ting 已提交
647 648 649 650 651 652

    Examples:
        .. code-block:: python

            import paddle

653 654
            x = paddle.to_tensor([[3, 3],[3, 3]], dtype="float32")
            y = paddle.to_tensor([[3, 3],[3, 1]], dtype="float32")
655 656
            out = paddle.dist(x, y, 0)
            print(out) # out = [1.]
Z
Zhang Ting 已提交
657

658 659
            out = paddle.dist(x, y, 2)
            print(out) # out = [2.]
Z
Zhang Ting 已提交
660

661 662
            out = paddle.dist(x, y, float("inf"))
            print(out) # out = [2.]
Z
Zhang Ting 已提交
663

664 665
            out = paddle.dist(x, y, float("-inf"))
            print(out) # out = [0.]
Z
Zhang Ting 已提交
666
    """
H
hong 已提交
667
    if in_dygraph_mode():
668
        return _C_ops.dist(x, y, p)
H
hong 已提交
669

Z
Zhang Ting 已提交
670 671 672 673 674 675 676 677 678
    check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'dist')
    check_variable_and_dtype(y, 'dtype', ['float32', 'float64'], 'dist')
    check_type(p, 'p', (float, int), 'dist')
    helper = LayerHelper("dist", **locals())
    out = helper.create_variable_for_type_inference(x.dtype)

    inputs = {"X": [x], "Y": [y]}
    outputs = {'Out': [out]}
    attrs = {"p": float(p)}
679 680 681 682
    helper.append_op(type='dist',
                     inputs=inputs,
                     outputs={'Out': out},
                     attrs=attrs)
Z
Zhang Ting 已提交
683
    return out
L
liuwei1031 已提交
684 685


686 687 688 689 690 691
def cond(x, p=None, name=None):
    """

    Computes the condition number of a matrix or batches of matrices with respect to a matrix norm ``p``.

    Args:
692 693
        x (Tensor): The input tensor could be tensor of shape ``(*, m, n)`` where ``*`` is zero or more batch dimensions
            for ``p`` in ``(2, -2)``, or of shape ``(*, n, n)`` where every matrix is invertible for any supported ``p``.
694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747
            And the input data type could be ``float32`` or ``float64``.
        p (float|string, optional): Order of the norm. Supported values are `fro`, `nuc`, `1`, `-1`, `2`, `-2`,
            `inf`, `-inf`. Default value is `None`, meaning that the order of the norm is `2`.
        name (str, optional): The default value is `None`. Normally there is no need for
            user to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: computing results of condition number, its data type is the same as input Tensor ``x``.

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np

            x = paddle.to_tensor([[1., 0, -1], [0, 1, 0], [1, 0, 1]])

            # compute conditional number when p is None
            out = paddle.linalg.cond(x)
            # out.numpy() [1.4142135]

            # compute conditional number when order of the norm is 'fro'
            out_fro = paddle.linalg.cond(x, p='fro')
            # out_fro.numpy() [3.1622777]

            # compute conditional number when order of the norm is 'nuc'
            out_nuc = paddle.linalg.cond(x, p='nuc')
            # out_nuc.numpy() [9.2426405]

            # compute conditional number when order of the norm is 1
            out_1 = paddle.linalg.cond(x, p=1)
            # out_1.numpy() [2.]

            # compute conditional number when order of the norm is -1
            out_minus_1 = paddle.linalg.cond(x, p=-1)
            # out_minus_1.numpy() [1.]

            # compute conditional number when order of the norm is 2
            out_2 = paddle.linalg.cond(x, p=2)
            # out_2.numpy() [1.4142135]

            # compute conditional number when order of the norm is -1
            out_minus_2 = paddle.linalg.cond(x, p=-2)
            # out_minus_2.numpy() [0.70710677]

            # compute conditional number when order of the norm is inf
            out_inf = paddle.linalg.cond(x, p=np.inf)
            # out_inf.numpy() [2.]

            # compute conditional number when order of the norm is -inf
            out_minus_inf = paddle.linalg.cond(x, p=-np.inf)
            # out_minus_inf.numpy() [1.]

            a = paddle.to_tensor(np.random.randn(2, 4, 4).astype('float32'))
748
            # a.numpy()
749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782
            # [[[ 0.14063153 -0.996288    0.7996131  -0.02571543]
            #   [-0.16303636  1.5534962  -0.49919784 -0.04402903]
            #   [-1.1341571  -0.6022629   0.5445269   0.29154757]
            #   [-0.16816919 -0.30972657  1.7521842  -0.5402487 ]]
            #  [[-0.58081484  0.12402827  0.7229862  -0.55046535]
            #   [-0.15178485 -1.1604939   0.75810957  0.30971205]
            #   [-0.9669573   1.0940945  -0.27363303 -0.35416734]
            #   [-1.216529    2.0018666  -0.7773689  -0.17556527]]]
            a_cond_fro = paddle.linalg.cond(a, p='fro')
            # a_cond_fro.numpy()  [31.572273 28.120834]

            b = paddle.to_tensor(np.random.randn(2, 3, 4).astype('float64'))
            # b.numpy()
            # [[[ 1.61707487  0.46829144  0.38130416  0.82546736]
            #   [-1.72710298  0.08866375 -0.62518804  0.16128892]
            #   [-0.02822879 -1.67764516  0.11141444  0.3220113 ]]
            #  [[ 0.22524372  0.62474921 -0.85503233 -1.03960523]
            #   [-0.76620689  0.56673047  0.85064753 -0.45158196]
            #   [ 1.47595418  2.23646462  1.5701758   0.10497519]]]
            b_cond_2 = paddle.linalg.cond(b, p=2)
            # b_cond_2.numpy()  [3.30064451 2.51976252]

    """

    def mat_norm(input, porder=1., axis=None):
        """
        NOTE:
            Calculate the matrix norm of a square matrix or batches of square matrices,
            when porder is in (1, -1, inf, -inf)
        """
        reduce_all = True if axis is None or axis == [] else False
        axis = axis if axis != None and axis != [] else [0]
        keepdim = False

783 784 785 786 787 788 789 790 791 792 793 794 795 796
        if in_dygraph_mode():
            abs_out = _C_ops.abs(input)
            sum_out = _C_ops.sum(abs_out, axis, None, keepdim)

            if porder == 1 or porder == np.inf:
                return _C_ops.max(sum_out, [-1], keepdim)
            if porder == -1 or porder == -np.inf:
                return _C_ops.min(sum_out, [-1], keepdim)

        elif _in_legacy_dygraph():
            abs_out = _legacy_C_ops.abs(input)
            sum_out = _legacy_C_ops.reduce_sum(abs_out, 'dim', axis, 'keepdim',
                                               keepdim, 'reduce_all',
                                               reduce_all)
797
            if porder == 1 or porder == np.inf:
798 799 800
                return _legacy_C_ops.reduce_max(sum_out, 'dim', [-1], 'keepdim',
                                                keepdim, 'reduce_all',
                                                reduce_all)
801
            if porder == -1 or porder == -np.inf:
802 803 804
                return _legacy_C_ops.reduce_min(sum_out, 'dim', [-1], 'keepdim',
                                                keepdim, 'reduce_all',
                                                reduce_all)
805 806 807 808 809 810 811 812 813 814 815 816 817 818
        else:
            block = LayerHelper('norm', **locals())
            abs_out = block.create_variable_for_type_inference(
                dtype=block.input_dtype())
            sum_out = block.create_variable_for_type_inference(
                dtype=block.input_dtype())
            out = block.create_variable_for_type_inference(
                dtype=block.input_dtype())
            block.append_op(type='abs',
                            inputs={'X': input},
                            outputs={'Out': abs_out})
            block.append_op(type='reduce_sum',
                            inputs={'X': abs_out},
                            outputs={'Out': sum_out},
819
                            attrs={
820
                                'dim': axis,
821 822 823
                                'keep_dim': keepdim,
                                'reduce_all': reduce_all
                            })
824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842
            if porder == 1 or porder == np.inf:
                block.append_op(type='reduce_max',
                                inputs={'X': sum_out},
                                outputs={'Out': out},
                                attrs={
                                    'dim': [-1],
                                    'keep_dim': keepdim,
                                    'reduce_all': reduce_all
                                })
            if porder == -1 or porder == -np.inf:
                block.append_op(type='reduce_min',
                                inputs={'X': sum_out},
                                outputs={'Out': out},
                                attrs={
                                    'dim': [-1],
                                    'keep_dim': keepdim,
                                    'reduce_all': reduce_all
                                })
            return out
843 844 845 846 847 848 849 850 851

    def fro_norm(input, porder=2, axis=[-1]):
        """
        NOTE:
            Calculate the frobenius norm of a square matrix or batches of square matrices.
        """
        reduce_all = True if axis is None or axis == [] else False
        keepdim = False

852
        if in_dygraph_mode():
853
            pow_out = _C_ops.pow(input, porder)
854 855
            sum_out_1 = _C_ops.sum(pow_out, axis, None, keepdim)
            sum_out_2 = _C_ops.sum(sum_out_1, axis, None, keepdim)
856
            return _C_ops.pow(sum_out_2, float(1. / porder))
857
        elif paddle.in_dynamic_mode():
858 859 860 861 862 863 864 865
            pow_out = _legacy_C_ops.pow(input, 'factor', porder)
            sum_out_1 = _legacy_C_ops.reduce_sum(pow_out, 'dim', axis,
                                                 'keepdim', keepdim,
                                                 'reduce_all', reduce_all)
            sum_out_2 = _legacy_C_ops.reduce_sum(sum_out_1, 'dim', axis,
                                                 'keepdim', keepdim,
                                                 'reduce_all', reduce_all)
            return _legacy_C_ops.pow(sum_out_2, 'factor', float(1. / porder))
866 867 868 869 870 871 872 873 874 875

        block = LayerHelper('norm', **locals())
        pow_out = block.create_variable_for_type_inference(
            dtype=block.input_dtype())
        sum_out_1 = block.create_variable_for_type_inference(
            dtype=block.input_dtype())
        sum_out_2 = block.create_variable_for_type_inference(
            dtype=block.input_dtype())
        out = block.create_variable_for_type_inference(
            dtype=block.input_dtype())
876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899
        block.append_op(type='pow',
                        inputs={'X': input},
                        outputs={'Out': pow_out},
                        attrs={'factor': porder})
        block.append_op(type='reduce_sum',
                        inputs={'X': pow_out},
                        outputs={'Out': sum_out_1},
                        attrs={
                            'dim': axis,
                            'keep_dim': keepdim,
                            'reduce_all': reduce_all
                        })
        block.append_op(type='reduce_sum',
                        inputs={'X': sum_out_1},
                        outputs={'Out': sum_out_2},
                        attrs={
                            'dim': axis,
                            'keep_dim': keepdim,
                            'reduce_all': reduce_all
                        })
        block.append_op(type='pow',
                        inputs={'X': sum_out_2},
                        outputs={'Out': out},
                        attrs={'factor': float(1. / porder)})
900 901 902 903 904 905 906 907 908 909 910 911 912
        return out

    def svd_norm(input, porder, axis=[-1]):
        """
        NOTE:
            Calculate the matrix norm, which is related to singular values, of a matrix
            or batches of matrices, including nuclear norm, 2-norm and (-2)-norm.
        """
        reduce_all = True if axis is None or axis == [] else False
        keepdim = False

        u, s, vh = svd(input, full_matrices=False)

913
        if _non_static_mode():
914
            if porder == "nuc":
915
                if in_dygraph_mode():
916
                    return _C_ops.sum(s, axis, None, keepdim)
917
                else:
918 919 920
                    return _legacy_C_ops.reduce_sum(s, 'dim', axis, 'keepdim',
                                                    keepdim, 'reduce_all',
                                                    reduce_all)
921 922 923 924
            if in_dygraph_mode():
                max_out = _C_ops.max(s, axis, keepdim)
                min_out = _C_ops.min(s, axis, keepdim)
                if porder == 2:
925
                    return _C_ops.divide(max_out, min_out)
926
                if porder == -2:
927
                    return _C_ops.divide(min_out, max_out)
928 929 930 931 932 933 934 935 936 937 938 939 940 941

            else:
                max_out = _legacy_C_ops.reduce_max(s, 'dim', axis, 'keepdim',
                                                   keepdim, 'reduce_all',
                                                   reduce_all)
                min_out = _legacy_C_ops.reduce_min(s, 'dim', axis, 'keepdim',
                                                   keepdim, 'reduce_all',
                                                   reduce_all)
                if porder == 2:
                    return _legacy_C_ops.elementwise_div(
                        max_out, min_out, 'aixs', axis, 'use_mkldnn', False)
                if porder == -2:
                    return _legacy_C_ops.elementwise_div(
                        min_out, max_out, 'aixs', axis, 'use_mkldnn', False)
942 943 944 945 946

        block = LayerHelper('norm', **locals())
        out = block.create_variable_for_type_inference(
            dtype=block.input_dtype())
        if porder == "nuc":
947 948 949 950 951 952 953 954
            block.append_op(type='reduce_sum',
                            inputs={'X': s},
                            outputs={'Out': out},
                            attrs={
                                'dim': axis,
                                'keep_dim': keepdim,
                                'reduce_all': reduce_all
                            })
955 956 957 958 959
            return out
        max_out = block.create_variable_for_type_inference(
            dtype=block.input_dtype())
        min_out = block.create_variable_for_type_inference(
            dtype=block.input_dtype())
960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975
        block.append_op(type='reduce_max',
                        inputs={'X': s},
                        outputs={'Out': max_out},
                        attrs={
                            'dim': axis,
                            'keep_dim': keepdim,
                            'reduce_all': reduce_all
                        })
        block.append_op(type='reduce_min',
                        inputs={'X': s},
                        outputs={'Out': min_out},
                        attrs={
                            'dim': axis,
                            'keep_dim': keepdim,
                            'reduce_all': reduce_all
                        })
976
        if porder == 2:
977 978 979 980 981 982 983 984 985 986
            block.append_op(type='elementwise_div',
                            inputs={
                                'X': max_out,
                                'Y': min_out
                            },
                            outputs={'Out': out},
                            attrs={
                                'aixs': axis,
                                'use_mkldnn': False
                            })
987 988
            return out
        if porder == -2:
989 990 991 992 993 994 995 996 997 998
            block.append_op(type='elementwise_div',
                            inputs={
                                'X': min_out,
                                'Y': max_out
                            },
                            outputs={'Out': out},
                            attrs={
                                'aixs': axis,
                                'use_mkldnn': False
                            })
999 1000 1001
            return out

    def empty_tensor(input, shape):
Z
zhiboniu 已提交
1002
        if paddle.in_dynamic_mode():
1003 1004 1005 1006 1007
            return input.reshape(shape)
        raise ValueError("only support x is nonempty tensor in static mode")

    x_shape = list(x.shape)
    if not len(x_shape) >= 2:
1008 1009 1010
        raise ValueError(
            "input should be a matrix or batches of matrices, " +
            "but the dimention of received input is {}".format(len(x_shape)))
1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023
    if p == None:
        p = 2
    x_size = 0 if (0 in x_shape) else 1
    if p in ("fro", "nuc", 1, -1, np.inf, -np.inf):
        if x_shape[len(x_shape) - 1] == x_shape[len(x_shape) - 2]:
            if x_size == 0:
                return empty_tensor(x, x_shape[:-2])
            x_inv = x.inverse()
            if p == "fro":
                return fro_norm(x) * fro_norm(x_inv)
            if p == "nuc":
                return svd_norm(x, p) * svd_norm(x_inv, p)
            if p in (1, -1):
1024 1025
                return mat_norm(x, porder=p, axis=[-2]) * mat_norm(
                    x_inv, porder=p, axis=[-2])
1026
            if p in (np.inf, -np.inf):
1027 1028
                return mat_norm(x, porder=p, axis=[-1]) * mat_norm(
                    x_inv, porder=p, axis=[-1])
1029 1030 1031 1032 1033 1034 1035 1036 1037
        else:
            raise ValueError("only support p is {} when input is a ".format(p) +
                             "square matrix or batches of square matrices")
    elif p in (2, -2):
        if x_size == 0:
            return empty_tensor(x, x_shape[:-2])
        return svd_norm(x, porder=p)
    else:
        raise ValueError(
1038 1039
            "unsupported {} for p, only supporting ('fro', 'nuc', ".format(p) +
            "1, -1, 2, -2, inf, -inf) or none")
1040 1041


L
liuwei1031 已提交
1042 1043 1044
def dot(x, y, name=None):
    """
    This operator calculates inner product for vectors.
1045

1046
    Note:
1047 1048
       Support 1-d and 2-d Tensor. When it is 2d, the first dimension of this matrix
       is the batch dimension, which means that the vectors of multiple batches are dotted.
L
liuwei1031 已提交
1049 1050

    Parameters:
S
ShenLiang 已提交
1051 1052
        x(Tensor): 1-D or 2-D ``Tensor``. Its dtype should be ``float32``, ``float64``, ``int32``, ``int64``
        y(Tensor): 1-D or 2-D ``Tensor``. Its dtype soulde be ``float32``, ``float64``, ``int32``, ``int64``
L
liuwei1031 已提交
1053 1054
        name(str, optional): Name of the output. Default is None. It's used to print debug info for developers. Details: :ref:`api_guide_Name`

1055
    Returns:
1056
        Tensor: the calculated result Tensor.
1057

L
liuwei1031 已提交
1058 1059 1060 1061 1062
    Examples:

    .. code-block:: python

        import paddle
1063

1064 1065 1066 1067 1068 1069 1070 1071 1072
        # 1-D Tensor * 1-D Tensor
        x = paddle.to_tensor([1, 2, 3])
        y = paddle.to_tensor([4, 5, 6])
        z = paddle.dot(x, y)
        print(z)  # [32]

        # 2-D Tensor * 2-D Tensor
        x = paddle.to_tensor([[1, 2, 3], [2, 4, 6]])
        y = paddle.to_tensor([[4, 5, 6], [4, 5, 6]])
1073
        z = paddle.dot(x, y)
1074
        print(z)  # [[32], [64]]
L
liuwei1031 已提交
1075 1076

    """
1077 1078
    if in_dygraph_mode():
        return _C_ops.dot(x, y)
1079 1080
    if _in_legacy_dygraph():
        return _legacy_C_ops.dot(x, y)
1081

L
liuwei1031 已提交
1082
    op_type = 'dot'
1083

L
liuwei1031 已提交
1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095
    assert x is not None, 'x cannot be None in {}'.format(op_type)
    assert y is not None, 'y cannot be None in {}'.format(op_type)

    check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'],
                             op_type)
    check_variable_and_dtype(y, 'y', ['float32', 'float64', 'int32', 'int64'],
                             op_type)

    helper = LayerHelper(op_type, **locals())
    if name is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
    else:
1096 1097 1098 1099 1100 1101 1102 1103 1104 1105
        out = helper.create_variable(name=name,
                                     dtype=x.dtype,
                                     persistable=False)
    helper.append_op(type="dot",
                     inputs={
                         'X': x,
                         'Y': y
                     },
                     attrs={},
                     outputs={"Out": out})
L
liuwei1031 已提交
1106
    return out
1107 1108


Z
zhiboniu 已提交
1109 1110 1111 1112 1113
def cov(x, rowvar=True, ddof=True, fweights=None, aweights=None, name=None):
    """
    Estimate the covariance matrix of the input variables, given data and weights.

    A covariance matrix is a square matrix, indicate the covariance of each pair variables in the input matrix.
1114
    For example, for an N-dimensional samples X=[x1,x2,…xN]T, then the covariance matrix
Z
zhiboniu 已提交
1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221
    element Cij is the covariance of xi and xj. The element Cii is the variance of xi itself.

    Parameters:
        x(Tensor): A N-D(N<=2) Tensor containing multiple variables and observations. By default, each row of x represents a variable. Also see rowvar below.
        rowvar(Bool, optional): If rowvar is True (default), then each row represents a variable, with observations in the columns. Default: True
        ddof(Bool, optional): If ddof=True will return the unbiased estimate, and ddof=False will return the simple average. Default: True
        fweights(Tensor, optional): 1-D Tensor of integer frequency weights; The number of times each observation vector should be repeated. Default: None
        aweights(Tensor, optional): 1-D Tensor of observation vector weights. How important of the observation vector, larger data means this element is more important. Default: None
        name(str, optional): Name of the output. Default is None. It's used to print debug info for developers. Details: :ref:`api_guide_Name`

    Returns:
        Tensor: The covariance matrix Tensor of the variables.

    Examples:

    .. code-block:: python

        import paddle

        xt = paddle.rand((3,4))
        paddle.linalg.cov(xt)

        '''
        Tensor(shape=[3, 3], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            [[0.07918842, 0.06127326, 0.01493049],
                [0.06127326, 0.06166256, 0.00302668],
                [0.01493049, 0.00302668, 0.01632146]])
        '''
    """
    op_type = 'cov'
    if len(x.shape) > 2 or len(x.shape) < 1:
        raise ValueError(
            "Input(x) only support N-D (1<=N<=2) tensor in cov, but received "
            "length of Input(input) is %s." % len(x.shape))
    check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'cov')
    nx = x
    if len(x.shape) == 1:
        nx = x.reshape((1, -1))
    if not rowvar and nx.shape[0] != 1:
        nx = nx.t()
    w = None
    observation_num = nx.shape[1]
    if fweights is not None:
        w = fweights.astype(nx.dtype)
        if len(w.shape) > 1:
            raise ValueError(
                "Input(fweights) only support N-D (N<=1) tensor in cov, but received "
                "shape of Input(input) is %s." % len(fweights.shape))
        if fweights.shape[0] != observation_num:
            raise ValueError(
                "The number of Input(fweights) should equal to x's dim[1]: {}, but received "
                "size of Input(fweights) is {}.".format(observation_num,
                                                        fweights.shape[0]))
        if fweights.min() < 0:
            raise ValueError(
                "The value of Input(fweights) cannot be negtive, but received "
                "min of Input(fweights) is {}.".format(fweights.min()))
        if not paddle.all(fweights == paddle.round(fweights.astype('float64'))):
            raise ValueError("Input(fweights) must be integer ")

    if aweights is not None:
        aw = aweights.astype(nx.dtype)
        if len(aw.shape) > 1:
            raise ValueError(
                "Input(aweights) only support N-D (N<=1) tensor in cov, but received "
                "length of Input(input) is %s." % len(aweights.shape))
        check_variable_and_dtype(aweights, 'dtype', ['float32', 'float64'],
                                 'cov')
        if aweights.shape[0] != observation_num:
            raise ValueError(
                "The number of Input(aweights) should equal to x's dim[1]: {}, but received "
                "size of Input(aweights) is {}.".format(observation_num,
                                                        aweights.shape[0]))
        if aweights.min() < 0:
            raise ValueError(
                "The value of Input(aweights) cannot be negtive, but received "
                "min of Input(aweights) is {}.".format(aweights.min()))
        if w is not None:
            w = w * aw
        else:
            w = aw

    w_sum = paddle.to_tensor(observation_num, dtype=nx.dtype)
    if fweights is not None or aweights is not None:
        w_sum = w.sum()
        if w_sum.item() == 0:
            raise ValueError("The sum of weights is zero, can't be normalized.")

    if w is not None:
        nx_w = nx * w
        avg = (nx_w).sum(axis=1) / w_sum
    else:
        avg = nx.sum(axis=1) / w_sum
        nx_w = nx

    if w is not None and aweights is not None and ddof == True:
        norm_factor = w_sum - (w * aweights).sum() / w_sum
    else:
        norm_factor = w_sum - ddof
    if norm_factor <= 0:
        norm_factor = paddle.to_tensor(0, dtype=nx.dtype)
    nx = nx - avg.unsqueeze(1)
    xxt = paddle.mm(nx, nx_w.t().conj())
    cov = paddle.divide(xxt, norm_factor).squeeze()
    return cov


1222 1223
def t(input, name=None):
    """
1224 1225
    Transpose <=2-D tensor.
    0-D and 1-D tensors are returned as it is and 2-D tensor is equal to
1226
    the paddle.transpose function which perm dimensions set 0 and 1.
1227

1228
    Args:
1229
        input (Tensor): The input Tensor. It is a N-D (N<=2) Tensor of data types float32, float64, int32, int64.
1230
        name(str, optional): The default value is None.  Normally there is no need for
1231 1232
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
    Returns:
1233
        Tensor: A transposed n-D Tensor, with data type being float16, float32, float64, int32, int64.
1234

1235
    Examples:
1236

1237 1238 1239
        .. code-block:: python
           :name: code-example
             import paddle
1240

1241
             # Example 1 (0-D tensor)
1242 1243
             x = paddle.to_tensor([0.79])
             paddle.t(x) # [0.79]
1244

1245
             # Example 2 (1-D tensor)
1246 1247 1248
             x = paddle.to_tensor([0.79, 0.84, 0.32])
             paddle.t(x) # [0.79000002, 0.83999997, 0.31999999]
             paddle.t(x).shape # [3]
1249 1250

             # Example 3 (2-D tensor)
1251 1252 1253 1254 1255 1256 1257 1258
             x = paddle.to_tensor([[0.79, 0.84, 0.32],
                                  [0.64, 0.14, 0.57]])
             x.shape # [2, 3]
             paddle.t(x)
             # [[0.79000002, 0.63999999],
             #  [0.83999997, 0.14000000],
             #  [0.31999999, 0.56999999]]
             paddle.t(x).shape # [3, 2]
1259

1260 1261 1262 1263 1264 1265
    """
    if len(input.shape) > 2:
        raise ValueError(
            "Input(input) only support N-D (N<=2) tensor, but received "
            "length of Input(input) is %s. Perhaps you can use paddle."
            "tensor.transpose() instead." % len(input.shape))
1266 1267 1268 1269 1270
    if in_dygraph_mode():
        if len(input.shape) == 1:
            return input
        # 2-D tensor
        perm = [1, 0]
1271
        out = _C_ops.transpose(input, perm)
1272 1273 1274
        return out

    if _in_legacy_dygraph():
1275 1276 1277 1278
        if len(input.shape) == 1:
            return input
        # 2-D tensor
        perm = [1, 0]
1279
        out, _ = _legacy_C_ops.transpose2(input, 'axis', perm)
1280 1281 1282
        return out

    check_variable_and_dtype(
1283 1284
        input, 'input', ['float16', 'float32', 'float64', 'int32', 'int64'],
        'transpose')
1285 1286 1287 1288 1289 1290 1291

    helper = LayerHelper('t', **locals())
    out = helper.create_variable_for_type_inference(input.dtype)
    input_shape = helper.create_variable_for_type_inference(input.dtype)
    if len(input.shape) == 1:
        out = input
    else:
1292 1293 1294 1295 1296 1297 1298
        helper.append_op(type='transpose2',
                         inputs={'X': [input]},
                         outputs={
                             'Out': [out],
                             'XShape': [input_shape]
                         },
                         attrs={'axis': [1, 0]})
1299
    return out
1300 1301


W
wanghuancoder 已提交
1302
def cross(x, y, axis=9, name=None):
1303
    """
1304
    Computes the cross product between two tensors along an axis.
1305

1306 1307
    Inputs must have the same shape, and the length of their axes should be equal to 3.
    If `axis` is not given, it defaults to the first axis found with the length 3.
1308

1309
    Args:
1310 1311
        x (Tensor): The first input tensor.
        y (Tensor): The second input tensor.
W
wanghuancoder 已提交
1312
        axis (int, optional): The axis along which to compute the cross product. It defaults to be 9 which indicates using the first axis found with the length 3.
1313
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1314 1315

    Returns:
1316
        Tensor. A Tensor with same data type as `x`.
1317

1318 1319
    Examples:
        .. code-block:: python
1320

1321
            import paddle
1322

Z
Zhou Wei 已提交
1323 1324 1325 1326 1327 1328
            x = paddle.to_tensor([[1.0, 1.0, 1.0],
                                  [2.0, 2.0, 2.0],
                                  [3.0, 3.0, 3.0]])
            y = paddle.to_tensor([[1.0, 1.0, 1.0],
                                  [1.0, 1.0, 1.0],
                                  [1.0, 1.0, 1.0]])
1329

1330 1331 1332 1333 1334 1335 1336 1337 1338
            z1 = paddle.cross(x, y)
            # [[-1. -1. -1.]
            #  [ 2.  2.  2.]
            #  [-1. -1. -1.]]

            z2 = paddle.cross(x, y, axis=1)
            # [[0. 0. 0.]
            #  [0. 0. 0.]
            #  [0. 0. 0.]]
1339
    """
J
Jiabin Yang 已提交
1340
    if in_dygraph_mode():
1341
        axis = K_DEFAULT_DIM if axis is None else axis
1342
        return _C_ops.cross(x, y, axis)
J
Jiabin Yang 已提交
1343 1344 1345
    else:
        if _in_legacy_dygraph():
            if axis is not None:
1346
                return _legacy_C_ops.cross(x, y, 'dim', axis)
J
Jiabin Yang 已提交
1347
            else:
1348
                return _legacy_C_ops.cross(x, y)
1349
        else:
J
Jiabin Yang 已提交
1350 1351 1352 1353 1354
            helper = LayerHelper("cross", **locals())
            out = helper.create_variable_for_type_inference(x.dtype)
            attrs = dict()
            attrs['dim'] = axis

1355 1356 1357 1358 1359 1360 1361
            helper.append_op(type='cross',
                             inputs={
                                 'X': x,
                                 'Y': y
                             },
                             outputs={'Out': out},
                             attrs=attrs)
J
Jiabin Yang 已提交
1362
            return out
1363 1364


1365
def cholesky(x, upper=False, name=None):
1366
    r"""
G
Guo Sheng 已提交
1367
    Computes the Cholesky decomposition of one symmetric positive-definite
1368 1369
    matrix or batches of symmetric positive-definite matrice.

G
Guo Sheng 已提交
1370 1371 1372 1373 1374 1375
    If `upper` is `True`, the decomposition has the form :math:`A = U^{T}U` ,
    and the returned matrix :math:`U` is upper-triangular. Otherwise, the
    decomposition has the form  :math:`A = LL^{T}` , and the returned matrix
    :math:`L` is lower-triangular.

    Args:
1376
        x (Tensor): The input tensor. Its shape should be `[*, M, M]`,
G
Guo Sheng 已提交
1377 1378 1379 1380 1381
            where * is zero or more batch dimensions, and matrices on the
            inner-most 2 dimensions all should be symmetric positive-definite.
            Its data type should be float32 or float64.
        upper (bool): The flag indicating whether to return upper or lower
            triangular matrices. Default: False.
1382 1383
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
G
Guo Sheng 已提交
1384 1385

    Returns:
1386 1387
        Tensor, A Tensor with same shape and data type as `x`. It represents
        triangular matrices generated by Cholesky decomposition.
1388

G
Guo Sheng 已提交
1389 1390 1391 1392 1393 1394
    Examples:
        .. code-block:: python

            import paddle
            import numpy as np

1395 1396 1397
            a = np.random.rand(3, 3)
            a_t = np.transpose(a, [1, 0])
            x_data = np.matmul(a, a_t) + 1e-03
1398
            x = paddle.to_tensor(x_data)
1399
            out = paddle.linalg.cholesky(x, upper=False)
1400
            print(out)
1401 1402 1403
            # [[1.190523   0.         0.        ]
            #  [0.9906703  0.27676893 0.        ]
            #  [1.25450498 0.05600871 0.06400121]]
G
Guo Sheng 已提交
1404 1405

    """
H
hong 已提交
1406
    if in_dygraph_mode():
1407
        return _C_ops.cholesky(x, upper)
H
hong 已提交
1408 1409

    if _in_legacy_dygraph():
1410
        return _legacy_C_ops.cholesky(x, "upper", upper)
H
hong 已提交
1411

G
Guo Sheng 已提交
1412 1413 1414 1415
    check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'cholesky')
    check_type(upper, 'upper', bool, 'cholesky')
    helper = LayerHelper('cholesky', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
1416 1417 1418 1419
    helper.append_op(type='cholesky',
                     inputs={'X': [x]},
                     outputs={'Out': out},
                     attrs={'upper': upper})
G
Guo Sheng 已提交
1420 1421 1422
    return out


1423 1424 1425 1426
def matrix_rank(x, tol=None, hermitian=False, name=None):
    r"""
    Computes the rank of a matrix.

1427
    The rank of a matrix is the number of singular values that are greater than the specified `tol` threshold when hermitian=False,
1428
    or the number of eigenvalues in absolute value that are greater than the specified `tol` threshold when hermitian=True.
1429 1430

    Args:
1431 1432 1433 1434
        x (Tensor): The input tensor. Its shape should be `[..., m, n]`, where `...` is zero or more batch dimensions. If `x` is a batch
            of matrices then the output has the same batch dimensions. The data type of `x` should be float32 or float64.
        tol (float,Tensor,optional): the tolerance value. Default: None. If `tol` is not specified, and `sigma` is the largest
            singular value (or eigenvalues in absolute value), and `eps` is the epsilon value for the dtype of `x`, then `tol` is computed
1435
            with formula `tol=sigma * max(m,n) * eps`. Note that if `x` is a batch of matrices, `tol` is computed this way for every batch.
1436 1437
        hermitian (bool,optional): indicates whether `x` is Hermitian. Default: False. When hermitian=True, `x` is assumed to be Hermitian,
            enabling a more efficient method for finding eigenvalues, but `x` is not checked inside the function. Instead, We just use
1438
            the lower triangular of the matrix to compute.
1439 1440 1441 1442
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: Rank of tensor x.
1443

1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459
    Examples:
        .. code-block:: python

            import paddle

            a = paddle.eye(10)
            b = paddle.linalg.matrix_rank(a)
            print(b)
            # b = [10]

            c = paddle.ones(shape=[3, 4, 5, 5])
            d = paddle.linalg.matrix_rank(c, tol=0.01, hermitian=True)
            print(d)
            # d = [[1, 1, 1, 1],
            #      [1, 1, 1, 1],
            #      [1, 1, 1, 1]]
1460

1461
    """
1462 1463 1464 1465 1466 1467 1468
    if in_dygraph_mode():
        if isinstance(tol, Variable):
            if tol.dtype != x.dtype:
                tol_tensor = cast(tol, x.dtype)
            else:
                tol_tensor = tol
            use_default_tol = False
1469 1470
            return _C_ops.matrix_rank_tol(x, tol_tensor, use_default_tol,
                                          hermitian)
1471

1472 1473 1474 1475 1476 1477
        if tol is None:
            tol_attr = 0.0
            use_default_tol = True
        else:
            tol_attr = float(tol)
            use_default_tol = False
1478
        return _C_ops.matrix_rank(x, tol_attr, use_default_tol, hermitian)
1479 1480

    if _in_legacy_dygraph():
1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495
        if tol is None:
            tol_tensor = None
            tol_attr = 0.0
            use_default_tol = True
        elif isinstance(tol, Variable):
            if tol.dtype != x.dtype:
                tol_tensor = cast(tol, x.dtype)
            else:
                tol_tensor = tol
            tol_attr = 0.0
            use_default_tol = False
        else:
            tol_tensor = None
            tol_attr = float(tol)
            use_default_tol = False
1496 1497 1498
        return _legacy_C_ops.matrix_rank(x, tol_tensor, "tol", tol_attr,
                                         'hermitian', hermitian,
                                         'use_default_tol', use_default_tol)
1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520

    inputs = {}
    attrs = {}
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'matrix_rank')
    inputs['X'] = x
    if tol is None:
        attrs['use_default_tol'] = True
    elif isinstance(tol, Variable):
        attrs['use_default_tol'] = False
        if tol.dtype != x.dtype:
            inputs['TolTensor'] = cast(tol, x.dtype)
        else:
            inputs['TolTensor'] = tol
    else:
        check_type(tol, 'tol', float, 'matrix_rank')
        attrs['use_default_tol'] = False
        attrs['tol'] = tol
    check_type(hermitian, 'hermitian', bool, 'matrix_rank')
    attrs['hermitian'] = hermitian

    helper = LayerHelper('matrix_rank', **locals())
    out = helper.create_variable_for_type_inference(dtype='int32')
1521 1522 1523 1524
    helper.append_op(type='matrix_rank',
                     inputs=inputs,
                     outputs={'Out': out},
                     attrs=attrs)
1525 1526 1527
    return out


1528 1529 1530 1531 1532 1533 1534 1535 1536
def bmm(x, y, name=None):
    """
    Applies batched matrix multiplication to two tensors.

    Both of the two input tensors must be three-dementional and share the same batch size.

    if x is a (b, m, k) tensor, y is a (b, k, n) tensor, the output will be a (b, m, n) tensor.

    Args:
Y
yaoxuefeng 已提交
1537 1538
        x (Tensor): The input Tensor.
        y (Tensor): The input Tensor.
1539 1540 1541 1542
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
Y
yaoxuefeng 已提交
1543
        Tensor: The product Tensor.
1544 1545

    Examples:
S
sunzhongkai588 已提交
1546 1547 1548
        .. code-block:: python

            import paddle
Y
yaoxuefeng 已提交
1549

S
sunzhongkai588 已提交
1550 1551 1552 1553 1554 1555 1556 1557 1558
            # In imperative mode:
            # size x: (2, 2, 3) and y: (2, 3, 2)
            x = paddle.to_tensor([[[1.0, 1.0, 1.0],
                                [2.0, 2.0, 2.0]],
                                [[3.0, 3.0, 3.0],
                                [4.0, 4.0, 4.0]]])
            y = paddle.to_tensor([[[1.0, 1.0],[2.0, 2.0],[3.0, 3.0]],
                                [[4.0, 4.0],[5.0, 5.0],[6.0, 6.0]]])
            out = paddle.bmm(x, y)
1559 1560 1561 1562 1563 1564
            # Tensor(shape=[2, 2, 2], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [[[6. , 6. ],
            #          [12., 12.]],

            #         [[45., 45.],
            #          [60., 60.]]])
1565

1566
    """
Y
yaoxuefeng 已提交
1567 1568 1569 1570
    x_shape = x.shape
    y_shape = y.shape
    if not len(x_shape) == len(y_shape) == 3:
        raise ValueError(
1571 1572
            "x and y should be 3-dimensional. But received x's dimention: {}, y's dimention: {}"
            .format(x_shape, y_shape))
Y
yaoxuefeng 已提交
1573 1574
    if x_shape[2] != y_shape[1]:
        raise ValueError(
1575 1576
            "x's width must be equal with y's height. But received x's shape: {}, y's shape: {}"
            .format(x_shape, y_shape))
1577 1578
    if x_shape[0] != y_shape[0]:
        raise ValueError(
1579 1580
            "x's batch (shape[0]) must be equal with y's batch (shape[0]). But received x's shape: {}, y's shape: {}"
            .format(x_shape, y_shape))
1581

1582
    if in_dygraph_mode():
1583
        return _C_ops.bmm(x, y)
1584

Z
zhiboniu 已提交
1585
    if paddle.in_dynamic_mode():
1586
        return _legacy_C_ops.bmm(x, y)
1587 1588

    helper = LayerHelper('bmm', **locals())
1589 1590 1591
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(type='bmm', inputs={'X': x, 'Y': y}, outputs={'Out': out})
    return out
Q
Qi Li 已提交
1592 1593


1594
def histogram(input, bins=100, min=0, max=0, name=None):
Q
Qi Li 已提交
1595
    """
1596
    Computes the histogram of a tensor. The elements are sorted into equal width bins between min and max.
Q
Qi Li 已提交
1597 1598 1599
    If min and max are both zero, the minimum and maximum values of the data are used.

    Args:
1600
        input (Tensor): A Tensor(or LoDTensor) with shape :math:`[N_1, N_2,..., N_k]` . The data type of the input Tensor
Q
Qi Li 已提交
1601
            should be float32, float64, int32, int64.
1602 1603 1604 1605
        bins (int, optional): number of histogram bins.
        min (int, optional): lower end of the range (inclusive).
        max (int, optional): upper end of the range (inclusive).
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
Q
Qi Li 已提交
1606 1607

    Returns:
1608
        Tensor: data type is int64, shape is (nbins,).
Q
Qi Li 已提交
1609

1610
    Examples:
Q
Qi Li 已提交
1611
        .. code-block:: python
1612

Q
Qi Li 已提交
1613
            import paddle
1614

1615
            inputs = paddle.to_tensor([1, 2, 1])
1616 1617
            result = paddle.histogram(inputs, bins=4, min=0, max=3)
            print(result) # [0, 2, 1, 0]
Q
Qi Li 已提交
1618
    """
H
hong 已提交
1619
    if in_dygraph_mode():
1620
        return _C_ops.histogram(input, bins, min, max)
H
hong 已提交
1621 1622

    if _in_legacy_dygraph():
1623 1624
        return _legacy_C_ops.histogram(input, "bins", bins, "min", min, "max",
                                       max)
Q
Qi Li 已提交
1625 1626

    helper = LayerHelper('histogram', **locals())
1627 1628 1629
    check_variable_and_dtype(input, 'X',
                             ['int32', 'int64', 'float32', 'float64'],
                             'histogram')
Q
Qi Li 已提交
1630
    out = helper.create_variable_for_type_inference(VarDesc.VarType.INT64)
1631 1632 1633 1634 1635 1636 1637 1638
    helper.append_op(type='histogram',
                     inputs={'X': input},
                     outputs={'Out': out},
                     attrs={
                         'bins': bins,
                         'min': min,
                         'max': max
                     })
Q
Qi Li 已提交
1639
    return out
S
smallv0221 已提交
1640 1641 1642 1643


def bincount(x, weights=None, minlength=0, name=None):
    """
1644
    Computes frequency of each value in the input tensor.
S
smallv0221 已提交
1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671

    Args:
        x (Tensor): A Tensor with non-negative integer. Should be 1-D tensor.
        weights (Tensor, optional): Weight for each value in the input tensor. Should have the same shape as input. Default is None.
        minlength (int, optional): Minimum number of bins. Should be non-negative integer. Default is 0.
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: The tensor of frequency.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([1, 2, 1, 4, 5])
            result1 = paddle.bincount(x)
            print(result1) # [0, 2, 1, 0, 1, 1]

            w = paddle.to_tensor([2.1, 0.4, 0.1, 0.5, 0.5])
            result2 = paddle.bincount(x, weights=w)
            print(result2) # [0., 2.19999981, 0.40000001, 0., 0.50000000, 0.50000000]
    """
    if x.dtype not in [paddle.int32, paddle.int64]:
        raise TypeError("Elements in Input(x) should all be integers")

1672 1673 1674
    if in_dygraph_mode():
        return _C_ops.bincount(x, weights, minlength)
    elif _in_legacy_dygraph():
1675
        return _legacy_C_ops.bincount(x, weights, "minlength", minlength)
S
smallv0221 已提交
1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687

    helper = LayerHelper('bincount', **locals())

    check_variable_and_dtype(x, 'X', ['int32', 'int64'], 'bincount')

    if weights is not None:
        check_variable_and_dtype(weights, 'Weights',
                                 ['int32', 'int64', 'float32', 'float64'],
                                 'bincount')
        out = helper.create_variable_for_type_inference(dtype=weights.dtype)
    else:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
1688 1689 1690 1691 1692 1693 1694
    helper.append_op(type='bincount',
                     inputs={
                         'X': x,
                         'Weights': weights
                     },
                     outputs={'Out': out},
                     attrs={'minlength': minlength})
S
smallv0221 已提交
1695
    return out
1696 1697 1698 1699 1700 1701 1702


def mv(x, vec, name=None):
    """
    Performs a matrix-vector product of the matrix x and the vector vec.

    Args:
F
furnace 已提交
1703
        x (Tensor): A tensor with shape :math:`[M, N]` , The data type of the input Tensor x
1704
            should be one of float32, float64.
F
furnace 已提交
1705
        vec (Tensor): A tensor with shape :math:`[N]` , The data type of the input Tensor x
1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720
            should be one of float32, float64.
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: The tensor which is producted by x and vec.

    Examples:
        .. code-block:: python

            # x: [M, N], vec: [N]
            # paddle.mv(x, vec)  # out: [M]

            import paddle

1721 1722
            x = paddle.to_tensor([[2, 1, 3], [3, 0, 1]]).astype("float64")
            vec = paddle.to_tensor([3, 5, 1]).astype("float64")
1723
            out = paddle.mv(x, vec)
1724 1725 1726
            print(out)
            # Tensor(shape=[2], dtype=float64, place=Place(cpu), stop_gradient=True,
            #        [14., 10.])
1727
    """
J
Jiabin Yang 已提交
1728
    if in_dygraph_mode():
1729
        return _C_ops.mv(x, vec)
J
Jiabin Yang 已提交
1730 1731
    else:
        if _in_legacy_dygraph():
1732
            out = _legacy_C_ops.mv(x, vec)
J
Jiabin Yang 已提交
1733 1734
            return out
        else:
1735

J
Jiabin Yang 已提交
1736 1737 1738 1739 1740 1741 1742 1743 1744
            def __check_input(x, vec):
                var_names = {'x': x, 'vec': vec}
                for name, val in var_names.items():
                    check_variable_and_dtype(val, name, ['float32', 'float64'],
                                             'mv')
                x_shape = list(x.shape)
                vec_shape = list(vec.shape)
                if len(x_shape) != 2:
                    raise ValueError(
1745 1746
                        "x should be 2-dimensional. But received x's dimention: {}"
                        .format(x_shape))
J
Jiabin Yang 已提交
1747 1748
                if len(vec_shape) != 1:
                    raise ValueError(
1749 1750
                        "vec should be 1-dimensional. But received vec's dimention: {}"
                        .format(vec_shape))
J
Jiabin Yang 已提交
1751 1752 1753 1754 1755

            __check_input(x, vec)

            helper = LayerHelper('mv', **locals())
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
1756 1757 1758 1759 1760 1761
            helper.append_op(type='mv',
                             inputs={
                                 'X': x,
                                 'Vec': vec
                             },
                             outputs={'Out': out})
J
Jiabin Yang 已提交
1762
            return out
1763 1764


1765
def det(x, name=None):
H
huangxu96 已提交
1766 1767
    """
    Calculates determinant value of a square matrix or batches of square matrices.
1768

H
huangxu96 已提交
1769
    Args:
1770 1771 1772 1773
        x (Tensor): input (Tensor): the input matrix of size `(n, n)` or the
            batch of matrices of size `(*, n, n)` where `*` is one or more
            batch dimensions.

H
huangxu96 已提交
1774
    Returns:
1775
        Tensor, the determinant value of a square matrix or batches of square matrices.
H
huangxu96 已提交
1776

1777
    Examples:
H
huangxu96 已提交
1778 1779
        .. code-block:: python

1780
            import paddle
H
huangxu96 已提交
1781

1782
            x =  paddle.randn([3,3,3])
H
huangxu96 已提交
1783

1784
            A = paddle.linalg.det(x)
H
huangxu96 已提交
1785

1786
            print(A)
1787

1788
            # [ 0.02547996,  2.52317095, -6.15900707])
H
huangxu96 已提交
1789

1790

H
huangxu96 已提交
1791
    """
C
chentianyu03 已提交
1792
    if in_dygraph_mode():
1793
        return _C_ops.det(x)
C
chentianyu03 已提交
1794 1795

    if _in_legacy_dygraph():
1796
        return _legacy_C_ops.determinant(x)
H
huangxu96 已提交
1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813

    check_dtype(x.dtype, 'Input', ['float32', 'float64'], 'det')

    input_shape = list(x.shape)
    assert len(input_shape) >= 2,                     \
            "The x must be at least 2-dimensional, "   \
            "but received Input x's dimensional: %s.\n" %  \
            len(input_shape)

    assert (input_shape[-1] == input_shape[-2]),    \
            "Expect squared input," \
            "but received %s by %s matrix.\n" \
            %(input_shape[-2], input_shape[-1]) \

    helper = LayerHelper('determinant', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)

1814 1815 1816
    helper.append_op(type='determinant',
                     inputs={'Input': [x]},
                     outputs={'Out': [out]})
H
huangxu96 已提交
1817 1818 1819
    return out


1820
def slogdet(x, name=None):
H
huangxu96 已提交
1821 1822 1823
    """
    Calculates the sign and natural logarithm of the absolute value of a square matrix's or batches square matrices' determinant.
    The determinant can be computed with ``sign * exp(logabsdet)
1824

H
huangxu96 已提交
1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835
    Supports input of float, double

    Note that for matrices that have zero determinant, this returns ``(0, -inf)``
    Args:
        x (Tensor): the batch of matrices of size :math:`(*, n, n)`
            where math:`*` is one or more batch dimensions.

    Returns:
        y (Tensor): A tensor containing the sign of the determinant and the natural logarithm
        of the absolute value of determinant, respectively.

1836
    Examples:
1837
        .. code-block:: python
H
huangxu96 已提交
1838

1839
            import paddle
H
huangxu96 已提交
1840

1841
            x =  paddle.randn([3,3,3])
H
huangxu96 已提交
1842

1843
            A = paddle.linalg.slogdet(x)
H
huangxu96 已提交
1844

1845
            print(A)
1846

1847 1848
            # [[ 1.        ,  1.        , -1.        ],
            # [-0.98610914, -0.43010661, -0.10872950]])
H
huangxu96 已提交
1849 1850

    """
1851
    if in_dygraph_mode():
1852
        return _C_ops.slogdet(x)
1853 1854

    elif paddle.in_dynamic_mode():
1855
        return _legacy_C_ops.slogdeterminant(x)
H
huangxu96 已提交
1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872

    check_dtype(x.dtype, 'Input', ['float32', 'float64'], 'slogdet')

    input_shape = list(x.shape)
    assert len(input_shape) >= 2,                     \
            "The x must be at least 2-dimensional, "   \
            "but received Input x's dimensional: %s.\n" %  \
            len(input_shape)

    assert (input_shape[-1] == input_shape[-2]),    \
            "Expect squared input," \
            "but received %s by %s matrix.\n" \
            %(input_shape[-2], input_shape[-1]) \

    helper = LayerHelper('slogdeterminant', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)

1873 1874 1875
    helper.append_op(type='slogdeterminant',
                     inputs={'Input': [x]},
                     outputs={'Out': [out]})
H
huangxu96 已提交
1876 1877 1878
    return out


1879 1880
def svd(x, full_matrices=False, name=None):
    r"""
1881 1882 1883 1884 1885
    Computes the singular value decomposition of one matrix or a batch of regular matrices.

    Let :math:`X` be the input matrix or a batch of input matrices, the output should satisfies:

    .. math::
1886 1887
        X = U * diag(S) * VT

1888 1889
    Args:
        x (Tensor): The input tensor. Its shape should be `[..., N, M]`,
1890
            where `...` is zero or more batch dimensions. N and M can be arbitraty
1891 1892 1893 1894
            positive number. Note that if x is sigular matrices, the grad is numerical
            instable. The data type of x should be float32 or float64.
        full_matrices (bool): A flag to control the behavor of svd.
            If full_matrices = True, svd op will compute full U and V matrics,
1895
            which means shape of U is `[..., N, N]`, shape of V is `[..., M, M]`. K = min(M, N).
1896
            If full_matrices = False, svd op will use a economic method to store U and V.
1897
            which means shape of U is `[..., N, K]`, shape of V is `[..., M, K]`. K = min(M, N).
1898
        name (str, optional): Name for the operation (optional, default is None).
1899
            For more information, please refer to :ref:`api_guide_Name`.
1900 1901

    Returns:
1902
        Tuple of 3 tensors: (U, S, VH). VH is the conjugate transpose of V. S is the singlar value vectors of matrics with shape `[..., K]`
1903

1904 1905 1906 1907
    Examples:
        .. code-block:: python

            import paddle
1908 1909 1910

            x = paddle.to_tensor([[1.0, 2.0], [1.0, 3.0], [4.0, 6.0]]).astype('float64')
            x = x.reshape([3, 2])
1911
            u, s, vh = paddle.linalg.svd(x)
1912 1913 1914 1915 1916
            print (u)
            #U = [[ 0.27364809, -0.21695147  ],
            #      [ 0.37892198, -0.87112408 ],
            #      [ 0.8840446 ,  0.44053933 ]]

1917
            print (s)
1918
            #S = [8.14753743, 0.78589688]
1919
            print (vh)
1920 1921
            #VT= [[ 0.51411221,  0.85772294],
            #     [ 0.85772294, -0.51411221]]
1922

1923
            # one can verify : U * S * VT == X
1924
            #                  U * UH == I
1925
            #                  V * VH == I
1926
    """
1927
    if in_dygraph_mode():
1928
        return _C_ops.svd(x, full_matrices)
1929
    if _in_legacy_dygraph():
1930
        return _legacy_C_ops.svd(x, 'full_matrices', full_matrices)
1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941
    check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'svd')
    check_type(full_matrices, 'full_matrices', bool, 'svd')
    helper = LayerHelper('svd', **locals())
    u = helper.create_variable_for_type_inference(dtype=x.dtype)
    vh = helper.create_variable_for_type_inference(dtype=x.dtype)
    s = helper.create_variable_for_type_inference(dtype=x.dtype)
    attrs = dict()
    attrs['full_matrices'] = full_matrices
    helper.append_op(
        type='svd',
        inputs={'X': [x]},
1942 1943 1944 1945 1946 1947 1948
        outputs={
            'U': u,
            'VH': vh,
            'S': s
        },
        attrs=attrs,
    )
1949 1950 1951
    return u, s, vh


1952 1953 1954
def matrix_power(x, n, name=None):
    r"""
    Computes the n-th power of a square matrix or a batch of square matrices.
1955

1956 1957 1958 1959 1960
    Let :math:`X` be a sqaure matrix or a batch of square matrices, :math:`n` be
    an exponent, the equation should be:

    .. math::
        Out = X ^ {n}
1961

1962 1963
    Specifically,

1964
    - If `n > 0`, it returns the matrix or a batch of matrices raised to the power of `n`.
1965

1966 1967
    - If `n = 0`, it returns the identity matrix or a batch of identity matrices.

1968
    - If `n < 0`, it returns the inverse of each matrix (if invertible) raised to the power of `abs(n)`.
1969 1970 1971 1972 1973 1974

    Args:
        x (Tensor): A square matrix or a batch of square matrices to be raised
            to power `n`. Its shape should be `[*, M, M]`, where `*` is zero or
            more batch dimensions. Its data type should be float32 or float64.
        n (int): The exponent. It can be any positive, negative integer or zero.
1975
        name (str, optional): Name for the operation (optional, default is None).
1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: The n-th power of the matrix (or the batch of matrices) `x`. Its
            data type should be the same as that of `x`.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([[1, 2, 3],
                                  [1, 4, 9],
                                  [1, 8, 27]], dtype='float64')
1990
            print(paddle.linalg.matrix_power(x, 2))
1991 1992 1993 1994
            # [[6.  , 34. , 102.],
            #  [14. , 90. , 282.],
            #  [36. , 250., 804.]]

1995
            print(paddle.linalg.matrix_power(x, 0))
1996 1997 1998 1999
            # [[1., 0., 0.],
            #  [0., 1., 0.],
            #  [0., 0., 1.]]

2000
            print(paddle.linalg.matrix_power(x, -2))
2001 2002 2003 2004
            # [[ 12.91666667, -12.75000000,  2.83333333 ],
            #  [-7.66666667 ,  8.         , -1.83333333 ],
            #  [ 1.80555556 , -1.91666667 ,  0.44444444 ]]
    """
H
hong 已提交
2005
    if in_dygraph_mode():
2006
        return _C_ops.matrix_power(x, n)
H
hong 已提交
2007 2008

    if _in_legacy_dygraph():
2009
        return _legacy_C_ops.matrix_power(x, "n", n)
2010 2011 2012 2013 2014

    check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'matrix_power')
    check_type(n, 'n', int, 'matrix_power')
    helper = LayerHelper('matrix_power', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
2015 2016 2017 2018
    helper.append_op(type='matrix_power',
                     inputs={'X': x},
                     outputs={'Out': out},
                     attrs={'n': n})
2019
    return out
2020 2021


2022 2023 2024 2025 2026 2027 2028
def qr(x, mode="reduced", name=None):
    r"""
    Computes the QR decomposition of one matrix or batches of matrice (backward is unsupported now).

    Args:
        x (Tensor): The input tensor. Its shape should be `[..., M, N]`,
            where ... is zero or more batch dimensions. M and N can be arbitrary
2029 2030
            positive number. The data type of x should be float32 or float64.
        mode (str, optional): A flag to control the behavior of qr, the default is "reduced".
2031
            Suppose x's shape is `[..., M, N]` and denoting `K = min(M, N)`:
2032
            If mode = "reduced", qr op will return reduced Q and R matrices,
2033
            which means Q's shape is `[..., M, K]` and R's shape is `[..., K, N]`.
2034
            If mode = "complete", qr op will return complete Q and R matrices,
2035 2036 2037 2038 2039
            which means Q's shape is `[..., M, M]` and R's shape is `[..., M, N]`.
            If mode = "r", qr op will only return reduced R matrix, which means
            R's shape is `[..., K, N]`.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
2040

2041
    Returns:
2042
        If mode = "reduced" or mode = "complete", qr will return a two tensor-tuple, which represents Q and R.
2043
        If mode = "r", qr will return a tensor which represents R.
2044 2045

    Examples:
2046 2047
        .. code-block:: python

2048
            import paddle
2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060

            x = paddle.to_tensor([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]]).astype('float64')
            q, r = paddle.linalg.qr(x)
            print (q)
            print (r)

            # Q = [[-0.16903085,  0.89708523],
            #      [-0.50709255,  0.27602622],
            #      [-0.84515425, -0.34503278]])

            # R = [[-5.91607978, -7.43735744],
            #      [ 0.        ,  0.82807867]])
2061 2062

            # one can verify : X = Q * R ;
2063
    """
Y
Yulong Ao 已提交
2064
    if in_dygraph_mode():
2065
        q, r = _C_ops.qr(x, mode)
Y
Yulong Ao 已提交
2066 2067 2068 2069 2070
        if mode == "r":
            return r
        else:
            return q, r
    if _in_legacy_dygraph():
2071
        q, r = _legacy_C_ops.qr(x, 'mode', mode)
2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082
        if mode == "r":
            return r
        else:
            return q, r
    check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'qr')
    check_type(mode, 'mode', str, 'qr')
    helper = LayerHelper('qr', **locals())
    q = helper.create_variable_for_type_inference(dtype=x.dtype)
    r = helper.create_variable_for_type_inference(dtype=x.dtype)
    attrs = dict()
    attrs['mode'] = mode
2083 2084 2085 2086 2087 2088 2089
    helper.append_op(type='qr',
                     inputs={'X': [x]},
                     outputs={
                         'Q': q,
                         'R': r
                     },
                     attrs=attrs)
2090 2091 2092 2093 2094 2095
    if mode == "r":
        return r
    else:
        return q, r


2096 2097
def lu(x, pivot=True, get_infos=False, name=None):
    r"""
2098
    Computes the LU factorization of an N-D(N>=2) matrix x.
2099

2100
    Returns the LU factorization(inplace x) and Pivots. low triangular matrix L and
2101 2102 2103 2104
    upper triangular matrix U are combined to a single LU matrix.

    Pivoting is done if pivot is set to True.
    P mat can be get by pivots:
2105 2106 2107 2108 2109 2110

    .. code-block:: text
        ones = eye(rows) #eye matrix of rank rows
        for i in range(cols):
            swap(ones[i], ones[pivots[i]])
        return ones
2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121

    Args:

        X (Tensor): the tensor to factor of N-dimensions(N>=2).

        pivot (bool, optional): controls whether pivoting is done. Default: True.

        get_infos (bool, optional): if set to True, returns an info IntTensor. Default: False.

        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
2122

2123
    Returns:
2124
        factorization (Tensor), LU matrix, the factorization of input X.
2125

2126 2127 2128
        pivots (IntTensor), the pivots of size(∗(N-2), min(m,n)). `pivots` stores all the
        intermediate transpositions of rows. The final permutation `perm` could be
        reconstructed by this, details refer to upper example.
2129

2130 2131 2132
        infos (IntTensor, optional), if `get_infos` is `True`, this is a tensor of size (∗(N-2))
        where non-zero values indicate whether factorization for the matrix or each minibatch
        has succeeded or failed.
2133

2134 2135

    Examples:
2136 2137
        .. code-block:: python

2138
            import paddle
2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153

            x = paddle.to_tensor([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]]).astype('float64')
            lu,p,info = paddle.linalg.lu(x, get_infos=True)

            # >>> lu:
            # Tensor(shape=[3, 2], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            #    [[5.        , 6.        ],
            #        [0.20000000, 0.80000000],
            #        [0.60000000, 0.50000000]])
            # >>> p
            # Tensor(shape=[2], dtype=int32, place=CUDAPlace(0), stop_gradient=True,
            #    [3, 3])
            # >>> info
            # Tensor(shape=[], dtype=int32, place=CUDAPlace(0), stop_gradient=True,
            #    0)
2154

2155 2156 2157 2158 2159 2160
            P,L,U = paddle.linalg.lu_unpack(lu,p)

            # >>> P
            # (Tensor(shape=[3, 3], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            # [[0., 1., 0.],
            # [0., 0., 1.],
2161
            # [1., 0., 0.]]),
2162 2163 2164 2165
            # >>> L
            # Tensor(shape=[3, 2], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            # [[1.        , 0.        ],
            # [0.20000000, 1.        ],
2166
            # [0.60000000, 0.50000000]]),
2167 2168 2169 2170 2171
            # >>> U
            # Tensor(shape=[2, 2], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            # [[5.        , 6.        ],
            # [0.        , 0.80000000]]))

2172 2173

            # one can verify : X = P @ L @ U ;
2174
    """
L
Lin Manhui 已提交
2175 2176

    if in_dygraph_mode():
2177
        lu, p, info = _C_ops.lu(x, pivot)
L
Lin Manhui 已提交
2178
    elif paddle.in_dynamic_mode():
2179
        lu, p, info = _legacy_C_ops.lu(x, 'pivot', pivot)
L
Lin Manhui 已提交
2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195
    else:
        check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'lu')
        helper = LayerHelper('lu', **locals())
        lu = helper.create_variable_for_type_inference(dtype=x.dtype)
        p = helper.create_variable_for_type_inference(dtype='int')
        info = helper.create_variable_for_type_inference(dtype='int')
        attrs = dict()
        attrs['pivot'] = pivot
        helper.append_op(type='lu',
                         inputs={'X': x},
                         outputs={
                             'Out': lu,
                             'Pivots': p,
                             'Infos': info
                         },
                         attrs=attrs)
2196 2197 2198 2199 2200 2201 2202 2203
    if get_infos:
        return lu, p, info
    else:
        return lu, p


def lu_unpack(x, y, unpack_ludata=True, unpack_pivots=True, name=None):
    r"""
2204
    Unpack L U and P to single matrix tensor .
2205 2206 2207
    unpack L and U matrix from LU, unpack permutation matrix P from Pivtos .

    P mat can be get by pivots:
2208 2209 2210 2211 2212

    .. code-block:: text
        ones = eye(rows) #eye matrix of rank rows
        for i in range(cols):
            swap(ones[i], ones[pivots[i]])
2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225


    Args:
        x (Tensor): The LU tensor get from paddle.linalg.lu, which is combined by L and U.

        y (Tensor): Pivots get from paddle.linalg.lu.

        unpack_ludata (bool,optional): whether to unpack L and U from x. Default: True.

        unpack_pivots (bool, optional): whether to unpack permutation matrix P from Pivtos. Default: True.

        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
2226

2227
    Returns:
2228
        P (Tensor), Permutation matrix P of lu factorization.
2229

2230
        L (Tensor), The lower triangular matrix tensor of lu factorization.
2231

2232
        U (Tensor), The upper triangular matrix tensor of lu factorization.
2233

2234 2235

    Examples:
2236 2237
        .. code-block:: python

2238
            import paddle
2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253

            x = paddle.to_tensor([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]]).astype('float64')
            lu,p,info = paddle.linalg.lu(x, get_infos=True)

            # >>> lu:
            # Tensor(shape=[3, 2], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            #    [[5.        , 6.        ],
            #        [0.20000000, 0.80000000],
            #        [0.60000000, 0.50000000]])
            # >>> p
            # Tensor(shape=[2], dtype=int32, place=CUDAPlace(0), stop_gradient=True,
            #    [3, 3])
            # >>> info
            # Tensor(shape=[], dtype=int32, place=CUDAPlace(0), stop_gradient=True,
            #    0)
2254

2255 2256 2257 2258 2259 2260
            P,L,U = paddle.linalg.lu_unpack(lu,p)

            # >>> P
            # (Tensor(shape=[3, 3], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            # [[0., 1., 0.],
            # [0., 0., 1.],
2261
            # [1., 0., 0.]]),
2262 2263 2264 2265
            # >>> L
            # Tensor(shape=[3, 2], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            # [[1.        , 0.        ],
            # [0.20000000, 1.        ],
2266
            # [0.60000000, 0.50000000]]),
2267 2268 2269 2270 2271
            # >>> U
            # Tensor(shape=[2, 2], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            # [[5.        , 6.        ],
            # [0.        , 0.80000000]]))

2272
            # one can verify : X = P @ L @ U ;
2273 2274
    """

2275
    if in_dygraph_mode():
2276
        P, L, U = _C_ops.lu_unpack(x, y, unpack_ludata, unpack_pivots)
2277 2278
        return P, L, U

Z
zhiboniu 已提交
2279
    if paddle.in_dynamic_mode():
2280 2281
        P, L, U = _legacy_C_ops.lu_unpack(x, y, 'unpack_ludata', unpack_ludata,
                                          'unpack_pivots', unpack_pivots)
2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292
        return P, L, U

    check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'lu_unpack')
    helper = LayerHelper('lu_unpack', **locals())
    p = helper.create_variable_for_type_inference(dtype=x.dtype)
    l = helper.create_variable_for_type_inference(dtype=x.dtype)
    u = helper.create_variable_for_type_inference(dtype=x.dtype)

    attrs = dict()
    attrs['unpack_ludata'] = unpack_ludata
    attrs['unpack_pivots'] = unpack_pivots
2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303
    helper.append_op(type='lu_unpack',
                     inputs={
                         'X': x,
                         'Pivots': y
                     },
                     outputs={
                         'Pmat': p,
                         'L': l,
                         'U': u
                     },
                     attrs=attrs)
2304 2305 2306
    return p, l, u


L
Lijunhui 已提交
2307 2308
def eig(x, name=None):
    """
2309
    Performs the eigenvalue decomposition of a square matrix or a batch of square matrices.
L
Lijunhui 已提交
2310

2311 2312 2313 2314 2315 2316
    Note:
        - If the matrix is a Hermitian or a real symmetric matrix, please use :ref:`paddle.linalg.eigh` instead, which is much faster.
        - If only eigenvalues is needed, please use :ref:`paddle.linalg.eigvals` instead.
        - If the matrix is of any shape, please use :ref:`paddle.linalg.svd`.
        - This API is only supported on CPU device.
        - The output datatype is always complex for both real and complex input.
L
Lijunhui 已提交
2317 2318 2319 2320

    Args:
        x (Tensor): A tensor with shape math:`[*, N, N]`, The data type of the x should be one of ``float32``,
            ``float64``, ``compplex64`` or ``complex128``.
2321
        name (str, optional): The default value is `None`. Normally there is no need for user to set
L
Lijunhui 已提交
2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334
            this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Eigenvalues(Tensors): A tensor with shape math:`[*, N]` refers to the eigen values.
        Eigenvectors(Tensors): A tensor with shape math:`[*, N, N]` refers to the eigen vectors.

    Examples:
        .. code-block:: python

            import paddle

            paddle.device.set_device("cpu")

2335
            x = paddle.to_tensor([[1.6707249, 7.2249975, 6.5045543],
L
Lijunhui 已提交
2336
                               [9.956216,  8.749598,  6.066444 ],
2337
                               [4.4251957, 1.7983172, 0.370647 ]])
L
Lijunhui 已提交
2338
            w, v = paddle.linalg.eig(x)
2339
            print(v)
L
Lijunhui 已提交
2340 2341 2342 2343 2344 2345 2346 2347
            # Tensor(shape=[3, 3], dtype=complex128, place=CPUPlace, stop_gradient=False,
            #       [[(-0.5061363550800655+0j) , (-0.7971760990842826+0j) ,
            #         (0.18518077798279986+0j)],
            #        [(-0.8308237755993192+0j) ,  (0.3463813401919749+0j) ,
            #         (-0.6837005269141947+0j) ],
            #        [(-0.23142567697893396+0j),  (0.4944999840400175+0j) ,
            #         (0.7058765252952796+0j) ]])

2348
            print(w)
L
Lijunhui 已提交
2349 2350 2351 2352
            # Tensor(shape=[3], dtype=complex128, place=CPUPlace, stop_gradient=False,
            #       [ (16.50471283351188+0j)  , (-5.5034820550763515+0j) ,
            #         (-0.21026087843552282+0j)])
    """
2353
    if in_dygraph_mode():
2354
        return _C_ops.eig(x)
2355
    elif paddle.in_dynamic_mode():
2356
        w, v = _legacy_C_ops.eig(x)
L
Lijunhui 已提交
2357 2358
        return w, v

2359 2360 2361
    check_variable_and_dtype(x, 'X',
                             ['float32', 'float64', 'complex64', 'complex128'],
                             'eig')
L
Lijunhui 已提交
2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373
    helper = LayerHelper('eig', **locals())

    w = helper.create_variable_for_type_inference(x.dtype)
    v = helper.create_variable_for_type_inference(x.dtype)

    inputs = {'X': x}
    outputs = {'Eigenvalues': w, 'Eigenvectors': v}
    helper.append_op(type='eig', inputs=inputs, outputs=outputs)

    return w, v


2374 2375 2376
def eigvals(x, name=None):
    """
    Compute the eigenvalues of one or more general matrices.
2377 2378 2379

    Warning:
        The gradient kernel of this operator does not yet developed.
2380 2381 2382 2383
        If you need back propagation through this operator, please replace it with paddle.linalg.eig.

    Args:
        x (Tensor): A square matrix or a batch of square matrices whose eigenvalues will be computed.
2384
            Its shape should be `[*, M, M]`, where `*` is zero or more batch dimensions.
2385
            Its data type should be float32, float64, complex64, or complex128.
2386
        name (str, optional): Name for the operation (optional, default is None).
2387
            For more information, please refer to :ref:`api_guide_Name`.
2388

2389
    Returns:
2390 2391
        Tensor, A tensor containing the unsorted eigenvalues which has the same batch
        dimensions with `x`. The eigenvalues are complex-valued even when `x` is real.
2392 2393 2394 2395 2396

    Examples:
        .. code-block:: python

            import paddle
2397

2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410
            paddle.set_device("cpu")
            paddle.seed(1234)

            x = paddle.rand(shape=[3, 3], dtype='float64')
            # [[0.02773777, 0.93004224, 0.06911496],
            #  [0.24831591, 0.45733623, 0.07717843],
            #  [0.48016702, 0.14235102, 0.42620817]])

            print(paddle.linalg.eigvals(x))
            # [(-0.27078833542132674+0j), (0.29962280156230725+0j), (0.8824477020120244+0j)] #complex128
    """

    check_variable_and_dtype(x, 'dtype',
2411 2412
                             ['float32', 'float64', 'complex64', 'complex128'],
                             'eigvals')
2413 2414 2415 2416

    x_shape = list(x.shape)
    if len(x_shape) < 2:
        raise ValueError(
2417 2418
            "The dimension of Input(x) should be at least 2, but received x's dimention = {}, x's shape = {}"
            .format(len(x_shape), x_shape))
2419 2420 2421

    if x_shape[-1] != x_shape[-2]:
        raise ValueError(
2422 2423
            "The last two dimensions of Input(x) should be equal, but received x's shape = {}"
            .format(x_shape))
2424

R
Ruibiao Chen 已提交
2425
    if in_dygraph_mode():
2426
        return _C_ops.eigvals(x)
2427 2428
    elif paddle.in_dynamic_mode():
        return _legacy_C_ops.eigvals(x)
2429 2430 2431 2432 2433 2434 2435

    helper = LayerHelper('eigvals', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(type='eigvals', inputs={'X': x}, outputs={'Out': out})
    return out


2436 2437 2438 2439
def multi_dot(x, name=None):
    """
    Multi_dot is an operator that calculates multiple matrix multiplications.

2440
    Supports inputs of float16(only GPU support), float32 and float64 dtypes. This function does not
2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476
    support batched inputs.

    The input tensor in [x] must be 2-D except for the first and last can be 1-D.
    If the first tensor is a 1-D vector of shape(n, ) it is treated as row vector
    of shape(1, n), similarly if the last tensor is a 1D vector of shape(n, ), it
    is treated as a column vector of shape(n, 1).

    If the first and last tensor are 2-D matrix, then the output is also 2-D matrix,
    otherwise the output is a 1-D vector.

    Multi_dot will select the lowest cost multiplication order for calculation. The
    cost of multiplying two matrices with shapes (a, b) and (b, c) is a * b * c.
    Given matrices A, B, C with shapes (20, 5), (5, 100), (100, 10) respectively,
    we can calculate the cost of different multiplication orders as follows:
    - Cost((AB)C) = 20x5x100 + 20x100x10 = 30000
    - Cost(A(BC)) = 5x100x10 + 20x5x10 = 6000

    In this case, multiplying B and C first, then multiply A, which is 5 times faster
    than sequential calculation.

    Args:
        x ([Tensor]): The input tensors which is a list Tensor.
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Tensor: The output Tensor.


    Examples:

    .. code-block:: python

        import paddle

        # A * B
2477 2478
        A = paddle.rand([3, 4])
        B = paddle.rand([4, 5])
2479
        out = paddle.linalg.multi_dot([A, B])
2480
        print(out.shape)
2481 2482 2483
        # [3, 5]

        # A * B * C
2484 2485 2486
        A = paddle.rand([10, 5])
        B = paddle.rand([5, 8])
        C = paddle.rand([8, 7])
2487
        out = paddle.linalg.multi_dot([A, B, C])
2488
        print(out.shape)
2489 2490 2491
        # [10, 7]

    """
2492
    if _in_legacy_dygraph():
2493
        return _legacy_C_ops.multi_dot(x)
2494
    if in_dygraph_mode():
2495
        return _C_ops.multi_dot(x)
2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509

    check_type(x, 'x', (list, tuple), 'multi_dot')
    for id, item in enumerate(x):
        check_variable_and_dtype(item, 'x[' + str(id) + ']',
                                 ['float16', 'float32', 'float64'], 'multi_dot')
        if item.dtype != x[0].dtype:
            raise TypeError(
                "All the Tensors in the input must have the same data type.")

    helper = LayerHelper('multi_dot', **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(type='multi_dot', inputs={"X": x}, outputs={"Out": out})
    return out
2510 2511 2512 2513


def eigh(x, UPLO='L', name=None):
    """
2514
    Compute the eigenvalues and eigenvectors of a
2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525
    complex Hermitian (conjugate symmetric) or a real symmetric matrix.

    Args:
        x (Tensor): A tensor with shape :math:`[*, N, N]` , The data type of the input Tensor x
            should be one of float32, float64, complex64, complex128.
        UPLO(str, optional): (string, default 'L'), 'L' represents the lower triangular matrix,
                        "'U' represents the upper triangular matrix.".
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.

    Returns:
2526 2527 2528 2529
        - out_value(Tensor):  A Tensor with shape [*, N] and data type of float32 and float64.
            The eigenvalues of eigh op.
        - out_vector(Tensor): A Tensor with shape [*, N, N] and data type of float32,float64,
            complex64 and complex128. The eigenvectors of eigh op.
2530 2531 2532 2533 2534 2535

    Examples:
        .. code-block:: python

            import paddle

2536
            x = paddle.to_tensor([[1, -2j], [2j, 5]])
2537
            out_value, out_vector = paddle.linalg.eigh(x, UPLO='L')
2538 2539 2540 2541 2542 2543 2544
            print(out_value)
            #[0.17157288, 5.82842712]
            print(out_vector)
            #[(-0.9238795325112867+0j), (-0.3826834323650898+0j)],
            #[ 0.3826834323650898j    , -0.9238795325112867j    ]]

    """
H
hong 已提交
2545
    if in_dygraph_mode():
2546
        return _C_ops.eigh(x, UPLO)
H
hong 已提交
2547 2548

    if _in_legacy_dygraph():
2549
        return _legacy_C_ops.eigh(x, 'UPLO', UPLO)
2550 2551 2552 2553 2554 2555 2556 2557 2558

    def __check_input(x, UPLO):
        x_shape = list(x.shape)
        if len(x.shape) < 2:
            raise ValueError(
                "Input(input) only support >=2 tensor, but received "
                "length of Input(input) is %s." % len(x.shape))
        if x_shape[-1] != x_shape[-2]:
            raise ValueError(
2559 2560
                "The input matrix must be batches of square matrices. But received x's dimention: {}"
                .format(x_shape))
2561
        if UPLO != 'L' and UPLO != 'U':
2562 2563 2564 2565 2566 2567
            raise ValueError(
                "UPLO must be L or U. But received UPLO is: {}".format(UPLO))

    __check_input(x, UPLO)

    helper = LayerHelper('eigh', **locals())
2568 2569 2570
    check_variable_and_dtype(x, 'dtype',
                             ['float32', 'float64', 'complex64', 'complex128'],
                             'eigh')
2571 2572 2573 2574

    out_value = helper.create_variable_for_type_inference(dtype=x.dtype)
    out_vector = helper.create_variable_for_type_inference(dtype=x.dtype)

2575 2576 2577 2578 2579 2580 2581
    helper.append_op(type='eigh',
                     inputs={'X': x},
                     outputs={
                         'Eigenvalues': out_value,
                         'Eigenvectors': out_vector
                     },
                     attrs={'UPLO': UPLO})
2582
    return out_value, out_vector
A
andyjpaddle 已提交
2583 2584 2585 2586


def pinv(x, rcond=1e-15, hermitian=False, name=None):
    r"""
2587
    Calculate pseudo inverse via SVD(singular value decomposition)
A
andyjpaddle 已提交
2588 2589 2590 2591 2592 2593 2594 2595 2596 2597
    of one matrix or batches of regular matrix.

    .. math::

        if hermitian == False:
            x = u * s * vt  (SVD)
            out = v * 1/s * ut
        else:
            x = u * s * ut  (eigh)
            out = u * 1/s * u.conj().transpose(-2,-1)
2598

A
andyjpaddle 已提交
2599 2600 2601
    If x is hermitian or symmetric matrix, svd will be replaced with eigh.

    Args:
2602 2603 2604
        x(Tensor): The input tensor. Its shape should be (*, m, n)
            where * is zero or more batch dimensions. m and n can be
            arbitraty positive number. The data type of x should be
A
andyjpaddle 已提交
2605 2606 2607 2608
            float32 or float64 or complex64 or complex128. When data
            type is complex64 or cpmplex128, hermitian should be set
            True.

2609
        rcond(Tensor, optional): the tolerance value to determine
2610
            when is a singular value zero. Default:1e-15.
2611 2612

        hermitian(bool, optional): indicates whether x is Hermitian
A
andyjpaddle 已提交
2613
            if complex or symmetric if real. Default: False.
2614 2615

        name(str|None): A name for this layer(optional). If set None,
A
andyjpaddle 已提交
2616
            the layer will be named automatically.
2617

A
andyjpaddle 已提交
2618
    Returns:
2619
        Tensor: The tensor with same data type with x. it represents
A
andyjpaddle 已提交
2620
        pseudo inverse of x. Its shape should be (*, n, m).
2621

A
andyjpaddle 已提交
2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647
    Examples:
        .. code-block:: python

            import paddle

            x = paddle.arange(15).reshape((3, 5)).astype('float64')
            input = paddle.to_tensor(x)
            out = paddle.linalg.pinv(input)
            print(input)
            print(out)

            # input:
            # [[0. , 1. , 2. , 3. , 4. ],
            # [5. , 6. , 7. , 8. , 9. ],
            # [10., 11., 12., 13., 14.]]

            # out:
            # [[-0.22666667, -0.06666667,  0.09333333],
            # [-0.12333333, -0.03333333,  0.05666667],
            # [-0.02000000,  0.00000000,  0.02000000],
            # [ 0.08333333,  0.03333333, -0.01666667],
            # [ 0.18666667,  0.06666667, -0.05333333]]

            # one can verify : x * out * x = x ;
            # or              out * x * out = x ;
    """
2648 2649 2650
    if in_dygraph_mode():
        if not hermitian:
            # combine svd and matmul op
2651 2652
            u, s, vt = _C_ops.svd(x, False)
            max_singular_val = _C_ops.max(s, [-1], True)
2653 2654 2655 2656
            rcond = paddle.to_tensor(rcond, dtype=x.dtype)
            cutoff = rcond * max_singular_val
            y = float('inf')
            y = paddle.to_tensor(y, dtype=x.dtype)
A
andyjpaddle 已提交
2657

2658 2659 2660 2661 2662 2663
            condition = s > cutoff
            cond_int = cast(condition, s.dtype)
            cond_not_int = cast(logical_not(condition), s.dtype)
            out1 = multiply(1 / s, cond_int)
            out2 = multiply(1 / y, cond_not_int)
            singular = add(out1, out2)
2664
            st = _C_ops.unsqueeze(singular, [-2])
2665 2666 2667

            dims = list(range(len(vt.shape)))
            perm = dims[:-2] + [dims[-1]] + [dims[-2]]
2668
            v = _C_ops.transpose(vt, perm)
2669 2670

            out_1 = v * st
2671
            out_2 = _C_ops.matmul(out_1, u, False, True)
2672 2673 2674
            return out_2
        else:
            # combine eigh and matmul op
2675
            s, u = _C_ops.eigh(x, 'UPLO')
2676
            s_abs = paddle.abs(s)
2677
            max_singular_val = _C_ops.max(s_abs, [-1], True)
2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688
            rcond = paddle.to_tensor(rcond, dtype=s.dtype)
            cutoff = rcond * max_singular_val
            y = float('inf')
            y = paddle.to_tensor(y, dtype=s.dtype)

            condition = s_abs > cutoff
            cond_int = cast(condition, s.dtype)
            cond_not_int = cast(logical_not(condition), s.dtype)
            out1 = multiply(1 / s, cond_int)
            out2 = multiply(1 / y, cond_not_int)
            singular = add(out1, out2)
2689
            st = _C_ops.unsqueeze(singular, [-2])
2690 2691

            out_1 = u * st
2692 2693
            u_conj = _C_ops.conj(u)
            out_2 = _C_ops.matmul(out_1, u_conj, False, True)
2694 2695 2696
            return out_2

    if _in_legacy_dygraph():
A
andyjpaddle 已提交
2697 2698
        if not hermitian:
            # combine svd and matmul op
2699 2700
            u, s, vt = _legacy_C_ops.svd(x, 'full_matrices', False)
            max_singular_val = _legacy_C_ops.reduce_max(s, 'dim', [-1], 'keep_dim', True, \
A
andyjpaddle 已提交
2701 2702 2703 2704 2705 2706 2707
                'reduce_all', False)
            rcond = paddle.to_tensor(rcond, dtype=x.dtype)
            cutoff = rcond * max_singular_val
            y = float('inf')
            y = paddle.to_tensor(y, dtype=x.dtype)

            condition = s > cutoff
2708 2709 2710 2711 2712
            cond_int = cast(condition, s.dtype)
            cond_not_int = cast(logical_not(condition), s.dtype)
            out1 = multiply(1 / s, cond_int)
            out2 = multiply(1 / y, cond_not_int)
            singular = add(out1, out2)
2713
            st, _ = _legacy_C_ops.unsqueeze2(singular, 'axes', [-2])
A
andyjpaddle 已提交
2714 2715 2716

            dims = list(range(len(vt.shape)))
            perm = dims[:-2] + [dims[-1]] + [dims[-2]]
2717
            v, _ = _legacy_C_ops.transpose2(vt, 'axis', perm)
A
andyjpaddle 已提交
2718 2719

            out_1 = v * st
2720
            if in_dygraph_mode():
2721
                out_2 = _C_ops.matmul(out_1, u, False, True)
2722
            else:
2723 2724
                out_2 = _legacy_C_ops.matmul_v2(out_1, u, 'trans_x', False,
                                                'trans_y', True)
A
andyjpaddle 已提交
2725 2726 2727
            return out_2
        else:
            # combine eigh and matmul op
2728
            s, u = _legacy_C_ops.eigh(x, 'UPLO', 'L')
A
andyjpaddle 已提交
2729
            s_abs = paddle.abs(s)
2730
            max_singular_val = _legacy_C_ops.reduce_max(s_abs, 'dim', [-1], 'keep_dim', True, \
A
andyjpaddle 已提交
2731 2732 2733 2734 2735 2736 2737
                'reduce_all', False)
            rcond = paddle.to_tensor(rcond, dtype=s.dtype)
            cutoff = rcond * max_singular_val
            y = float('inf')
            y = paddle.to_tensor(y, dtype=s.dtype)

            condition = s_abs > cutoff
2738 2739 2740 2741 2742
            cond_int = cast(condition, s.dtype)
            cond_not_int = cast(logical_not(condition), s.dtype)
            out1 = multiply(1 / s, cond_int)
            out2 = multiply(1 / y, cond_not_int)
            singular = add(out1, out2)
2743
            st, _ = _legacy_C_ops.unsqueeze2(singular, 'axes', [-2])
A
andyjpaddle 已提交
2744 2745

            out_1 = u * st
2746
            u_conj = _legacy_C_ops.conj(u)
2747
            if in_dygraph_mode():
2748
                out_2 = _C_ops.matmul(out_1, u_conj, False, True)
2749
            else:
2750 2751
                out_2 = _legacy_C_ops.matmul_v2(out_1, u_conj, 'trans_x', False,
                                                'trans_y', True)
A
andyjpaddle 已提交
2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764
            return out_2
    else:
        if not hermitian:
            helper = LayerHelper('pinv', **locals())
            dtype = x.dtype
            check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'pinv')

            u = helper.create_variable_for_type_inference(dtype)
            s = helper.create_variable_for_type_inference(dtype)
            vt = helper.create_variable_for_type_inference(dtype)
            helper.append_op(
                type='svd',
                inputs={'X': [x]},
2765 2766 2767 2768 2769 2770 2771
                outputs={
                    'U': u,
                    'VH': vt,
                    'S': s
                },
                attrs={'full_matrices': False},
            )
A
andyjpaddle 已提交
2772 2773

            max_singular_val = helper.create_variable_for_type_inference(dtype)
2774 2775 2776 2777 2778 2779 2780 2781
            helper.append_op(type='reduce_max',
                             inputs={'X': s},
                             outputs={'Out': max_singular_val},
                             attrs={
                                 'dim': [-1],
                                 'keep_dim': True,
                                 'reduce_all': False
                             })
A
andyjpaddle 已提交
2782

2783
            rcond = full(shape=[1], fill_value=rcond, dtype=dtype)
A
andyjpaddle 已提交
2784 2785
            cutoff = rcond * max_singular_val
            y = float('inf')
2786
            y = full(shape=[1], fill_value=y, dtype=dtype)
A
andyjpaddle 已提交
2787 2788

            condition = s > cutoff
2789 2790 2791 2792 2793
            cond_int = cast(condition, dtype)
            cond_not_int = cast(logical_not(condition), dtype)
            out1 = multiply(1 / s, cond_int)
            out2 = multiply(1 / y, cond_not_int)
            singular = add(out1, out2)
A
andyjpaddle 已提交
2794 2795 2796

            st = helper.create_variable_for_type_inference(dtype=dtype)
            st_shape = helper.create_variable_for_type_inference(dtype=dtype)
2797 2798 2799 2800 2801 2802 2803
            helper.append_op(type='unsqueeze2',
                             inputs={'X': singular},
                             attrs={'axes': [-2]},
                             outputs={
                                 'Out': st,
                                 'XShape': st_shape
                             })
A
andyjpaddle 已提交
2804 2805 2806 2807 2808

            dims = list(range(len(vt.shape)))
            perm = dims[:-2] + [dims[-1]] + [dims[-2]]
            v = helper.create_variable_for_type_inference(dtype)
            v_shape = helper.create_variable_for_type_inference(dtype)
2809 2810 2811 2812 2813 2814 2815
            helper.append_op(type='transpose2',
                             inputs={'X': [vt]},
                             outputs={
                                 'Out': [v],
                                 'XShape': [v_shape]
                             },
                             attrs={'axis': perm})
A
andyjpaddle 已提交
2816 2817

            out_1 = helper.create_variable_for_type_inference(dtype)
2818 2819 2820 2821 2822 2823 2824 2825 2826 2827
            helper.append_op(type='elementwise_mul',
                             inputs={
                                 'X': v,
                                 'Y': st
                             },
                             outputs={'Out': out_1},
                             attrs={
                                 'axis': -1,
                                 'use_mkldnn': False
                             })
A
andyjpaddle 已提交
2828 2829 2830 2831 2832
            out_1 = helper.append_activation(out_1)

            out_2 = helper.create_variable_for_type_inference(dtype)
            helper.append_op(
                type='matmul_v2',
2833 2834 2835 2836
                inputs={
                    'X': out_1,
                    'Y': u
                },
A
andyjpaddle 已提交
2837
                outputs={'Out': out_2},
2838 2839 2840 2841 2842
                attrs={
                    'trans_x': False,
                    'trans_y': True
                },
            )
A
andyjpaddle 已提交
2843 2844 2845 2846 2847
            return out_2
        else:
            helper = LayerHelper('pinv', **locals())
            dtype = x.dtype
            check_variable_and_dtype(
2848 2849
                x, 'dtype', ['float32', 'float64', 'complex64', 'complex128'],
                'pinv')
A
andyjpaddle 已提交
2850 2851 2852 2853 2854 2855 2856 2857 2858 2859

            if dtype == paddle.complex128:
                s_type = 'float64'
            elif dtype == paddle.complex64:
                s_type = 'float32'
            else:
                s_type = dtype

            u = helper.create_variable_for_type_inference(dtype)
            s = helper.create_variable_for_type_inference(s_type)
2860 2861 2862 2863 2864 2865 2866
            helper.append_op(type='eigh',
                             inputs={'X': x},
                             outputs={
                                 'Eigenvalues': s,
                                 'Eigenvectors': u
                             },
                             attrs={'UPLO': 'L'})
A
andyjpaddle 已提交
2867
            s_abs = helper.create_variable_for_type_inference(s_type)
2868 2869 2870
            helper.append_op(type='abs',
                             inputs={'X': s},
                             outputs={'Out': s_abs})
A
andyjpaddle 已提交
2871
            max_singular_val = helper.create_variable_for_type_inference(s_type)
2872 2873 2874 2875 2876 2877 2878 2879
            helper.append_op(type='reduce_max',
                             inputs={'X': s_abs},
                             outputs={'Out': max_singular_val},
                             attrs={
                                 'dim': [-1],
                                 'keep_dim': True,
                                 'reduce_all': False
                             })
A
andyjpaddle 已提交
2880

2881
            rcond = full(shape=[1], fill_value=rcond, dtype=s_type)
A
andyjpaddle 已提交
2882 2883
            cutoff = rcond * max_singular_val
            y = float('inf')
2884
            y = full(shape=[1], fill_value=y, dtype=s_type)
A
andyjpaddle 已提交
2885 2886

            condition = s_abs > cutoff
2887 2888 2889 2890 2891
            cond_int = cast(condition, s_type)
            cond_not_int = cast(logical_not(condition), s_type)
            out1 = multiply(1 / s, cond_int)
            out2 = multiply(1 / y, cond_not_int)
            singular = add(out1, out2)
A
andyjpaddle 已提交
2892 2893 2894

            st = helper.create_variable_for_type_inference(dtype=s_type)
            st_shape = helper.create_variable_for_type_inference(dtype=s_type)
2895 2896 2897 2898 2899 2900 2901
            helper.append_op(type='unsqueeze2',
                             inputs={'X': singular},
                             attrs={'axes': [-2]},
                             outputs={
                                 'Out': st,
                                 'XShape': st_shape
                             })
A
andyjpaddle 已提交
2902 2903

            out_1 = helper.create_variable_for_type_inference(dtype)
2904 2905 2906 2907 2908 2909 2910 2911 2912 2913
            helper.append_op(type='elementwise_mul',
                             inputs={
                                 'X': u,
                                 'Y': st
                             },
                             outputs={'Out': out_1},
                             attrs={
                                 'axis': -1,
                                 'use_mkldnn': False
                             })
A
andyjpaddle 已提交
2914 2915 2916
            out_1 = helper.append_activation(out_1)

            u_conj = helper.create_variable_for_type_inference(dtype)
2917 2918 2919
            helper.append_op(type='conj',
                             inputs={'X': u},
                             outputs={'Out': [u_conj]})
A
andyjpaddle 已提交
2920 2921 2922 2923

            out_2 = helper.create_variable_for_type_inference(dtype)
            helper.append_op(
                type='matmul_v2',
2924 2925 2926 2927
                inputs={
                    'X': out_1,
                    'Y': u_conj
                },
A
andyjpaddle 已提交
2928
                outputs={'Out': out_2},
2929 2930 2931 2932 2933
                attrs={
                    'trans_x': False,
                    'trans_y': True
                },
            )
A
andyjpaddle 已提交
2934
            return out_2
W
Weilong Wu 已提交
2935 2936 2937 2938 2939 2940 2941


def solve(x, y, name=None):
    r"""
    Computes the solution of a square system of linear equations with a unique solution for input 'X' and 'Y'.
    Let :math: `X` be a sqaure matrix or a batch of square matrices, :math:`Y` be
    a vector/matrix or a batch of vectors/matrices, the equation should be:
2942

W
Weilong Wu 已提交
2943 2944
    .. math::
        Out = X^-1 * Y
2945 2946

    Specifically, this system of linear equations has one solution if and only if input 'X' is invertible.
2947

W
Weilong Wu 已提交
2948 2949 2950 2951 2952
    Args:
        x (Tensor): A square matrix or a batch of square matrices. Its shape should be `[*, M, M]`, where `*` is zero or
            more batch dimensions. Its data type should be float32 or float64.
        y (Tensor): A vector/matrix or a batch of vectors/matrices. Its shape should be `[*, M, K]`, where `*` is zero or
            more batch dimensions. Its data type should be float32 or float64.
2953
        name(str, optional): Name for the operation (optional, default is None).
W
Weilong Wu 已提交
2954
            For more information, please refer to :ref:`api_guide_Name`.
2955

W
Weilong Wu 已提交
2956
    Returns:
2957
        Tensor: The solution of a square system of linear equations with a unique solution for input 'x' and 'y'.
W
Weilong Wu 已提交
2958
        Its data type should be the same as that of `x`.
2959

W
Weilong Wu 已提交
2960
    Examples:
2961

2962
        .. code-block:: python
2963

2964 2965 2966
            # a square system of linear equations:
            # 2*X0 + X1 = 9
            # X0 + 2*X1 = 8
2967

2968 2969 2970 2971 2972
            import paddle

            x = paddle.to_tensor([[3, 1],[1, 2]], dtype="float64")
            y = paddle.to_tensor([9, 8], dtype="float64")
            out = paddle.linalg.solve(x, y)
2973

2974 2975
            print(out)
            # [2., 3.])
W
Weilong Wu 已提交
2976
    """
2977
    if in_dygraph_mode():
2978
        return _C_ops.solve(x, y)
2979 2980

    if _in_legacy_dygraph():
2981
        return _legacy_C_ops.solve(x, y)
W
Weilong Wu 已提交
2982 2983 2984 2985 2986 2987 2988

    inputs = {"X": [x], "Y": [y]}
    helper = LayerHelper("solve", **locals())
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'solve')
    check_variable_and_dtype(y, 'y', ['float32', 'float64'], 'solve')
    out = helper.create_variable_for_type_inference(dtype=x.dtype)

2989 2990 2991 2992 2993 2994
    helper.append_op(type="solve",
                     inputs={
                         "X": x,
                         "Y": y
                     },
                     outputs={"Out": out})
W
Weilong Wu 已提交
2995
    return out
2996 2997


2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013
def triangular_solve(x,
                     y,
                     upper=True,
                     transpose=False,
                     unitriangular=False,
                     name=None):
    r"""
    Computes the solution of a system of equations with a triangular coefficient matrix `x` and
    multiple right-hand sides `y` .

    Input `x` and `y` is 2D matrices or batches of 2D matrices. If the inputs are batches, the outputs
    is also batches.

    Args:
        x (Tensor): The input triangular coefficient matrix. Its shape should be `[*, M, M]`, where `*` is zero or
            more batch dimensions. Its data type should be float32 or float64.
3014
        y (Tensor): Multiple right-hand sides of system of equations. Its shape should be `[*, M, K]`, where `*` is
3015
            zero or more batch dimensions. Its data type should be float32 or float64.
3016
        upper (bool, optional): Whether to solve the upper-triangular system of equations (default) or the lower-triangular
3017 3018
            system of equations. Default: True.
        transpose (bool, optional): whether `x` should be transposed before calculation. Default: False.
3019
        unitriangular (bool, optional): whether `x` is unit triangular. If True, the diagonal elements of `x` are assumed
3020 3021 3022 3023 3024 3025 3026 3027
            to be 1 and not referenced from `x` . Default: False.
        name(str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: The solution of the system of equations. Its data type should be the same as that of `x`.

    Examples:
3028
        .. code-block:: python
3029

3030 3031 3032 3033
            # a square system of linear equations:
            # x1 +   x2  +   x3 = 0
            #      2*x2  +   x3 = -9
            #               -x3 = 5
3034

3035
            import paddle
3036

3037 3038 3039 3040 3041
            x = paddle.to_tensor([[1, 1, 1],
                                  [0, 2, 1],
                                  [0, 0,-1]], dtype="float64")
            y = paddle.to_tensor([[0], [-9], [5]], dtype="float64")
            out = paddle.linalg.triangular_solve(x, y, upper=True)
3042

3043 3044
            print(out)
            # [7, -2, -5]
3045
    """
H
hong 已提交
3046
    if in_dygraph_mode():
3047
        return _C_ops.triangular_solve(x, y, upper, transpose, unitriangular)
H
hong 已提交
3048

Z
zhiboniu 已提交
3049
    if paddle.in_dynamic_mode():
3050 3051 3052
        return _legacy_C_ops.triangular_solve(x, y, 'upper', upper, 'transpose',
                                              transpose, 'unitriangular',
                                              unitriangular)
3053 3054 3055 3056 3057 3058 3059

    inputs = {"X": [x], "Y": [y]}
    helper = LayerHelper("triangular_solve", **locals())
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'triangular_solve')
    check_variable_and_dtype(y, 'y', ['float32', 'float64'], 'triangular_solve')
    out = helper.create_variable_for_type_inference(dtype=x.dtype)

3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070
    helper.append_op(type='triangular_solve',
                     inputs={
                         'X': x,
                         'Y': y
                     },
                     outputs={'Out': out},
                     attrs={
                         'upper': upper,
                         'transpose': transpose,
                         'unitriangular': unitriangular
                     })
3071 3072 3073
    return out


Z
zhiboniu 已提交
3074 3075 3076 3077 3078 3079 3080 3081 3082 3083
def cholesky_solve(x, y, upper=False, name=None):
    r"""
    Solves a linear system of equations A @ X = B, given A's Cholesky factor matrix u and  matrix B.

    Input `x` and `y` is 2D matrices or batches of 2D matrices. If the inputs are batches, the outputs
    is also batches.

    Args:
        x (Tensor): The input matrix which is upper or lower triangular Cholesky factor of square matrix A. Its shape should be `[*, M, M]`, where `*` is zero or
            more batch dimensions. Its data type should be float32 or float64.
3084
        y (Tensor): Multiple right-hand sides of system of equations. Its shape should be `[*, M, K]`, where `*` is
Z
zhiboniu 已提交
3085 3086 3087 3088 3089 3090 3091 3092 3093
            zero or more batch dimensions. Its data type should be float32 or float64.
        upper (bool, optional): whether to consider the Cholesky factor as a lower or upper triangular matrix. Default: False.
        name(str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: The solution of the system of equations. Its data type is the same as that of `x`.

    Examples:
3094
        .. code-block:: python
Z
zhiboniu 已提交
3095

3096
            import paddle
Z
zhiboniu 已提交
3097

3098 3099 3100 3101 3102
            u = paddle.to_tensor([[1, 1, 1],
                                    [0, 2, 1],
                                    [0, 0,-1]], dtype="float64")
            b = paddle.to_tensor([[0], [-9], [5]], dtype="float64")
            out = paddle.linalg.cholesky_solve(b, u, upper=True)
Z
zhiboniu 已提交
3103

3104 3105
            print(out)
            # [-2.5, -7, 9.5]
Z
zhiboniu 已提交
3106
    """
H
hong 已提交
3107
    if in_dygraph_mode():
3108
        return _C_ops.cholesky_solve(x, y, upper)
H
hong 已提交
3109 3110

    if _in_legacy_dygraph():
3111
        return _legacy_C_ops.cholesky_solve(x, y, 'upper', upper)
Z
zhiboniu 已提交
3112 3113 3114 3115 3116 3117

    helper = LayerHelper("cholesky_solve", **locals())
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'cholesky_solve')
    check_variable_and_dtype(y, 'y', ['float32', 'float64'], 'cholesky_solve')
    out = helper.create_variable_for_type_inference(dtype=x.dtype)

3118 3119 3120 3121 3122 3123 3124
    helper.append_op(type='cholesky_solve',
                     inputs={
                         'X': x,
                         'Y': y
                     },
                     outputs={'Out': out},
                     attrs={'upper': upper})
Z
zhiboniu 已提交
3125 3126 3127
    return out


3128 3129
def eigvalsh(x, UPLO='L', name=None):
    """
3130
    Computes the eigenvalues of a
3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147
    complex Hermitian (conjugate symmetric) or a real symmetric matrix.

    Args:
        x (Tensor): A tensor with shape :math:`[_, M, M]` , The data type of the input Tensor x
            should be one of float32, float64, complex64, complex128.
        UPLO(str, optional): Lower triangular part of a (‘L’, default) or the upper triangular part (‘U’).
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: The tensor eigenvalues in ascending order.

    Examples:
        .. code-block:: python

            import paddle

3148
            x = paddle.to_tensor([[1, -2j], [2j, 5]])
3149 3150
            out_value = paddle.eigvalsh(x, UPLO='L')
            print(out_value)
3151 3152
            # Tensor(shape=[2], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [0.17157286, 5.82842731])
3153
    """
3154
    if in_dygraph_mode():
3155
        values, _ = _C_ops.eigvalsh(x, UPLO, x.stop_gradient)
3156 3157 3158
        return values

    elif paddle.in_dynamic_mode():
3159
        is_test = x.stop_gradient
3160
        values, _ = _legacy_C_ops.eigvalsh(x, 'UPLO', UPLO, 'is_test', is_test)
3161 3162 3163 3164 3165 3166 3167 3168 3169 3170
        return values

    def __check_input(x, UPLO):
        x_shape = list(x.shape)
        if len(x.shape) < 2:
            raise ValueError(
                "Input(input) only support >=2 tensor, but received "
                "length of Input(input) is %s." % len(x.shape))
        if x_shape[-1] != x_shape[-2]:
            raise ValueError(
3171 3172
                "The input matrix must be batches of square matrices. But received x's dimention: {}"
                .format(x_shape))
3173
        if UPLO != 'L' and UPLO != 'U':
3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187
            raise ValueError(
                "UPLO must be L or U. But received UPLO is: {}".format(UPLO))

    __check_input(x, UPLO)

    helper = LayerHelper('eigvalsh', **locals())
    check_variable_and_dtype(x, 'dtype',
                             ['float32', 'float64', 'complex64', 'complex128'],
                             'eigvalsh')

    out_value = helper.create_variable_for_type_inference(dtype=x.dtype)
    out_vector = helper.create_variable_for_type_inference(dtype=x.dtype)

    is_test = x.stop_gradient
3188 3189 3190 3191 3192 3193 3194 3195 3196 3197
    helper.append_op(type='eigvalsh',
                     inputs={'X': x},
                     outputs={
                         'Eigenvalues': out_value,
                         'Eigenvectors': out_vector
                     },
                     attrs={
                         'UPLO': UPLO,
                         'is_test': is_test
                     })
3198
    return out_value
3199 3200


3201 3202 3203 3204 3205 3206 3207 3208
def lstsq(x, y, rcond=None, driver=None, name=None):
    """
    Computes a solution to
    the least squares problem of a system of linear equations.

    Args:
        x (Tensor): A tensor with shape ``(*, M, N)`` , the data type of the input Tensor ``x``
            should be one of float32, float64.
3209
        y (Tensor): A tensor with shape ``(*, M, K)`` , the data type of the input Tensor ``y``
3210
            should be one of float32, float64.
3211 3212
        rcond(float, optional): The default value is None. A float pointing number used to determine
            the effective rank of ``x``. If ``rcond`` is None, it will be set to max(M, N) times the
3213
            machine precision of x_dtype.
3214 3215 3216
        driver(str, optional): The default value is None. The name of LAPACK method to be used. For
            CPU inputs the valid values are ‘gels’, ‘gelsy’, ‘gelsd, ‘gelss’. For CUDA input, the only
            valid driver is ‘gels’. If ``driver`` is None, ‘gelsy’ is used for CPU inputs and ‘gels’
3217
            for CUDA inputs.
3218
        name(str, optional): The default value is None. Normally there is no need for user to set
3219 3220 3221
            this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
3222 3223 3224 3225 3226 3227 3228
        Tuple: A tuple of 4 Tensors which is (``solution``, ``residuals``, ``rank``, ``singular_values``).
        ``solution`` is a tensor with shape ``(*, N, K)``, meaning the least squares solution. ``residuals``
        is a tensor with shape ``(*, K)``, meaning the squared residuals of the solutions, which is computed
        when M > N and every matrix in ``x`` is full-rank, otherwise return an empty tensor. ``rank`` is a tensor
        with shape ``(*)``, meaning the ranks of the matrices in ``x``, which is computed when ``driver`` in
        (‘gelsy’, ‘gelsd’, ‘gelss’), otherwise return an empty tensor. ``singular_values`` is a tensor with
        shape ``(*, min(M, N))``, meaning singular values of the matrices in ``x``, which is computed when
3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260
        ``driver`` in (‘gelsd’, ‘gelss’), otherwise return an empty tensor.

    Examples:
        .. code-block:: python

            import paddle

            paddle.set_device("cpu")
            x = paddle.to_tensor([[1, 3], [3, 2], [5, 6.]])
            y = paddle.to_tensor([[3, 4, 6], [5, 3, 4], [1, 2, 1.]])
            results = paddle.linalg.lstsq(x, y, driver="gelsd")
            print(results[0])
            # [[ 0.78350395, -0.22165027, -0.62371236],
            # [-0.11340097,  0.78866047,  1.14948535]]
            print(results[1])
            # [19.81443405, 10.43814468, 30.56185532])
            print(results[2])
            # 2
            print(results[3])
            # [9.03455734, 1.54167950]

            x = paddle.to_tensor([[10, 2, 3], [3, 10, 5], [5, 6, 12.]])
            y = paddle.to_tensor([[4, 2, 9], [2, 0, 3], [2, 5, 3.]])
            results = paddle.linalg.lstsq(x, y, driver="gels")
            print(results[0])
            # [[ 0.39386186,  0.10230173,  0.93606132],
            # [ 0.10741687, -0.29028133,  0.11892585],
            # [-0.05115091,  0.51918161, -0.19948854]]
            print(results[1])
            # []
    """
    device = paddle.get_device()
3261 3262 3263
    if device == "cpu":
        if driver not in (None, "gels", "gelss", "gelsd", "gelsy"):
            raise ValueError(
3264 3265
                "Only support valid driver is 'gels', 'gelss', 'gelsd', 'gelsy' or None for CPU inputs. But got {}"
                .format(driver))
3266 3267 3268 3269
        driver = "gelsy" if driver is None else driver
    elif "gpu" in device:
        if driver not in (None, "gels"):
            raise ValueError(
3270 3271
                "Only support valid driver is 'gels' or None for CUDA inputs. But got {}"
                .format(driver))
3272 3273 3274 3275
        driver = "gels" if driver is None else driver
    else:
        raise RuntimeError("Only support lstsq api for CPU or CUDA device.")

3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288
    if x.dtype == y.dtype and x.dtype in (paddle.float32, paddle.float64):
        pass
    else:
        raise ValueError(
            "Only support x and y have the same dtype such as 'float32' and 'float64'."
        )

    if rcond is None:
        if x.dtype == paddle.float32:
            rcond = 1e-7 * max(x.shape[-2], x.shape[-1])
        elif x.dtype == paddle.float64:
            rcond = 1e-15 * max(x.shape[-2], x.shape[-1])

3289
    if _non_static_mode():
3290
        if in_dygraph_mode():
3291
            solution, residuals, rank, singular_values = _C_ops.lstsq(
3292
                x, y, rcond, driver)
3293
        else:
3294
            solution, residuals, rank, singular_values = _legacy_C_ops.lstsq(
3295
                x, y, 'rcond', rcond, 'driver', driver)
3296 3297 3298 3299 3300 3301 3302 3303 3304 3305

        if driver == "gels":
            rank = paddle.empty(shape=[0], dtype=paddle.int32)
            singular_values = paddle.empty(shape=[0], dtype=x.dtype)
        elif driver == "gelsy":
            singular_values = paddle.empty(shape=[0], dtype=x.dtype)

        return solution, residuals, rank, singular_values

    helper = LayerHelper('lstsq', **locals())
3306 3307 3308 3309 3310 3311
    check_variable_and_dtype(x, 'dtype',
                             ['float32', 'float64', 'complex64', 'complex128'],
                             'lstsq')
    check_variable_and_dtype(y, 'dtype',
                             ['float32', 'float64', 'complex64', 'complex128'],
                             'lstsq')
3312 3313 3314 3315 3316 3317

    solution = helper.create_variable_for_type_inference(dtype=x.dtype)
    residuals = helper.create_variable_for_type_inference(dtype=x.dtype)
    rank = helper.create_variable_for_type_inference(dtype=paddle.int32)
    singular_values = helper.create_variable_for_type_inference(dtype=x.dtype)

3318 3319 3320 3321 3322 3323 3324
    helper.append_op(type='lstsq',
                     inputs={
                         'X': x,
                         'Y': y
                     },
                     outputs={
                         'Solution': solution,
3325
                         'Residuals': residuals,
3326 3327 3328 3329 3330 3331 3332
                         'Rank': rank,
                         'SingularValues': singular_values
                     },
                     attrs={
                         'rcond': rcond,
                         'driver': driver
                     })
3333 3334 3335 3336 3337 3338 3339 3340

    if driver == "gels":
        rank = paddle.static.data(name='rank', shape=[0])
        singular_values = paddle.static.data(name='singular_values', shape=[0])
    elif driver == "gelsy":
        singular_values = paddle.static.data(name='singular_values', shape=[0])

    return solution, residuals, rank, singular_values
3341 3342 3343 3344


def corrcoef(x, rowvar=True, name=None):
    """
3345

3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368
    A correlation coefficient matrix indicate the correlation of each pair variables in the input matrix.
    For example, for an N-dimensional samples X=[x1,x2,…xN]T, then the correlation coefficient matrix
    element Rij is the correlation of xi and xj. The element Rii is the covariance of xi itself.

    The relationship between the correlation coefficient matrix `R` and the
    covariance matrix `C`, is

    .. math:: R_{ij} = \\frac{ C_{ij} } { \\sqrt{ C_{ii} * C_{jj} } }

    The values of `R` are between -1 and 1.

    Parameters:

        x(Tensor): A N-D(N<=2) Tensor containing multiple variables and observations. By default, each row of x represents a variable. Also see rowvar below.
        rowvar(Bool, optional): If rowvar is True (default), then each row represents a variable, with observations in the columns. Default: True.
        name(str, optional): Name of the output. Default is None. It's used to print debug info for developers. Details: :ref:`api_guide_Name`.

    Returns:

        The correlation coefficient matrix of the variables.

    Examples:
        .. code-block:: python
3369

3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402
            import paddle

            xt = paddle.rand((3,4))
            print(paddle.linalg.corrcoef(xt))

            # Tensor(shape=[3, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
            # [[ 1.        , -0.73702252,  0.66228950],
            # [-0.73702258,  1.        , -0.77104872],
            # [ 0.66228974, -0.77104825,  1.        ]])

    """
    if len(x.shape) > 2 or len(x.shape) < 1:
        raise ValueError(
            "Input(x) only support N-D (1<=N<=2) tensor in corrcoef, but received "
            "length of Input(input) is %s." % len(x.shape))
    check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'corrcoef')

    c = cov(x, rowvar)
    if (c.ndim == 0):
        # scalar covariance
        # nan if incorrect value (nan, inf, 0), 1 otherwise
        return c / c

    d = paddle.diag(c)

    if paddle.is_complex(d):
        d = d.real()
    stddev = paddle.sqrt(d)
    c /= stddev[:, None]
    c /= stddev[None, :]

    # Clip to [-1, 1].  This does not guarantee
    if paddle.is_complex(c):
3403 3404
        return paddle.complex(paddle.clip(c.real(), -1, 1),
                              paddle.clip(c.imag(), -1, 1))
3405 3406 3407 3408
    else:
        c = paddle.clip(c, -1, 1)

    return c